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IN ~16.a K Me 

The literature on technological diffusion i.e., the process by which the use of new technology spreads, has 

grown apace in recent years (for surveys see Stoneman 1983, 1986 and 1987). There have been a number 

of significant theoretical advances made in this literature, however it is still fair to state that the majority 

of the empirical work on this topic has not yet caught up with the theory. In this paper we attempt to 

construct an empirical model of the diffusion process (which we then apply to data on the spread of 

Computer Numerically Controlled Machine Tools (CNC) in the UK) in order to gain some insight into 

the extent to which the various theoretical frameworks have some empirical validity. This work is part of 

an ongoing project funded by the Economic and Social Research Council and the Department of Trade 

and Industry in the UK, some other results of which are available in Karshenas and Stoneman (1990). 

Early work on the diffusion of new technology tended to concentrate upon epidemic theories of diffusion 

which in their crude form considered that potential adopters would acquire new technology upon receipt 

of information relating to its existence. Some refinement of this approach (see for example, Mansfield 

1968) has improved the conceptual basis of such models but the reliance on information spreading 

remains. This approach has been particularly prevalent in empirical work (see, e.g., the latest piece by 

Mansfield 1989). In contrast a major aspect of recent theoretical developments has been the increasing 

emphasis placed on the explicit treatment of a firm's or consumer's decision to adopt, with very little, if 

any, account being taken of information spreading or other epidemic type forces. 

The essential prediction of a theory of diffusion is that potential adopters of a new technology should 

have different (preferred) adoption dates. In the recent theoretical literature three different mechanisms 

have been suggested that would yield such an outcome. 

a) Rank effects. These effects arise from assuming that potential adopters of a technology will obtain (due 

to different inherent characteristics such as firm size) different returns from the use of new technology. 

This allows one to specify a distribution of reservation prices across potential adopters. Diffusion 

proceeds as the cost of acquisition of the new technology falls over time, firms adopt as prices fall below 

reservation prices, and the benefit distribution is mapped out as a diffusion path. This strand of the 
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literature, generally known as probit models, is exemplified by the work of David (1969), Davies(1979), 

and Ireland and Stoneman(1986). 

b) Stock effects. As the use of a new technology expands and costs of production of users fall, industry 

price will fall and output will expand. These changes will in turn affect the return to the adoption of new 

technology. On the assumption that as use expands the return to adoption falls, at any given cost of 

acquisition there will be a number of adopters beyond which adoption is not profitable. By assuming that 

this number actually adopt, a diffusion path can be generated as the cost of adoption falls over time. This 

'game theoretic' approach is best exemplified by the work of Reinganum(1981) and Quirmbach(1986). 

c) Order Effects. Fudenberg and Tirole (1985) extend the stock effects model by reasoning that in that 

model earlier adopters get the greatest returns and thus there will be a battle to be first. Such 'order 

effects' can be considered more generally however. Early adopters could obtain prime geographic sites, 

pre-empt the pool of skilled labour or build up first mover advantages more generally defined. A general 

model where such effects are considered is to be found in Ireland and Stoneman(1985). Basically, a firm 

in deciding whether to adopt in a time period or whether to wait takes account of the effect on profits of 

its moving down the adoption order as a result of waiting. This yields an adoption date as a function of 

the cost of acquisition, and as this cost falls so diffusion proceeds. 

These three effects, the rank, stock and order effects, summarise the recent theoretical advances in 

diffusion analysis. In section 2 of this paper we build a decision theoretic model that incorporates all 

three effects and which may be used empirically to assess their applicability. However, one should not 

ignore the epidemic effects previously discussed. Thus in the first two parts of section 2 the modelling of 

the decision to adopt is conditional upon awareness. In the third part of section 2 we introduce the 

epidemic effect to reflect awareness and uncertainty factors and thus generate a model that incorporates 

all four of the basic approaches to diffusion analysis. The resulting model is applied to data on the 

diffusion of CNC in the UK. In section 3 we discuss the data and the implications of the sample design 

for the specification of the estimating model. Estimation and results are discussed in section 4, and the 

main conclusions of the paper are reviewed in section 5. 
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The basic empirical approach taken here derives from the work of Hannan and McDowell (H&M) (1987) 

who 'use as a guide, the presumption that an innovation will appear more attractive to a potential adopter 

the greater the positive differential between expected profits with and without the innovation and the less 

the uncertainty or risk associated with the innovation'. Defining X(t) as a vector of relevant explanatory 

variables that determine the difference in expected profits and uncertainty, they assume that h(t), the 

hazard rate, or the conditional probability that firm i adopts in time t (given that it has not adopted by ft-

11), is given by (1) 

.hi(t) = exp{X'tP1 
	

(1) 

where 0 is a vector of coefficients. In their work H&M include as the main components of X, the wage, 

market growth, concentration, firm size, time and usage to date. Our approach is similar to that of H&M 

in that we model the adoption duration, however in doing so we have cause to extend the list of relevant 

explanatory variables and assume a more general functional form for the hazard rate. 

A Deterministic Model 

Assume for present that there is complete information and that there is no uncertainty. Define the 

function g(.) as determining in a given industry the benefits obtained by a firm from use of a new 

technology per period of use. The arguments of g(.) will reflect the rank, stock and order effects 

discussed above. For the rank effect assume a vector of characteristics for the firm, Ci, that determine its 

rank in the distribution of benefits. For the stock effects define K(t) as the number of firms in the 

industry using the new technology in time period t. For order effects define S(t) as the number of 

previous adopters in the industry at time t (this being done purely for expositional reasons it being 

obvious that S(t)=K(t)). Abstracting completely from the level of use of a technology by the firm (which 

is done throughout the paper, thus in effect making its main interest inter fine rather than intra firm 

diffusion), we may then state that for the ith firm adopting a new technology at time t, its per period or 

annual benefits from adoption at time ti>_t will be 
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gi(c) = g(Ci, S(t), K(T)), 	T2L 92<0, 93<0 	 (2) 

Defining r as the discount rate/interest rate, assuming no depreciation we may write the present value of 

the increase in gross profits arising from adoption at time t (Gi(t)) to be: 

Gi(t) = f t g(Ci, S(t), K(,r)) exp { -r(ti-t)) di 
	

(3) 

The acquisition decision, or the choice of an optimal t, t*, will be determined by two conditions (of which 

H&M seem to only consider the first), the profitability condition and the arbitrage condition. The first we 

may interpret as that acquisition must yield positive profits, the second condition requires that the net 

benefit of acquisition is not increasing over time. Let P(t) be the cost of acquisition at time t, and Zi(t) be 

the net present value of acquisition at time t, then for acquisition to be profitable at time t it is necessary 

that 

Zi(t) = -P(t) + Gi(t) >_ 0 	 (4) 

For it not to be more profitable to wait before acquisition it is necessary that 

d(2 i(t).exp{-rt)) 
yi(t) _ 

	

	 <_ 0 	 (5) 
dt 

where Zi(t) is discounted to ensure a common time basis of evaluation. Assuming profit maximizing 

behaviour by the firm, while the profitability condition determines the set of potential adopters, it is the 

arbitrage condition which actually governs optimal adoption time, t*  for each potential adopter. We may 

then specify that the optimal adoption date for firm i, t*i is given by: 

Yi(t*i) < 0 
	

(6) 

where the inequality sign allows for the possibility of comer solutions, e.g., when it is optimal to adopt 

the technology immediately on the first date of its introductions. Assuming Coumot conjectures, using 

1  To prove the existence of an optimum value for Zi(t) at some t<--, we first note the conditions under which Zi(t) is bounded. 
Assuming an upper bound g for per period benefits g(.), and a lower bound for the price of technology P, it would be clear from 
equations (3) and (4) that: 

Zi(t) 	S -P + ft  g exp (-r(,r-t)) dT 

<_ -P + g/r 

and Zi(t) is bounded from above. We may then show that if each member i of the population is a potential adopter there exists an 
optimum time ti*<— where net benefits of adoption are maximized. Note that for a firm to be a potential adopter there must exist 
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(3) and (5) we may rewrite yi(t) as in (7) 

yi(t) = rP(t) -p(t) + Jt  g2(Ci, S(t), K(r)) s(t) exp(-r(ti-t)) dc - g(Ci, S(t), K(t)) 	(7) 

where, using lower case letters for derivatives with respect to time, s(t) and p(t) represent expected 

changes respectively in the number of users and the price of technology in the small time interval (t, 

t+dt). One might note at this stage that given complete myopia where p(t)=s(t)=0 and K(,r)=K(t) for all 

Tt, the condition yi(t)=O yields a t`i that would be the same as that implied by 7.i(t)=0, and thus under 

myopia the arbitrage and the profitability conditions coincide. 

In equation (7), g2(Ci,S(t),K(ti)) represents the marginal change in benefits from adoption for all ti>_t 

resulting from a change in fine is order of adoption at time t. It is plausible to make the simplifying 

assumption that such marginal benefit changes resulting from moving down the order of adopters at time 

t are independent of the level of future stock of adopters K(r) for r>t2. Under this assumption equation 

(7) can be simplified to: 

yi(t) = rP(t) -p(t) + g2(Ci, S(t), K(t)) s(t)/r - g(Ci, S(t), K(t)) 	 (8) 

A Stochastic Model 

Under the assumption of perfect foresight equations 6 and 8 above give the exact date of adoption ti for 

the individual fine i. The model as specified above, however, abstracts from various real life factors 

which though they may be known with certainty to the individual adopters cannot be incorporated into 

the model. These factors are introduced through a stochastic error term c in the model. Assuming that 

a price Pe_P where net benefits of adoption ("Zi(t)) are non-negative. Under these conditions, taking the limit of Zi(t) as time 
goes to infinity we will have: 

lim Zi(t) = lim i -P + ft  g exp f -r(T-t)) dr ) 
t—>— 	t)-  

=-P<0 

But since we assumed each firm to be a potential adopter, i.e., Zi(t)—>O for all i, it follows that Zi(t) must achieve its maximum at 
some t<—. This also means that for a potential adopter the arbitrage condition dominates the profitability condition, and thus in 
what follows we need only consider the arbitrage condition. 

2  This can be obtained for example if we assume an additive benefit function of the form g(Ci,S(t),K(T)) = gl(Ci,S(t)) + 

92(Ci•K(,r))• 
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the distribution of a remains invariant across the fines over time, the adoption condition as specified in 

equation 6 now becomes: 

yi(t)+e50 
	

(9) 

Assuming a is distributed independent of y with a distribution function V(e), the probability of adoption 

in the small time interval {t, t+dt} for a firm which has not adopted the technology by time t, i.e., h(t) the 

hazard rate, becomes: 

hi(t) = Prob{yi(t)+e<0} = V(-yi(t)) 
	

(10) 

From (8) we may observe that yi(t) is a positive function of r(t)P(t), S(t) and K(t), through the first and 

last terms, and also a function of Ci with sign to be determined3. The second and third terns in (8) imply 

also that yi(t) is negatively related to the expected change in the cost of acquisition p(t), and given 92<0, 

negatively related to the expected change in the number of uses of new technology s(t). Given that V is a 

decreasing function in y, and that K(t)=S(t), we may then write (10) as (11): 

hi(t) = J(r(t)P(t), K(t), Ci, p(t), k(t)/r(t)) 

where Jl<0, J2<0, J3  >< 0, J4>0, and J5>0. It should be noted that, as is clearly evident from equation 

(8), g2(.) is a variable function of Ci and K(t). This signifies the fact that marginal changes in benefits 

resulting from moving down the order of adoptions depends on factors such as characteristics of the firm, 

market conditions and level of adoptions to the date. We can allow for these effects, assuming a linear 

functional form for g2(.), by introducing cross product variables between k(t) on the one hand and Ci and 

K(t) on the other. The hazard function incorporating these cross product terms then becomes: 

hi(t) = J f r(t)P(t), K(t), Ci, p(t), (ao+alCi+a2K(t)) k(t)/r(t)) 	 (12) 

3  In the empirical model discussed above we assumed a fixed discount rate r for ease of exposition. It is however 
straightforward to show that the same results are obtained under a variable discount rate r(t), if we substitute a time varying 
discount factor pt= exp{-f,, u du], for r in the model. In the estimating model therefore we treat r(t) as a time varying 
covariate. The first two terms on the right hand side of equation (8) could be written as P(t)[r(t)-p(t)/P(t)] where the expression 
within the square brackets is the familiar user cost of capital formula. We have, however, preferred to incorporate r(t)P(t) and 
p(t) as separate terms in the estimating equation as this allows a more explicit discussion of the mis-specification error in myopic 
type models in the subsequent sections of the paper. 



where the hypothesis regarding the existence of order effects could be tested by considering the joint 

significance of coefficients ao, a1, and a2. 

At this point it is useful to address two specific conceptual issues. 

1- The first issue arises from the inclusion of both rank and stock effects in one framework. The most 

common rank effect in the literature is due to the hypothesis that benefits from adoption vary with fine 

size, due, basically, to scale effects. Firm size is then used as an exogenous explanatory variable in the 

diffusion study. We will be doing this below, firm size being one of the few firm specific characteristics 

on which we have data. However, in the stock effect models firm size is endogenous and determined by 

adoption dates. In principle this could be accommodated in the model by treating SIZE, an element of 

vector Ci, as a time varying endogenous covariate. At the estimation stage we could then model SIZEt  in 

terms of adoption time, K(t) and other exogenous variables, and consistent estimates of the coefficients of 

interest of the model can be made by using a two stage estimation method (as for example discussed in 

Lee, 1981). This is not however possible as the data available to us provides information on the size of 

the firm only at a point in time. We also have our doubts as to whether adoption or not of any one 

particular technology will have a significant impact on firm size. Given the availability of data a useful 

approach is to allow for the scale (rank) effects by using firm size, proxied by the number of employees, 

as an exogenous variable, and letting the stock effects to be introduced through the effect of K(t) on the 

hazard rate. 

2- Throughout the above discussion little attention has been given to what it is that the g(.) function 

measures. It was described as the annual benefit from adoption of new technology. It is informative 

however to consider three different types of investment decisions. Define n as the quasi rents p.a. on new 

technology and ic*  as the quasi rents on an old technology, and concentrate on the profitability condition 

assuming myopia. We may then state that for a fine to replace old technology with new it is necessary 

that 

x-n*  _> rP 

For a new firm considering investing in new or old technology or for a firm expanding capacity, new 



technology will be bought if 

ic-rP>x* -rP*  

where P* is the price of the old technology. This latter .rule would also apply when old technology is 

physically obsolescent. Thus it is clear that, ceteris paribus, new firms, firms with worn out equipment or 

those expanding capacity are more likely to adopt earlier than other firms. An attempt is made to cater 

for this in the empirical work by introducing an explanatory variable reflecting output growth rates, and 

another reflecting the date of establishment of the fine. 

Epidemic and Learning Effects 

In the absence of a specific functional form, at least for the g(.) function, we cannot be precise as to the 

functional form of J(.) in equation (12). A common approach in the econometric literature has been to 

introduce the explanatory variables in the hazard function in exponential form, which has the advantage 

of ensuring a positive hazard without the need to impose any further restrictions on the parameters of the 

model. More specifically, a common practice has been to adopt some version of the general class of 

proportional hazard functions suggested by Cox(1972), where the explanatory variables act 

multiplicatively on the hazard rate (or additively on log hazard). We too shall be assuming a proportional 

hazard form, and letting the data decide the appropriateness of this assumption at the empirical stage. 

Here we are concerned with the restrictions which economic theory may impose on the baseline hazard 

and on the other parameters of interest in the model. We shall thus begin with the general form of the 

proportional hazard function: 

h(tlX,P) = ho(t) exp{X'P) 
	

(13) 

where X is a vector of explanatory variables incorporating all the variables discussed under rank, stock 

and order effects above, P is a vector of parameters, and ho(t) is the baseline hazard. If the variables 

included under the rank, stock and order effects provide an adequate explanation of the diffusion process 

the baseline hazard ho(t) would be expected to remain constant over time. This leads to the exponential 

hazard function, as estimated, for example, by Hannan and McDowell(1987), of the following form: 



h(tIX,P) = exp{X'p) 	 (14) 

where h0, the baseline hazard, is absorbed in the constant term in vector X. 

Our next step, is, to -extend. the above model by introducing epidemic effects, or endogenous learning 

processes, to the model. Thus far this has been ignored, but its importance in the past literature suggests 

that it ought to be incorporated. The exogenous learning processes - related for example to the R&D 

expenditure of the firm, its size, corporate affiliation etc. - will be incorporated in the model through the 

rank effect discussed above. The epidemic effects refer to endogenous learning as a process of self 

propagation of information about the new technology which grow with the spread of the technology. The 

endogenous learning effects could be introduced by specifying the hazard function as: 

h(t1X,P,0) = ha(t) exp{X'P) W(t;6) 
	

(15) 

where V incorporates the endogenous leaming effects and 0 is a vector of parameters. There have been 

different parameterizations of the function V in the literature (see e.g., Karshenas and Stoneman, 1990, 

and the references quoted there). The simplest and most commonly used form is based on the logistic 

function. We shall therefore begin by considering the specific functional form of V in the logistic case. 

As we shall argue below, the behaviour of V remains invariant under a wide range of specification of the 

underlying endogenous diffusion curves. 

The behavioural justification for the use of the logistic in characterizing the endogenous leaming effects 

in the diffusion process is often made by analogy to the spread of epidemics as discussed in biological 

sciences. Consider a community with a number of persons susceptible to a new infection, N, a number of 

already infected people S, and a constant rate of infection 01  (i.e., 61  = probability of contracting the 

infection after a contact is made). Under the assumption of a homogeneously mixing population, it is 

plausible to assume that the probability for a susceptible to meet an infected person and contract the 

diseases in a small time interval dt is 61(S/N)dt. In a population of (N-S) susceptibles the average 

number of infections in a small time interval dt would therefore be: 

dS = 01  (SIN) (N-S)dt 
	

(16) 
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Integrating this equation gives the simple logistic curve for the spread of the epidemic as a single valued 

function of time: 

S = N / (l+exp f -8o-81t)) 	 (17) 

where 80  is, the constant of integration. The analogy often made between the spread of epidemics and the 

diffusion of a new technology or product is either based on the learning processes involved in the use of 

new technology and its transmission through human contact, with the 'infection' being information, or 

based on pressure of social emulation and competition, or reductions in uncertainty resulting from 

extensions of use. 

By simple manipulation of equations (16) and (17) we can derive the epidemic hazard function, i.e., the 

conditional probability for a firm which has not adopted the technology by time t to 'get informed' about 

the technology and adopt in the small interval ft, t+dt) : 

yf(t;8) = (dS/dt)/(N-S) = (81  exp f 00+81t)) / (1+exp(80+81t)) 	 (18) 

It follows that: 

dyr/dt = 812  exp(00+81t) / (l+exp f 60+01t))2 
	

(19) 

which is greater than zero. In other words, epidemic diffusion as characterized by the simple logistic 

growth curve implies a hazard rate which increases with the elapsed duration. This result could be shown 

to hold under a variety of functional forms put forward in the epidemic based literature4. As there is not a 

unique parametric specification of the epidemic effect we assume a non-parametric epidemic hazard with 

the proviso that dyf/dt>0, i.e., the hazard rate should be increasing. Equation 15 therefore could be 

written as: 

h(t1X,P) = ho(t) exp fX'R) V(t) 
	

(20) 

This is a general model which incorporates the rank, stock, and order effects, as well as the epidemic 

influences. However, as is immediately apparent from (20), it is not possible to separately identify the 

baseline hazard from the epidemic hazard in this equation. We thus absorb the epidemic hazard into the 

4  Under the general functional form dS/dt = H(S(t)), it could be easily seen that a sufficient condition for dW/dt>0 is that dS/dt>0 
and dH/dS>0 - which is generally true with the epidemic type diffusion curves in the literature. 
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baseline hazard and test for the time dependence of the baseline hazard. Specifically the estimated model 

is of the form: 

h(tiX,P) = ho(t) exp(X'p} 
	

(20) 

where X incorporates rP(t), K(t), Ci, p(t), k(t), and the cross product terms in (12). Strictly speaking in 

the pure game theoretic and probit models, after full account is taken of the relevant explanatory variables 

in the model, the baseline hazard should remain constant. In fact, if anything the omission of some of the 

explanatory variables due to lack of data or information, is expected to lead to a negative bias in the time 

dependence of the estimated baseline hazard (for a proof see, for example, Heckman and Singer, 1984). 

Thus if our estimates suggest a positive duration dependence then this is indicative of the existence of 

epidemic effects in the diffusion process. 

Moreover, given (8) and (12), the following restrictions on the coefficients of the model are suggested by 

theory. The coefficient, including cross product terms, on k(t) (reflecting 920) is indicative of the order 

effect. In the presence of an order effect this coefficient should be significantly greater than zero. The 

coefficient on K(t) reflects both the stock and order effects. If both exist then the coefficient on K(t) 

should be significantly less than zero. We thus consider that if the coefficient on k(t) is significantly 

greater than zero and the coefficient on K(t) is significantly less than zero then the hypothesis that there 

are both stock and order effects cannot be rejected. If the coefficient on k(t) is not significantly greater 

than zero, but the coefficient on K(t) is significantly less than zero then the hypothesis of there being an 

order effect can be rejected, but the hypothesis that there is a stock effect cannot be rejected. Finally, if 

the coefficient on k(t) is significantly greater than zero, but the coefficient on K(t) is not significantly less 

than zero, then the hypothesis of there being an stock effect cannot be accepted, but the hypothesis that 

there is an order effect cannot be rejected. We view this latter situation as providing weak support for the 

order hypothesis. In addition, if the expectation terms p(t) and k(t) do carry significant positive 

coefficients then the hypothesis that acquisition decisions are myopic (a la Hannan and McDowell, 1984, 

1987) cannot be accepted. Similarly, if the elements of Ci do not cant' significant coefficients then the 

hypothesis of rank effect cannot be accepted. 
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The variables included in the rank effect have thus far been implicitly referred to as the vector Ci. We 

need to be more specific about these variables at this stage. There are of course numerous firm-specific 

factors influencing the adoption decision, some of which may not be even observable or quantifiable. 

The factors which will be considered below are those which in the literature are believed to exert a 

systematic influence on the adoption decision - the unsystematic random factors being absorbed in the 

residual, that is, the base line hazard. 

The factors related to the rank effect which we have been able to include in the model are the following: 

Size of the firm (SIZE), reflecting possible economies of scale associated with the new technology 

which makes adoption more profitable for larger firms. Size may be also taken as an indicator of the 

differences in relative risks faced by different sized firms in adopting the new technology. Such 

arguments imply a positive sign for the coefficient of SIZE in the model. There are however 

counterbalancing influences associated with size; e.g., larger firms may be less flexible in their 

managerial and labour relations which could impede fast adoption. The existing empirical evidence, 

however, indicates a positive sign between size and the speed of adoption (see, e.g., Davies, 1979, 

Alderman, Davies, Thwaites, 1988). 

Growth of Output (GY), as an indicator of the increase in possibilities for new investment which as 

argued above are expected to have a positive influence on the speed of adoption. Periods of rapid market 

expansion create opportunities for new investment, as well as easing the financial constraints on firms 

and reducing the recoupment period for the machinery incorporating the new technology. A positive sign 

is expected for the output growth variable. 

Research and Development Expenditure (R&D), proxied by the number of full time employees in the 

R&D department of the establishment. It takes the value of zero where no R&D department exists. This 

may be taken as an indicator of the ability of the firm to process information about the latest technologies 

arriving in the market, as well as reducing risks associated with the adoption of a new technology (see, 

e.g., Cohen and Levinthal, 1989). It could be interpreted as part of the exogenous leaming in the 

adoption process. The sign of the coefficient associated with this variable is therefore expected to be 

positive. 
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Date of Establishment (DAT), is supposed to pick up the effect of new entries on the speed of diffusion. 

As we argued earlier new investment free from the cost of scrapping old capital is expected to lead to 

faster adoption of the new technology. New firms may also have the added advantage of not being 

encumbered by organizational restructuring that the adoption of a new technology may entail. This 

variable is expected to be positively correlated with the speed of adoption. 

Corporate Status of the establishment (STATUS), is a dummy variable which indicates whether the 

establishment is an independent unit or whether it is part of a larger corporate unit. The expected effect 

of this variable on the speed of adoption is ambiguous. On the one hand independent units may be better 

positioned with regard to speed of implementation once the decision to adopt is taken. On the other hand 

establishments which are part of a larger corporation may be better informed and bear less risk in 

adopting a new technology. 

3. The Data and Sampling Distribution of the Model 

To estimate the above model we ideally need a data set on complete life histories of the population of 

potential adopters, as well as the characteristics of a well defined new technology over a sufficiently long 

period of time beginning with the appearance of the technology in the market. Such ideal data sets are 

seldom available, and in particular, disaggregated data on the adoption of new technologies is scarce. We 

have been, however, fortunate to get access to results of a technology adoption survey conducted by the 

Centre for Urban and Regional Development Studies (CURDS) at the University of Newcastle, which 

meets most of the requirements for our works. In this section we give a brief description of the data and 

investigate the likely implications of the sample design for the specification of our estimating equation. 

The CURDS survey was conducted in 1981 and it covered all identified establishments in UK 

manufacturing within nine Minimum List Headings in engineering and metalworking industries6. The 

5  We are grateful to Alfred Thwaites and Neil Alderman for making this data available to us. We are particularly indebted to 
Neil Alderman who has given generously of his time to extract the data set from the original survey data. 

6  The survey covered the following Minimum List Headings (based on 1968 SIC): MLH 331, MLH 332, MLH 333, MLH 336, 
MLH 337, MLH 339, MLH 341, MLH 361, and MLH 390. The sample of 1127 establishments comprised all establishments in 
these MLH groups together with Subcontractors (65 establishments) and a number of establishments (29) in other mechanical 
engineering. 
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questionnaire enquired the date of adoption of a number of new technologies for the period up to and 

including 1980, of which the Computerized Numerically Controlled Machine Tools (CNC) was selected 

for the present study. The survey also provides information on all establishment-specific variables 

included in, the model. Data on price of technology and on industry-specific variables have been 

compiled from other sources?. The first recorded adoption of CNC in the UK engineering industry was in 

1968, which is taken as the base year for measuring the duration of adoption. After purging the data set 

of the establishments which reported incomplete information or because of the nature of their activities 

were unlikely to be potential adopters$, there remained 1056 observations in the data set which were used 

in the estimation of the model. 

Before proceeding to the estimation stage, however, it is necessary to address two issues related to the 

coverage of the survey and the implications of the sample design for the stochastic specification of the 

estimating model. The first issue relates to the fact that the data refers to establishment as the unit of 

adoption, while most of the theory of diffusion is addressed to the firm as the decision making unit. In 

using this data for estimation therefore we are implicitly assuming that the decision to adopt is an 

establishment level decision. Empirical evidence suggests that this may not be an unreasonable 

assumption, specially for small technological changes such as the adoption of CNC9. We have 

nevertheless included a dummy variable in the estimating model which captures possible differences in 

the hazard rates between the independent establishments and those with corporate affiliation. 

The second issue relates to the possible effect of sample design on the sampling distribution of the model. 

As we noted above the CURDS survey records the adoption time of the 'stock' of establishments existing 

in 1980. Although the survey is exhaustive in the sense that it covers the entire population of 

establishments in the selected industries, there may still exist a selection bias due to sample attrition. In 

7 Price series for CNC over the period 1968-86 were provided by the Machine Tool Trades Association. We are grateful to 
Geoff Noon for sending us the price series for earlier years. Industry level data on outputs, prices, and concentration indices are 
based on the Census of Production. 

S We thus purged from the sample establishments which did not have any metal working activities, which reduced the sample to 
1069. The rest of the purges were due to defective questionnaire response. 

9  See, Alderman, Davies, Thwaits (1988). Evidence from interview surveys conducted at CURDS suggests that, 'although the 
parent company in many cases will impose investment criteria on the establishment, the decision to adopt, if these criteria can be 
met, will very often be left to plant level management'(ibid, page 8). 
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other words the establishments which close down or exit during the period 1968-80 have zero probability 

of being selected by our sampling procedure. In constructing the likelihood function for estimation, 

therefore, it would be necessary to allow for the fact that the sample is conditional on survival of the 

establishment beyond 1980. As we show in the Appendix, for the sampling plan to be ignorable the 

probability of exit should be independent of the adoption time; otherwise the sampling plan is not 

ignorable and in constructing the sample likelihood different observations have to be weighted according 

to the selection probabilities in order to counteract the bias introduced by sample attrition. 

Sampling from the stock at one point of time does not generate the information necessary for testing the 

state dependence of the exit rate of establishments. It may be possible to argue on theoretical grounds 

that small technological changes, such as the adoption of CNC, may not exert a significant influence on 

the survival of the establishment and therefore the possible bias due to sample attrition may be negligible, 

however there exists a follow up survey by CURDS of the original sample of establishments conducted in 

1986 which can be used to make inferences about the state dependence of the exit rates during the 1981-

86 period. Though this follow up survey is not as complete as the original survey in terms of 

questionnaire details, it does provide a complete list of the establishments which were closed down 

during the intervening period. We have utilized this information to test the hypothesis of state 

dependence of the exit probabilities and the results are reported in the Appendix at the end of the paper. 

We show there that the hypothesis of state dependence of exit probabilities is rejected and thus in 

constructing the likelihood function for estimation we may treat the sampling plan as ignorable. 

4. Estimation and R 

The hazard function h(t;X,P) specified in equation 20 uniquely determines the density function f(t;X,P) 

and the distribution function F(t;X,P) for adoption time by each individual establishment. Time is 

measured from 1968 (the date of first recorded adoption of CNC) for plants which were established 

before 1968, and from the date of establishment for the plants which entered after that date. If we allow 

the variable t to represent the time of adoption for establishments which adopted the technology before 

1981, and the time of censoring for non-adopters, we can set up the likelihood function for the parameters 

of interest of the model as: 
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L(P) = H f(t;X,P)G (1-F(t;X,P))1- 	 (21) 
l,n 

where a is an indicator variable which takes the value of 1 for adopters and 0 for the establishments 

which had not yet adopted the technology by the time of the surveylo. 

Maximum likelihood estimates of the parameters of the model were obtained by considering two possible 

versions of the model. First, we concentrate on the rank, order and stock effects with the exclusion of 

epidemic effects, which gives rise to a hazard function with constant baseline hazard of the form: 

h(t;X(t),P) = exp(X'(t)p) 

where the time subscript of X is indicative of the fact that some of our explanatory variables are time 

dependent. Secondly we allow for possible epidemic effects by introducing a more general, duration 

dependent, baseline hazard. Assuming a Weibull distribution of adoption times, the hazard function for 

this second model takes the form: 

h(t;X(t),P,a) = a t(a-1) exp{X'(t)R} 

With a=1 this model reverts to the first model with constant hazard, i.e., exponential distribution of 

adoption time. With (x>1 the model suggests positive duration dependence of adoption time which as we 

discussed above is indicative of the existence of epidemic effects. 

The model was estimated for the above two hazard rate specifications in continuous time, where the 

integral of the time varying explanatory variables was evaluated by a Simpson approximation11. We first 

estimated the model by treating all the observations in the sample as belonging to one industry, i.e., the 

engineering industry. This means that the industry specific variables such as cumulative adoptions refer 

to the whole sample in this run. In a subsequent run we distinguished between the nine MLH groups in 

the sample by introducing industry specific dependent variables. Most notably, the stock of previous 

10 It should be noted that since the date of entry varies amongst the firms, the censoring scheme is a case of random censoring as 
discussed, for example, by Kalbfleisch and Prentice (1980). To derive the above likelihood function we thus implicitly assume 
that entry dates are independent from the parameters of interest of the model. In that case the inclusion of the variable EDATE 
(date of entry) as an exogenous explanatory variable would capture the possible effect of the variation in entry date on the 
adoption probability, as suggested by Cox and Oakes (1985). 

11 The model was estimated by the use of MLPACK on the Cambridge University IBM3084 computer (see, Hughes and 
Guilfoyle, 1986). We would like to thank Gordon A. Hughes for making the package accessible to us, which substantially 
facilitated the task of estimation. 
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adopters in the second run is industry specific. We refer to the results of the first run as the aggregate 

industry results, and to those of the latter as disaggregated industry results. 

A list of explanatory variables included in the model is shown in Table 1, and Table 2 provides a number 

of summary statistics related to these variables for the aggregate industry model. The discount rate is 

proxied by the yield on treasury bills expressed as p.a. rate of interest. The expectation variables pt  and 

kt  are set to their actual forward values. Since Pt  was monotonically decreasing and Kt  was 

monotonically increasing over the observation period, the use of other expectation formation assumptions 

may not have substantially changed the results - especially given that both the variables are time varying 

covariates where their entire path affects parameter estimates. 

The aggregate industry results for the Exponential and Weibull models are shown in Table 3. As can be 

seen the estimates of the parameter vector P between the two models do not vary substantially, but the 

likelihood ratio test for the significance of epidemic effects rejects the Exponential model in favour of the 

Weibull model. Furthermore, the coefficient a in the Weibull model is significantly greater than one, 

suggesting strong positive duration dependence of adoption probabilities. Given that measurement errors 

and the omission of other possible explanatory variables are expected to lead to a negative estimated 

duration dependence, this may be taken as strong evidence for the existence of epidemic learning effects. 

A notable aspect of the results is that the coefficient Kt  though statistically significant has the opposite 

sign to that predicted by the game theoretic models. The coefficient of kt  reflecting the order effect, on 

the other hand though having the correct sign does not seem to be significant. There seems to be, 

however, significant interactions between the order effect and other variables of the model. As the 

likelihood ratio test for the existence of order effect shows, inclusive of the interaction terms there is 

evidence of significant order effects in the diffusion process. It should be noted that with the inclusion of 

the interaction terns, the sign of the order effect coefficient (i.e., 92(.)=ao+a1Ci+a2Kt  as in equations 8 

and 12) varies between establishments and over time. Evaluated for the Weibull model, and at values 

prevailing at the adoption time/censoring time for the time varying covariates, this coefficient turned out 

to be positive for 85 per cent of the establishments but negative for the remaining 15 per cent, with a 

mean value of +0.049. 
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Pt 	= Price of new technology at time t. 

Pt 	= Expected change of the price of new technology measured 
by (Pt+1'Pt)- 

Kt 	= Cumulative number of owners of the technology up to 
and including time t. 

kt 	= Expected change in the cumulative number of adopters in the 
interval (t, t+1), measured by (Kt+1-Kt)• 

SIZE 	= Size of the establishment, measured by total number of 
employees. 

GYt 	= Expected growth of industry output measured by 
(log(Ot+l/Ot)), where Ot  is real industry output. 
The data only allowed a distinction to be made between 
electrical engineering and other engineering industries. 

STATUS = The corporate status of the establishment; a dummy 
variable taking the value of 0 for independent establishments 
and 1 for others. 

R&D 	= Intensity of R&D activity of the establishment as 
measured by the number of full time employees in their 
R&D department. It takes the value of 0 for 
establishments without an R&D department. 

EDATE = Date of establishment of new entrants since the 
appearance of the new technology; takes the value of 
zero for those established before the appearance of the 
technology in the market, and a value ranging between 68 to 
80 for other establishments. 

CRATIO = Concentration ratio in the industry (3 digit SIC) to 
which the establishment belongs. Measured by the 
percentage share of gross output belonging to the 5 largest 
firms in the industry. 

rt 	= Discount rate, measured by yield on Treasury Bills expressed 
as annual interest rates. 



,Iri W, 

Variable 	Units 	 Mean(a) 	 Standard Deviation(-) 

Constant 	--- 1.00 0.00 

Kt 	 (units) 243.69 65.04 

kt/rt 	[(Kt+1-Kt)/rt] 25.67 5.39 

SIZE 	(100 employees) 2.20 4.17 

GYt 	(% growth rate) -8.86 3.54 

rtPt 	 (1975=100.0) 174.88 26.87 

Pt 	 (Pt+i -Pt) -11.03 5.22 

R&D 	(no. of employees) 5.28 18.16 

MATE 	(date,68-80 or 0) 19.01 31.6 

STATUS 	(dummy variable) 0.56 0.49 

Cross Product Terms(b) 

k1Li  Multiplied by: 

Kt 61.79 14.23 

SIZE 0.59 1.25 

GYt  -2.21 .82 

R&D 1.47 6.51 

MATE 4.90 8.36 

STATUS 0.15 0.14 

Number of Observations 1056 

Number of Adoptions 267 

Number of Censored Observations 789 

(a) For the time-varying covariates they refer to the values prevailing at the time of adoption or censoring. 

N All cross product terms are divided by 100. 
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TABLE 3 

Maximum Likelihood Estimates of the Aggregate Industry Model 

Expo
o
n
d
e 
el 
	

Model Meobdell  Coefficient Variable 	 11VVII 

al  TIlVIE 

Ro CONSTANT 

01 Kt 

P2 kt/rt 

03 SIZE 

04 GYt 

P5 rtPt 

R6 A 

P7 R&D 

08 EDATE 

X39 STATUS 

Cross Product Terms 

010 Kt • [kt/rt] 

PH SIZE . [kt/rt] 

P12 GYt • [kt/rt] 

013 R&D. [kt/rt] 

014 EDATE . [kt/rt] 

015 STATUS. [kt/rt] 

-0.4813 (1.3557) 

0.0419 (0.0077)** 

0.0770 (0.0300)* 

0.0762 (0.0238)* 

0.5616 (0.0652)** 

-0.0367 (0.0071)** 

0.1135 (0.0133)** 

0.0048 (0.0069) 

0.0005 (0.0103) 

0.3931 (0.5122) 

-0.0950 (0.0288)** 

-0.0955 (0.0975) 

-1.8612 (0.3246)** 

-0.01936 (0.0245) 

-0.0598 (0.0358) 

-0.0553 (1.8282) 

3.8117 (0.3653)** 

-5.3956 (1.5625)** 

0.0296 (0.0090)** 

0.0468 (0.0384) 

0.0622 (0.036)* 

0.6950 (0.0611)** 

-0.0304 (0.0076)** 

0.1053 (0.01364)** 

0.0082 (0.0068) 

-0.0063 (0.0111) 

0.3691 (0.5944) 

-0.0829 (0.0338)* 

-0.0623 (0.0977) 

-2.2875 (0.3065)** 

-0.0267 (0.0241) 

0.0319 (0.0429) 

-0.0639 (2.2861) 

Log Likelihood 	 -758.9 	 -733.3 

No. of Observations 	 1056 	 1056 

Likelihood ratio test for the 
significance of epidemic effect («1=0) 	 51.2 (x2,99(1)=6.6) 

Likelihood Ratio Test for the 	74.6 (x2.99(7)=18.5) 	78.0 (x2 99(7)=18.5) 
e
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n
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e
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of order effects 
(02,014141013+N J15 = 0) 

Figures in parentheses refer to the asymptotic standard error of coefficient estimates. 
* Significant at the 0.05 level. 
** Significant at the 0.011eve1. 
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Size of establishment which has traditionally played an important role in the probit type or rank oriented 

models has a significant and positive effect on the adoption probability, in conformity with the a priori 

predictions of theory and with other empirical studies. A further important result is the positive and 

significant coefficient of output growth, suggesting that periods of market expansion correspond to faster 

rates of adoption of new technology. 

The coefficient of the technology price variable is also significant and has the correct sign. The highly 

significant and positive coefficient of the expected change in price variable (pt), which is also in 

conformity with the predictions of theory, suggest that the myopic type models, as for example used by 

Hannan and McDowell (1987), may be seriously mis-specified. A formal comparison between the 

present model with the myopic one is made at the end of this section. The rest of the establishment-

specific characteristics such as R&D, corporate STATUS, and date of establishment of the plant 

(EDATE) do not seem to exert a significant influence on the speed of adoption. 

In terms of the rank, stock, order, and epidemic effects it appears that the pattern of CNC adoption in the 

UK indicates the existence of rank and epidemic effects, but provides weak support for the order effect 

and does not support the stock effect suggested by the game theoretic models. One objection which may 

be raised against these results is that stock effects are the result of strategic behaviour by competing firms 

within narrowly defined markets, and hence the industrial heterogeniety of the sample may have 

obscured these effects. In other words, adoption precedence variables such as Kt  and kt  should refer to 

more narrowly defined industries composed of competing firms in the final product market. To allow for 

this within the limits set by the available data, we have re-estimated the model at a disaggregated industry 

level which distinguishes between 9 MLH groups in incorporating industry specific variables. This also 

allows the introduction of other industry specific variables into the model - e.g., market structure as 

measured by the concentration ratio. 

The mean and standard deviation of the variables of the disaggregated industry model are shown in Table 

4 and the coefficient estimates are reported in Table 5. As can be seen these results are generally in line 

with the aggregate industry results, with the exception of the coefficient on kt  which, inclusive of the 

cross product terms, now shows a negative sign for the majority of establishments. The sign of the 

coefficient of kt/rt  in the Weibull model is negative for 70 per cent of the establishments with a mean of - 
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Variable 	Units Mean(=) Standard Deviation(a) 

Constant 	--- 1.00 0.00 

Kt 	 (units) 20.68 12.04 

kVrt 	[(Kt+l-Kt)/rt] 2.84 5.40 

SIZE 	(100 employees) 2.20 4.17 

GYt 	(% growth rate) -8.86 3.54 

rtPt 	 (1975=100.0) 174.88 26.87 

Pt 	 (Pt+1-Pt) -11.03 5.22 

R&D 	(no. of employees) 5.28 18.16 

EDATE 	(date,68-80 or 0) 19.01 31.6 

STATUS 	(dummy variable) 0.56 0.49 

CRATIO 	(% share) 30.40 13.70 

Cross Product Termsro> 

k1Lt  Multiplied by: 

Kt 6.1 6.81 

SIZE 0.63 1.62 

GYt  -2.38 2.11 

R&D 1.43 6.49 

EDATE 5.20 11.5 

STATUS 0.16 0.22 

CRATIO 8.39 7.56 

Number of Observations 1056 

Number of Adoptions 267 

Number of Censored Observations 789 

(a) For the time-varying covariates they refer to the values prevailing at the time of adoption or censoring. 

N All cross product terms are divided by 10. 
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TABLE -5 

Maximum Likelihood Estimates of the Disaggregated Industry Model 

Expone
e
ltial - 	

Moddell Coefficient Variable 	 11VV11 

al  TDAE 

00 CONSTANT 

01 Kt 

02 kt/rt 

03 SIZE 

N GYt 

0s rtPt 

06 A 
07  R&D 

08 EDATE 

09 STATUS 

010 CRATIO 

Cross Product Terms 

011 Kt • [kt/rt] 

012 SIZE . [kt/rt] 

013 GYt • [kt/rt] 

014  R&D. [kt/rt] 

015 EDATE . [kt/rt] 

016 STATUS. [kt/rt] 

017 CRATIO . [kt/rt] 

-0.5609 (0.6400) 

0.1280 (0.0101)** 

0.3123 (0.1088)* 

0.0967 (0.0149)** 

0.0680 (0.0337)* 

-0.0282 (0.0042)** 

0.0807 (0.0088)** 

-0.0052 (0.0030) 

-0.0141 (0.0041)** 

0.5604 (0.2581)* 

0.00450 (0.0083) 

-0.0850 (0.0348)* 

-0.0666 (0.0580) 

0.0327 (0.1099) 

-0.0068 (0.0131) 

0.0072 (0.0102) 

-0.3300 (0.7652) 

-0.0228 (0.0288) 

5.0805 (0.2237)** 

-8.1802 (0.8865)** 

0.0670 (0.0111)** 

0.0810 (0.1303) 

0.0872 (0.0189)** 

0.2319 (0.0360)** 

-0.0181 (0.0050)** 

0.0581 (0.0092)** 

-0.0013 (0.0044) 

-0.0003 (0.0046) 

0.3924 (0.2837) 

-0.0081 (0.0087) 

-0.0404 (0.0368) 

-0.0951 (0.0772) 

0.0722 (0.1121) 

-0.0218 (0.0140) 

0.0261 (0.0125)* 

0.1123 (0.8680) 

-0.0043 (0.0324) 

Log Likelihood 	 -849.5 	 -746.4 

No. of Observations 	 1056 	 1056 

Likelihood ratio test for the 
significance of epidemic effect (a,--O) 	 206.1 (x2,99(1)=6.6) 

Likelihood Ratio Test for the 	37.8 (x2,99(7)=18.5) 	48.6 (x2.99(7)=18.5) 
existence 

R{~ 

of order effects 
(P010+N J101414+N15 = 0) 

Figures in parentheses refer to the asymptotic standard error of coefficient estimates. 
* Significant at the 0.05 level. 
** Significant at the 0.01 level. 
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0.056 for the whole sample. These results thus suggest that we cannot accept the two hypotheses of there 

being order and stock effects, but we cannot reject the hypotheses that there are epidemic and rank 

effects. 

The variable CRATIO (concentration ratio) in the disaggregated industry model is meant to capture the 

effect of market stricture on the speed of adoption. This variable is measured as the share of the five 

largest fines in total output for each of the nine MLH industry groups. In the theoretical literature the 

effect of market power on the diffusion path is ambiguous. In part of the literature greater market power 

in the user industry is said to lead to faster diffusion of process technologies (Reinganum, 1981). The 

reason being that in more concentrated user industries greater profits accrue to the individual users from 

the cost reductions resulting from the adoption of the new technology, and hence the greater are the 

incentives to adopt. Quirmbach (1986) on the other hand sets up a model where collusive action between 

a small number of users in a more concentrated industry retards the pace of diffusion. This results from 

cooperative behaviour amongst users aimed at protecting profit flows from the existing equipment. 

According to our empirical results, the concentration ratio appears to have no significant effect on the 

probability of adoption. This may of course be partly due to the fact that the five fine concentration ratio 

measure may not provide an adequate representation of market power within the industries concerned. 

The above results have been obtained under specific parametric assumptions about the baseline hazard. 

The similarity of the parameter P estimates for the Exponential and Weibull models, however, appear to 

suggest that the results are robust in relation to the specific underlying baseline hazard assumptions. To 

further check this proposition we re-estimated the model assuming a Log-logistic baseline hazard. The 

results for P coefficient estimates were very close to the above two models and it also confirmed the 

positive duration dependence of the estimated hazard12. Given the closeness of the results under the three 

baseline hazard assumptions, which have widely diverging properties, the results seem to be fairly robust 

12 For economy of space we do not report these results here. The Log-logistic baseline hazard is of the form: 

ho = (Xa(XtXa-1)) / (1+(lt)a) 

which is decreasing for a<l, and for aal is first increasing and then decreasing, achieving its unique maximum at  

Our coefficient estimates for a were 4.61 and 6.04 for the aggregate and the disaggregated industry models respectively - thus 
confirming the positive time dependence of hazard suggested by the Weibull model. 
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in relation to the assumed underlying baseline hazard. It is, nevertheless, still important to check the 

adequacy of the proportional hazard assumption. 

To consider the appropriateness of the proportional hazard model for our data we examine the residuals 

of the model. Following Cox and Snell (1968) we may define the generalized residuals of the model as: 

ei = Jo h(t;a,P,Xi) _ -Log S(t;a,A,Xi) 

where a and 5 are the maximum likelihood estimates of the parameters of the model and S(.) is the 

survivor function (S(.)=1-F(.) as defined in equation 21). If the model is appropriate the residuals are 

expected to behave like a random sample from a unit exponential distribution. This follows from the 

general idea that the survivor function S(.) should have a uniform {0, 11 distribution, and thus -Log S(.) 

should be unit exponential. Goodness of fit checks are normally conducted by plotting the residuals 

against an ordered random sample from a unit exponential distribution or against -Log of the product 

limit estimate of their own survival function (see, e.g., Kalbfleisch and Prentice, 1980, Lawless 1982, 

Cox and Oakes 1985). Since our data were heavily censored we decided to check the goodness of fit of 

the model directly, by considering how well the residuals fit a unit exponential distribution with 

censoring. Assuming an exponential distribution with parameter y for the residuals (g(ei)= y exp(-Wi)), 

we tested the null hypothesis H0: y=1 , against the alternative H1: y#113. The maximum likelihood 

estimates of y for the Weibull model residuals are reported in Table 6. As can be seen for both the 

aggregate and the disaggregated industry models the hypothesis that y=1 is not rejected. 

13 A more rigorous approach would be to test the null hypothesis of exponentially distributed errors against a class of alternative 
distributions, e.g., Laguerre alternatives as suggested by Kiefer (1985). 
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Model 	Parameter Estimate 	Asymptotic Standard Error 	95% Confidence Interval 

Aggregate 	0.981 
	

0.085 
	

0.81 - 1.15 

Disaggregate 	0.977 	 0.075 	 0.83-1.12 

Finally we compare the results with those of the myopic model. As mentioned in section 2, the adoption 

decision in myopic type models is based on the profitability condition rather than the arbitrage condition. 

The myopic model is thus a special case of the model developed here, which will be attained if we restrict 

all the coefficients of the expectation terms (i.e., pt, kt  and the cross product terms) to be zero. The 

coefficient estimates of the myopic model for both the aggregate and disaggregated industry cases for the 

Weibull model are shown in Table 7. As expected in both cases the likelihood ratio statistic rejects the 

myopic model in favour of the model with expectation terms. While the coefficient estimates for 

variables such as SIZE, Kt, Pt  and GYt, do not differ substantially between the two types of models, the 

myopic model shows significant coefficient estimates for STATUS, R&D and EDATE, with signs 

contrary to a priori expectations based on theory for the last two variables. 

6. Concluding Remarks 

In this paper we have set up a general empirical model which incorporates the main demand side effects 

discussed in the literature on diffusion of new technologies. The model was applied to the data on the 

diffusion of CNC machine tools in the UK engineering industry for the period 1968-80. It was found that 

while the rank and endogenous learning effects, as discussed in the probit and epidemic type models 

respectively, seemed to play an important role in the diffusion process, there was little support for the 

stock and order effects as characterized by the game theoretic models. 

Apart from the comparison of the existing demand side models the paper also reports results which may 

be of interest in themselves. It was found that growth of output in the user industry had a significant 

positive impact on the diffusion speed, while user industry concentration did not seem to have a 
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Coefficient Variable 
Aggregate Industry Disa~gregated Industry 

Wei u11 Model 	V~eibull Model 

al  TIME 

00 CONSTANT 

01 Kt 

03 SIZE 

04 GYt 

05 rtPt 

07  R&D 

08 EDATE 

09 STATUS 

010 CRATIO 

2.3720 (0.2454)** 

-3.7731 (0.6731)** 

0.01411 (0.0014)** 

0.0386 (0.0146)* 

0.1856 (0.02540)** 

-0.0377 (0.0034)** 

-0.0071 (0.0027)* 

0.0031 (0.0036) 

0.4581 (0.1767)* 

4.4240 (0.2145)** 

-8.5102 (0.6061)** 

0.04938 (0.0073)** 

0.04483 (0.0127)** 

0.2510 (0.0261)** 

-0.02140 (0.0032)** 

-0.0068 (0.0023)* 

-0.0096 (0.0032)* 

0.4456 (0.1836)* 

-0.0114 (0.0059) 

Log Likelihood 	 -783.7 	 -780.1 

No. of Observations 	 1056 	 1056 

Likelihood Ratio Test for the 	100.8 (x2,99(8)=20.1) 	67.4 (x2,99(8)=20.1) 
myopic model (pro, P6=0, P11-PIS = a). 

Figures in parentheses refer to the asymptotic standard error of coefficient estimates. 
* Significant at the 0.05 level. 
** Significant at the 0.01 level. 

27 



significant influence on the speed of diffusion. It was further noted that static or myopic models of 

diffusion which concentrate on profitability of adoption in one period models may suffer from serious 

mis-specification error. 

Empirical research on the diffusion of new technologies has been in the past severely handicapped by 

lack of data. The relatively high cost of compiling panel data on complete life histories of individual 

adopters may have been a prohibitive factor. However, as we have seen, sampling the stock of adopters 

at a point in time can be adequate. In particular, as we have shown the problem of sample attrition in the 

case of small technological changes may be ignorable. Even for major technological innovations 

sampling at two points of time can produce the necessary information for correcting the possible 

selection bias arising from sample attrition. The availability of data sets, similar to the one used here, on 

other new process technologies is essential for extending the research to cover supply side factors, i.e., 

factors related to the heterogeniety of the new technologies, in the diffusion process. We would consider 

that the absence of any such supply side effects (see Stoneman, 1983) from this paper is its major 

omission, but our future research plans do encompass this. 

M. Karshenas and P. Stoneman 
Department of Economics 
University of Warwick 
Coventry CV4 7AL 

April 1990 
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The Effect of Sample Attrition on the Sampling Distribution of the Model 

The possible life histories of the establishments over the observation period, 1968-80, are depicted in 

Figure 1. Time is measured along the horizontal axis. The solid lines represent establishments which 

have not yet adopted the technology and dotted lines represent establishments after adoption. The figure 

shows 6 establishment types Al to A6, classified according to their adoption behaviour and entry and exit 

times during the 1968-80 period. Establishment type Al exists before the appearance of the new 

technology (1968) and survives beyond 1980 without adopting the technology. A2 has the same life 

history as Al with the difference that it adopts the technology at calendar time Dl. Plant type A3 enters 

at time D2, after the appearance of the technology, and survives beyond 1980 without adopting. A4 

enters at time D3, adopts the technology at time D4  (which may equal 133) and survives beyond 1980. 

Establishment types A5 (adopter) and A6 (nonadopter) exit at dates X1  and X2  respectively, and are 

therefore excluded from the sample observed in 1980. 

In an unbiased sample or for the population as a whole the contributions of establishments Al to A4 to 

the likelihood function are uniquely determined on the basis of the hazard function discussed in the 

previous section. Let f(t) and F(t) be respectively the density and distribution functions corresponding to 

the population hazard function h(t), where t (time of adoption or time of censoring for nonadopters) is 

measured from the base year 1968, or from the entry date for new entries during 1968-80 period'. 

Clearly in an unbiased sample the contribution of establishments such as A2 and A4 (adopters) to the 

likelihood function is f(t), and that of Al or A3 (nonadopters) is [1-17(t)]. The systematic exclusion of 

establishments such as A5 and A6, however, may introduce a selection bias in the sampling distribution 

of the model. To account for this the likelihood function must be made conditional on survival of the 

establishments beyond 1980, i.e., the time of the survey. The probability of adoption at time t, 

1 For ease of exposition here we have dropped the explanatory variables and the related parameters of interest from the hazard 

function. Their inclusion would not change the above conclusions if we maintain the assumption of ancilarity of the explanatory 

variables and variables such as entry and exit times for the parameters of interest. 
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conditional on the exit time x being greater than x* (x*=min f 12, (entry date-1980) }) could be written as: 

f(t) Jx.~ g(x/t) dx 
f(t/x>x*) = 

~1~ g(xA) f(t) dt dx 

where g(x/t) is the conditional density of exit time given the adoption time. Clearly for the sampling plan 

to be ignorable the probability density of exit time should be independent of that of adoption time. In that 

case the right hand side of the above equation becomes equal to f(t) and the sample likelihood equals the 

population likelihood. If this condition is not satisfied then the sampling plan is not ignorable and 

different observations have to be weighted according to the selection probabilities in order to counteract 

the bias introduced by sample attrition (see, e.g., Hoem, 1985). 

As pointed out in the text, here we utilize the results of the follow up survey by CURDS of the original 

sample of establishments conducted in 1986 to make inferences about the state dependence of the exit 

rates during the 1981-86 period. Though this follow up survey is not as complete as the original survey 

in terms of questionnaire details, it does provide a complete list of the establishments which were closed 

down during the intervening period. We have stratified the original sample according to adoption date 

and calculated the conditional frequencies of exit during the 1981-86 period for each adoption time 

interval, which is reported in Appendix Table 1. As can be seen there seems to be no systematic 

variation in exit frequencies given the adoption time. To test this proposition statistically we have to set 

up a probability model of the exit time. If we assume that exit time follows an exponential distribution, 

its hazard rate conditional on the adoption time can be written as: 

h(x/t,k) = exp{),O+Xlt} 

where t and x are the adoption and exit rimes as defined above. If 52(x) is the distribution function of the 

exit time, then probability of exit between times x1  and x2  given survival up to x1  is [(52(x2)-Q(x1))/(1- 

52(x1)], and the probability of survival beyond x2  given survival up to x1  is [(1-52(x2))/(1-52(x1))]. If we 

take x1  and x2  to represent exit times corresponding to 1981 and 1986 respectively, the likelihood 

function for the exit probabilities of the sample of 267 establishments which adopted the technology 
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Appendix Table 1 

lative Freauencv of Exits Conditional on Adoption Time: 1981- 

Adoption time 0-2 3-4 5-6 7-8 9-10 11-12 12< All 
(in years, 19680 

Number of adopters 6 11 16 55 72 107 789 1056 

Number of Exits 2 3 3 9 17 17 228 279 

Exit Frequency 0.33 0.27 0.19 0.16 0.24 0.16 0.29 0.26 

Appendix Table 2 

Maximum Likelihood Estimates of the Parameters of the Conditional Exit Model  

XO  -2.84 (-5.86)*  

X1  -0.055 (-1.06) 

Log likelihood -129.7 

Number of observations 267 

Likelihood ratio test 
for the significance of 1.0 (x2,,0(1)=2.7) 
adoption time variable 

Notes: 
* Figures in parentheses refer to the ratios of estimated coefficients to their asymptotic standard error. 
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before 1981 and survived beyond 1980 can be written as: 

L = II [1-expf-(x2-xl)exp(ko+Xlt)118  [exp1-(x2-xl)exp(XO+XJ)}]~1~)  
n=1,261 

where S is an, indicator variable taking the value of1 for establishments which exit during 1981-86 and 

the value of 0 for the censored observations, i.e., those which survive beyond 1986. The maximum 

likelihood estimates of Xo  and X1  are reported in Appendix Table 2. Since X1  is not significantly different 

from 0 we may reject the hypothesis of state dependence of exit time and thus regard the sample design 

as ignorable for estimation purposes. 
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