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Abstract

Except in the one-dimensional case, single-agent mechanism de-

sign with quasi-linear payo¤s is a computationally demanding problem.

This paper proposes an approximation scheme based on categorization

of types into �stereotypes� and �magnanimous� pricing, whereby the

seller shares a small portion of the pro�ts with the buyer. We show

that, for any positive ", our scheme �nds (in polynomial time) a mecha-

nism that generates an expected pro�t within an "-factor of the optimal

pro�t.

1 Introduction

In his path-breaking analysis of organizational decision-making, Herbert Si-

mon argues that organizations recognize the limits imposed by our cognitive

ability and develop institutions to achieve good results in the presence of

such limits:

�Most human-decision making, whether individual or orga-

nizational, is concerned with the discovery and selection of sat-

isfactory alternatives; only in exceptional cases is it concerned

with the discovery and selection of optimal alternatives. To op-

timize requires processes several orders of magnitude more com-

�We thank Mark Armstrong, Jim Mini�e, Hervé Moulin and seminar participants at
Cambridge University for useful suggestions.
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plex than those required to satis�ce� (March and Simon, 1958,

p 162).

When applied to a speci�c organizational problem, Simon�s view spurs

economists to ask two related questions. Given the cognitive constraints it

faces, can the organization �nd the exact solution to this problem or will it

settle for a good approximation? If so, will the features of the near-optimal

solution di¤er systematically from those of the optimal one?

This paper attempts to answer these two questions in a very speci�c

setting: single-agent mechanism design with quasilinear payo¤. While this

model has found numerous applications in economic, such as taxation and

regulation, in what follows we identify it with its most common applica-

tion: nonlinear pricing �namely the problem faced by a pro�t-maximizing

monopolist who sells a product to a buyer, or a continuum of buyers. The

monopolist can o¤er a menu of product speci�cations (quality or quantity)

at di¤erent prices.

In the one-dimensional case of nonlinear pricing, there is a well-known

way to characterize the optimal solution in a simple and powerful way by not-

ing that downward local incentive-compatibility constraints must be binding

(Mussa and Rosen 1978). However, most practical instances of nonlinear

prices involve a multi-dimensional product space (even basic goods have nu-

merous quality attributes) and a multi-dimensional type space (consumers

with di¤erent income, location, age, etc). With more than one dimension,

algorithms have been developed for special cases (Wilson 1993, Armstrong

1996). We also have an elegant characterization of the optimal solution in

the general case (Rochet and Choné (1998), but it is not associated to a

method for �nding solutions. The hope of �nding a computationally e¢ -

cient general algorithm is slim, given that nonlinear pricing has been proven

to be an NP-complete problem (Conitzer and Sandholm 2003).

Note that the di¢ culty of nonlinear pricing is of a strategic nature. Its

computational complexity is not due to an intrinsic di¢ culty of determining

the e¢ cient allocation, but it hinges on the presence of an agency prob-
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lem.1 The problem is hard because the principal does not know the agent�s

type (informational asymmetry assumption) and the principal is maximiz-

ing pro�t not joint surplus (con�ict of interest assumption). As we shall

see, if either of these assumptions is dropped, the problem can be solved in

polynomial time.

Given that �nding an exact solution to nonlinear pricing seems hard,

we turn our attention to approximations. We look for a method for �nding

solutions to nonlinear pricing that satis�es the following conditions: (i) It is

not too computationally demanding; (ii) It yields an expected pro�t that is

only marginally lower than the optimal pro�t; (iii) It satis�es (i) and (ii) for

a general class of problems. Condition (iii) means that our algorithm will

not necessarily be the best or simplest algorithm for certain speci�c classes

of problems. But, in the spirit of Simon�s view of organizational decision

making, it will yield satis�cing outcomes for a large class of problems.

The algorithm we propose is based on three steps.

1. Partition the type space into subsets of neighboring types. For each

subset select one particular type to represent the whole subset. We

call this type the stereotype of that subset.

2. Compute the optimal nonlinear pricing scheme for the set of stereo-

types. As the computational time grows exponentially in the num-

ber of types (but not in the number of products), using stereotypes

achieves a dramatic reduction in computation time.

3. Take the menu obtained in the second step: a vector of product-price

pairs. Keep the product component unchanged and instead modify

the price component as follows: o¤er a discount on each product that

is proportional to the pro�t (revenue minus production cost) that the

principal would get if she sold that product at the original price. The

discount rate, which is dictated by the algorithm, depends on the

1This is in marked contrast with mechanism design with multiple agents, where the
allocation problem is often intrinsically hard. For instance, even assuming that bidders
report their valuations truthfully, winner determination is still NP-hard (de Vries and
Vohra 2003).
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number of stereotypes. It goes to zero as the stereotype partition

becomes �ner. In view of the last step, we call the algorithm, Pro�t-

Participation Pricing.

We prove that Pro�t-Participation Pricing yields valid approximate so-

lutions for a large class of nonlinear pricing problems. We only require that

the number of dimensions of the type space be �nite and that the utility

function of the agent is continuous in his type. Speci�cally, the main result

of this paper is that Pro�t-Participation Pricing is a Polynomial-Time Ap-

proximation Scheme (PTAS). Given any nonnegative number ", the scheme

returns a solution that yields a pro�t which is at least 1 � " of the pro�t
generated by the optimal solution; the computation time is polynomial in

the problem input.2

We can now tackle our second research questions. Are the features of our

approximate solution systematically di¤erent from those of the optimal one?

First, the number of products o¤ered is lower and it is based on a rougher

categorization of customers. As noted above, this is not due to an intrinsic

di¢ culty of enumerating products, but to the computational cost of taking

into account the agent�s response. Second, the principal appears to �leave

money on the table,� in the sense that, because of the discounting method

used, most products are not associated to a binding incentive-compatibility

constraint or participation constraint, as it would happen in the exact so-

lution. This pricing slack is of course a valid organizational response to the

cost of computation, but it could appear �magnanimous�. Indeed an outside

observer who thought that the stereotype set chosen by the principal was

the true type space rather than just an approximation would recommend to

increase prices until each product is associated with a binding constraint.

Similarly, if the observer would pick any set of types, the probability that he

or she could �nd room for Pareto improvements is typically bounded away

from zero.
2A more demanding notion of approximation quality is fully polynomial-time approx-

imation scheme (FPTAS). After the main result, we conjecture that there is no FPTAS
for nonlinear pricing.
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Our approximation result has a mathematically equivalent interpretation

in terms of sampling cost.3 Suppose that the principal is not concerned with

computation cost, but she does not know the agent�s preferences. However,

she can sample the type space. For a �xed marketing fee, she can observe the

payo¤ function of a particular type. By incurring this sampling cost repeat-

edly, she can sample as many types as she wants. The Pro�t-Participation

Pricing algorithm, as stated above, supplies the principal with an approxi-

mate solution whose total sampling cost is polynomial in the input size. In

this interpretation, the principal �rst performs a market analysis leading to

the identi�cation of a limited set of typical consumers. Then, she tailors her

product range to the stereotype set and prices it �magnanimously� in the

sense of Pro�t-Participation Pricing.

The paper is structured as follows. Section 2 introduces the nonlinear

pricing model, discusses the computational complexity of �nding an exact

solution, and presents the notion of stereotype. Section 3 develops Pro�t-

Participation Pricing and establishes an approximation bound (Lemma 1).

Section 4 shows the main result of the paper, namely that the algorithm

based on Pro�t-Participation Pricing is a PTAS (Theorem 4). Section 5

concludes by showing that our model has an equivalent interpretation in

terms of a principal that does not know the agent�s payo¤ function and by

discussing future lines of research.

1.1 Literature

To the best of our knowledge, this is the �rst paper to provide a polynomial-

time approximation scheme for a general class of single-agent mechanism

design problems. The use of stereotypes in mechanism design and the idea

of pro�t-participation pricing are also �we believe �original contributions

of this paper. This brief section discusses the relation between our work and

the relevant literature in economics and computer science.

There is a small but increasing economic literature which explicitly

includes notions of computational complexity, such as Gilboa and Zemel
3This approach is related to Bergemann and Schlag (2008), who study the optimal

pricing policy of a monopolist who faces model uncertainty.
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(1989), Aragonès et al. (2005), Apesteguía and Ballester (2009), and Sher

(2009), but none of these papers deal with mechanism design.

There is, however, economic work on approximation in mechanism de-

sign, motivated informally by complexity considerations. Armstrong (1999)

studies near-optimal nonlinear tari¤s for a monopolist as the number of

product goes to in�nity, under the assumption that the agent�s utility is ad-

ditively separable across products. He shows that the optimal mechanism

can be approximated by a simple menu of two-part tari¤s, in each of which

prices are proportional to marginal costs (if agent�s preferences are uncor-

related across products, the mechanism is even simpler: a single cost-based

two-part tari¤).4

In the context of multi-agent mechanism design, Bulow and Klemperer

(1996) prove that, under certain conditions, an auction with n bidders yields

an expected revenue to the seller that is at least as large as any mechanism

with n � 1 bidders, implying that, as the number of potential buyers in-
creases, auctions are a valid approximation for negotiations.5

A di¤erent formal de�nition of complexity that has been applied to mech-

anism design is communication complexity (Segal (2001), Nisan and Segal

(2006), Segal (2007), Fadel and Segal (2009)). Rather than the time it takes

to �nd the desired mechanism, the designer is concerned with the amount

of information that must be communicated. In particular, approximation

schemes are discussed in Nisan and Segal (2006). Our two approaches are

complementary: while we study single-person mechanism design, communi-

cation complexity is most interesting in multiple-agent cases. In nonlinear

pricing, communication complexity has limited bite as the communication

burden of the optimal mechanism is linear in the minimum between the size

of the type and the size of the product space.

A growing �eld of computer science, algorithmic mechanism design, ap-

proach mechanism design from a computational complexity perspective (see

Hartline and Karlin (2007) for a survey). The area focuses on prior-free

4See also Chu, Leslie, and Sorensen (2009) for a study of bundling in the multi-product
case, combining analytical, numerical, and empirical results.

5See also Hartline and Roughgarden (2009).
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mechanisms, where the designer �as is the case in online mechanisms that

must work for a range of environments �has no information on the agents�

prior distributions. Instead, we have in mind designers, such as most �rms,

that have some information about their agents and make use of it when

deciding on what mechanism to use.

An exception to the prior-free principle is Chawla, Hartline, and Klein-

berg (2007). They study approximation schemes for single-buyer multi-item

unit-demand pricing problems. The valuation of the buyer is assumed to

be independently (but not necessarily identically) distributed across items.

Chawla et al. �nd a constant-approximation algorithm based on virtual val-

uations (with an approximation factor of 3). Our paper di¤ers in the type of

approximation scheme that we choose, in the fact that we consider a general

pricing problem, and in our search for an "-approximation.

Some papers in management science study heuristics in the context of

nonlinear prices (Green and Krieger 1985; Dobson and Kalish 1993). Their

approximation bounds are numerical.

2 Model

2.1 De�nitions

Consider a single-agent non-linear pricing problem. The principal o¤ers a

menuM of product-price pairs to the agent. The agent must choose exactly

one option from this menu. The set of available products is given by a �nite

set Y . The price of each option is some real number p 2 <. We assume that
the menu o¤ered by the principal always contains an outside option y0; p0.

The normalized price of y0 is assumed to be p0 = 0.

The agent�s preferences depend on his type. The agent�s type t is an

element of some �nite set T: Although the set T is common knowledge,

the agent�s actual type is his private information. The principal has a prior

over T which is given by a probability density function f(t) 2 �T . The
fact that the agent�s type is his private information is key in our model

because it is the presence of such asymmetric information that results in
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severe computational complexity.

We assume quasi-linear payo¤s. The agent�s utility is his type-dependent

valuation of the object net the price he pays to the principal:

v (t; y; p) = u (t; y)� p (1)

The principal�s pro�t is the price he receives for the object net the cost of

producing the object:

� (t; y; p) = p� c (y) (2)

Since both the type space T and the product space Y is multi-dimensional

the agent�s preference can greatly vary in his type. To constrain this vari-

ation, we impose two assumptions on the structure on the problem. First,

we assume that the agent�s type lives in some �nite dimensional Euclidean

space. Second, we assume that for any given multi-dimensional product y

the agent�s preferences are Lipschitz continuous in his type.

Without loss of generality, we normalize the lower bound on � to equal

0. In short, a non-linear pricing problem is a tuple fT; Y; u; �g. We refer to
the class of non-linear pricing problems that satisfy the above assumptions

by �.

A solution to the principal�s problem is a type-dependent allocation pro-

�le y(t); p(t) that satis�es the agent�s incentive compatibility constraints.

We model this by assuming that the principal chooses a menu M and o¤ers

this to the agent. The agent chooses an option from this menu and thus the

resulting allocation pro�le y(t); p(t) satis�es incentive compatibility (IC) by

design. If M also contains the outside option, the pro�le also satis�es the

participation constraints (PC).

An optimal solution to the principal�s problem is an allocation pro�le

that satis�es (IC) and (PC) and maximizes the principal�s expected pro�t.

Formally, an optimal solution y�(t); p�(t) to our non-linear pricing problem
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is a menu M� that maximizes:

�(T;M�) =
X
t

f (t) [p� (t)� c (y� (t)) (3)

such that u(t; y�(t))� p�(t) � u(t; y�(t0))� p�(t0) for all t; t0 2 T

and u(t; y�(t))� p�(t) � u(t; y0) for all t 2 T

2.2 Complexity of Finding an Exact Solution

Conitzer and Sandholm (Theorem 4, 2003) have already shown that the

problem of �ndings an exact solution to single-agent mechanism design with

quasilinear utility is NP-complete.

The intuition for this result is as follows. Under the Revelation Princi-

ple, we solve the problem in two stages: (i) For each possible allocation of

products to types, we see if it is implementable and, if it is, we compute

the pro�t-maximizing price vector; (ii) Given the maximized pro�t values

in (i), we choose the allocation with the highest pro�t. While each step (i)

is a linear program, the number of allocations that we must consider in (i)

is as high as (#Y )#T . The number of steps we must perform can then grow

exponentially in the size of the input.6

This complexity result depends on two joint assumptions: asymmetric

information and con�ict of interest. If either of these assumptions is missing,

we can �nd an exact solution in polynomial time.

If there were no asymmetric information and the principal could con-

dition contracts on the agent�s type, she would simply o¤er agent t the

surplus-maximizing allocation

y� (t) 2 argmax
y
u(t; y)� c (y)

at price

p� (t) = u(t; y� (t))� u(t; y0)
6 If there are less products than types, it may be quicker to compute an indirect mech-

anism rather than invoke the Revelation Principle and compute the direct mechanism. To
achieve the exponential bound, assume for instance that #Y = a#T , where a > 1, and
increase both the number of types and products.
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This is would involve just (#Y ) (#T ) steps.

If there were no con�ict of interest �namely, if we wanted to maximize

the surplus u(t; y) � c (y) �it would be even simpler. The principal would
o¤er all products, each of them at the cost of production (p (y) = c (y)).

The agent would select y� (t) 2 argmaxy u(t; y)�c (y). Solving this problem
would involve just #Y steps.

2.3 Approximation Parameters

The quality of our approximation will depend on the parameters of the

problem, which we de�ne as follows.

Type Topology T is an Euclidean metric space with �nite dimensions,

dim(T ) � m 2 R: D is the size of the diagonal of the minimal hyper-

cube that contains T .

Lipschitz Continuity There exists a number K such that, for any y 2 Y
and t; t0 2 T

u (t; y)� u (t0; y)
d (t; t0)

� K

Finally, we also assume that the principal�s payo¤ is bounded: the upper-

bound is given by

�max = max
t;y

u (t; y)� c (y) (4)

To identify what constitutes an equivalence class of problems we note that

taking positive a¢ ne transformation of the payo¤ functions will leave the

approximation una¤ected here. Hence the set of problems characterized

by some k where k = K D
�max

is an equivalent class. In this fashion we

can normalize K = 1 and �max = 1 without loss of generality. The key

parameters that determine the e¢ ciency of the approximation will then

be D and m:Given the normalization and a �xed type space T these two

parameters determine how much �variation�there is the agent�s preferences.
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2.4 Stereotypes

To reduce the complexity of the problem, we develop an approximation of

the type space. Informally, we will partition the space of types into subset

of nearby types. Then, for each type subset, we will choose a particular type

�the stereotype �as representative of that subset.

Consider �rst a partition of the type space T . Let P(") denote a partition
of T such that the maximum distance between any two types t; t0 2 T and
belonging to the same partition cell is "D. Given P("), let ~fP (t) denote the
probability weight of the cell to which type t belongs to for all t. In other

words, ~fP (t) is the sum of the probabilities of types t0 that belong to the

same subset as type t. Although P(") is always a function of ", in what
follows we drop the "-index from the notation.

Fixing a partition P , we pick one arbitrary stereotype as the representa-
tive for each cell of this partition. We call the collection of these stereotypes

the stereotype set S. Let S (P) denote the collection of all stereotype sets
for partition P. In what follows, we will be looking for a partition P and a
corresponding stereotype set S such that the cardinality of the stereotype set

is minimal while the partition still satis�es the " maximal distance property.

Let Q (") stand for the smallest cardinality of such a stereotype set S:To

�nd an upper-bound on Q ("), let us partition the type space into identical

m-dimensional hypercubes with diagonal length "D: Given such a partition,

the maximal number of stereotypes we need is:

�Q (") =

�
1

"

�m
(5)

Note that this upper bound is tight is types are uniformly distributed on

the type space and the number of types goes to in�nity.

As an example, suppose m = 2, and D = 10. This upper bound means

that for " = 1
2 , we need at most 4 hypercubes to get a maximum distance

of 5.
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2.5 Stereotype Pro�t

An object that plays an important role in our algorithm is the pro�t that the

principal could expect if the stereotype set S was true. More precisely, let�s

consider the expected payo¤ of the principal when he o¤ers menuM and the

type space is assume to be S with probability weight ~fP (t) on stereotype

t 2 S . To determine this hypothetical pro�t we need to consider how

stereotypes chooses from the o¤ered menu. Given the incentive compatibility

constraints for stereotype set S, we know that stereotypes choose such that

u (t; y (t))� p (t) � u
�
t; y0

�
� p0 for all

�
y0; p0

�
2M and all t 2 S (6)

Given the optimal behavior of the stereotypes, the hypothetical pro�t can

be computed as

�(S;M) =
X
t2S

~fP (t) (p (t)� c (y (t))) (7)

Note, that there might be multiple pro�les that satisfy the incentive com-

patibility constraint. Thus the above pro�t might not be unique. Although

generically this will not be true, when it is, we de�ne �(S;M) to be the

maximal pro�t from the allocation pro�les that satisfy the IC constraints of

the stereotypes in S.

2.6 Failure of a Naive Approximation

One route towards �nding an approximate solution is to select a stereotype

set S and �nd the optimal menu as if S instead of T was true. The menu

that is optimal when the agent�s true type is sampled only form S, can then

be o¤ered to the true type space.

However, this approach will not provide us with a near-optimal solution

however. The reason is that there is no guarantee that types that are close

to a stereotype will choose in similarly to how a stereotype does. Unless

the type space is essentially one-dimensional, the binding constraint for a
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particular type may be non-local. In that case, it is possible to �nd a

type near a stereotype that chooses an allocation that is far away from

the allocation chosen by the stereotype, for instance by not participating.

That in turn induces a type-speci�c pro�t that can be very di¤erent for

the type under consideration and the original stereotype. In fact, Rochet

and Choné show that �bunching� is a robust feature of multi-dimensional

nonlinear pricing (1998).

Let t be a type nearby a stereotype t̂ (let us write, somewhat intuitively,

t � t̂), and let y
�
t̂
�
and y(t) be their chosen products respectively. We know

from the line of reasoning above that it might not be that y
�
t̂
�
� y(t). It is

true that Lipschitz continuity guarantees that the payo¤ of t and t̂ cannot

be too far �else the one with the worse deal would just choose the allocation

of the other one:

u (y (t) ; t)� p (y (t)) � u
�
y
�
t̂
�
; t̂
�
� p

�
y
�
t̂
��
:

However, this clearly does not imply that p (y (t)) � p
�
y
�
t̂
��
�again, think

of the case where t does not participate and hence pays zero. Hence, it can

be that � (t; y (t)) is very di¤erent from �
�
t̂; y
�
t̂
��
.

One conceivable way of guaranteeing that close types choose close allo-

cations is to make more assumptions on u and c. But those assumptions �

if they exist �are likely to be very restrictive because bunching is known

to occur even in very simple cases, such as the uniform-quadratic setting

(Rochet and Choné 1998). In this paper, we follow an alternative route.

3 Pro�t Participation Pricing

In this section, we de�ne the basic step in our approximation method, which

we call Pro�t Participation Pricing and we prove one intermediate result.

Both the de�nition and the result are somewhat general, because they will

be applied twice �in di¤erent ways �in the proof of the main theorem.

Pro�t Participation Pricing is a modi�cation of the naive method dis-

cussed above. Intuitively, take any menu (a vector of product-price pairs)
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given to a stereotype set. Keep the product component constant, just like

in the naive method, but change the price component as follows: discount

each original price by an amount that is proportional to the payo¤ that the

principal receives for that particular product. In the approximation, the

discounting coe¢ cient will tend to zero. In other words, this scheme o¤ers

a pro�t-participation element to the agent.

Formally, let�s �x the type space T , the set of allocations Y , and the

players�preferences u and �. Choose a stereotype set S 2 S (P) that satis-
�es the "-distance property. Now let�s o¤er a menu M for this hypothetical

stereotype set and calculate the type-dependent allocation pro�le which re-

sults. Given optimal behavior by the agent, we can express the menu as

M =
��
y1; p1

�
; :::;

�
yk; pk

��
where the superscripts identify the stereotypes.

Alternatively, we can write this menu as M = [t̂2Sfy(t); p(t)g:
We now transform this menu M = [t2Sfy(t); p(t)g by holding the set

of products �xed, but discounting the prices at which they are o¤ered. In

particular, let�s de�ne the discounted price of the option chosen by t̂ 2 S,�
y(t̂); p(t̂)

�
2M , to be

~p
�
t̂
�
= (1� �) p

�
t̂
�
+ �c

�
t̂
�

(8)

This discounted price is equivalent to the price at which the principal loses

� -fraction of the pro�t realized if stereotype t̂ was true. Formally, ~p
�
t̂
�
�

c
�
t̂
�
= (1� �)

�
p
�
t̂
�
� c

�
t̂
��
. The discounted menu thus contains the same

products as the original one, but o¤ers them at lower prices.

In what follows we will be focusing on a particular discounted menu

where the fraction of the pro�t loss � is set to equal:

� =
p
2D" (9)

Let�s denote this speci�c discounted menu obtained by this Pro�t Partic-

ipation Pricing by ~M =
�
(y0; ~p0) ; :::;

�
yk; ~pk

��
. The next lemma shows that

when ~M is o¤ered to any stereotype set that is �ner than S, which obviously

includes the true type space T , the pro�t-loss to the principal is limited. By

o¤ering price discounts that are proportional to the pro�t generated by the

14



stereotypes, the principal can ensure that even if types deviate from the

behavior of their representative stereotypes, the impact of such deviations

on the principal�s pro�t will not be too large.

Lemma 1 Take any stereotype set S 2 S (P) with minimum distance ", and
any menu M . Let ~M be the menu derived through the Pro�t Participation

Pricing. Take any stereotype set S0 2 S (P 0) where P 0 is a partition that is
at least as �ne as P. Then:

�
�
S0; ~M

�
��(S;M) � �2

p
2D" (10)

Proof. Take any menu M and compute the discounted menu ~M . Consider

two types t̂ and t that they belong to the same cell of P : For these two types
it is always true that t̂ 2 S and t 2 S0. We have to distinguish between two
cases.

1. When ~M is o¤ered, t chooses the allocation y
�
t̂
�
meant for t̂. Here,

the only loss for the principal is due to the price discount determined by � :

~p
�
t̂
�
� c

�
y
�
t̂
��
= (1� �)

�
p
�
t̂
�
� c

�
y
�
t̂
���

2. When ~M is o¤ered, t chooses the allocation y0 di¤erent from y
�
t̂
�
.

By the Lipschitz condition and the " distance limit we know that

��u �t̂; y �t̂��� u �t; y �t̂���� � D"��u �t̂; y0�� u �t; y0��� � D"

When combining these inequalities they imply that utility di¤erentials for t

and t̂ cannot be too di¤erent:

u
�
t; y
�
t̂
��
� u

�
t; y0

�
� u

�
t̂; y
�
t̂
��
� u

�
t̂; y0

�
� 2D"

As the next step of the proof, we consider a revealed preference argument

that helps determine .. Proof: IC�s From the incentive compatibility con-
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straints we know: (i) that t prefers y0 to y
�
t̂
�
and hence

~p
�
y
�
t̂
��
� ~p

�
y0
�
� u

�
t; y
�
t̂
��
� u

�
t; y0

�
and (ii) that t̂ preferred ŷ

�
t̂
�
to y0 and hence:

u
�
t̂; y
�
t̂
��
� u

�
t̂; y0

�
� p

�
y
�
t̂
��
� p

�
y0
�

Now let�s combine these inequalities with the Lipschitz bound and the de�-

nition of the discounted price ~p: We then get that:

�
�
p
�
y0
�
� c

�
y0
�
�
�
p
�
y
�
t̂
��
� c

�
y
�
t̂
����

� �2D"

This inequality guarantees that a non-served type, t =2 S, will never choose
an allocation y0 that is much worse than y

�
t̂
�
for the principal.

In total there are two sources of pro�t loss: (i) the price discount, (ii) the

deviation of types from the chosen option of their stereotypes. The former

is bounded by:

�
�
t; y0; ~p

�
y0
��
� �

�
t; y0; p

�
y0
��
� ���

�
t; y0; p

�
y0
��
� ��

and the latter is bounded by:

�
�
t; y0; p

�
y0
��
� �

�
t; y
�
t̂
�
; p
�
y
�
t̂
���

� �2D"
�

To minimize total pro�t loss we can choose the discount rate � such that

for any type t 2 S0,

�
�
t; y0; ~p

�
y0
��
� �

�
t; y
�
t̂
�
; p
�
y
�
t̂
���

� �� � 2D"
�

= �2
p
2D"

This concludes the proof.
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4 Near-Optimal Design

In the previous section, we introduced pro�t-participation pricing. We

showed that PP allows one to adapt a menu from a stereotype set to a

larger type set with a limited pro�t loss. The key insight was to introduce

price discounts for the products on the menu in proportion to the princi-

pal�s expected pro�t on these items. PP pricing guaranteed that the item a

particular type chose from the menu generated a pro�t which was similar to

the pro�t generated by its stereotype. More precisely, PP pricing provided

a tight upper-bound on the principal�s pro�t-loss when comparing the value

of a menu o¤ered to a stereotype set to the discounted version of this menu

o¤ered to a type set �ner than the stereotype set.

In this section, we turn to how the PP pricing can be helpful in �nding an

approximate solution of the principal�s problem. Note �rst that in the above

discussion we did not talk about optimality. In this manner, neither the set

of products o¤ered to the agent nor the prices of these products satis�ed any

form of optimality. Let�s now turn to the problem of optimality. To address

this issue we now introduce a solution method that combines �nding the

optimal menu for a stereotype set and then adapting this menu to the true

type set through PP pricing. We call this method the pro�t participation

algorithm.

PP Algorithm

1. Given a problem from � and an " > 0, select a partition P on T that
satis�es the minimum distance property for this ".

2. Select a stereotype set S 2 S (P) and compute the optimal menu M̂
for the problem S; Y ,u; �.

3. Use M̂ to obtain a discounted menu ~M through the PP pricing.

The PP algorithm takes the pricing problem described in Section 2 as

its input. It produces an output that consists of a menu ~M . Importantly,

this output is a function of " the minimal distance property of the parti-

tion. To be precise, the output thus should be expressed as ~M("): Note
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that since there are multiple ways to partition the type space T multiple

di¤erent stereotype sets S to select on this partition for a �xed ", ~M(") is

not generically not unique. Rather ~M(") should be understood as a set of

menus. Since the analysis below will hold for all members of this set, we

refer to ~M(") as any element of this set.

Given our normalization where K = 1 and �max = 1, we say that a

solution ~M(") is within a factor " of the optimal solution if when this menu

is o¤ered to the whole type space, the principal�s pro�t loss is at most ".

Formally,

�(T;M�)��
�
T; M̂(")

�
� ":

The next de�nition introduces the classic notion of a polynomial-time ap-

proximation scheme (PTAS).

De�nition 1 Given a normalized class of optimization problems and an
" > 0, an algorithm is a polynomial-time approximation scheme (PTAS) if:

(AS) It returns a solution that is within a factor " of being optimal.

(PT) For every ", the running time of the algorithm is a polynomial function

of the input size

Recall that the input size of our single-agent mechanism design problem

was proportional to jT j � jY j : Given this fact and the above de�nition, we
can now state the main result of this paper.

Theorem 1 For all problems in � and any " > 0, the PP Algorithm is a

PTAS.

Proof. Step 1. De�ne the optimal mechanism

M� = argmax
M

�(T;M) :

to be set of allocations that maximizes the principal�s expected pro�t subject

to the IC constraints and contains the outside option. Let�s denote this
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optimal pro�t by �(T;M�). Note that M� and hence generically �(T;M�)

are unknown objects and they remain unknown in our approach. In fact,

all the sets and menus in the proof remain unknown, except the ones found

through PP:This does not mean, however, that we will never be able to

bound the pro�t distance between these unknown menus and a carefully

constructed menu M .

Step 2. Among all possible stereotype sets S (P), pick Smax 2 S (P)
such that it maximizes the principal�s pro�t once M� is o¤ered. Formally,

Smax 2 argmax
S2S

�(S;M�)

The principal�s pro�t when the agent�s type is restricted to Smax must be

better than the optimal pro�t:

�(Smax;M
�) � �(T;M�)

Step 3. Now let�s apply our approximation lemma. The input type

spaces are Smax 2 S (P) and any �xed stereotype set S from S (P). The
input menu is M�. Let�s denote the menu obtained by pro�t-participation

scheme (PP) by M 0. From Lemma 1 we know that

�
�
S;M 0���(Smax;M�) � �2

p
2D"

Step 4. Take any stereotype set S 2 S and pick the menu M̂ that is

optimal for that stereotype:

M̂ 2 argmax
M

�(S;M)

By de�nition given stereotype set S; this menu M̂ is better for the principal

than using menu M 0 which we de�ned in Step 3. Hence

�
�
S; M̂

�
� �

�
S;M 0�
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Step 5. Let�s apply our approximation lemma again where the input

type spaces are S, /T and the input menu is M̂ . The output discounted

menu is ~M: From Lemma 1 it follows that the bound on the pro�t-loss is:

�
�
T; ~M

�
��

�
S; M̂

�
� �2

p
2D"

Summing up the above �ve steps:

�(T;M�) = [max pro�t] (Step 1)

�(Smax;M
�) � �(T;M�) (Step 2)

�
�
S;M 0� � �(Smax;M

�)� 2
p
2D" (Step 3)

�
�
S; M̂

�
� �

�
S;M 0� (Step 4)

�
�
T; ~M

�
� �

�
S; M̂

�
� 2
p
2D" (Step 5)

and hence the proft-loss due to using ~M instead of the optimal M� is

bounded by:

�
�
T; ~M

�
� �(T;M�)� 4

p
2D"

We can now prove that the pro�t participation scheme is an approxima-

tion scheme (AS). This is true because

lim
"!0

4
p
2D" = 0

To prove that PP is polynomial in time (PT), �x an " > 0 and note that

the cardinality of the minimal stereotype set S here is

#S = �Q (") =

�
1

"

�m
Thus, the total computation time of PP is proportional to the number of

steps needed to compute the optimal mechanism for the stereotype set S.

The Revelation Principle guarantees that this number is bounded above by

#Y #S
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Hence, for any given ", the dimension of the stereotype space #S is �xed,

and the computation time of PP is polynomial in the input size #Y �#T .

The computation time for the PP algorithm is of the order of

#Y #S

and thus it is polynomial in the number of possible products, #Y , indepen-

dent of the number of types#T , and exponential in the size of the stereotype

space #S. This means that our algorithm is particularly successful in re-

ducing the complexity of the type space. Once the seller is satis�ed with,

say, a 1% pro�t loss, her computation cost is independent of the complexity

of the type space.

A more stringent notion of approximation quality, fully polynomial-time

approximation scheme (FPTAS), requires the computation time to be poly-

nomial not only in the input size but also in the quality of the approximation,

namely in 1
" . It is easy to see that this requirement fails here. A designer who

wants to move from a 1% approximation to a 0.5% approximation, a 0.25%

approximation, and so on, will face an exponentially increasing computation

time.

Indeed, we conjecture that nonlinear pricing, as de�ned here, does not

have an FPTAS. A �strongly NP-complete� has no FPTAS (Garey and

Johnson, 1974). Conitzer and Sandholm (2003, Theorem 4) use a reduction

to INDEPENDENT SET in order to prove that single-agent quasilinear-

payo¤ mechanism design is NP-complete. However, INDEPENDENT SET

is known to be strongly NP-complete.

5 Discussion and Conclusion

The interest in �nding satis�cing procedures for economic problems goes

back to at least to the seminal work of Simon (1956). This paper o¤ered an

e¢ cient way to approximate the optimal solution of a general class of non-

linear pricing problems. In our model, �nding an optimal solution is di¢ cult
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not due to the complexity of describing or enlisting option, but due to strate-

gic reasons. Optimal decision-making is hard because the principal needs to

fully understand how her choices a¤ect the choices of the agent. When the

monopolist faces uncertainty about the agent�s type, understanding strate-

gic responses is complex. How costly it is to obtain the optimal solution,

as expressed in computational time, is increasing in such uncertainty. Our

Pro�t Participation pricing allows to reduce the strategic complexity of the

problem at a limited cost. Based on the understanding of a small set of

stereotypes this scheme o¤ers a solution that can approximate the optimal

for any positive constant fraction of loss.

SOMETHING HERE ON ORGANIZATIONAL DECISION-MAKING

As mentioned in the introduction, our analysis has an alternative, and

almost immediate, interpretation in terms of sampling cost. Suppose that

the principal knows the set of possible types, T , and the set of possible prod-

ucts, Y , but does not know the payo¤ function of the agent: u : T �Y ! <
(but she knows is that u satis�es the Lipschitz continuity). The principal can

choose to sample as many types as she wants, but each sampling operation

entails a �xed cost 
. Sampling is simultaneous, not sequential. The princi-

pal chooses a sampling set S ex ante. By equating the sampling set S with

the stereotype set, we can apply the PP Algorithm, as de�ned above. The-

orem 4 guarantees that the resulting pricing scheme is an "-approximation

of the optimal pricing scheme.
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