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Abstract

We propose a semi-cooperative game theoretic approach to check
whether a given coalition is stable in a Bayesian game with indepen-
dent private values. The ex ante expected utilities of coalitions, which
are achieved at an incentive compatible (noncooperative) coalitional
equilibrium, describe a (cooperative) partition form game. A coalition
is core-stable if the core of a specific characteristic function, derived
from the partition form game, is not empty. As an application, we
study collusion in auctions in which the bidders’ final utility possibly
depends on the winner’s identity. We show that such direct external-
ities offer a possible explanation for cartels’ structures (not) observed
in practice.
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1 Introduction

Collusion in auctions has been mostly studied as a mechanism design problem
for a given ring (see, e.g., Graham and Marshall (1987), Mailath and Zemsky
(1991), McAfee and McMillan (1992) for early references). In this approach,
every member of the ring is submitted to an individual participation con-
straint. We also consider a given ring but ask whether it is stable, in the
sense that no subgroup of bidders would like to secede from the ring. Such
collective participation constraints are traditionally captured by core-like so-
lution concepts. However, two difficulties arise when trying to define the core
of an auction game or, more generally, of a (non-cooperative) Bayesian game.

A first difficulty, which already appears under complete information, is
that every coalition faces strategic externalities, so that it must make conjec-
tures on the behavior of the players who are outside the coalition. A second
difficulty is that, if the players possess private information, every coalition
faces incentive constraints. Up to now, to the best of our knowledge, the two
issues have been explored independently of each other. In particular, the role
of (the absence of) externalities in the formulation of incentive constraints
has been neglected.’

In this paper, we shall establish that, in a class of Bayesian games which
includes standard auctions (namely, games with independent private val-
ues and quasi-linear utilities), the second difficulty can basically be ignored.
Then, we shall show how to use the core concept to check the stability of
coalitions which can commit to an incentive compatible mechanism ex ante,
i.e., before their members get their private information. We shall illustrate
the solution concept in standard first price and second price auctions, in
which losing bidders do not care on the winner’s identity. In this framework,
the core-stability of coalitions is widely guaranteed. Finally, we shall turn
to a model proposed by Jehiel and Moldovanu (1996) in order to provide
examples where direct external effects make coalitions unstable.

In the next paragraphs, we briefly survey the literature and explain how
the present paper builds on it.

IThis is not to say that cooperation under incomplete information has not been inves-
tigated. However the complex interference of incentive compatibility and externalities has
not yet been studied. For instance, the problem does not appear in two-person games, a
model that is still under study (see A. Kalai and E. Kalai (2009)).



Strategic externalities under complete information

The core was originally defined in games described by a characteristic
function. Aumann (1961) applied the solution concept to strategic form
games by measuring the worth of a coalition as the amount that it can guar-
antee whatever the complementary coalition does. The corresponding core
is known as the a—core. This solution concept has been criticized on the
grounds that it involves incredible threats from the complementary coalition.
As a remedy, Ray and Vohra (1997) and Ray (2007) construct a partition
form game (as defined by Lucas and Thrall (1963)) in which, given a par-
tition of the players, coalitions evaluate their worth at a Nash equilibrium
of an auxiliary game between the coalitions. They call such a Nash equilib-
rium a “coalitional equilibrium”. Maskin (2003) and Hafalir (2007) propose
definitions of the core for partition form games. The core with “cautious
expectations” is one of them. In the strategic framework, this solution con-
cept refines the a—core in order to account for a natural form of sequential
rationality.

Starting from our original noncooperative Bayesian game, we construct
a partition form game with complete information by extending Ray (2007)’s
coalitional equilibrium to games with incomplete information. We then apply
the core with “cautious expectations”. Under complete information, our core
is included in the a—core of the original strategic form game.

Incomplete information without externalities

If the members of a coalition are not affected by the actions of players
who are outside the coalition, incentive compatible mechanisms for that coali-
tion can be defined as in standard mechanism design, even if the coalition’s
members care about the information of outside players. This assumption is
typically made in Myerson (e.g., 1984, 2007), who refers to orthogonal coali-
tions?. An assumption of purely informational externalities is also fulfilled in
exchange economies with differential information. In that framework, Forges

2Myerson (1984) considers interim binding agreements in Bayesian games. Orthogo-
nal coalitions only appear in the course of his analysis. He focuses on the generalization
of two fundamental solution concepts for cooperative games with complete information,
namely the Nash bargaining solution and the Shapley value with nontransferable utility.
According to this objective, only the mechanism chosen by the grand coalition is imple-
mented. Mechanisms for other coalitions are regarded as rational threats and “are not
required to satisfy any equity or incentive compatibility conditions”. An interpretation of
the construction is given in the case of orthogonal coalitions.



and Minelli (2001) and Forges, Mertens and Vohra (2002) construct a char-
acteristic function by associating, with every coalition, the set of all ex ante
expected utility vectors that the coalition can achieve by relying on some
incentive compatible mechanism. They give sufficient conditions for the non-
emptiness of the core of that characteristic function, which they call the “ex
ante incentive compatible core” and illustrate that, as opposed to what hap-
pens under complete information, the ex ante incentive compatible core can
be empty. Forges, Minelli and Vohra (2002) survey other core notions®.
The basic solution concept in this paper can be seen as an ex ante in-
centive compatible core for Bayesian games, a model that involves strategic

externalities by definition.

Ex ante commitment in auctions

In order to associate a standard cooperative game (namely, a character-
istic function or a partition form) to a noncooperative game with incomplete
information, we assume that coalitions can commit to an incentive compatible
mechanism at the ex ante stage, i.e., before their members get their private
information. This assumption first requires that an ex ante stage can be iden-
tified, which is true in many economic applications, like auctions, in which
private information reduces to the value of some parameter, like a valuation
or a cost. According to empirical data (see, e.g., Porter and Zona (1993), Pe-
sendorfer (2000)), bidding rings often consist of well-identified groups (e.g.,
“incumbents”, as opposed to “newcomers”) whose characteristics do not de-
pend on particular information states. Such bidding rings typically form at
an early stage. For instance, local suppliers may be aware that a procure-
ment auction will take place and consider to collude before the precise project
specifications are published. At the time they commit to a collusion mech-
anism, they do not figure out their exact valuations, i.e., the costs incurred
by the project.

A number of papers studying collusion in auctions with independent pri-
vate values (Graham and Marshall (1987), McAfee and McMillan (1992),
Marshall et al. (1994), Waehrer (1999), ...) implicitly assume that rings are
formed at the ex ante stage. Indeed, they investigate the strategy of rings
within an a priori given coalition structure, namely a partition of the bidders,

3 As a noticeable reference posterior to Forges, Minelli and Vohra (2002)’s survey, My-
erson (2007) establishes the nonemptiness of an appropriately defined interim incentive
compatible core in cooperative games with incomplete information and orthogonal coali-
tions.



which does not depend on the bidders’ private information. If the bidders
gather into rings, the game is still tractable in the case of a second price auc-
tion, since possibly asymmetric players are not an issue in that case. How-
ever, as is well-known, first price auctions between asymmetric bidders are
difficult to handle (see Krishna (2002)). In fact, first price auctions between
bidding rings were partly studied for the specific asymmetries that they gen-
erate (see Lebrun (1991, 1999), Marshall et al. (1994), Waehrer (1999), ...).
In these studies, rings operate as single entities, which automatically share
their information, without relying on any (incentive compatible) mechanism.
This simplifying assumption is founded if bidding rings can make arbitrary
inside transfers: our proposition 1 below states that, in any Bayesian game
with private independent values, every coalitional equilibrium can be made
incentive compatible thanks to appropriate balanced transfers. This allows
us to use the results of McAfee and McMillan (1992), Marshall et al. (1994),
Lebrun (1999) and Waehrer (1999) on Nash equilibria of first price auctions
between asymmetric bidders to assess the stability of bidding rings.

Some papers (Mailath and Zemsky (1991), Caillaud and Jehiel (1998),
Marshall and Marx (2007), ...) focus on a specific bidding ring, for instance,
the grand coalition, or an arbitrary coalition facing single individual bidders,
and formulate participation constraints for the individual members of the
ring at the interim stage. More precisely, every member of the ring can
decide to leave the ring once he knows his private information. The precise
form of the participation constraints depends on the way in which the ring
members are supposed to react when one of them secedes from the ring.
Interim participation constraints for coalitions raise a number of conceptual
issues, already in the absence of externalities (see, e.g., Forges, Minelli and
Vohra (2002), Myerson (2007)) and we will not address the question in this

paper.

Outline of the paper and further relationships with the literature

Section 2 is devoted to the model and solution concept. In subsection
2.1, we fix a Bayesian game I with independent, private values. For every
partition P of the players, we define an auxiliary Bayesian game I'(P) in
which the players are the coalitions in P. A coalitional equilibrium w.r.t. P is
defined as a Nash equilibrium of I'( P). This solution concept does not involve
explicit incentive constraints inside coalitions and is thus a direct extension
of the coalitional equilibrium proposed by Ray and Vohra (1997) for games
with complete information. Coalitional equilibria have been considered in



auctions (e.g., in Lebrun (1991), McAfee and McMillan (1992), Marshall et
al. (1994), Waehrer (1999)). We generate a partition form game by defining
v, (S; P) as the sum of the expected payoffs of the players in coalition S € P
at the equilibrium o(P), assuming that such an equilibrium exists and is
unambiguously selected. In subsection 2.2, we address the issue of incentives.
Every coalition chooses a mechanism which determines actions and balanced
transfers for its members as a function of the information of its members.
Proposition 1 shows that every coalitional equilibrium can be made incentive
compatible thanks to appropriate balanced transfers for every coalition. In
section 2.3, we propose a notion of core-stability for a bidding ring, which
does not necessarily gather all the bidders. As in Marshall and Marx (2007),
we focus on a single ring and assume that the bidders outside the ring do
not collude. This assumption is consistent with well documented cases (see,
e.g., Porter and Zona (1993), Pesendorfer (2000)). To test the stability of a
ring R, we look at some members, S C R, who contemplate leaving the ring.
The players in S can plan on acting jointly and must anticipate any form of
collusion by the remaining members of the ring, namely R\ S. Indeed, the
potential colluders in R have met each other, so that subcoalitions of R may
form, even if the whole group does not. By contrast, the secession of some
bidders has no effect on the absence of collusion outside the initially planned
ring, namely in N\ R. Hence, if S C R leaves R, it should expect a coalitional

equilibrium relative to a coalition structure P of the form {S, I, {k},c N R},

where II is any partition of R\ S. We say that the ring R is core-stable if no
subcoalition S C R can guarantee a better expected payoff to its members by
leaving the ring (whatever the partition IT formed by the players in R\ 5).
Stability of the grand coalition amounts to the non-emptiness of the core
with cautious expectations (as defined by Hafalir (2007)) of the partition
form game.

In section 3, we apply core-stability to auctions. As a benchmark, we
consider standard auctions. In the case of second price auctions (subsection
3.1), our partition form game reduces to a characteristic function already
derived by Mailath and Zemsky (1991), who formulated collusion as a mech-
anism design problem for every ring. In second price auctions, strategic
externalities have thus no effect on collusion. We also recover (proposition
2) that all rings are core-stable in that model. In subsection 3.2, thanks to
results of Lebrun (1999) and Waehrer (1999), we establish that the grand
coalition is always core-stable in a first price auction (proposition 3). In the



absence of general, analytical solutions for first price auctions with asymmet-
ric bidders, we only check that all coalitions are core-stable in two specific
examples, borrowed from McAfee and McMillan (1992) and Marshall et al.
(1994). In subsection 3.3, we investigate the effects of direct externalities on
collusion. We first assume, as Jehiel and Moldovanu (1996), that a bidder
suffers more if a competitor wins the auction than if the object is not sold at
all (“negative externalities”). Proposition 4 states that the grand coalition is
core-stable under appropriate assumptions. Example 1 illustrates some lim-
its of this result. In example 2, we propose a three person first price auction
game in which a two bidder cartel is not stable. In example 3, we assume
that direct externalities can possibly be positive. We show that the grand
coalition is not core-stable and that there exist non-singleton rings which are
core-stable. These example confirm that direct externalities make coopera-
tive behavior difficult, which was already suggested in Jehiel and Moldovanu
(1996), but give a more precise content to that phenomenon. Indeed, Je-
hiel and Moldovanu (1996) only show that, under reasonable assumptions,
no agreement between (some of) the buyers and/or the seller can be stable.
They thus depart from collusion of the bidders in the original auction game.
We focus on the latter form of collusion and show, in Jehiel and Moldovanu
(1996)’s framework, that the grand coalition is always stable (proposition 4)
but that small coalitions may not be stable (example 2). Caillaud and Jehiel
(1998) point out that direct externalities may prevent the grand coalition
from being ex post efficient but do not address the question of its ex ante
stability.

2 Model and solution concept

2.1 From Bayesian games to cooperative games

Let us fix a Bayesian game with independent, private values I' = [N ATG @i, Ay ui} e N} ,
namely a set of players N and for every player i, i € N,

e a set of types T;
e a probability distribution ¢; over T;
e a set of actions A;

e a utility function u; : T; X A — R, where A = . A;.
1€



Let P be a coalition structure, namely a partition of N. From I" and P, we
construct an auxiliary Bayesian game I'(P) = [P, {Ts,qs, As, Us} e P}, in
which the players are the coalitions S, S € P, and

1 TS = Hiesﬂ’ qs = ®i€3qi, AS = HiESAi
o Us(ts, (ax)ker) = )

(ai)ieK

iesui(tz‘a<aK)KeP)a where ts = (t)ics, ax =

A strategy of S in I'(P) is a mapping og : Ts — Ag. Such a defini-
tion makes sense if the members of coalition S share their information in
Ts before jointly deciding on an action profile in Ag. We show in the next
subsection that such strategies are derived from appropriate coalitions’ mech-
anisms, which allow for transfers between the coalitions’ members. Thanks to
these mechanisms, utilities become fully transferable. Furthermore, incentive
compatibility conditions are automatically satisfied.

As in Ray and Vohra (1997) and Ray (2007), we define a coalitional
equilibrium relative to P as a Nash equilibrium (og)gep of I'(P). We assume
that for every P, there exists a coalitional equilibrium relative to P and
in case of multiple equilibria, we fix a mapping ¢ associating a coalitional
equilibrium o (P) with every P.* We denote as v,(S; P) the expected utility
of S at o(P), for every S € P, namely

S u (B0 (P)(D)

€S
where r.v.’s are denoted with a ~ and o (P)(t) = (U(P)K(?K))Kep. (1) defines

a partition form game, which is constructed from I' and o, with I'(P) as an
intermediary step.

Let T = H,GN T;. By evaluating (1) at the grand coalition N, we get

vo(S; P) = E (1)

Uy (N; P) =v(N) = max F

TeAT

Z w; (t;, 7'(?))] for every o and P.  (2)

1EN

4Ray and Vohra (1997) give sufficient conditions for the existence of a coalitional equi-
librium but their result is not useful in our applications to auctions. However, many
specific results are available in this context. Ray (2007) argues that the partition form
game only makes sense if a unique coalitional equilibrium can be associated with every
partition (possibly up to transfers). We rather take the view that in case of multiple
equilibria, some “standard of behavior” allows us to select among them.

8



Given a coalitional equilibrium mapping ¢ and a partition P of N, o(P) is
a feasible strategy for N (i.e., o(P) € AT). Hence, v, is “grand coalition
superadditive”, or, according to an equivalent terminology, NN is efficient in
Vg
v(N) > Z v,(S; P) for every P (3)
Sep

2.2 Coalitions’ mechanisms

Let us fix a coalition S. A mechanism pg for S is a pair of mappings pg =
(15, mg):

Ts - T5—>AS

mg TSH{ZGRS:Z%§O}

i€S

Tg is S’s decision scheme and mg is a balanced transfer scheme®. As usual,
the interpretation is that members of S are invited to report their types to
a planner who then chooses a profile of actions and transfers.

We assume that utilities over mechanisms are quasi-linear. More precisely,
the utility of ug for player ¢ € S, given his type t;, reported types rg =
(15)jes, a “strategy” omgs : Tavs — An\g for the players outside S (e.g.,
on\s = (0k)kep ks, for some partition P of N) and types ty\s for the
players outside S is

ui(ti, Ts(rs), oms(tams)) + mi(rs)

As this expression explicitly shows, every member ¢ of S incurs an externality
from the strategic choices of the players in N \ S but, thanks to the private
value assumption, does not face any direct informational externality. We
define the incentive compatibility (I.C.) of the mechanism p 4 given a mapping
on\s - Tnys — An\s. More precisely, p1g is 1.C. given oy g iff for every i € S,
every type t; and reported type 7;,

5We restrict ourselves to interim transfers, which are defined over T. They can be
interpreted as the expectations of more general ex post transfer schemes, which are defined
over Ts x Ag if actions are eventually observable. If the players’ utilities only depend on
actions through some outcome function 6 : Ag — O, where O denotes the set of observable
outcomes, ex post transfers are better defined over T x O.

9



E [ui(ti, 7s(ti tsvi), ons(tns)) + mis(ti ts\)]

> F [ui(ti, TS(ThZS\i)a ons(tng)) + mfg<ri7’{S\i)}

This definition makes sense because coalition S must take account of the
behavior of the players in N\ S in elaborating its own strategy. In the case of
complete information, S just looks for a best reply to N\ S’s action profile. In
the case of incomplete information with private values, S looks for an I.C. best
reply to N\ S’s strategy o\, without entering the details of o \g (Whether
the players lie or not, how they possibly gather into subcoalitions, etc.). The
next proposition justifies the coalitions’ strategies in the auxiliary Bayesian
game; in particular, we show that explicit I.C. conditions are not necessary.
The construction, which goes back to Arrow (1979) and d’Aspremont and
Gérard-Varet (1979, 1982), has been widely used in economic frameworks
which do not involve externalities (see, e.g., Forges et al. (2002)).

Proposition 1 Let S C N; let ons : Tvg — An\g be an arbitrary strategy
of N\ S and let o be a best response of S to ong in I'({S, N\ S}). There
exists a transfer scheme mg such that

1. ZiES mi(rs) =0 for every rg € Ts
2. The mechanism (og,mg) is I.C. given ons.

Proof: Let us fix S, ong and og as in the statement. For every i € S,t; €
T;,as € Ag let us set

hi(ti, as) = Elui(ti, as,ons(tans))]
Since og is a best response to oy\g,
Zhi(ti705<t5)) > th’(ti,as) Vis € Ts,as € Ag (4)
ies ieS
Let mis(rs) = ZjGS\i

reported type r; € T; and reported types rg\; € H T; of the other members
jes\i

hj(rj,os(rs)). For every i € S, type t; € Tj,

10



of S,

hi(ti, os(rs)) + Mis(rs) = hi(ti,o5(rs)) + Y hi(rj,05(rs)) (5)
jeS\i
< hiltios(tirs)) + Y hi(ry, o5(ti rsy))
jes\i

= hi(ti, 05(ti, reni)) + Mgt rs\)

where the inequality is due to (4) w.r.t. the type vector (¢;,rs\;)-

Hence, the mechanism (o, mg) is I.C. given oy\g, but not yet balanced.
Let mi(r;) = E[mk(ri, ts\;)]. By taking expectations in (5) we conclude that
(0g,mg) is L.C. given o y\s.

1 .
. Z m%(r;). Then (0g,mg) is I.C.

Finally, let mi(rg) = my(r;) — BT
jes\i

given o\ g and Z m4(rg) = 0 for every rg € Ts. B
A direct consequence of this proposition is that, under our assumptions,
every coalitional equilibrium can be made 1.C. More precisely, let P be a

partition of N and o be a coalitional equilibrium relative to P; for every
S € P, there exists mg such that (og,mg) is I.C. given (0k)kep rzs and

v,(S;P)=F

Z (ui(ti, 05(ts), (0 (tx)) kepxrs) + qu(th))]
ies
2.3 Core-stability of a (single) ring

Let us denote as P(K) the set of all partitions of K, for K C N. Let R C N;
from v, (S; P), we derive the following characteristic function over R

R(qy _ : .
w;'(S) = ne%l(%l\S) Vo (S5 {Sa 11, {k}keN\R}>

In particular, for the grand coalition N,

w(S) = min w,(S;{S, 11}) (6)

a IIEP(N\S)

We say that R is core-stable (w.r.t. o) iff the (standard) core of wZ, C'(wl),
is not empty. The interpretation is the following:

11



e The coalitional equilibrium mapping o is given.

e The ring R considers to form; the players outside R are supposed to act
individually. R proposes to every ¢ € R a share x; of the total expected

payoff w®(R) = v, (R; {R, {k}keN\R}), to be achieved by means of an

I.C. mechanism pp = (0g, mg).

e FEvery subcoalition S of R considers non-participation; if S does not
participate, the players outside R remain singletons, the players in
R\ S partition themselves as they wish. Hence S can guarantee the
total expected payoff w(S) to its members.

o If the participation constraint of every S C R is satisfied, R forms;
every player observes his type; R implements i p.

Basic properties

e Every singleton {k}, k € N, is core-stable.
e Recalling (2), for every o, w’ (N) = v(N); by (3) and (6), wY is grand

o

coalition superadditive (N is efficient in w2 ). This property does not
necessarily hold for wZ R ¢ N (see example 2 in section 3.3).

e C(wf) corresponds to cautious expectations of the subcoalitions of R.
In particular, C(w)) contains the usual variants of the core of the
partition form game v, (see Hafalir (2007)). For instance, the core with
singleton expectations, or s—core, of v,, denoted as C(v,), is defined

as the standard core C'(f?) of the characteristic function

13(8) = v (S: {5, {7} ems ) (7)

Similarly, the core with merging expectations, or m—core, of vy, C,(v,),
is defined as C),(v,) = C(fI"), where

J(S) = vs(5:{S, N\ 5}) (8)

It readily follows from the definitions that C'(f2) and C'(f2") are subsets
of C(wY). Unlike wY, the characteristic functions f: and f™ are not
necessarily grand coalition superadditive (see example 1 in section 3.3).

12



e w! can be defined in terms of the conjecture of every coalition S on

the partition to be formed by the players of N\ S if S secedes from the
grand coalition N. For every coalition S, let B(S) be a partition of N
which contains S as a cell. Given a partition form game v, let fZ(S) =
v(S; B(S)). The B-core of v is defined as the core of the characteristic
function game fZ. The s—core and the m—-core correspond respectively
to B(S) = {S;{j},j € N\ S } and B(S) = {S,N \ S}. The grand
coalition N is then core-stable (w.r.t. o) if, for some specification of the
conjecture B(S) of every coalition S, the B—core of v, is not empty.

e If I' is a game with complete information, let

valS) = e, B [Z ults, W] )
In particular, v,(N) = v(N). The a—core of I' is defined as C(v,) (see
Aumann (1961)). It is easily checked that, for every o and every S & N,
wN(S) > v,(S). Hence, C(w)) C C(v,).5 The extension of the definition
of the av—core to incomplete information may be delicate in the presence of
incentive constraints. In particular, our previous construction of transfers,
which made any coalitional equilibrium incentive compatible (see proposition
1), cannot be used for the maxmin, since the latter solution concept requires
that coalition S considers any possible strategy of coalition N \ S. However,
in the framework of standard auctions, the difficulties disappear. Indeed,
every coalition S guarantees itself a total expected payoff of 0, whatever the
mechanism adopted by N \ S, by having all its members bidding 0 indepen-
dently of their types, a strategy that is clearly I.C. for S. Furthermore, S
cannot guarantee more than 0, since the members of N \ S can all bid the
maximal possible amount, which is I.C. for V\ S. Hence, the a—core is well-
defined and not empty in standard auctions. But the usual objection against
maxmin strategies applies: why should S fear costly overbidding from N\ S?

OHafalir (2007) focuses on abstract partition form games, which are not necessarily
generated by a strategic form game. Hence he does not distinguish the core with cautious
expectations from the a—core. In our framework, at least under complete information,
Aumann (1961)’s original definition of the a—core can be used.

13



3 Applications

In this section, we apply our solution concept, in which coalitions play best
replies to each other, to auctions with independent private values. In the
first two subsections, we consider standard auctions, that is, without direct
externalities. We check the core-stability of coalitions in several specific
auction models which have been proposed in the literature. In subsections 3.1
and 3.2, we illustrate that, in absence of direct externalities, coalitions are
core-stable. In subsection 3.3, we allow for direct negative externalities and
show that the grand coalition is still core-stable in this case. However, the
s—core and the m—core of the underlying partition form game can be empty
(example 1) and small coalitions may not be core-stable (example 2). Finally,
if externalities are possibly positive, the a—core may be empty (example 3).

3.1 Standard second price auctions

Let player ’s type ¢; be a continuous random variable over [Q, Zi} ,0<t, <t
to be interpreted as his valuation for a single object. A; = [0, M] is the set
of possible bids, where M > max;cyt;. Let a = (ag)ren be an n—tuple of
bids. A second price auction is defined by the following utility functions

wi(ti,a) = t;— r?#azx a; ifa; > rglgfi a;
= ——(t; —a;) if a; = maxa;
oy 1) TR

= (0 otherwise

where n(a) = |{k € N : ay = maxjena;}|.

As is well-known, this game has an equilibrium in weakly dominant strate-
gies. More generally, let P be a partition of N. The auxiliary Bayesian game
['(P) has a coalitional equilibrium in weakly dominant strategies described
by of(ts) = t), for some k € S such that ¢, = max;egt; and o%(ts) = 0 for
i€S,i#k, for every S € P and tg = (t;)jes. It is easily checked that for
every P and S € P,

05 (5 P) = vo(S;{S, N\ S}) = E

(it — o ?)] = ()

€S JEN\S

14



where fT = max{f,0}. The previous expression shows that, at the equilib-
rium in weakly dominant strategies, the external effects disappear, so that v,
reduces to a plain characteristic function. In particular, for every S C R C N

and every IT € P(R\ 5), v,(S; {S,H, {k}keN\R}) = ¢(S) and a ring R is
core-stable iff C'(p|g) is not empty, where ¢|r(S) = ¢(S) for every S C R.

Proposition 2 (Mailath and Zemsky (1991), Barbar and Forges (2007)) In
a standard second price auction, all rings are core-stable.

Proof: Mailath and Zemsky (1991) establish that ¢ is balanced. Barbar and

Forges (2007) further show that ¢ is supermodular (convex). If the bidders

are symmetric, namely if the types t;, + = 1,...,n, are i.i.d., an easy direct
)

argument shows that giving the same amount SD|T| to every member of N

defines a payoff n—tuple in C'(p): first, I denoting the indicator function
<E ) I t; > t; 1
o5) < B [ (maxi ) [, > ma ]| (10)

Further, it is easily checked that
P <{maxtNi < t} N {maxtNi > max th})
i€S ieS FEN\S
= P <{maxtNi < t} N {maxtNi > max th})
ieN ieS JEN\S

151
F O
[N
where F is the distribution function of any #;. It follows then from (10) that

P(5) < p(f. W

3.2 Standard first price auctions

In this subsection, we assume that the n initial bidders are symmetric, namely
that the valuations t;, i = 1,...,n are i.i.d. Let a = (ag)ren be an n—tuple
of bids. A first price auction is defined by the following utility functions

wi(ti,a) = ti—a; ifa; > n]l;zf a;
—(ti—a) if
— ;—a;) if a; = maxa;
n(a) e

= 0 otherwise
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where 7(a) is defined as for the second price auction.

Obviously, given a nontrivial partition P of N, the players of the auxiliary
Bayesian game I'(P) are not symmetric. By Lebrun (1999), I'(P) has a
unique equilibrium, for every partition P. In other words, there exists a
unique coalitional equilibrium mapping ¢. However, no general analytical
solution is available.

Waehrer (1999, proposition 2) shows that for every partition P and every
coalitions R, S € P such that |R| < |S]

v,(S; P) _ v,(R; P)
S ST R (1)

In words, at a first price auction, the per capita expected payoff of a cartel’s
member is greater in small cartels’. This result enables us to deduce the
following

Proposition 3 In a standard first price auction with symmetric bidders, the
grand coalition is core-stable.

Proof: We will show that the vector payoff allocating the amount ”‘%) to

every member of NV is in the s—core of the underlying partition game v,. Let
SGCN and P = {S, {k}keN\S}' Recalling the definition of the s—core (see
(7)), we have to show that

U(N) > V(S5 P)
N 1S

(12)

From (11), we deduce that for every j € N\ S,

V(S5 P)

e} P) > g

while, from the grand coalition superadditivity of v, (recall (3)),

v(N) > v, (S; P)+ Y v,({j}: P)

JEN\S

The latter two inequalities yield (12). B

"Waehrer (1999) also shows that for second price auctions, the inequality goes the other
way round.

16



The previous reasoning can be applied to establish the stability of a bid-
ding ring R & N if v, is superadditive on R. Such a property indeed holds
in examples proposed by McAfee and McMillan (1992) and Marshall et al.
(1994).

McAfee and McMillan (1992) assume that ¢; € {0,1}, i = 1,...,n. They
show (in inequality (13)) that, for every coalition S & N and j € N \ 5,

Vs (S U{i}; {5 Ui}, {k}keN\(SU{j})}>
> vy (S {8 Uhhems }) + o (115 {8 hems )

or, equivalently, recalling our notation f? (see (7))

f2(SUGY 2 £8) + v ({8, Tehiems )
One can also check that (11) holds in their framework so that

Vo <{]} 3 {57 {k}keN\S}> > f(i(gf)

UL | 1)
1S|+1 = |9
and, by induction, for every coalitions R, S such that S C R,

f2(R) _ f3(5)
IIRE

Since f5(S) > wl(9) for S C R, with equality if S = R, the latter inequality
implies that every ring R is core-stable in McAfee and McMillan (1992)’s
example.

Marshall et al. (1994) compute f2 by numerical methods in the case of
five initial bidders uniformly distributed over [0, 1]. Their table III shows that
I “; é‘s) is increasing with the size of S (i.e., (13) holds) so that, in their example
too, all rings are core-stable.

Hence

(13)

3.3 First price auction with complete information and
direct externalities

Jehiel and Moldovanu (1996) (henceforth, JM) introduced, and extensively
studied, first price auctions in which every bidder suffers an externality if
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a competitor acquires the object. In order to concentrate on the externality
effects, they assume complete information. The basic game reduces to I' =
[N AA it N}, which describes a first price auction between the agents in
N. A; = {0,¢,2¢,...} is the set of possible bids®. The utility functions are
described by an n x n matrix E = [e;;]; for every i, e;; = t; is agent 4’s utility
for the object and for every i # j, e;; is the externality incurred by agent j if
agent ¢ gets the object. If all bids are 0, the seller keeps the object; agent ’s
utility is normalized to 0 in this case. Let a = (ag)ren; the utility of player
718

+
ui(a) = t;—a; ifa; > maxaj}

J#i

+
= ej; ifa;> {maxak] for some j # 1
[
= 0 ifa=0

To complete this description, we assume that if several players make the
highest bid, they all get the object with the same probability.
Recalling (2), we have here

v(N) = max [Z ui(a)] = [I}é&}\;( {ti + Zew} — e]

ieEN i

Since I' is a game with complete information, the a'—characteristic function
v is defined by (9).

JM mostly consider negative externalities, i.e., e;; < 0 for every i # j.
We shall keep that assumption throughout the section, except in example 3.
If externalities are negative, given any strategy profile (a;);cs of S, N'\ S can
inflict a negative payoff on S by bidding over max;cg a;; hence v,(S5) < 0 for
S & Nj since v(N) > 0, the a—core C(v,) is not empty.

JM consider the following strategy profile (b;);en: if t; — minje; < 0
for every i = 1,...,n, then b; = 0 for every i.? Otherwise, let (i,k) be a
pair of bidders ¢ # k such that t; — e;; is maximal over all t; — ¢;;, j # [
(that is, bidder i is willing to pay the highest price for the object, given

8As in JM, we assume that there is a smallest money unit € > 0, in order to guarantee
the existence of equilibria.

9This particular case can be discarded by assumption in the original game T' (¢; > 0
for every 4) but can occur in the game I'(P) between cartels.
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his valuation and the externalities he might suffer); take b; = t; — ey — ¢,
by = t; —er; — 2¢ and b; < by, 7 # 1,k. JM’s proposition 1 states that,
under appropriate genericity conditions, these strategies form an equilibrium
in I'. We refer to it as to the JM-equilibrium (see Biran (2009), Appendix
A, for a full characterization of equilibria)!. At the JM-equilibrium, bidder
i’s payoft is ex; + € < 0 and all other bidders j # 7 get e;; < 0. This enables
us to proceed as above for the a—core to show that the grand coalition is
core-stable w.r.t. the JM-equilibrium.

Proposition 4 In a first price auction with complete information and di-
rect negative externalities, the grand coalition N is core-stable w.r.t. the
coalitional equilibrium mapping o defined by the JM-equilibrium, namely,

C(wl) #0.
Proof: w¥(N) = v(N) > 0. We shall check that for every S ¢ N,

w(S) < 0. Let P € P(N) be a nontrivial partition of N. Let S € P and let
rs € S be an efficient agent in S, i.e., rg = arg ma‘XiGS(ti—i_ZjeS,j;éi e;j). Given
strategies of the other cartels in P, S cannot do better than choosing a bid
profile (a;);es with a; = 0 for i # rg (rs represents S at the auction). Hence,
['(P), the auction between the cartels, has the same structure as the original
game I, with valuations tg = max;es(t; + > s jti e;j) and externalities
esK = Y. jex €rsj < 0. The JM-equilibrium applies to this game and yields
negative payoffs to all players. It follows that v,(S; P) < 0 for every S, P
and thus w(S) < 0. B

From the previous proposition, we recover that the a—core C'(v,) is not
empty. This result is quite different from JM’s proposition 6, which estab-
lishes that the a-core of a flexible market game is in general empty. In JM’s
market game, all agreements are conceivable, including bribing the seller, for
instance. Here, we stick to the rigid original format of the first price auc-
tion, so that we do not allow for any collusion between the bidders and the
seller. The only possible form of collusion between the potential buyers is to
coordinate their bids and to make side-payments to each other.

The proof of the previous proposition shows that, if, the coalitional equi-
librium mapping o is defined by the JM-equilibrium, all associated conceiv-
able cores (e.g., the s—core and the m—core, see subsection 2.3) will be

"WLet k € N and aj = t), — min;z eg. As pointed out in JM, any bid a; > a} is weakly
dominated (by aj — €) for player k. In the JM-equilibrium, the strategy by of the second
highest bidder satisfies by, > aj, — 2¢ and is thus typically dominated.
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nonempty. The example below illustrates that this property does not neces-
sarily hold for coalitional equilibrium mappings which may lead to positive
payoffs.!t

Example 1: n = 4; the matrix of valuations/externalities is

ty, —2 =2 =2

0 1 0 O

-8 -8 1 -8

-7 =7 =7 1
Let us start with t; = 8. v(N) = 2 — €. Assume first that the bidders act
individually. Then the following strategies form an equilibrium: a; = a4 =

8 — 2¢, ag = 8, a3 = 8 — €. Bidder 2 wins the auction and the payoffs are
(0,—7,0,0). Hence,

vo ({i}; ({1}, {2}, {3}, {4}}) = 0,7 = 3,4 (14)

Assume next that the first two bidders collude, while the two others remain
singletons. The relevant matrix becomes

E =

6 -2 -2
-16 1 -8
—14 -7 1

The following strategies now form an equilibrium: a; = 3, ay = 0, ag =
3 —¢,a4 =3 — 2e. Coalition {1,2} gets a payoff of 3 so that

vo ({1,245 {{1,2}, {3}, {4}}) = 3 (15)

(14) and (15) imply that the characteristic function f? is not grand coalition
superadditive, hence that the s—core Cy(v,) is empty in that example.

Let us take t; = 4. We now have v(NN) = 1 —e. Let us assume that bidder
3 competes with the cartel {1,2,4}. The matrix is

(e 7)

1 The features of the next examples depend crucially on the direct externalities. In a
first price auction with complete information and no externalities, there exists a coalitional
equilibrium mapping o in which the outcome (namely, the winner and the price) is as in
the equilibrium in undominated strategies of the second price auction. For that o, the
s—core and the m—core of v, are not empty. Furthermore, every bidding ring is core-stable
w.r.t. o.
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where the first row corresponds to the utilities in case the cartel obtains the
object. The strategies a; = 0, a3 = 1, a3 = 1 —¢, ag = 0 form an equilibrium.

Hence

vo ({315 {{3},{1,2,4}}) = 0 (16)
and similarly for bidder 4. Let us assume again that the first two bidders
collude, but facing the opposite ring {3,4}. The relevant matrix is now

(2 %)

The strategies a; = €, as = a3 = a4 = 0 are in equilibrium, so that

vo ({1,215 {{1,2} ,{3,4}}) =2 — ¢ (17)

(16), the analog of (16) for bidder 4 and (17) imply that the characteristic
function fI* is not grand coalition superadditive, hence that the m—core
Cin(vs) is empty in that example. H

One of the motivations of JM for studying cooperative agreements was
to understand why two European firms did not cooperate in a procurement
auction opposing them to an Asian competitor. JM suggest that negative
externalities might explain the failure of the natural partners’ association.
However, as explained above, the emptiness of the a—core that they consider
only shows that no stable agreement can be found between the three potential
buyers and the seller. In this particular example, cooperation between the
Furopean firms and the Asian one looked unlikely, but the stability of the
European coalition could be considered. This kind of stability is captured by
our concept of core-stability, which applies to any cartel. We illustrate below
that, in the presence of externalities, a two firm cartel may not be stable.

Example 2: n = 3; the matrix of valuations/externalities is

5 —4 =3
E = -4 6 -9
-10 -1 3

If a first price auction takes place between the 3 agents, in every equi-
librium, agent 1 wins and agent 3 is the second highest bidder; in undom-
inated strategies, 10 < p < 12; at the lowest price p = 10, the utilities
are (—b, —4,—3). Provided that p < 11, bidders 1 and 2 get a total utility
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> —10. If they form a joint venture, in every equilibrium, agent 2 represents
R = {1,2} at the auction and wins; in undominated strategies, p = 12: the
price raises when agent 1 and agent 2 do not compete. The total utility of
{1,2} is —10, which is less than the sum of agents 1 and 2’s individual payoffs
(in our previous notation, wf({1}) = —5, wE({2}) = —4, wk({1,2}) = —10).
The interpretation is the following: if agents 1 and 2 get together, they can-
not expect more than —10; if agent 3 plays a dominated strategy, they will
even get less. If agent 1 breaks the agreement, he does not expect that agents
2 and 3 (like a European firm and the Asian firm above) will collude, but
considers a noncooperative equilibrium between the three competitors. At
an equilibrium leading to the lowest price, he can expect —5. Similarly, agent
2 can expect —4. l

In this example, we did not rely on the JM-equilibrium. However, it
can be shown that the grand coalition is core-stable!?. More generally, we
show in the appendix that if n < 3, the grand coalition is core-stable w.r.t.
every coalitional equilibrium mapping, even if externalities can be positive.
In the previous example, with negative externalities, the grand coalition can
decide not to participate in the auction so as to guarantee 0 to its members,
a strategy that is not feasible for small coalitions. Of course, that the grand
coalition would be stable if it could form does not mean that it is viable. In
the competition between two European firms and an Asian one, the grand
coalition is not to be expected.

We conclude this section by illustrating that, if sufficiently many players
face possibly positive externalities, the grand coalition may not be stable. In
the next example, with five players, the a—core, C(v,), is empty.

Example 3: n = 5; every agent ¢ has two neighbors (i—1mod 5, i+1mod 5);
t; = 3, e;; = 2 if agent j is a neighbor of agent 7, e;; = —2 otherwise.

One computes that v(N) = 3 — e. By symmetry, if C'(v,) # (), the payoff
vector in which every agent gets % must be in C'(v,). Let us consider a
coalition of the form S = {i,7 + 1,7+ 3} where + is mod 5, i.e., S contains
agent i, a neighbor of agent ¢ and a non-neighbor of agent . S guarantees

max {3 — ¢,2} if agent i bids ¢ and the other members of S bid 0; hence,

2Focusing on undominated strategies, {1,3} gets the payoff —8 against 2 and {2,3}
gets the payoff —7 against 1. All noncooperative equilibria of the original three player
auction give negative payoffs to all. Hence, even with a coalitional equilibrium mapping
o involving dominated strategies, the s-core Cs(v,) is nonempty.
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U6(S) > 2 > 3x 22¢, contradicting C'(v,) # 0.% Hence the grand coalition

is not stable in this example. B

A Appendix

In this section, we focus on three players; the model is the same as in section
3.3. In particular, information is complete; externalities e;;, j # 7, can be
positive or negative, but every agent gets more utility if he himself possesses
the object than if another agent (including the seller) possesses it. We assume
generic parameters. Recall that f* = max {f,0}.

Proposition 5 In every 3-player first price auction with direct externalities
such that t; > e;ri for every i,j # i, the grand coalition is core-stable w.r.t.
every coalitional mapping o.

Proof: Let us fix an arbitrary coalitional mapping o, namely, for every par-
tition P of N = {1,2,3}, a Nash equilibrium o(P) of the auction game in
which the players are the coalitions in P. We will show that the core with
singleton expectations Cs(v,) is not empty, i.e., that C(f2) # (), where the
characteristic function f? is defined by (7).

Let us assume w.l.o.g. that player 1 is efficient in N, namely that

t1 + €12 + e13 > max {ty + ez + a3, t3 + €31 + €32} (18)
Then
Jo(N) = [t1 + e12 + €13 — €]+
We will consider the modified characteristic function g, defined by

9o(N) = titent+es—e
9-(S) = [f3(9) forevery SGC N

and show that C(g,) # 0. Let us set x; = g,({i}), i = 1,2,3. x; is player
i’s payoff at the equilibrium 7 = o({{1},{2},{3}}) induced by o in the
3-person original auction game. Since t; > 0 for every i, the seller cannot
keep the object at 7. If player ¢ gets the object at a positive price p at 7,

BEquivalently: S = {{i,i+1,i+3},i=1,...,5} is balanced (with weights \g = %)
and Zses Asva(S) > 8 >3 e
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x; = t; —p < t;; if player j # ¢ wins the object at 7, z; = e;; < t; by
assumption. Hence z; < t;. Furthermore, x5 + x5 < €15 + €13. Indeed, if
player 1 wins the object at 7, xs + x3 = e15 + e13. If, say, player 2 wins the
object at 7, the price p must exceed t; —es;, otherwise player 1 would deviate
from 7: xo + 23 =ty —p+eag <ty — 11+ €91 + €93 < e1o9 + €13, where the last
inequality follows from (18).

Let us set!'

y=(t1 —€,qr2 + (1 = q)t2, g3 + (1 — q)t3)
where ¢ is computed so that

1+ 1y +ys = go(N), ie., yo +y3 = €12 + €13

namely
_ (b2 +13) — (€12 + €13)
(tz + tg) — (iL’Q + $3)

From the properties of x5 and x3, ¢ is well-defined and 0 < ¢ < 1. We will
show that y € C(g,). By construction, y is efficient and individually rational.
Let S be a 2-player coalition. g,(.5) is the payoff of S at the equilibrium (¢ =
a({S,N \ S}) of the 2-player auction game in which S competes against the
singleton NV \ S. It is easily checked that, at every equilibrium of an auction
game with 2 players, the most efficient one wins the object (see, e.g., JM’s
proposition 2). Let S = {2,3}; by (18), player 1 wins the object at (5 3;, s0
that ¢,({2,3}) = e12 + e13 = y2 + y3. Let S = {1,2}; if player 3 wins the
object at (g o3, 9o({1,2}) = e31 + €32 < t1 + €12 + €13 — t3 < y1 + Y2, where
the first inequality follows from (18) and the second one from t3 > y3 + €. If
{1,2} wins the object at Cr1,23> let k=1 or 2 be the most efficient player in
{1,2}, i.e.,, max {t; + e12,f2 + €21} = ti + €gpy1, where k + 1 is mod 2. The
price p to be paid by {1,2} at ¢ (1,23 must exceed t3 — ey3, otherwise player 3
would deviate from (; 5y Hence, 9o({1,2}) < tg + erpt1 — t3 + exs so that
9o({1,2}) < t1 + e12 + e13 — t3 by (18); the proof is completed as above.
S ={1,3} is similar. W

14The idea is that the grand coalition, if it forms, allocates the object to the efficient
player 1. Then player 2 and player 3 must share ej5 + e13. Transfers are organized between
these two players so that they get at least their individually rational level.
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