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Welfare Maximising Balanced-Budget Provision of Congestible and Excludable

Jointly- Consumed Goods: Separating Allocative Efficiency from Distribution.

This paper unites two strands of the literature on externalities by establishing
necessary and sufficient conditions for separating allocative efficiency from distribution in
club theory. The first strand in the literature examines the nature of the congestion or
environmental quality function and the relationship between this function’s properties and
whether or not full financing of optimal provision of the club good will be achieved. This
has been discussed by, e.g.: Serge-Christophe Kolm (1974); Finn Forsund (1974); Herbert
Mohring and Mitchell Harwitz (1962); Eitan Berglas and David Pines (1981, 1984) and
Todd Sandler and John Tschirhart (1984). The second strand considers when a Pareto
optimal or Nash equilibrium provision level of a public good is independent of the
distribution of agents’ characteristics, normally taken to be income. See, e.g., Ted
Bergstrom and Richard Cornes (1981 and 1983) on this. Bergstrom, Lawrence Blume and
Hal Varian (1986), Douglas Bernheim (1986) and Peter Warr (1983) discuss several such
“invariance” results for public goods; more generally, Bergstrom and Varian (1985a) and
(1985Db), respectively, discuss when Nash equilibria are independent of the distribution of
agents’ characteristics and market games have transferable utility.

Most jointly consumed goods seem to be congestible and/or excludable. These
features have spawned a vast literature (see, e.g., Dagobert Brito and William Qakland,
1980, Geoffrey Brennan and Cliff Walsh, 1981, Michael Burns and Walsh, 1981, Cornes
and Sandler, 1986, Sandler and Tschirhart, 1980, and David Starrett, 1988, for original
contributions and surveys). This literature extends considerably the original insights of Erik
Lindahl (1910), Howard Bowen (1943), Charles Tiebout (1956), Paul Samuelson (1954,
1955), James Buchanan (1965), and Mancur Olson (1965) on jointly consumed goods.

Problems involving jointly consumed goods which are both congestible and
excludable are usually very complex. This complexity arises because of the need to specify:
first, how congestion affects utility; second, the way in which the interactions of agents

simultaneously produce the level of congestion which they individually respond to; third,



the mechanism by which exclusion is achieved, which usually requires some incentive
compatibility or self-selection constraints being incorporated in the problem. Because of this
complexity, authors usually treat the congestion and exclusion problems separately. Thus in
club theory, which is where congestible jointly consumed goods are usually treated, it is
normally assumed that all households are segregated into homogeneous, type-specific clubs.
Conversely, the literature on excludable public goods, exemplified by Brito and Oakland,
does not consider congestion externalitiesl.

Given this complexity, it is tempting to ask: are there circumstances in which,
despite households' taste and/or income heterogeneity, in an heterogeneous club setting,
decisions about the pricing and the level of provision of club facilities can be essentially
separated from that of membership of the club? We will show when optimal balanced-
budget provision of a congestible and excludable jointly consumed good is independent of
the distribution of households’ characteristics and, thus, the answer to this question is in the
affirmative. We will use “club good” and “excludable and congestible jointly consumed
good” synonymously.

We will consider two types of separation of efficient allocation from distribution.
First, a partial separation in which the optimal price and quality provision of the club good,
the utility-relevant magnitudes for households, are independent of distribution; second, total
separation in which the price, quality provision, facility size and total utilisation of the
jointly-consumed good are all independent of distribution. We show that, if the club
congestion or quality function takes the form assumed most commonly in the literature,
partial separation will always be possible if and only if club quality and visits interact in one
of two intuitively appealing ways in households' utility functions. This extends to a many-
clubs setting. Moreover, if these conditions hold, the decision rule for the visit price and
quality provision for welfare maximising break-even provision of the club good takes
appealingly simple forms, such as: “maximise the bangs per buck!” Total separation is
possible under more restrictive conditions. These reduce to requiring that club quality and

visits interact in utility functions in the ways noted above and all households’ club demand



functions are identical and linear in income, analogous to the usual conditions for
aggregation with private goods.

We structure the paper as follows. Section I introduces the economic environment
and characterises the optimal decisions by the provider and consumers of the excludable,
congestible good. In section II we discuss the outcome of their joint maximisation in a
special case. We present and prove our first theorem on partial separation in Section III and
discuss why it holds in Section IV. Section V discusses extensions of our partial separation

result and total separation. VI concludes.

I. The Model

A natural way to model equilibrium in an economy with a congestible, or club, good
under full information is as the outcome of a Stackelberg game wherein the supplier of the
good, the leader, sets its price and provision level. The potential consumers or club
members, the followers, respond to this price, provision level, and the conjectured club
congestion level or quality which will emerge with this pair, by self-selecting themselves to
membership, or otherwise, in a Nash manner. In the resulting Nash equilibrium among the
followers, the membership and aggregate level of visits to the club are determined for the
given price and provision level. The leader, knowing the features of this equilibrium, uses
that information to set the price and provision level to start with to meet its objectives?.

Let there be an arbitrary but finite number of different types of households, the types
being indexed by i, i = I,...., n. We make the following assumptions on the types:

AT) All individuals or households of a given type, i, have the same utility function,
Ut, but can differ in incomes, denoted M, which lie in an interval M = [ﬁ , 7] . The
incomes of each type i have atomless distribution and density functions Fi(M) and f¥(M),
respectively. M(h) denotes the income of an h-household of all types.

A2) Ut is defined over quantities of an aggregate private consumption commodity,
X, Visits to a club or consumption of a club good, v, and the quality of the club good, c. It is

strictly quasi-concave and differentiable in all its arguments; its first-order partial

derivatives are denoted U; ,J=X,v,c,orl, 2,3, asis convenient.



Thus, the utility an / -household of type i obtains is U (x#, v#, ¢ ) if it consumes a
bundle with specification (xhi yhi ¢, Assuming club non-members experience no
congestion externality, the utility of an A-household of type i which does not consume the
club good is UYM(h), 0, 0 ). The aggregate private consumption commodity is taken as the
numeraire and the per visit price of the club good is denoted p. This could be the toll per trip
on a toll road, say. The club quality or inverse congestion function, c¢(y, V), depends on the
level of provision of club facilities, y, and the aggregate level of visits or utilisation of the
club, V. All households which are members of a given club assess its congestion or quality
with the same function c (.), although this might enter different households’ utility functions
in different ways. We will specialise ¢ in due course.

A household # of type i has the budget constraint

1) M(h)-pvhi=xhi

It will be convenient also to make the following additional assumption on utilities:

A3) The club good is a normal good for all types i.

Satisfaction of (A3) could be ensured by strict concavity of U and the over-sufficient
assumptions, U Jiz 20, U 1i3 20, V i.These latter comprise the familiar, cardinal, conditions
for the "single crossing" property to hold in adverse or self-selection problems but are
unnecessary for our results.

Suppose now that the agency responsible for providing the club good announces the
price, p, and the specification, ¢, of the club good which it will maintain. Given these,
households self-select themselves to membership or otherwise. Those who choose to be
members will be ones whose maximised utility inside the club is no less than their utility
derived from consuming all their income on the private commodity. We assume that, in
choosing their levels of utilisation of the club, the atomless households act perfectly

competitively, as discussed by Gerard Debren (1991), and take the level of ¢ as parametric.



Thus, they not only ignore the congestion they impose on others, but also the negligible
congestion which they impose on themselves 3. The optimal level of visits for a club
member, found by maximising the utility function subject to a budget constraint given by

(1), then satisfies the first-order condition (FOC)(2):
2) —pUi[M(h) — pv#, vhi, c()] + US[M (k) — pv¥, vk, c()] = 0, Vh,i.

We can invert (2) to yield vi¥(M(h), p, c(.)), the optimal level of visits as a function
of income, club per visit price and quality.

As non-members experience no.congestion externalities, club members satisfy
3) U{(M(h) - pvhi, vi, ¢(.)) 2 UHM(h), 0, 0),Yh , i,

where V4 satisfies (2). A marginal household of type i will be one of that type which
satisfies (3) with equality and (2). Denote the income of such an household by M? *(p, c).
Normally, the functional dependence on p and ¢ will be suppressed in the notation.

It can be shown to follow from (A3) that we must have :

Lemma 1. If a household of a given type is marginal, all those of that type having

higher income will be club members and those of lower income will not belong to the club.

Given Lemma 1, it follows that

vEifE(M (h))dM

M
j®

4) V=§_)f

Naturally, V' is a function of p and ¢, hence y, via the v# and Mi*,

Suppose the agency providing the club good now seeks the welfare maximising

balanced-budget level of provision. It will choose p and y to solve:
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In solving (5) and (6), it is necessary to specify the nature of the congestion function
further. We will assume that it takes the form which is employed most commonly in the
literature (see, e.g., Kolm, Berglas and Pines, 1981 and 1984, Cornes and Sandler, 1986, and
Barro and Romer, 1987 and 1991):4

Ad) c(y,V)=c(yIV);c’()=20,c"(.) <0.

This congestion function is homogeneous of degree zero in y and V . Berglas and
Pines (1981) show that, when ¢ (.) is of this form, the club good is essentially a private
good and the Pareto optimal level of provision of it will involve a break-even price?.

Using (4), (6) and (A4), we can rewrite the congestion function as
7) c(y,V)=c¢(p);c’'(p) 20,c"(p) <0,

the partials in (7) being assumed to satisfy strict inequalities over some range of p. Thus, the
club quality now depends solely on the per visit price, hence expenditure on facility
provision per visit, p. For given distribution and density functions, households' choices and
the identities of the marginal men are all functions of p rather thany and V separately.

The agency's maximisation problem now becomes

8)Mpax.2j Ui{xhivhicp)fi M h))dM +f UM (h),0,0))f* (M (h))aM
i —

Mir M



where the x# satisfy the budget constraint (1) and the v# satisfy the FOC (2). Let p* denote
an optimal p. Then, by Leibnitz's formula for differentiating integrals, (3) with equality for
marginal men of all types, and the envelope theorem, the first-order condition for this

maximisation is

ZJ vhi [QUT (xhiy ki e (p %)) fox JFE (M (h))dM
9 i Jut =c '(p¥)

EN

||

i

ZI [QU (xki v hic (p*) e Fi (M (h))aM

Mir

For brevity, we will assume second-order conditions for the optimisation are satisfied, as

will be the case in the scenarios discussed below.

I1. A Special Case
As a precursor to a more general analysis of (9), consider the special case where all

types have quasi-linear utility functions, U= u i(x) + vc(y /V) . Using these, (9) becomes

e
ol

o vhiui(xhi)fiM (h))am
10) Ll = ¢ '(p%).

rf
i JM*'*

vEifH(M (h )M

But, from the utility maximisation of each household of each type, if 4 is in the club, then

11)  ui’(xH)=c(p)ip.

Inserting (11) evaluated at p* into (9) reduces the latter to

12) ¢ (p*)/Ip* =c '(p*).



Given (A4) and (7), (12) is precisely the condition for maximising the average
quality purchased per unit of expenditure on facility provision or, as stated in our
introduction, for "maximising the bangs per buck!" This is irrespective of the income
distribution, which was arbitrary in the above, and irrespective of the actual level of V and
y. Thus, what we termed partial separation of allocation from distribution in the
introduction holds in this case. But, quasi-linear utility as specified, while having the
advantage of resulting in empirically plausible self-exclusion from club consumption at the
bottom of each type's income distribution, if at all, also has some well-known disadvantages
(see, e.g., Bergstrom and Cornes, 1981 or 1983). Given that the outcome (12) has other
desirable features discussed below, the question is then: to what extent does this separation

result extend to more general preferences?

II1. The Main Theorem

We now state and prove the first of the two central results of this paper.

Theorem 1. A Partial Separation Theorem.. If the congestion function ¢ satisfies
(A.4), the welfare maximising break-even price and quality provision of the excludable,
congestible good satisfies (12) for all income distributions for the various types if and only
if all types have utility functions of the form U ¢ (x, v, ¢) = l//i[x, vel()] = l//i[x, vJ .

Proof. Sufficiency. ¥ Ui (x, v, c) =w*[x,v c(.)] = w'[x,v] and ¢ satisfies (7),

the optimum choice of p* 1is characterised by the following analogue of (9):

w i hi i .
13) . =c(p*)

¥ N ir ki hi )
) f thLaW'[x AP iy v

Now, utility maximisation by club members at the optimal p* satisfies the following

analogue of (2):
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Thus,

iryhi ki
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15) OV VRPN _ e(p¥) | 0WIx", vie(p¥)]
ox ~ p* ov )

Integrating (15) over all type i households which belong to the club and then summing over

i yields

3 J OV XM Ve(p¥)] FidM = C(p )Z j mavf[xh‘vh‘C(p*)J Fiam .

ox

Substituting this last expression into (13) yields, finally:
16) ¢ (p*)/p*=c '(p*).
Necessity: For our claim to be true we need, from (9),

3 f M_* VE[oUt (v e (p %)) JFE (M (h Y)am
; _c(p*)
p*

> f Mﬁ[an (Ve @) e Jr M (h yyam
i M

If (17) holds, then we must have
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p *Z Jw_ . i [an (xhi,vhi,c 17 *))/ax ]fi M (h))dM
i

18) =1

c@, L Mi (8 (& WM e o e I (M (h yyam

Or, using the first-order condition for individual household maximisation ((2)), we need:

3 f ’ VMaut (v e v I (h yam
iU

19) = 1.

> JM Ml_ e @MU (W e o 9)ac M (hyam

Now, for (19) to be true for all income distributions, it is necessary that
20) vHQU''(xM, v, c(p*)idv =c(p*RU (xM, vh c(p*)dc ae., Vi h.

If (20) does not hold everywhere except on a set of measure zero, we can use a standard
route to find a distribution f%, for some i, which leads to a violation of (19). E.g., suppose
voU¥ /v # cdU¥/dc on some interval, [M -, M *] , for type i households which belong to the
club. W.Lo.g., suppose voU ¥/dv > cdU ¥dc on this interval but voU ¥/ov = coU ¥/oc
elsewhere and voU J/dv = cdUJidc everywhere, V' j #i . Then, if the densities fi are
uniform, the LHS of (19) exceeds 1. Thus we require (20) to hold almost everywhere.

(20) is a simple linear partial differential equation (see William Williams, 1980). Its

general solution is the family of weakly separable functions of the form
21)  Ui(x,v,c)=vw'[x,v c()] . QED.

IV. Discussion
Why does this theorem hold? It holds because, for all households with the

preferences (21), the price p* and the associated c(p*) satisfying (16) maximise their
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willingness to pay for the congestible collectively-consumed good, irrespective of income.
This can be seen by noting that everyone with such preferences has elasticity of demand for

the club good = -1 at the pair (p*, c¢(p*)).

Theorem 2. T Ui (x,v,c) =y [x,v c(.)] , then (vH/dp)(pivh) = -1 at

(p*, c(p*)) satisfying (16) for all households satisfying (2).

Proof. If households' utility functions satisfy (21), at (p*, c(p*)) (2) takes the form

(22) -p*yi(xF vlc(p*) + wh(x® vhic(p*)c(p*) = 0.

Thus (suppressing functional arguments ), differentiating through (22) w.r.t. p* yields

(23)  (VHIap)[p* 2yl - 2p*c(p*)Wh, + Whs c(p*) 2]
=Y, - ¢ (PX)W, +pre (P Wiy v + c(p* iy vhE - ¢ (p*)e(p*)why v - pprhp v
= (Vhijp*)[p* 2¢ "(p* )Wy +p*c(p* )W, - p* 2wk, - p¥c (p*)e(p*)why ]

= - (vhiip*)[p* 2y - 2p%c(p¥) W, + Why o(p*) 2]

after using (22) and, repeatedly, (16). Thus, (p*/vH/)(vhidp) = -1,V i, h . Q.E.D.

Thus, the agency supplying the club good with the price-quality specification (p*,
¢(p*)) is not only breaking even and "maximising the bangs per buck," but also, it is
maximising the level of provision , y, given by (6).

Of course, although Theorem 1 indicates that the agency can determine the optimal
per visit price and hence quality of provision independent of the distribution of households,
this does not mean that the actual level of y is independent in this way. (6) indicates that
the agency would still need to know the aggregate level of visits which would result at (p*,
c(p*)) were it to supply the Stackelberg equilibrium level of y ex ante. The situation is

closely analogous to that which occurs with two-stage budgeting in consumer maximisation
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with weakly separable utility functions. Here, the weakly separable form of the utility
functions (21) enables the agency determining p* and ¢(p*) to separate this decision from
those relating to the x# s and thus y.

An issue which has received much attention in the literature is whether households
should be segregated into type-specific clubs, offering different menus of price and quality,
where this is possible (e.g., see Berglas & Pines, 1981, 1984, Sandler and Tschirhart, 1984,
and Suzanne Scotchmer and Myrna Wooders, 1987). A corollary of Theorem 1 is that,
provided the congestion or quality function is identical across households and visits and
quality enter the utility function as in (21), this segregation will be irrelevant. The break-
even welfare maximising (p, ¢(p)) is the same for all types and can be provided in one club
or a system of clubs, assuming clubs are replicable because they do not each possess a
unique attribute®. It is also clear that this outcome could be decentralised in a free entry
equilibrium where firms would have to offer the (common) club price-quality specification
which maximised the welfare of individual members to attract any members at all.

It is important to note that utility functions of the family (21) can encompass a wide
range of behaviour. E.g., consider two types i andj with respective utility functions U’ (x,
v,¢)=x%vc)1-0) and UJ(x,v,c)=(x -x) %vc + 1) (1-®)  wherex > 0 is a scalar.
The second utiﬁty function is a quasi-homothetic extension of the linear expenditure system
to allow for zero consumption of one good, the club good. It is easy to see that, for ¢ > 0,
all households of type i will be club members, irrespective of the level of their (positive)
income, but for type j only households with incomes M(h) > ( o/ (1-) ) (p/c) +x_ will
be club members.

Utility functions in the family (21) allow an appealing, and familiar, interpretation of
the interaction between club visits and the quality of those visits. This interpretation is in
terms of the “effective” number of visits, or of visits in “efficiency” or “quality-adjusted
units”. In the Stone-Geary example, what then matters to households determining their
demand for the club good is its quality-adjusted price. Conversely, the Cobb-Douglas

example has the peculiarity that household demand for the club good, and hence for the
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private good, is actually independent of the club quality, which enters utility only as a

multiplicative constant when households regard quality as parametric in their optimisation.

V. Extensions

Utility functions of the family (21) yield a particular (p, c¢(p)) outcome which is
independent of the distribution of households' characteristics and has certain desirable
features. But, this is not the only family which yields (p, ¢(p)) outcomes which are
independent of the distribution of households' characteristics. The next theorem gives the
family which yields particular (p, ¢(p)) outcomes, independently of the distribution of

households' characteristics, which differ from (p*, ¢(p*)) as identified by (16).

Theorem 3. If all types i have utility functions of the form Ui (x, v, ¢) =
¢(x,vec’k), where k > 0 is a scalar and ¢ satisfies (7), then the optimal price and

quality satisfy k = pc (p), independently of the distribution of households' characteristics.

Proof. The sufficiency of this family of utility functions can be proven very easily
as before by using (9). To prove the necessity of this family for the stated result, note from

(9) and (2) that the optimum satisfies

2f vhian(xhi’vhi’C(p))fi(M(h))dM

i i* v
24) A = ¢ (p).
QU (xhi, yhi, .
Zf p VAL O pi g
Thus, for the result to hold we require:
i hi hi .
Zf ori QY e @) £i g g
25) =k=pc (p)

" i yhi hi .
2] QUL v 2 0)) i o

i
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for some scalar k > 0. By a similar route as before, for the inner equality in (25) to hold for
all distributions, we require vUi(xhi, vhi, c)iov = kdUi(xM, vhi, c)/dc. This is again a first-

order linear partial differential equation. It has the unique family of solutions

26) Uix,v,c)=¢(x,vec'k). QED.

Unlike the case in Theorem 1, a solution satisfying the FOC k = pc (p) is not
necessarily unique. This can be seen by noting that pc (p) is not necessarily monotonic
evenif ¢ ‘(p) >0, c ”(p) < 0 everywhere’. Multiple solutions satisfying the FOC would
have to be separated by appealing to the second-order conditions. It can be shown, by using
(25), that the second-order necessary condition for the welfare maximisation reduces to
pc”(p)+c’(p) <0 -ie., tod[pc’(p)]ldp < 0. Thus, the optimum will occur on a
falling portion of the pc ‘(p) schedule.

Theorem 2 suggests that, if all households have utility of the form (26) with a
common £ , the allocation satisfying (24) or (25) might have the following feature. At the
optimum, all households have unitary demand price elasticity for club visits; thus, this
allocation has households contributing their maximum willingness to pay for the provision

of the club good. This is indeed the case, as the following corollary to Theorem 3 confirms.

Theorem 4. If all households have utility functions of the family (26) with a
common k , at the optimal allocation satisfying (25) and (2) for all club members, all
households have price elasticity of demand for club visits equal to minus unity.

Proof. Retrace the steps in proving Theorem 2, using

poi(x,vec'k)= eclkp,(x, veclk) for (2)and k = pc’(p). QE.D.

We have already remarked in the context of Theorem 1 that segregation of types into
type-specific homogeneous clubs will be irrelevant if all types have utility functions of the
form (21) and if the club congestion or environmental quality function satisfies (A3).

Moreover, we saw then that the constrained welfare maximising outcome could be
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decentralised in a free entry equilibrium. Clearly, the same results extend to the case where
all types have utility functions of the family (26) with an identical k . However, this family
of utility functions also provides a convenient way of indexing the difference between types.

Evidently, if types differ in £, and if clubs are replicable, it is optimal for
segregation to occur according to k . Indeed, if a menu of price-quality combinations
satisfying k= pi ¢ (p ¥) , Vi, were offered, individuals of the various types would self-
select themselves to clubs offering the appropriate (p ¢, ¢(p ?) ) combination. It is then a
trivial exercise to show that the optimal price and hence quality in these type-specific clubs
will be inversely related to the k ¢ ’s which characterise their clienteles®.

This is to be expected. With this utility function, the modulus of a type’s MRS
between the quality of club visits and its use intensity of the club is proportional to its k ¢ at
any given level of visits, irrespective of a given household’s income. I.e., in transparent
notation, (JUM/0v)/(dUM |9 ¢) = ki /v for each h of type i. Thus, all else equal, types
with higher k¢ will pay less for quality.

The utility-relevant magnitudes for households are p and c(p). Our results so far
apply to the invariance of these magnitudes for any population and any distribution of any
aggregate income. For the overall allocation (p, ¢(p), ¥, V) to be independent of distribution,
called total separation in the introduction, we must restrict ourselves to environments with
a fixed population and a fixed aggregate income as well as requiring all utility functions to
satisfy either (21) or (26). Otherwise, the essentially private nature of club visits would
prevent us achieving a fixed level of y and V even were p and c¢(p) fixed. It is then well-
known from the theory of aggregation (see H. A. John Green, 1964) and Bergstrom and
Cornes and Bergstrom and Varian (1985a) that, for independence of V, hence y from
distribution, households’ utility functions must generate demand functions for the club good
which are linear in income and have an income coefficient which is the same for all
households. Moreover, it is also clear that there cannot be a threshold income below which
households of any type will not make club visits®.

If all households must have identical linear-in-income demand functions for club

visits going through the origin, then, in our two-good world, they must also have identical
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linear-in-income demand functions for the private good. But this means that they must have
identical preferences yielding linear Engel curves through the origin - i.e., homothetic
preferences. Thus there can be only one type with identical homothetic preferences although
possibly different incomes. If there are more than one type according to utility functions
and there are type-specific clubs, we can obtain a more restrictive form of independence of
the overall allocation from the distribution of aggregate income if the distribution of income
across types is constant. I.e., if all redistributions preserve the aggregate income of any

given type. We summarise these observations as Theorem 5.

Theorem 5. Total Separation. If the congestion function satisfies (A.4), the overall
allocation (p, c(p), y, V) is independent of the distribution of a given aggregate income
among a fixed population if and only if all households have identical homothetic

preferences satisfying either (21) or (26).

Finally, it is of interest to relate our analysis of invariance of the optimal allocation
with respect to the distributions of households' characteristics in a club context with
Bergstrom and Cornes’ (BC) for pure public goods. Unlike BC, we do not require the
standard Samuelson condition, equivalent to assuming the availability of unrestricted lump-
sum taxation, to hold!0. This is because the club good is essentially private in our
formulation where the congestion function takes a particularly accommodating form.
Moreover, in the BC model, households are united by their common consumption level of
the public good(s). In our model, rather, they are united by the common quality of visits
consumed in a particular club. Thus, the latter plays for us a role analogous, but not identical
to the common consumption level for the public good(s) in BC. Visits, and thus the levels of
club consumption, are allowed to vary with incomes and between households, unlike the
case with pure public goods. Self-exclusion from club consumption at some income levels is
a possibility. Thus we require a stronger restriction on preferences than do BC,
homotheticity instead of quasi-homotheticity, for total separation of allocation from

distribution to hold.
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VI. Conclusions

This paper has united two strands of the theory of externalities. Using the most
commonly employed form of club congestion or quality function, we have shown that the
welfare maximising break-even price and quality provision of a club good is then
independent of the distribution of self-selecting households' characteristics if and only if all
households' utility functions belong to one or other of two families of preferences . In both
of these families, the value households place on the volume of club consumption relative to
the quality of that consumption is independent of their consumption of the private good, and
thus of income. Moreover, we show that in one of these cases the optimal per-visit price-
quality pair maximises the quality per unit of expenditure (the "bangs per buck") and, in
both cases, it maximises households' willingness to pay for the club good. The homothetic
members of the same families of preferences will be necessary and sufficient for the price,
quality provision, facility size and the total utilisation of the club good to be independent of
the distribution of income provided that there is only one type according to utility function.

The quest, notably by Bergstrom and Cornes, 1981 and 1983, for separation or
invariance results of the type which we have obtained was motivated originally by the need
to reduce the complexity of the analysis of environments involving public goods. This
followed a suggestion of Musgrave (1969). To paraphrase Bergstrom and Cornes, 1983,
Musgrave noted that although separation of allocative and distributive decisions is not
strictly legitimate, it is a convenient simplification which in practice might produce better
decisions than the attempt to determine allocation and distribution simultaneously. Among
other things, our results show Musgrave’s contention sometimes can be extended to
congestible and excludable jointly consumed goods as well as the pure public goods which

Bergstrom and Cornes and others consider.

FOOTNOTES
1. Sandler and Tschirhart (1981) and Cornes and Sandler (1986) do examine the Pareto
optimal allocation of a private good and a club good in a single-club economy incorporating

both exclusion and congestion. However, they did not explicitly consider self-selection to
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membership or the separation issues which we address. Fraser and Hollander (1992) present
a detailed analysis of the demand side of a single-club economy model which emphasises
self-selection and exclusion.

2. This is essentially the approach of, e.g., Oakland and Brito (1980) who use a variational
approach inspired by Mirrlees’ optimal tax model. They do not consider a congestible good
and consider only one type of households in terms of utility function. It is also essentially
the approach of Scotchmer (1985) who also considers just one type of household, with all
households having the same income, and does not stress exclusion.

3. This assumption is quite standard. See, e.g., Berglas (1976), Scotchmer (1985, footnote 8)
and Barro and Romer’s (1991) cogent statement of the essence of club models.

4. The most comprehensive discussions of the congestion function are Kolm’s, Forsund's,
and Berglas and Pines’ (1981). The reader is referred to these papers for further details on
this topic.

5. Also see Robert Barro and Paul Romer (1991) on this.

6. This line of argument could be shown to lead to a slight extension of the second part of
Scotchmer and Wooders’ Proposition 1. This states, essentially, that mixed clubs can at best
do as well as segregated clubs. Our slight extension arises because we are allowing
individuals of the same ‘type’ to differ in endowments and, hence, in their use intensity of
their club.

7. Differentiating, d/pc’(p)]/dp ( % ) 0 asl { % ) -pc ”(p)c’(p).).

8. To see this, note that the first-order condition for each type i satisfies k= pic'(pl).
Thus I = (dp¥dki)[pic”(pi) + c'(pt)] = (dp¥oki)d[p i(p )]/dp. But, from the
second-order condition, d/p ic “(pi)]/dp < 0. Thus, to satisfy the equalities just given, we
must have opi/ok? < 0.

9. Otherwise, we could consider two sets of households of non-zero measure with
preferences all either satisfying (21) or (26), one set with members having income below the
threshold and the other with members having income above the threshold, and redistribute
income so that all members of the union of the two sets now have incomes below the

threshold. At unchanged p and c(p), this redistribution would leave unchanged the
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aggregate demand for club visits by all other households but it would reduce the demand for
visits by households in these two sets, and hence y and V. This rules out quasi-linear
preferences of the type used in our special case in Section II and, indeed, the extension of
the linear expenditure system to allow for zero consumption of the club good below some
threshold income. Thus, fotal separation of allocation from distribution is only possible
with the assumed congestion function if households have preferences for the excludable
good which precludes self-exclusion!

10. Technically, B-C require the invariance of a sum of ratios - MRSs - while we require the
invariance of the ratio of a sum of terms. Although we could convert the latter to a weighted
sum of MRS terms of the sort familiar from the analysis of distortionary taxation - see, €.g.,
Tony Atkinson and Joe Stiglitz (1980) or John Wilson (1991) - this is not particularly

illuminating here.
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