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Abstract

We present a new version of the overtaking criterion, which we call generalized

time-invariant overtaking. The generalized time-invariant overtaking criterion

(on the space of infinite utility streams) is defined by extending proliferating
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sional spaces. The paper presents a general approach that can be specialized
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orderings on a finite dimensional Euclidean space.

Keywords and Phrases: Intergenerational justice, Utilitarianism, Leximin.

JEL Classification Numbers: D63, D71.

∗We thank an anonymous referee for many helpful suggestions, and Aanund Hylland, Mohamed

Mabrouk, participants at the 9th Meeting of the Society for Social Choice and Welfare, the Economic

Theory Conference in honor of Professor Tapan Mitra on his 60th birthday, the International

Symposium on Choice, Rationality and Intergenerational Equity at Waseda University, and EEA-

ESEM Barcelona’09 for comments.

†Department of Economics, University of Oslo, P.O. Box 1095 Blindern, N-0317 Oslo, Norway

(tel: 47-22855498; fax: 47-22855035; e-mail: g.b.asheim@econ.uio.no). Corresponding author.
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1 Introduction

Recent contributions in welfare economics have suggested new social welfare relations

for the purpose of evaluating infinite utility streams representing the welfare levels

of an infinite and countable number of generations. In particular, Basu and Mitra

(2007a) extend the utilitarian ordering on a finite dimensional Euclidian space to

the infinite dimensional case. Also non-additive theories have been defended, and

Bossert, Sprumont and Suzumura (2007) extend the leximin ordering. Both these

social welfare relations are incomplete. Still, they may be effective in the sense of

selecting a small set of optimal or maximal elements for a given class of feasible

infinite utility streams. Suggestions have also come from the philosophical literature

(e.g., Vallentyne and Kagan, 1997; Lauwers and Vallentyne, 2004), sticking to finitely

additive moral value theories, but addressing the issue of ranking worlds with an

infinite number of “locations of values”. These may represent “times” and hence be

naturally ordered, or “people” for which no natural ordering can be assigned.

It is easy to construct pairs of infinite utility streams incomparable according

to the criteria of Basu and Mitra (2007a) and Bossert, Sprumont and Suzumura

(2007), but where it is clear that the one infinite stream is socially preferred to the

other both from a utilitarian and egalitarian point of view. To illustrate, consider

the following two streams:

u : 1 1
2

1
4

1
8

1
16

1
32 . . . 1

2n−1 . . .

v : −1 1 1
2

1
4

1
8

1
16 . . . 1

2n−2 . . .

It is intuitively clear that u is socially preferred to v from a utilitarian perspective

since the sum of utility differences between u and v is unconditionally convergent

and converges to 1. Likewise, it is intuitively clear that u is socially preferred to v

from an egalitarian perspective since the minimal utility of v (= −1) is smaller than

the greatest lower bound for the utility of u (= 0). Still, according to the criteria of

Basu and Mitra (2007a) and Bossert, Sprumont and Suzumura (2007) these streams
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are incomparable since there is no cofinite set (a subset of all generations with finite

complement) on which u equals or Pareto-dominates v. This motivates an investiga-

tion of social welfare relations for the evaluation of infinite utility streams which are

more complete than those proposed by Basu and Mitra (2007a) and Bossert, Spru-

mont and Suzumura (2007), while allowing for non-additive moral value theories

and different interpretations for the locations of values.

Extensions of utilitarian and leximin orderings to the infinite-dimensional case

are normally required to satisfy the axioms of Finite Anonymity (ensuring equal

treatment of generations) and Strong Pareto (ensuring sensitivity for the interests

for each generation). Recent work by Lauwers (2009) and Zame (2007) confirms

the following conjecture, suggested by Fleurbaey and Michel (2003): no definable

complete and transitive binary relation on the set of infinite utility streams can

be proved to satisfy the axioms of Finite Anonymity and Strong Pareto. In this

sense, no complete social welfare relation satisfying these axioms can be “explicitly

described” (see Zame, 2007, Theorem 4).1 We will here consider social welfare

relations satisfying Finite Anonymity and Strong Pareto that can be “explicitly

described”, and hence completeness is an unreachable goal.

However, there might be reasons—other than issues of explicit description—why

one should refrain from seeking excessive comparability. To make this argument,

consider the following two infinite utility streams:

x : 3
2 0 1 0 1 0 . . . 1 0 . . .

y : 0 1 0 1 0 1 . . . 0 1 . . .

When overtaking (Atsumi, 1965; von Weizsäcker, 1965) is applied to the utilitarian

or leximin ordering (see Asheim and Tungodden, 2004), then x is strictly preferred

to y since the finite head of x is preferred to the finite head of y at all locations.

1By applying Szpilrajn’s Lemma (whose proof uses the Axiom of Choice), Svensson (1980) has

shown that complete social welfare relations satisfying Finite Anonymity and Strong Pareto exist.
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This conclusion crucially depends on the sequencing of the locations, as permuting

odd and even locations for both x and y makes the streams incomparable.

The strict ranking of x over y can be made robust to such re-sequencing by

adding Fixed-step Anonymity (Lauwers, 1997; Mitra and Basu, 2007) to overtaking

(as done by Kamaga and Kojima, 2009b). Then y becomes indifferent to

z : 1 0 1 0 1 . . . 0 1 . . .

and thus by Strong Pareto and transitivity strictly inferior to x. However, imposing

Fixed-step Anonymity comes at the cost of Koopmans’ (1960) Stationarity axiom

(in the sense that preference over future utilities should not depend on present utility

if both streams have the same present utility). To see this, consider

(0,y) : 0 0 1 0 1 1 . . . 1 0 . . .

(0, z) : 0 1 0 1 0 1 . . . 0 1 . . .

Fixed-step Anonymity, under which y and z are socially indifferent, combined with

Strong Pareto forces us to conclude that (0, z) is socially preferred to (0,y), thereby

contradicting Stationarity.

Furthermore, even in conjunction with Fixed-step Anonymity, overtaking is de-

pendent on sequencing: By allowing for permutations that are not of the fixed-step

kind, there exists an infinite permutation matrix P such that

Px : 0 0 3
2 0 1 . . . 0 1 . . .

Py : 1 1 0 1 0 . . . 1 0 . . .

implying that Py is socially preferred to Px by both the utilitarian and leximin

overtaking criterion, thereby inverting the original ranking.2

2The concepts of a permutation and a permutation matrix are introduced in Section 2.2. The

matrix P moves location 2 to location 1, all other even locations two periods backwards, and all

odd locations two periods forwards.
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These examples show that overtaking does not satisfy axioms of Relative Anony-

mity, in the sense the ranking of two streams should not change when the same

permutation of locations is applied to both streams. In its traditional form, over-

taking does not satisfy the axiom of Fixed-step Relative Anonymity, where ‘fixed-

step’ reflects that only fixed-step permutations are considered. Even in conjunction

with Fixed-step Anonymity, overtaking does not satisfy the axiom of Strong Relative

Anonymity, where ‘strong’ reflects that all infinite permutations are considered.

In this paper we will insist on the axioms of Stationarity and Strong Relative

Anonymity. An argument for Stationarity is that it is necessary for time-consistency

if social preferences are assumed to be time-invariant.

An argument for Strong Relative Anonymity is, as discussed by Vallentyne and

Kagan (1997), that there is no natural order; in this case the axiom coincides with

Lauwers and Vallentyne’s (2004, p. 317) Isomorphism Invariance. This argument

may also apply in the intergenerational setting, where the generations follow each

other in sequence. An interesting case is where the utilities of people within each

generation are not aggregated into a single number,3 but where the elements of the

stream correspond to individual utilities. With an infinite number of individuals

within each generation, the stream of individual utilities cannot have a natural or-

der. With a finite population, there is no natural ordering of people within each

generation. Even in the case where the elements of the stream represents genera-

tional utilities, one can argue that the order in which generations are counted should

not matter for the ranking of streams if the generations are treated equally.

Relative Anonymity (in the sense the ranking of two streams does not change

when the same permutation of locations is applied to both streams) is weaker than

ordinary Anonymity (where a permutation is applied to only one stream). To il-

lustrate: the incomplete social welfare relation generated by Strong Pareto alone

3See d’Aspremont (2007) for the assumptions required to reduce the welfare of each generation

to a single number.
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satisfies Strong Relative Anonymity, but fails to satisfy even the weakest form of

Anonymity, Finite Anonymity, because Pareto-dominance can vanish when two ele-

ments of the one stream (only) are permuted.

The utilitarian and leximin social welfare relations proposed by Basu and Mitra

(2007a) and Bossert, Sprumont and Suzumura (2007) respectively satisfy both Sta-

tionarity and Strong Relative Anonymity. It is the purpose of the present paper to

expand the asymmetric parts of these binary relations without compromising Sta-

tionarity and Strong Relative Anonymity. In particular, we will present utilitarian

and leximin social welfare relations that rank u strictly above v, while deeming x

and y (and y and z, and (0,y) and (0, z), and Px and Py) incomparable.

A simple but important fact is that, for comparing infinite utility streams, all

welfare criteria, whether the utilitarian criterion of Basu and Mitra (2007b), the lex-

imin criterion of Bossert, Sprumont and Suzumura (2007), as well as other utilitarian

criteria such as overtaking and catching-up introduced by von Weizsäcker (1965) and

Atsumi (1965), and the leximin criteria defined in Asheim and Tungodden (2004),

use an infinite sequence of the standard finite version of either the utilitarian or the

leximin social welfare ordering.

Using this fact, and a known property of these respective sequences, namely that

of being “proliferating” (to impose the criterion for any finite number of individuals,

it is sufficient to impose it in situations where only two individuals are involved),

all these criteria can be given a “generalized” formulation. This generalized formu-

lation is meaningful for any given proliferating sequence of social welfare relations

defined on finite utility streams (and usually assumed to satisfy some Anonymity

and Pareto conditions). The notion of a proliferating sequence was introduced for

the analysis of generalized versions of infinite-dimensional SWRs by d’Aspremont

(2007). It emphasizes the fact that value judgments made in the social evaluation

of the welfare of the individuals within a generation, and in particular within the

present generation, are binding in the evaluation of the welfare of all generations.
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Here we suggest a version of the overtaking criterion within this general approach

to the evaluation of infinite utility streams. We call this generalized time-invariant

overtaking. The generalized time-invariant overtaking criterion (on the space of infi-

nite utility streams) is defined by extending proliferating sequences of complete and

transitive binary relations defined on finite dimensional spaces. Our general analy-

sis specializes in a straightforward manner to the utilitarian and leximin cases. We

establish as a general result (stated in Theorem 1) that generalized time-invariant

overtaking satisfies Stationarity and Strong Relative Anonymity. We also note that

the criterion ranks u strictly above v. Moreover, we provide methods for determin-

ing the asymmetric and symmetric parts in the special cases of the utilitarian and

leximin time-invariant overtaking criteria.

The paper is organized as follows: Section 2 contains preliminaries, Section

3 presents the concept of proliferating sequences, and Section 4 reviews different

kinds of “generalized criteria”. Section 5 defines and investigates the properties of

generalized time-invariant overtaking, and Section 6 specializes this concept to the

utilitarian and leximin cases. The concluding Section 7 contains a general analysis

of the properties of pairs of utility streams that our criterion cannot compare, and

a discussion of the close relationship between our analysis and the work Vallentyne

and Kagan (1997) and Lauwers and Vallentyne (2004) in the utilitarian case.4

2 Preliminaries

2.1 Notation and Definitions

Let N denote the set of natural numbers {1, 2, 3, ...} and R the set of real numbers.

Let X denote the set Y |N|, where Y ⊆ R is an interval satisfying [0, 1] ⊆ Y . We let

X be the domain of utility sequences (also referred to as “utility streams” or “utility

profiles”). Thus, we write x ≡ (x1, x2, . . .) ∈ X iff xn ∈ Y for all n ∈ N. Usually,

4We thank the referee for pointing out this close relationship.
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xn is interpreted as the utility of generation n, but more generally as the utility of

individual n belonging to some generation. No natural order will be assumed. For

x, y ∈ X we will write x ≥ y iff xi ≥ yi for all i ∈ N and x > y iff x ≥ y and x '= y.

Whenever we write about subsets M , N of N, we will be dealing with subsets

of finite cardinality, entailing that N\M , N\N are cofinite sets (i.e., subsets of N

which complements are finite). For all x ∈ X and any N ⊂ N, we will write x as

(xN ,xN\N ). We will denote vectors (finite as well as infinite dimensional) by bold

letters; example are x, y, etc. The components of a vector will be denoted by normal

font. Negation of a statement is indicated by the logical quantifier ¬.

A social welfare relation (SWR) is a reflexive and transitive binary relation de-

fined on X (and denoted !) or Y |M | for some M ⊂ N (and denoted !M ). A social

welfare order (SWO) is a complete SWR.

An SWR !′ is a subrelation to SWR !′′ if for all x, y ∈ X, (a) x ∼′ y ⇒ x ∼′′ y

and (b) x +′ y ⇒ x +′′ y.

2.2 Permutations

A permutation π is a one-to-one map from N onto N. For any x ∈ X and a permu-

tation π, we write x ◦ π = (xπ(1), xπ(2), . . . ) ∈ X. Permutations can be represented

by a permutation matrix, P = (pij)i,j∈N, which is an infinite matrix satisfying:

(1) For each i ∈ N, pij(i) = 1 for some j(i) ∈ N and pij = 0 for all j '= j(i).

(2) For each j ∈ N, pi(j)j = 1 for i(j) ∈ N and pij = 0 for all i '= i(j).

Given any permutation π, there is a permutation matrix P such that for x ∈ X,

x◦π = (xπ(1), xπ(2), . . . ) can also be written as Px in the usual matrix multiplication.

Conversely, given any permutation matrix P , there is a permutation π defined by

π = Pa, where a = (1, 2, 3, . . . ). The set of all permutations is denoted by P.

A finite permutation π is a permutation such that there is some N ⊂ N with

π(i) = i for all i /∈ N . Thus, a finite permutation matrix has pii = 1 for all i /∈ N
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for some N ⊂ N. The set of all finite permutations is denoted by F .

Given a permutation matrix P ∈ P and n ∈ N, we denote the n × n matrix

(pij)i,j∈{1,...,n} by P (n). Let

S = {P ∈ P | there is some k ∈ N such that, for each n ∈ N,

P (nk) is a finite dimensional permutation matrix}

denote the set of fixed-step permutations. It is easily checked that this is a group

(with respect to matrix multiplication) of cyclic permutations.5

2.3 Axioms of Anonymity and Pareto

In this subsection we introduce the basic axioms that are repeatedly used in the rest

of the paper. The first set of axioms pertains to SWRs defined on a finite-dimensional

space, whereas the latter set is on the space of infinite utility streams.

Let !M be an SWR defined on Y |M |. Throughout we will as assume that !M

satisfies the following condition as a minimal requirement. It is an anonymity condi-

tion where the same permutation applies to the two utility vectors. Hence, we call it

“relative anonymity”. In the present intergenerational context it can be interpreted

as a time invariance property, reflecting that no natural order is assumed.

Axiom m-I (m-Relative Anonymity) For all xM , yM , uN , vN ∈ Y m with M =

{i1, i2, ..., im} ⊂ N and N = {j1, j2, ..., jm} ⊂ N satisfying |M | = |N | = m ≥ 2, if

there exists a finite permutation π : {1, . . . ,m}→ {1, . . . ,m} such that xiπ(k)
= ujk

and yiπ(k)
= vjk for all k ∈ {1, . . . ,m}, then xM !M yM iff uN !N vN .

By satisfying m-I, !M depends only on the dimension |M |. We will henceforth

write !m for an SWR on Y m, thereby signifying that the SWR satisfies m-I.

5The permutation π is cyclic if for each ei = (0, . . . , 0, 1, 0. . . . ) (with 1 at the ith place) there

exists a k ∈ N such that πk(ei) = ei. The class of cyclic permutations is not necessarily a group,

while P is a group which does not contain only cyclic permutations.
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It is useful to compare m-I to the usual anonymity condition where a permutation

is applied to the one utility stream only.

Axiom m-A (m-Anonymity) For all a, b ∈ Y m with m ≥ 2, if a is a permutation

of b, then a ∼m b.

Since !m is transitive, m-A is equivalent to having a ∼m b whenever there exists

i, j ∈ {1, . . . ,m} such that ai = bj , aj = bi and ak = bk for all k '= i, j.

The m-Pareto Principle (a !P
m b if and only if a ≥ b) illustrates that m-I does

not imply m-A. However, as originally shown by d’Aspremont and Gevers (1977,

Lemma 4), the two axioms are equivalent if !m is complete.

Lemma 1 If !m with m ≥ 2 is complete, then !m satisfies m-A.

Proof. Assume that !m is complete (where the notation entails that the SWR

satisfies m-I). Suppose by way of contradiction that there exists a, b ∈ Y m with

ai = bj , aj = bi and ak = bk for all k '= i, j such that ¬(a ∼m b). Since !m

is complete, we may w.l.o.g. assume that a +m b. However, by permuting the

ith and jth element of both a and b and invoking m-I, we obtain b +m a, which

contradicts a +m b. Hence, a ∼m b whenever there exists i, j ∈ {1, . . . ,m} such

that ai = bj , aj = bi and ak = bk for all k '= i, j.

The other kind of basic axiom is the Pareto condition.

Axiom m-P (m-Pareto) For all a, b ∈ Y m with m ≥ 2, if a > b, then a +m b.

Clearly, since !m is transitive, m-P is equivalent to having a +m b whenever there

exists i ∈ {1, . . . ,m} such that ai > bi and ak = bk for all k '= i. As a matter of

notation, if it is clear from the context that an axiom on finite dimension is invoked,

then we will drop the letter m from its abbreviation.

Let ! be an SWR defined on X. Consider the following versions of the anonymity

and Pareto axioms on !. Let Q be some fixed group of permutations equaling F , S
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or P, corresponding to the terms “Finite”, “Fixed-step” and “Strong” respectively

in the names of the axioms below.

Axiom QI (Finite/Fixed-step/Strong Relative Anonymity) For all x, y ∈ X and

all P ∈ Q, x ! y iff Px ! Py.

Axiom QA (Finite/Fixed-step/Strong Anonymity) For all x ∈ X and all P ∈ Q,

x ∼ Px.

Axiom FP (Finite Pareto) For all x, y ∈ X with some subset N ⊂ N such that

xi = yi for all i ∈ N\N , if x > y, then x + y.

Axiom SP (Strong Pareto) For all x, y ∈ X, if x > y, then x + y.

Clearly, since ! is transitive, FA is equivalent to having x ∼ y whenever there

exist i, j ∈ N such that xi = yj , xj = yi and xk = yk for all k '= i, j. Likewise,

FP is equivalent to having x + y whenever there exists i ∈ N such that xi > yi

and xk = yk for all k '= i. This is what Basu and Mitra (2007b) refer to as Weak

Dominance; hence, FP coincides with Weak Dominance. Note that for Q = F , S or

P, QA implies QI, while the converse is not true for incomplete infinite-dimensional

SWRs. For an analysis of these issues and more generally on comparability of a social

welfare evaluation in the intergenerational context we refer to Mabrouk (2008). It

is also well-known that PA cannot be combined with SP, while SA can (since it is

a group of cyclic permuations, cf. Mitra and Basu, 2007).

3 Proliferating sequences

Many well-known finite-dimensional SWRs form proliferating sequences. The struc-

ture imposed by this concept on a sequence of finite-dimensional SWR enables the

extension to an infinite-dimensional SWR to be analyzed at a generalized level,

without considering the specific nature of the finite-dimensional counterpart. Fur-
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thermore, it allows infinite-dimensional SWRs to be defined solely on the basis of

the 2-dimensional version of the underlying finite-dimensional SWR.

An infinite-dimensional SWR ! extends the finite-dimensional SWR !m if, for

all M ⊂ N with |M | = m and all x, y ∈ X with xi = yi for every i ∈ N\M ,

xM +m yM implies x + y, and xM ∼m yM implies x ∼ y.

Definition 1 A sequence of SWRs, {!∗
m}∞m=2, is proliferating if any SWR ! that

extends !∗
2 also extends !∗

m for every m ≥ 2.

The following result implies that the m-Grading Principle (a !S
m b iff there

exists a permutation c of b such that a ≥ c) is proliferating.6

Lemma 2 (i) If !2 is an SWR on Y 2 that satisfies A, and ! is an SWR on X

that extends !2, then ! satisfies FA.

(ii) If !2 is an SWR on Y 2 that satisfies P, and ! is an SWR on X that extends

!2, then ! satisfies FP.

Proof. (i) Let x, y ∈ X and for some i, j ∈ N (i '= j), xi = yj , xj = yi and

xk = yk for all k '= i, j. Set M = {i, j}. Since !2 satisfies A, xM ∼2 yM . By the

fact that xk = yk for all k ∈ N\M and ! extends !2, x ∼ y.

(ii) Let x,y ∈ X and for some i ∈ N, xi > yi and xk = yk for all k '= i. Set

M = {i, k} for some k '= i. Since !2 satisfies P, xM +2 yM . By the fact that

xj = yj for all j ∈ N\M and ! extends !2, x + y.

The utilitarian and leximin SWOs, which will be defined and analyzed in Section

6, are other important examples of proliferating sequences. In the case of such

6The Grading Principle was introduced by Suppes (1966) and further analyzed by Sen (1970),

Kolm (1972) and Hammond (1976, 1979). Its proliferating property is mentioned by Sen (1976, fn

26) as suggested by Hammond as a step to derive the same property for Leximin. For a proof, see

Hammond (1979). The proof of d’Aspremont (1985, Lemma 3.1.1) can be immediately transposed

to Y m (in place of Rm).
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complete SWRs, the notion of proliferation yields added structure.7

Lemma 3 A proliferating sequence {!∗
m}∞m=2 of SWOs satisfies:

(i) For all x, y ∈ X satisfying xi = yi for some i ∈ N\M , xM !∗
|M | yM iff

xM∪{i} !∗
|M |+1 yM∪{i}.

(ii) Assume that !∗
m satisfies P for each m ≥ 2. For all x, y ∈ X satisfying that

there exists M ⊂ N with |M | ≥ 2 such that xN ∼∗|N | yN for all N ⊇ M , xi = yi

for all i ∈ N\M .

Proof. (i) Let {!∗
m}∞m=2 be a proliferating sequence of SWOs, and let ! extend

!∗
2, implying that ! extends !∗

m for all m ≥ 2. Assume that xM !∗
|M | yM and

xi = yi for some i ∈ N\M . Let z ∈ X be an arbitrarily chosen utility stream. Since

! extends !∗
|M |, this implies (xM∪{i}, zN\(M∪{i})) ! (yM∪{i}, zN\(M∪{i})). Suppose

xM∪{i} ≺∗|M |+1 yM∪{i}. Since ! extends !∗
|M |+1, this implies (xM∪{i}, zN\(M∪{i})) ≺

(yM∪{i}, zN\(M∪{i})), leading to a contradiction. Hence, ¬(xM∪{i} ≺∗|M |+1 yM∪{i}),

implying since the SWO !∗
|M |+1 is complete that xM∪{i} !∗

|M |+1 yM∪{i}. Likewise,

xM +∗|M | yM and xi = yi for some i ∈ N\M implies that xM∪{i} +∗|M |+1 yM∪{i},

thereby establishing the converse statement.

(ii) Let {!∗
m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, !∗

m

satisfying P. Assume that there exists M ⊂ N with |M | ≥ 2 such that xN ∼∗|N | yN

for all N ⊇ M . Suppose that xi '= yi for some i ∈ N\M ; w.l.o.g. we can set xi > yi.

Since !∗
|M |+1 satisfies P, it follows from part (i) that

xM∪{i} ∼∗|M |+1 (yM , xi) +∗|M |+1 yM∪{i} ,

contradicting that xM∪{i} ∼∗|M |+1 yM∪{i}. Hence, xi = yi for all i ∈ N\M .

7Sakai (2009) refers to property (i) of the following lemma as “independence”.
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4 Generalized criteria

In this section we review “generalized criteria”, namely infinite-dimensional SWRs

that extend finite-dimensional SWRs that are both complete and proliferating. We

first introduce two additional axioms on the space of infinite utility streams that

will be used to differentiate these generalized criteria and in the rest of the paper.

Axiom ST (Stationarity) For all x, y, u, v ∈ X with x1 = y1 and, for all i ∈ N,

ui = xi+1 and vi = yi+1, x ! y iff u ! v.

Axiom IPC (Time-Invariant Preference Continuity) For all x, y ∈ X, if there exists

M ⊂ N such that, for all N ⊇ M , (xN ,yN\N ) + y, then x + y.

Let {!∗
m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥ 2, !∗

m

satisfying axiom P (while, by Lemma 1, axiom A follows from the assumption that

axiom I is satisfied). For all M ⊂ N with |M | = m ≥ 2 and all x, y ∈ X with

xi = yi for every i ∈ N\M , xM !m yM iff x ! y, since !∗
m is complete. Hence, for

all x, y ∈ X and M ⊂ N with |M | ≥ 2, (xM ,xN\M ) ! (yM ,xN\M ) iff (xM ,yN\M ) !

(yM ,yN\M ). Therefore, axiom IPC does not depend on the specification of the

common elements on N\N . Furthermore, axiom IPC is sufficient to ensure strict

preference between u and v of the introduction. To see this, note that if 1 ∈ M ,

then, for any N ⊇ M , uN Pareto-dominates some permutation of vN .

To illustrate the axioms and the trade-offs between them, consider the following

generalized criteria.

• Equality on a cofinite set (introduced here). !∗ is the SWR defined by

x !∗ y iff there exists N ⊂ N such that xN !∗
|N | yN and xN\N = yN\N .

• Equality or Pareto-dominance on a cofinite set (Basu and Mitra, 2007a;

Bossert, Sprumont and Suzumura, 2007). !∗
F is the SWR defined by

x !∗
F y iff there exists N ⊂ N such that xN !∗

|N | yN and xN\N ≥ yN\N .

13



• Extended Anonymity (Banerjee, 2006; Kamaga and Kojima, 2009a). !∗
S is

the SWR defined by

x !∗
S y iff there exists P ∈ S such that x !∗

F Py .

• Overtaking (Atsumi, 1965; von Weizsäcker, 1965) !∗
O is the SWR defined by

x +∗O y iff there exists m ∈ N such that x{1,...,n} +∗n y{1,...,n} for all n ≥ m ,

x ∼∗O y iff there exists m ∈ N such that x{1,...,n} ∼∗n y{1,...,n} for all n ≥ m .

• Fixed-step overtaking (Lauwers, 1997; Fleurbaey and Michel, 2003; Kam-

aga and Kojima, 2009b). !∗
SO is the SWR defined by

x +∗SO y iff there exists k ∈ N such that x{1,...,nk} +∗nk y{1,...,nk} for all n ∈ N,

x ∼∗SO y iff there exists k ∈ N such that x{1,...,nk} ∼∗nk y{1,...,nk} for all n ∈ N.

For a fixed proliferating sequence of Paretian SWOs, {!∗
m}∞m=2, the finite-dimen-

sional SWRs !∗, !∗
F , !∗

S , !∗
O, and !∗

SO are all extensions of !∗
m for every m ≥ 2.

By the definition of extension, !∗ is a subrelation to any SWR extending !∗
m for

every m ≥ 2. Furthermore, !∗
F is a subrelation to each of !∗

S and !∗
O, and !∗

S

and !∗
O are both subrelations to !∗

SO. All these SWRs satisfy FI and FA. Table 1

summarizes their properties in terms of the remaining axioms, where “violated by”

means that, for a given SWR in the table, no alternative SWR to which this SWR

is a subrelation satisfies the axiom. This leads to the following observations: Going

from !∗
F to !∗

O we pick up IPC, but weaken PI all the way to FI. Going from

!∗
F to !∗

SO we strengthen FA to SA and pick up IPC, but must weaken PI to

SI and drop ST. This leads to the question: Is it possible to pick up IPC without

weakening PI and dropping ST?8 We show that this is indeed possible by means of

generalized time-invariant overtaking.

8The (y, z) example of Section 1 illustrates the problems of strengthening FA to SA while

retaining ST. Mitra (2007) discusses the problem of combining ST with any kind of extended

anonymity. Here we show how the asymmetric part of !∗
F can be expanded, while retaining ST.
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!∗
SO

!∗
O

!∗
S

!∗
F

!∗
SI PI SA PA SP ST IPC
+ + + + +

+ + − + +

+ − + − + −

− − + + +

+ − + − + − +

Table 1: Axioms satisfied (+) and violated (−) by various SWRs

5 A new criterion for infinite utility streams

We are now ready to state the definition of the generalized time-invariant overtaking

criterion. Let {!∗
m}∞m=2 be a proliferating sequence of SWOs with !∗

m satisfying

axiom P (while axiom A is implied by axiom I) for each m ≥ 2.9

Definition 2 (Generalized time-invariant overtaking) The generalized time-

invariant overtaking criterion !∗
I generated by {!∗

m}∞m=2 satisfies, for all x, y ∈ X,

x !∗
I y iff there exists M ⊂ N with |M | ≥ 2 such that xN !∗

|N | yN for all N ⊇ M.

We can now state our main result.

Theorem 1 Let {!∗
m}∞m=2 be a proliferating sequence of SWOs with, for each m ≥

2, !∗
m satisfying axiom P. Then:

(i) !∗
I is an SWR that satisfies PI, FA, SP and ST.

(ii) An SWR ! extends !∗
2 and satisfies IPC iff !∗

I is a subrelation to !.

In the proof of Theorem 1, we make use of the following lemmas.

9Definition 2 is formulated as a “catching up” criterion. However, Lemma 4 shows that a

formulation in terms of an “overtaking” criterion is equivalent, justify our terminology.
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Lemma 4 The SWR !∗
I satisfies:

(i) For all x, y ∈ X, x +∗I y iff there exist M ⊂ N with |M | ≥ 2 such that

xN +∗|N | yN for all N ⊇ M .

(ii) For all x, y ∈ X, x ∼∗I y iff there exist M ⊂ N with |M | ≥ 2 such that

xN ∼∗|N | yN for all N ⊇ M .

Proof. (Only-if part of (i): x +∗I y only if there exist M ⊂ N with |M | ≥ 2

such that xN +∗|N | yN for all N ⊇ M .) Assume x +∗I y that is, (a) x !∗
I y and

(b) ¬(y !∗
I x). By (a), there exists M ⊂ N with |M | ≥ 2 such that xN !∗

|N | yN

for all N ⊇ M . Note that ¬(y !∗
I x) implies that for any M ⊂ N there is some

M ′ ⊃ M such that xM ′ +∗|M ′| yM ′ . By way of contradiction, suppose that there

does not exist M ′′ ⊂ N such xN +∗|N | yN for all N ⊇ M ′′. In particular, since

then xN +∗|N | yN for all N ⊇ M does not hold, it follows from (a) that there exists

A ⊇ M such that xA ∼∗|A| yA. We claim that there exists B ⊂ N with A ∩ B = ∅

such that xA∪B +∗|A|+|B| yA∪B. That is, the statement: for all B ⊂ N with A∩B = ∅

we must have yA∪B !∗
|A|+|B| xA∪B is false. This possibility is ruled out since if it

were correct, we would obtain y !∗
I x, which is contradicted by (b).

Since we suppose that there does not exist M ′′ ⊂ N such xN +∗|N | yN for all

N ⊇ M ′′, it does not hold that xN +∗|N | yN for all N ⊇ A ∪B. Hence, by (a) there

exists C ⊂ N with (A ∪ B) ∩ C = ∅ such that xA∪B∪C ∼∗|A|+|B|+|C| yA∪B∪C . This

leads to the first indifference in (1), while the second strict preference in (1) follows

from Lemma 3(i):

yA∪B∪C ∼∗|A|+|B|+|C| xA∪B∪C +∗|A|+|B|+|C| (yA∪B,xC) . (1)

By transitivity we get (yA∪B,yC) +∗|A|+|B|+|C| (yA∪B,xC). So, yC +∗|C| xC . [If

¬(yC +∗|C| xC), then xC !∗
|C| yC . By Lemma 3(i), we obtain (yA∪B,xC) !∗

|A|+|B|+|C|

(yA∪B,yC).] We now get:

yA∪C +∗|A|+|C| (yA,xC) ∼∗|A|+|C| xA∪C !∗
|A|+|C| yA∪C , (2)
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The first strict preference in (2) is a consequence of Lemma 3(i) and yC +∗|C| xC .

The second indifference in (2) is a consequence of Lemma 3(i) and xA ∼∗|A| yA. The

last weak preference in (2) follows from (a) and the fact that A ∪ C ⊃ M . So (2)

leads us to a contradiction.This completes the proof of the only-if part of (i).

(If part of (i): x +∗I y if there exists M ⊂ N with |M | ≥ 2 such that xN +∗|N | yN

for all N ⊇ M .) Assume that there exists M ⊂ N with |M | ≥ 2 such that xN +∗|N |

yN for all N ⊇ M . Then x !∗
I y. By way of contradiction, suppose y !∗

I x.

Then there exists M ′ ⊂ N with |M ′| ≥ 2 such that yN !∗
|N | xN for all N ⊇ M ′.

For N ⊇ M ′ ∪ M we must have xN +∗|N | yN and yN !∗
|N | xN . This leads to a

contradiction. Hence, ¬(y !∗
I x) and, consequently, x +∗I y.

(Only-if part of (ii): x ∼∗I y only if there exist M ⊂ N with |M | ≥ 2 such that

xN ∼∗|N | yN for all N ⊇ M . ) Let x ∼∗I y. Then there exists sets M ′,M ′′ ⊂ N such

that xN !∗
|N | yN for all N ⊇ M ′ and yN !∗

|N | xN for all N ⊇ M ′′. Then for all

N ⊇ M ′ ∪M ′′ we must have xN ∼∗|N | yN , as was required.

The if part of (ii) follows directly from the definition and we omit the details.

Lemma 5 The SWR !∗
I satisfies PI, SP and ST.

Proof. (!∗
I satisfies PI.) Let x,y ∈ X and P ∈ P. Assume x !∗

I y. Let

π : N → N be the equivalent representation of the infinite permutation matrix P .

Clearly π is a one-to-one and onto function. Since x !∗
I y there exists M ⊂ N

with |M | ≥ 2 such that xN !∗
|N | yN for all N ⊇ M . Let the image of M under

the function π be denoted by π(M), that is π(M) = {i ∈ N | there exists j ∈ M

such that π(j) = i}. Now for N ⊇ π(M), we must have π−1(N) ⊇ M , where

π−1 : N → N is the inverse of π. Since !∗
m satisfies m-I for all m ≥ 2, we must have

for all N ⊇ π(M), (Px)N !∗
I (Py)N . Hence, x !∗

I y implies Px !∗
I Py for any

P ∈ P. The converse is established in a similar manner.

(!∗
I satisfies SP.) Let x,y ∈ X satisfy x > y. Pick M ⊂ N such that xM '= yM .

Since !∗
m satisfies P for all m ≥ 2, we must have xN +∗|N | yN for all N ⊇ M . By
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Lemma 4 (i) we can conclude x +∗I y.

(!∗
I satisfies ST.) Let x, y, u, v ∈ X satisfy x1 = y1, and for all i ∈ N, ui = xi+1

and vi = yi+1. Assume x !∗
I y. Hence, there exists M ⊂ N with |M | ≥ 2 such

xN !∗
|N | yN for all N ⊇ M . Construct M ′ as follows: M ′ = {i ∈ N | i+1 ∈ M}, with

an arbitrary element added in if the number of elements in M ′ would otherwise be 1.

Consider any N ′ ⊆ M ′, and construct N as follows: N = {i ∈ N | i− 1 ∈ N ′}∪{ 1}.

Since, by construction, N ⊇ M , xN +∗|N | yN . By Lemma 3(i), xN\{1} +∗|N |−1 yN\{1}

since x1 = y1. Thus, uN ′ !∗
|N |−1 vN ′ since !∗

m satisfies m-I for all m. Hence,

x !∗
I y implies u !∗

I v. The converse is establish in a similar manner.

Proof of Theorem 1. (i) It can be easily checked that !∗
I is reflexive and

transitive provided that !∗
m is reflexive and transitive for each m; hence, !∗

I is an

SWR on X. The rest of part (i) follows directly from Lemma 2(i) and Lemma 5.

(Only-if part of (ii): An SWR ! extends !∗
2 and satisfies IPC only if !∗

I is a

subrelation to !.) Let x, y ∈ X. If x +∗I y, then using Lemma 4 (i) we must have

that there exist M ⊂ N with |M | ≥ 2 such that xN +∗|N | yN for all N ⊇ M . For

all N ⊇ M , since ! extends !∗
2 and {!∗

m}∞m=2 is a proliferating sequence we obtain

(xN ,yN\N ) + y. Now, by IPC, we have x + y. If x ∼∗I y, then by Lemma 4 (ii)

we must have that there exist M ⊂ N with |M | ≥ 2 such that xN ∼∗|N | yN for all

N ⊇ M . By Lemma 3 (ii), we have xi = yi for all i ∈ N\M . Since ! extends !∗
2

and {!∗
m}∞m=2 is a proliferating sequence we get x ∼ y.

(If part of (ii): An SWR ! extends !∗
2 and satisfies IPC if !∗

I is a subrelation

to !.) We omit the straightforward proof of the result that ! extends !∗
2.

To show that ! satisfies IPC, assume that there exists M ⊂ N with |M | ≥ 2

such that, for all N ⊇ M , (xN ,yN\N ) + y. Since ! extends !∗
2 and {!∗

m}∞m=2

is proliferating, it follows from the completeness of the SWO !∗
m for every m that

xN +∗|N | yN for all N ⊇ M . Hence, x +∗I y by Lemma 4(i), and x + y since !∗
I

is a subrelation to !. This shows that ! satisfies condition IPC.
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6 Applications

In this section we study specific criteria based on particular proliferating sequences.

In particular, as the utilitarian SWO and the leximin SWO defined for pairs on

any subset of the m-dimensional Euclidean space define two proliferating sequences,

they lay the foundation for two specializations of the generalized time-invariant

overtaking criterion: utilitarian and leximin time-invariant overtaking. Furthermore,

we propose methods for determining the asymmetric and symmetric parts of the

utilitarian and leximin time-invariant overtaking criteria.

6.1 The Utilitarian Case

To state the definition of the utilitarian SWO defined on Y m we first introduce some

additional notation. For each N ⊂ N, where by our notational convention N is finite,

the partial sum
∑

i∈N xi is written as σ(xN ). Let {!U
m}∞m=2 denote the sequence of

utilitarian SWOs, with each !U
m defined on Y m. Formally, for all a, b ∈ Y m,

a !U
m b iff σ(a) ≥ σ(b) .

In order to rely on a standard characterization of utilitarianism, we first state

the Translation Scale Invariance axiom for finite population social choice theory.

Axiom m-TSI (m-Translation Scale Invariance) For all a, b ∈ Y m with m ≥ 2, if

a !m b and α ∈ Rm satisfies a + α ∈ Y m and b + α ∈ Y m, then a + α !m b + α.

This axiom says that utility differences can be compared interpersonally. A com-

prehensive treatment of the literature on social choice with interpersonal utility

comparisons can be found in Bossert and Weymark (2004). The following charac-

terization of finite-dimensional utilitarianism is well-known.10

10The argument is due to Milnor (1954) in the context of individual decision under risk. For a

proof in the social choice context, see d’Aspremont and Gevers (2002).
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Lemma 6 For all m ∈ N, the utilitarian SWO !U
m is equal to !m iff !m satisfies

A, P and TSI.

Let ! be an SWR defined on X. Consider the following axiom on !.

Axiom FTSI (Finite Translation Scale Invariance) For all x, y ∈ X with some

subset N ⊂ N such that xi = yi for all i ∈ N\N , if x ! y and α ∈ RN satisfies that

x + α ∈ X and y + α ∈ X and αi = 0 for all i ∈ N\N , then x + α ! y + α.

By means of this axiom we can characterize the class of SWRs extending !U
2 :

Proposition 1 Let {!U
m}∞m=2 be the utilitarian sequence of SWOs for each m ≥ 2.

Then:

(i) If ! is an SWR on X that extends !U
2 , then ! satisfies FA, FP and FTSI.

(ii) If ! satisfies FA, FP and FTSI, then ! is an SWR on X that extends !U
m

for every m ≥ 2.

Proof of Proposition 1. (Proof of (i): ! is an SWR on X that extends !U
2

only if ! satisfies FA, FP and FTSI.) Assume ! is an SWR on X that extends

!U
2 . It follows from Lemma 2 that ! satisfies FA and FP. To show that ! satisfies

FTSI, consider x, y ∈ X for which there exists some subset N ⊂ N such that xi = yi

for all i ∈ N\N , and α ∈ RN which satisfies x + α ∈ X and y + α ∈ X and αk = 0

for all i ∈ N\N . Since ! extends !U
2 and satisfies FP, it follows from Lemma 8 of

the appendix that x ! y iff σ(xN ) ≥ σ(yN ) and x + α ! y + α iff σ(xN + αN ) ≥

σ(yN + αN ). Clearly, σ(xN ) ≥ σ(yN ) implies σ(xN + αN ) ≥ σ(yN + αN ), thereby

establishing that ! satisfies FTSI.

(Proof (ii): ! is an SWR on X that extends !U
m if ! satisfies FA, FP and

FTSI.) Assume that ! satisfies FA, FP and FTSI. Fix z ∈ X and M ∈ N with

|M | = m ≥ 2. Construct !z
m as follows: xM !z

m yM iff (xM , zN\M ) ! (yM , zN\M ).

Since ! satisfies FA, FP and FTSI, it follows that !z
m satisfies A, P and TSI.
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Thus, by Lemma 6, !U
m is equal to !z

m. Since z ∈ X and M ∈ N with |M | = m are

arbitrarily chosen, it follows that ! extends !U
m.

Proposition 1 implies the following result, which makes Theorem 1 applicable in

the utilitarian case.

Proposition 2 The sequence of utilitarian SWOs, {!U
m}∞m=2, is proliferating.

Proposition 2 is established by d’Aspremont (2007, Lemma 4) in the case where

Y = R. In the appendix we provide a direct proof of Proposition 2 in the present

case where Y ⊆ R is an interval satisfying [0, 1] ⊆ Y .

Since, by Proposition 2, {!U
m}∞m=2 is proliferating, we can now state the following

specialization of generalized time-invariant overtaking.

Definition 3 (Utilitarian time-invariant overtaking) The utilitarian time-in-

variant overtaking criterion !U
I satisfies, for all x, y ∈ X,

x !U
I y iff there exists M ⊂ N with |M | ≥ 2 such that σ(xN ) ≥ σ(yN ) for all N ⊇M.

By Propositions 1 and 2, the following characterization of utilitarian time-invari-

ant overtaking is a direct consequence of Theorem 1 and Lemma 4:

Corollary 1 (i) !U
I is an SWR that satisfies PI, SP and ST.

(ii) An SWR ! satisfies FA, FP, FTSI and IPC iff !U
I is a subrelation to !.

(iii) For all x, y ∈ X, x +U
I y iff there exists M ⊂ N with |M | ≥ 2 such that

σ(xN ) > σ(yN ) for all N ⊇ M .

(iv) For all x, y ∈ X, x ∼U
I y iff there exists M ⊂ N with |M | ≥ 2 such that

σ(xN ) = σ(yN ) for all N ⊇ M .

To facilitate its use, we provide a characterization of the asymmetric and sym-

metric parts of the utilitarian generalized overtaking criterion.
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Proposition 3 Utilitarian time-invariant overtaking satisfies:

(i) For all x, y ∈ X, x +U
I y iff there exists M+ ⊆ {i ∈ N | xi− yi > 0} such that

σ(xM+∪M−) > σ(yM+∪M−) for all M− ⊆ {i ∈ N | xi − yi < 0}.

(ii) For all x, y ∈ X, x ∼U
I y iff M+ := {i ∈ N | xi − yi > 0} and M− := {i ∈ N |

xi − yi < 0} are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−).

Proof. (If part of (i).) Assume that there exists M+ ⊆ {i ∈ N | xi − yi > 0}

such that σ(xM+∪M−) > σ(yM+∪M−) for all M− ⊆ {i ∈ N | xi − yi < 0}. Let

M = M+ and choose N ⊇ M . We can partition N into A := {i ∈ N | xi − yi ≥ 0}

and M− := {i ∈ N | xi − yi < 0}, implying that xi − yi ≥ 0 for all A\M+. Hence,

σ(xN )− σ(yN ) = σ(xA∪M−)− σ(yA∪M−) ≥ σ(xM+∪M−)− σ(yM+∪M−) > 0 ,

where the partitioning of N into A and M− implies the first equality, xi − yi ≥ 0

for all A\M+ implies the second weak inequality, and the premise implies the third

strong inequality.

(Only-if part of (i).) Assume that there exists M ⊂ N with |M | ≥ 2 such that

σ(xN ) > σ(yN ) for all N ⊇ M . Let M+ := M ∩ {i ∈ N | xi − yi > 0} and choose

M− ⊆ {i ∈ N | xi − yi < 0}. Note that xi ≤ yi for all i ∈ M\(M+ ∩M−). Hence,

σ(xM+∪M−)− σ(yM+∪M−) ≥ σ(xM∪M−)− σ(yM∪M−) > 0

by the premise since M ∪M− ⊇ M .

(If part of Part (ii).) Assume that M+ := {i ∈ N | xi − yi > 0} and M− :=

{i ∈ N | xi − yi < 0} are finite sets satisfying σ(xM+∪M−) = σ(yM+∪M−). Let

M = M+ ∪M− and choose N ⊇ M . Since xi = yi for all i ∈ N\M , it follows that

σ(xN )− σ(yN ) = σ(xM )− σ(yM ) = σ(xM+∪M−)− σ(yM+∪M−) = 0

by the premise.
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(Only-if part of (ii).) Assume that there exists M ⊂ N with |M | ≥ 2 such

that σ(xN ) = σ(yN ) for all N ⊇ M . By Lemma 3(ii) and the fact that {!U
m}∞t=2

is proliferating, it follows that xi = yi for all i ∈ N\M . Hence, M+ := {i ∈

N | xi − yi > 0} and M− := {i ∈ N | xi − yi < 0} are finite sets satisfying

σ(xM+∪M−) = σ(yM+∪M−).

The if parts can easily be amended to ensure that |M | ≥ 2.

This characterization can be illustrated by the (u,v) example of Section 1. In

this example {i ∈ N | ui − vi > 0} = {1} and {i ∈ N | ui − vi < 0} = N\{1}. By

choosing M+ = {1} so that σ(uM+)−σ(vM+) = 2, and noting σ(uM−)−σ(vM−) < 1

for all M− ⊂ N\{1}, it follows from Proposition 3(i) that u +U
I v.

The utilitarian criterion proposed by Basu and Mitra (2007a), which we discussed

in Section 1 and denoted !U
F , yields comparability only if there is equality or Pareto-

dominance on a cofinite set:

x !U
F y iff there exists N ⊂ N such that σ(xN ) ≥ σ(yN ) and xN\N ≥ yN\N .

It follows from Proposition 3 that !U
F is a subrelation to !U

I , since the symmetric

parts, ∼U
I and ∼U

F , coincide, while +U
I strictly expands +U

F , as illustrated by the

(u,v) example of Section 1.

6.2 The Leximin Case

To state a precise definition of the leximin order we introduce additional notation.

For any xM , (x(1), . . . , x(|M |)) denotes the rank-ordered permutation of xM such that

x(1) ≤ · · · ≤ x(|M |), ties being broken arbitrarily. For all xM and yM , xM +L
|M | yM

iff there exists m ∈ {1, . . . , |M |} such that x(k) = y(k) for all k ∈ {1, . . . ,m− 1} and

x(m) > y(m) and xM ∼L
|M | yM iff x(k) = y(k) for all k ∈ {1, . . . , |M |}.

We first recall through Lemma 7 below a standard characterization of finite-

dimensional leximin using the Hammond (1976) Equity axiom. This axiom states,

in our intergenerational context, that if there is a conflict between two generations,
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with every other generation being as well off in the compared profiles, then society

should weakly prefer the profile where the least favored generation is better off.

Axiom m-HE (m-Hammond Equity) For all a, b ∈ Y m with m ≥ 2, if there exist

i, j ∈ {1, . . . ,m} such that bi > ai > aj > bj and ak = bk for all k '= i, j, then

a !m b.

Lemma 7 For all m ∈ N, the leximin SWO !L
m is equal to !m iff !m satisfies A,

P and HE.

Let ! be an SWR defined on X. Consider also the HE axiom on !.

Axiom HE (Hammond Equity) For all x, y ∈ X, if there exist i, j ∈ N such that

yi > xi > xj > yj and xk = yk for all k '= i, j, then x ! y.

By means of this axiom we can characterize the class of SWRs extending !L
2 :

Proposition 4 Let {!L
m}∞m=2 be the leximin sequence of SWOs for each m ≥ 2.

Then:

(i) If ! is an SWR on X that extends !L
2 , then ! satisfies FA, FP and HE.

(ii) If ! satisfies FA, FP and HE, then ! is an SWR on X that extends !L
m for

every m ≥ 2.

Proof. (Proof of (i): ! is an SWR on X that extends !L
2 only if ! satisfies FA,

FP and HE.) Assume ! is an SWR on X that extends !L
2 . It follows from Lemma

2 that ! satisfies FA and FP. To show that ! satisfies HE, let x, y ∈ X satisfy

that there exist i, j ∈ N such that yi > xi > xj > yj and xk = yk for all k '= i, j.

Then x{i,j} !L
2 y{i,j} (since !L

2 satisfies 2-HE) and x ! y (since ! extends !L
2 ).

This establishes that ! satisfies HE.

(Proof of (ii): ! is an SWR on X that extends !L
m if ! satisfies FA, FP and

HE.) Assume that ! satisfies FA, FP and HE. Fix z ∈ X and M ∈ N with
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|M | = m ≥ 2. Construct !z
m as follows: xM !z

m yM iff (xM , zN\M ) ! (yM , zN\M ).

Since ! satisfies FA, FP and HE, it follows that !z
m satisfies A, P and m-HE.

Thus, by Lemma 7, !L
m is equal to !z

m. Since z ∈ X and M ∈ N with |M | = m are

arbitrarily chosen, it follows that ! extends !L
m.

Proposition 4 implies the following result, which makes Theorem 1 applicable in

the utilitarian case.

Proposition 5 The sequence of leximin SWOs, {!L
m}∞m=2, is proliferating.

d’Aspremont (2007, Lemma 5) proves Proposition 5 through a direct argument

which is applicable also to the present case where Y ⊆ R is an interval satisfying

[0, 1] ⊆ Y .

Since, by Proposition 5, {!L
m}∞m=2 is proliferating, we can now state the following

specialization of generalized time-invariant overtaking.

Definition 4 (Leximin time-invariant overtaking) The leximin time-invariant

overtaking criterion !L
I satisfies, for all x, y ∈ X,

x !L
I y iff there exists M ⊂ N with |M | ≥ 2 such that xN !L

|N | yN for all N ⊇ M.

By Propositions 4 and 5, the following characterization of leximin time-invariant

overtaking is a direct consequence of Theorem 1 and Lemma 4:

Corollary 2 (i) !L
I is an SWR that satisfies PI, SP and ST.

(ii) An SWR ! satisfies FA, FP, HE and IPC iff !L
I is a subrelation to !.

(iii) For all x, y ∈ X, x +L
I y iff there exists M ⊂ N with |M | ≥ 2 such that

xN +L
|N | yN for all N ⊇ M .

(iv) For all x, y ∈ X, x ∼L
I y iff there exists M ⊂ N with |M | ≥ 2 such that

xN ∼L
|N | yN for all N ⊇ M .
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We provide a characterization of the asymmetric and symmetric parts of the

leximin generalized overtaking criterion. For this purpose, we need some additional

notation. Let N be the class of all cofinite subsets of N. We denote the set of all

utility streams defined on some element of N and taking values in Y by Xc. Since a

utility stream can be viewed as a function from the domain of generations to the set

Y , we can formally write Xc := {x : Nx → Y |Nx ∈ N}. Observe that for x ∈ Xc,

we denote that cofinite subset of N which is the domain of x by Nx.

For any x ∈ Xc, write Nx
min := {i ∈ Nx | xi = infj∈Nx xj}. Say that x ∈ Xc

and y ∈ Xc have the same minimum and the same number of minimal elements if

infj∈Nxxj = infj∈Nyyj and 0 < |Nx
min| = |Ny

min| < ∞.

Define the operator R : (Xc)2 → (Xc)2 as follows, where x′ denotes the restric-

tion of x to Nx\Nx
min and y′ is restriction of y to Ny\Ny

min if x ∈ Xc and y ∈ Xc

satisfy that |Nx
min| and |Ny

min| are positive and finite:

R(x,y) =






(x′,y′) if x and y have the same minimum and
the same number of minimal elements,

(x,y) otherwise.

Write R0(x,y) := (x,y) and, for n ∈ N, Rn(x,y) := R(Rn−1(x,y)).

Proposition 6 Leximin time-invariant overtaking satisfies:

(i) For all x, y ∈ X, x +L
I y iff

(a) there is P ∈ F such that Px > y, or

(b) there exists m such that (x′,y′) = Rn(x,y) for all n ≥ m and one of

following is true:

infj∈Nx′x′j > infj∈Ny′y′j

infj∈Nx′x′j = infj∈Ny′y′j and 0 ≤ |Nx′
min| < |Ny′

min| ≤ ∞.

(ii) For all x, y ∈ X, x ∼L
I y iff there is P ∈ F such that Px = y.
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Proof. Write (xn,yn) = Rn(x,y) for all n ≥ 0.

(If part of (i).) First assume that there is P ∈ F such that Px > y. By the

definition of !L
|M |, there exists M ⊂ N such that xM +L

|M | yM and xi ≥ yi for all

i ∈ N\M . Hence, xN +L
|N | yN for all N ⊇ M .

Then assume that there exists m such that (x′,y′) = Rn(x,y) for all n ≥ m.

Let m be the smallest such integer. Then, for all k ∈ {0, . . . ,m−1}, xk and yk have

the same minimum and the same number of minimal elements. Write

My :=
⋃

k∈{0,...,m−1}
Nyk

min .

If infj∈Nx′x′j > infj∈Ny′y′j , choose i′ ∈ Ny′ so that y′i′ < infj∈Nx′x′j . Let M =

My ∪ {i′}. Then xN +L
|N | yN for all N ⊇ M . If infj∈Nx′x′j = infj∈Ny′y′j and

0 ≤ |Nx′
min| < |Ny′

min| ≤ ∞, let Ny′ be a subset of Ny′

min with a larger number of

elements than Nx′
min. Let M = My ∪Ny′ . Then xN +L

|N | yN for all N ⊇ M .

(Only-if part of (i).) Assume that there exists M ⊂ N with |M | ≥ 2 such that

xN +L
|N | yN for all N ⊇ M . Suppose that (a) and (b) are not true. We must show

that, for all M ⊂ N with |M | ≥ 2, there exists N ⊇ M such that xN "L
|N | yN .

Suppose there is no P ∈ F such that Px > y, and there exists no m such that

(x′,y′n(x,y) for all n ≥ m. Then, for all n ≥ 0, xn and yn have the same minimum

and the same number of minimal elements, and
⋃

n≥0N
yn

min is an infinite set. For

any M ⊂ N, one can choose N ⊇ M such that N contains at least as many Nxn

min

elements as Nyn

min elements for any n ≥ 0, and more for some n′. Then xN ≺L
|N | yN .

Suppose there is no P ∈ F such that Px > y and that, even though there exists

m such that (x′,y′) = Rn(x,y) for all n ≥ m and infj∈Nx′x′j = infj∈Ny′y′j , we have

that |Nx′
min| = |Ny′

min| = ∞. Let m be the smallest such integer. Independently of how

My is complemented to form M ⊂ N, one can always choose N ⊇ M such that N

in addition to including
⋃

k∈{0,...,m−1}Nxk

min contains more Nx′
min elements than Ny′

min

elements. Then xN ≺L
|N | yN .

Suppose there is no P ∈ F such that Px > y and that, even though there exists
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m such that (x′,y′) = Rn(x,y) for all n ≥ m and infj∈Nx′x′j = infj∈Ny′y′j , we have

that |Nx′
min| = |Ny′

min| = 0. Let m be the smallest such integer. Independently of how

My is complemented to form M ⊂ N, one can always choose N ⊇ M such that N in

addition to including
⋃

k∈{0,...,m−1}Nxk

min contains i′ ∈ Nx′ so that x′i′ < minj∈N∩Ny′y′j .

Then xN ≺L
|N | yN .

Suppose that, even though there exists m such that (x′,y′) = Rn(x,y) for all

n ≥ m, we have that (1) infj∈Nx′x′j < infj∈Ny′y′j or (2) infj∈Nx′x′j = infj∈Ny′y′j and

∞ ≥ |Nx′
min| > |Ny′

min| ≥ 0. Then there is no P ∈ F such that Px > y, and it follows

from the if-part above that x ≺L
I y.

(If part of (ii).) Assume that there is P ∈ F such that Px = y. By the definition

of !L
|M |, there exists M ⊂ N such that xM ∼L

|M | yM and xi = yi for all i ∈ N\M .

Hence, xN ∼L
|N | yN for all N ⊇ M .

(Only-if part (ii).) Assume that there exists M ⊂ N with |M | ≥ 2 such that

xN ∼L
|N | yN for all N ⊇ M . By Lemma 3(ii) and the fact that {!L

m}∞t=2 is prolifer-

ating, it follows that xi = yi for all i ∈ N\M . It now follows from the definition of

!L
|M | that there is P ∈ F such that Px = y.

The if parts can easily be amended to ensure that |M | ≥ 2.

This characterization can be illustrated by the (u,v) example of Section 1. In

this example Nu = Nv = N and infj∈N uj > infj∈N vj so that u and v do not have

the same minimum, implying that (u,v) = Rn(u,v) for all n ≥ 1. By Proposition

6(i)(b) it follows that u +L
I v.

To illustrate part (i) of Proposition 6 further, we also consider the comparison

of v of Section 1 to

w : −1 0 0 0 0 0 . . . 0 0 . . .

Then v and w have the same minimum and the same number of minimal element,

implying that (v′,w′) = R(v,w) with v′ and w′ being the restrictions of v and w to

N\{1}. Furthermore, infj∈N\{1}v′j = infj∈N\{1}w′
j = 0 and 0 = |Nv′

min| < |Nw′
min| = ∞.
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This entails that (v′,w′) = Rn(v,w) for all n ≥ 1. By Proposition 6(i)(b) it follows

that v +L
I w.

The leximin criterion proposed by Bossert, Sprumont and Suzumura (2007),

which we discussed in Section 1 and denoted !L
F , yields comparability only if there

is equality or Pareto-dominance on a cofinite set:

x !L
F y iff there exists N ⊂ N such that xN !L

|N | yN and xN\N ≥ yN\N .

It follows from Proposition 6 that !L
F is a subrelation to !L

I , since the symmetric

parts, ∼L
I and ∼L

F , coincide, while +L
I strictly expands +L

F , as illustrated by the

(u,v) example of Section 1.

7 Discussion

We have defined the generalized time-invariant overtaking criterion !∗
I . This cri-

terion can be specialized in various cases, corresponding to different moral values

theories, as long as these theories are specified by a proliferating sequence of Paretian

SWOs. In the utilitarian and leximin cases it leads to !U
I and !L

I . We have shown

that through !U
I and !L

I we can expand the asymmetric parts of the utilitarian

and leximin criteria suggested by Basu and Mitra (2007a) and Bossert, Sprumont

and Suzumura (2007), !U
F and !L

F respectively, without compromising desirable

properties like Stationarity (ST) and Strong Relative Anonymity (PI).

When evaluating the merit of this exercise one should keep in mind that it is

the expansion of the asymmetric part that matters if one seeks to reduce the set of

maximal elements for a given class of feasible infinite utility streams. In this section

we analyze whether further expansions of the asymmetric part are compatible with

PI, before discussing the earlier and related contributions by Vallentyne and Kagan

(1997) and Lauwers and Vallentyne (2004) for finitely additive moral value theories.

Fix a proliferating sequence of Paretian SWOs, {!∗
m}∞m=2. Note that Lemmas

3(ii) and 4(ii) imply that the symmetric part of !∗
I coincides with the symmetric
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parts of !∗
F and !∗. Since !∗ is a subrelation to any SWR extending !∗

m for

every m ≥ 2, it follows that the asymmetric part of !∗
I cannot be expanded at the

expense of its symmetric part. The asymmetric part of !∗
I can only be expanded by

making comparable pairs of utility streams which !∗
I does not rank. The following

proposition characterizes the pairs of utility streams that !∗
I does not rank.

Proposition 7 Let {!∗
m}∞m=2 be a proliferating sequence of SWOs with, for each

m ≥ 2, !∗
m satisfying axiom P. Then, for all x, y ∈ X, the following two statements

are equivalent:

(1) !∗
I deems x and y as incomparable, i.e., ¬(x !∗

I y) and ¬(x "∗
I y).

(2) (i) There exists P+ ∈ P such that x+ = P+x and y+ = P+y satisfy that

x+
{1,...,n} +

∗
n y+

{1,...,n} for all n ∈ N.

(ii) There exists P− ∈ P such that x− = P−x and y− = P−y satisfy that

x−{1,...,n} ≺
∗
n y−{1,...,n} for all n ∈ N.

Proof. (1) implies (2). Let {!∗
m}∞m=2 be a proliferating sequence of Paretian

SWOs. Assume that ¬(x !∗
I y) and ¬(x "∗

I y). Since, for each m ∈ N, !∗
m is

complete, by Definition 2 it is a fact that, for all M ⊂ N with |M | ≥ 2, there exist

N ′, N ′′ ⊇ M such that xN ′ +∗|N ′| yN ′ and xN ′′ ≺∗|N ′′| yN ′′ .

Part (i). By this fact, a sequence 〈Ni〉i∈N can be constructed inductively as

follows: Let m1 = 2. For i ∈ N, let Ni ⊇ {1, . . . ,mi} and mi+1 ∈ N satisfy that

xNi +∗|Ni| yNi and {1, . . . ,mi+1} ! Ni. Clearly, 〈Ni〉i∈N satisfies, for all i ∈ N,

∅ '= {1, . . . ,mi} ⊆ Ni " {1, . . . ,mi+1} ⊆ Ni+1 ⊂ N and
⋃

i∈N Ni = N. Let M1 = N1

and, for i ≥ 2, Mi = Ni\Ni−1, implying that {M1,M2, . . . ,Mi, . . . } is a partition of

N. Write n0 = 0 and, for all i ∈ N, ni = |Ni|. Since, for all i ∈ N, |Mi| = ni − ni−1,

and {{n0 + 1, . . . , n1}, {n1 + 1, . . . , n2}, . . . , {ni−1 + 1, . . . , ni}, . . . } is a partition of

N, we can construct P+ ∈ P as follows, writing x+ = P+x and y+ = P+y: For all
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i ∈ N, elements in Mi are mapped onto {ni−1 + 1, . . . , ni} such that

x+
ni−1+1 − y+

ni−1+1 ≥ x+
ni−1+2 − y+

ni−1+2 ≥ · · · ≥ x+
ni−1 − y+

ni−1 ≥ x+
ni
− y+

ni
.

We must establish that, for each i ∈ N, x+
{1,...,m} +

∗
m y+

{1,...,m} for all m ∈

{ni−1 + 1, . . . , ni}. For each i ∈ N, this is shown by induction. Since xNi +∗ni
yNi ,

it follows by axiom I and the properties of P+ that x+
{1,...,ni} +

∗
ni

y+
{1,...,ni}. Assume

that x+
{1,...,m} +

∗
m y+

{1,...,m} for all m ∈ {$+1, . . . ni}, where $ ∈ {ni−1 +1, . . . ni−1}.

The inductive proof is completed by showing that x+
{1,...,"} +

∗
" y+

{1,...,"}.

If x+
"+1 > y+

"+1, then x+
{ni−1+1,...,"} > y+

{ni−1+1,...,"} by the properties of P+. If

i = 1, so that ni−1 + 1 = n0 + 1 = 1, then axiom P implies x+
{1,...,"} +

∗
" y+

{1,...,"}. If

i ≥ 2, then xNi−1 +∗ni−1
yNi−1 , and axiom I and the properties of P+ imply that

x+
{1,...,ni−1} +

∗
ni−1

y+
{1,...,ni−1}. Hence, it follows from axiom P and Lemma 3(i) that

x+
{1,...,"} +

∗
"

(
x+
{1,...,ni−1},y

+
{ni−1+1,...,"}

)
+∗" y+

{1,...,"} .

If x+
"+1 ≤ y+

"+1, then axiom P implies that

(
x+
{1,...,"}, y

+
"+1

)
!∗

"+1 x+
{1,...,"+1} +

∗
"+1 y+

{1,...,"+1} .

It now follows from Lemma 3(i) that x+
{1,...,"} +

∗
" y+

{1,...,"}.

Part (ii) follows by interchanging the roles of x and y.

(2) implies (1). This follows directly from Definition 2 and the fact that !∗
I

satisfies PI (cf. Theorem 1(i)).

Proposition 7 yields the following conclusion: If an SWR ! to which !∗
I is a

subrelation strictly ranks a utility pair x and y deemed incomparable by !∗
I , then

! cannot both satisfy axiom PI and be determined from the sequence of finite-

dimensional Paretian SWOs by means of an overtaking procedure.

By Proposition 3, in the utilitarian case an incomparable pair of utility streams,

x and y, satisfies that the sets of positive differences, {i ∈ N | xi − yi > 0}, and

negative differences, {i ∈ N | xi − yi < 0}, are both infinite, and either (i) the sum
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of the positive differences and the sum of the negative differences both diverge, or

(ii) the sum of the positive differences converges to σ+
x−y ∈ (0,∞) and the sum of

the negative differences converges to σ−x−y ∈ (−∞, 0), with σ+
x−y + σ−x−y = 0.

By Proposition 6, in the leximin case an incomparable pair of utility streams, x

and y, satisfies that (a) there is no P ∈ F such that Px ≥ y or Px ≤ y and (b) there

exists m such that (x′,y′) = Rn(x,y) for all n ≥ m and infj∈Nx′x′j = infj∈Ny′y′j with

the sets Nx′
min and Ny′

min both being empty or infinite.

Axiom IPC has earlier been proposed by Vallentyne and Kagan (1997, p. 10)

under the name of RSBI (‘rejected strengthened basic idea’) and applied to the utili-

tarian case. The utilitarian SWR generated by RSBI coincides with the asymmetric

part of the utilitarian time-invariant overtaking criterion !U
I . Vallentyne and Kagan

(1997, p. 10–11) reject RSBI in favor of SBI1 (‘strengthened basic idea 1’), which is

equivalent to Lauwers and Vallentyne’s (2004) “Differential Betterness” principle.

As shown by Lauwers and Vallentyne (2004), the utilitarian SWR generated by

SBI1 ranks x above y iff the sum of the positive differences converges to σ+
x−y and

the sum of the negative differences converges to σ−x−y, with σ+
x−y +σ−x−y > 0, or the

sum of positive difference diverges and the sum of negative difference converges. In

both cases, !U
I makes the same rankings.

It differs from !U
I in the case where the sum of the positive differences converges

to σ+
x−y and the sum of the negative differences converges to σ−x−y, with σ+

x−y +

σ−x−y = 0. In this case, the utilitarian SWR generated by SBI1 yields no ranking.

In contrast, it follows from Proposition 3 that

(1) x +U
I y if {i ∈ N | xi − yi > 0} is finite and {i ∈ N | xi − yi < 0} is infinite,

(2) x ∼U
I y if {i ∈ N | xi − yi > 0} and {i ∈ N | xi − yi < 0} are both finite,

(3) x ≺U
I y if {i ∈ N | xi − yi > 0} is infinite and {i ∈ N | xi − yi < 0} is finite,

(4) x and y are incomparable by !U
I if {i ∈ N | xi−yi > 0} and {i ∈ N | xi−yi < 0}

are both infinite; this follows from Proposition 7.
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However, Lauwers and Vallentyne (2004) introduce a second principle, “Differential

Indifference”, which for each of these sub-cases deems x indifferent to y.

To illustrate this difference, compare stream u of the introduction with

(0,u) : 0 1 1
2

1
4

1
8

1
16 . . . 1

2n−2 . . .

By choosing M+ = {1}, it follows from Proposition 3(i) that u +U
I (0,u). However,

σ+
u−(0,u) = 1 and σ−u−(0,u) = −1. Hence, σ+

u−(0,u) + σ−u−(0,u) = 0, implying that an

SWR satisfying Differential Indifference deems u and (0,u) indifferent.

Hence, by deeming two streams indifferent when the sum of differences is uncon-

ditionally convergent and converges to zero, Differential Indifference reduces incom-

parability of a utilitarian SWR to the case where the sum of the positive differences

and the sum of the negative differences both diverge. However, it also reduces the

asymmetric part of the utilitarian time-invariant overtaking criterion and may thus

increase the set of maximal elements. Furthermore, it is not clear how to adapt this

principle to a generalized infinite-dimensional criterion obtained from some prolifer-

ating sequence of Paretian finite-dimensional SWOs, thus making it compatible with

our purpose: to develop a generalized criterion that allows for non-additive moral

value theories and different interpretations for the locations of values.

Appendix

Lemma 8 Let the SWR ! extends !U
2 . If x, u ∈ X satisfy that there exists N ⊂ N

such that ui = σ(xN )/|N | for i ∈ N and ui = xi for i ∈ N\N , then x ∼ u.

Proof. The result is shown by induction. Consider the statement that x ∼ u

whenever x, u ∈ X satisfy that there exists N ⊂ N such that ui = σ(xN )/|N | for

i ∈ N and ui = xi for i ∈ N\N .
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This statement is true for all N ⊂ N with |N | = 1 by the reflexivity of !.

Assume that the statement is true for all M ⊂ N with |M | ≤ m. It remains to

be shown that then the statement is true for all N ⊂ N with |N | = m + 1, provided

that ! extends !U
2 . This is shown in the remainder of the proof.

Suppose u ∈ X satisfy that there exists N ⊂ N such that ui = σ(xN )/|N | for

i ∈ N and ui = xi for i ∈ N\N , where |N | = m + 1. W.l.o.g., N = {1, . . . ,m + 1}.

Consider any M ⊂ N such that M ⊂ N and |M | = m. W.l.o.g., M = {1, . . . ,m}.

Construct v ∈ X by vi = σ(xM )/|M | for i ∈ M and vi = xi for i ∈ N\M .

Let the sequence {yk}m
k=0, where yk ∈ X for each k, be constructed as follows:

yk
M =






vM for k = 0

(u{1,...,k}, v{k+1,...,m}) for k = 1, . . . ,m− 1

uM for k = m ,

while for all k, yk
m+1 = xk

m+1+k(v1−u1), and yk
i = ui for i ∈ N\N . Then yk−1 ∼ yk

for k ∈ {1, . . . ,m} by the property that ! extends !U
2 , since yk−1

k +yk−1
m+1 = yk

k+yk
m+1

and yk−1
i = yk

i for i ∈ N\{k, m + 1}. By transitivity, v = y0 ∼ ym = u. By

assumption, x ∼ v, leading by transitivity to the conclusion that x ∼ u.

Direct proof of Proposition 2. Assume that the SWR ! extends !U
2 . We

must show that ! extends !U
m for all m ≥ 2. Consider x, y ∈ X for which there

exists some subset M ⊂ N such that xi = yi for all i ∈ N\M .

If xM ∼U
|M | yM , then σ(xM ) = σ(yM ) and, by Lemma 8, x ∼ u ∼ y, where

ui = σ(xM )/|M | for i ∈ M and ui = xi for i ∈ N\M . By transitivity, x ∼ y.

If xM +U
|M | yM , then σ(xM ) > σ(yM ) and, by Lemma 8 and FP, x ∼ u + v ∼

y, where ui = σ(xM )/|M | and vi = σ(yM )/|M | for i ∈ M and ui = vi = xi = yi for

i ∈ N\M . By transitivity, x + y.
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