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Abstract. We associate to any pure exchange economy a game with only two

players, regardless of the number of consumers. In this two-player game, each

player represents a different role of the society, which is formed by all the individ-

uals in the economy. Player 1 selects feasible allocations trying to make Pareto

improvements. Player 2 chooses an alternative from the wider range of alloca-

tions that are feasible in the sense of Aubin. The set of Nash equilibria of our

game is non-empty and our main result provides a characterization of Walrasian

equilibria allocations as strong Nash equilibria of the associated society game.
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1 Introduction

Game theoretic approaches to economic equilibrium and, in particular, to Wal-

rasian or competitive equilibrium, provide insights into the market mechanism

through which trade is conducted.

The Walrasian equilibrium reflects the spirit of “the invisible hand” and of

decentralization. However, the power and appeal of this equilibrium concept

appears to be far greater than that of mere decentralization. This is reflected in

the finding that under the appropriate conditions the Walrasian equilibrium may

be regarded either as the solution or as the limit solution for several cooperative

and non-cooperative game-theoretic notions of equilibria.

Regarding cooperative notions, a great deal of work has been done by showing

the connection of Walrasian equilibria with the core of the economy. Edgeworth

(1881) proved, in the case of two agents and two commodities, that the core

shrinks to the set of Walrasian equilibria and claimed that his result applies for

an arbitrary number of commodities and an arbitrary number of agents. Nearly

eighty years after, Shubik (1959) recognized the importance of Edgeworth’s con-

tribution and pointed out the relationship between the core and Edgeworth’s idea

of the contract curve. Debreu and Scarf (1963) provided a rigorous formulation

of the Edgeworth’s conjecture and showed that the intersection of the cores of

the sequence of the replications coincides with the set of Walrasian equilibrium

allocations. Further, Aumann (1964) introduced a model of an economy with a

continuum of agents and showed the core-Walras equivalence; that is, in the Au-

mann’s model the core exactly coincides with the set of competitive equilibrium

allocations. Following these pioneering contributions, the relations between the

core and the set of equilibrum allocations have been a major focus of the litera-

ture in mathematical economics during the 70s and 80s. Notable contributions on

this direction include Arrow-Hahn (1971), Bewley (1973), Hildenbrand (1974),

Dierker (1975), Khan (1976), Trockel (1976) Anderson (1978, 1981, 1985) Shubik

and Wooders (1982), Hammond, Kaneko and Wooders (1989) and Kaneko and

Wooders (1989). These works establish the existence of an equilibrium price sys-

tem as a result of a theory whose prime concern is with the power of coalitions

and makes no mention of prices.

The search for non-cooperative game theoretic foundations of Walrasian equi-

librium rests on the Nash equilibrium solution. The seminal paper of Nash
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(1950), on the existence of equilibrium points in non cooperative games, was

historically critical for Walrasian analysis and founded the genesis for a rapidly

growing series of papers on strategic approaches to economic equilibrium. In

order to prove existence of Walrasian equilibrium, Debreu (1952), Arrow and De-

breu (1954) and Debreu (1962) extended Nash’s model to “generalized games” by

adding a fictitious price player whose payoff was the value of the excess demand.

Walras equilibrium was then obtained as Nash equilibrium of a “pseudo-game”

that included this additional price player. Hence, the game theoretical inter-

pretation of the Walrasian equilibrium in the proof of this existence result is

not based on a game but merely in a pseudo-game. One would, therefore, hope

for an economic or game theoretical model that formulates an exchange pro-

cess and/or a price-setting process in addition to the consumer behavior in the

market. Actually, this is the aim of all the papers on strategic market games,

which was initiated by Shubik (1973), Shapley (1976) and Shapley and Shubik

(1977) and constitutes now a well known alternative to the Walrasian model.

Other attempts to provide strategic foundations of competitive equilibria make

use of cooperative game theory. In this direction, Shapley and Shubik (1969)

showed that the class of market games and the class of totally balanced games

are the same and Wooders (1994) proved an equivalence between large games

with effective small groups of players and games generated by markets.

Most of the literature on market games deals with the basic problem of re-

distribution of goods in the framework of an exchange economy and models

this procedure by describing explicitly the behavior of the agents and the corre-

sponding process of formation of prices and exchange of goods. There is a first

mechanism (game form), where the agents are the players and their strategies

are signals (in terms of money and/or commodities to buy or sell on each trading

post), which specify as outcome a new allocation of the quantities announced.

Prices appear at this stage as an interim technical device. Once endowments and

utilities are added to the model, one can describe the set of feasible strategies

for each player and evaluate the outcome in terms of utilities. In this way, one

faces a strategic game.

Strategic market games may be classified into different categories depending

basically on the underlying strategy sets for players and on the way in which every

agent’s signal is used to determine market prices. In any case, these market games

can be viewed as extensions of the single market analysis of Cournot (1838) and

Bertrand (1883) to multiple markets within a general equilibrium framework.
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The extension of the Cournot tradition to general equilibrium was pioneered

by the already cited works by Shubik (1973), Shapley (1976) and Shapley and

Shubik (1977). In order to overcome the difficulty that an agent might want to

sell in one market and buy in another, Shapley and Shubik explicitly introduced

money as the stipulated medium of exchange. Their model was carried forward

by several other authors, who showed that the Cournot-Nash equilibria converge

to Walrasian equilibria (see, for instance, Dubey and Shapley 1994 and Dubey

and Geanakoplos 2003).

Hurwicz (1979), Schmeidler (1980) and Dubey (1982) followed the Bertrand

tradition, which naturally led to discontinuous payoff functions, and established

the exact coincidence of Nash and Walrasian equilibria, relying on the existence

of Walrasian equilibrium of the economy to show the existence of the Nash equi-

librium of the game.

This paper adds to the broad range of literature on strategic approaches to

Walrasian equilibrium. Our aim is to show a characterization of Walrasian equi-

libria within a strategic game approach which differs from those contemplated

in the previous papers. Actually, the game we consider is neither a generalized

game nor a game in the tradition of Cournot or Bertrand, but a two-player game

played by the society, representing all the agents in the economy. Furthermore,

money is not considered in our game and prices are not involved either in the

strategy sets or the payoff functions defining the game. Another important dif-

ference to be noted is that we do not need to define outcome functions from the

strategy profiles. In fact, in our society game the outcomes are given by the

strategies.

Given any pure exchange economy with a finite number of agents, we define

an associated game with only two players. We refer to this game as the society

game because it can be interpreted as a game in which the society plays two

different roles. The first one consists in acting as a Paretian player in pursuit of

efficiency. The second role involves an impartial and fair behavior against the

Paretian player.

The Paretian player, player 1, selects feasible allocations and tries to make

Pareto improvements. On the other hand, the society, acting as player 2, chooses

strategies among the wider range of the feasible allocations in the sense of Aubin,

that is, allocations that are feasible by considering strictly positive participation

5



or weights of each member of the society.

A strategy profile in this society game is given by a feasible allocation chosen

by player 1, and by the weights and the Aubin allocation chosen by player 2.

The payoff function for the Paretian player depends on her strategy and on

the Aubin allocation proposed by player 2, but it is not directly affected by

the selected weights, which only appear explicitly in the second player’s payoff

function. By definition, the payoffs for both players can not be strictly positive

simultaneously. Moreover, the player 2 can always get a null payoff by choosing

the same allocation as player 1 and her payoff can be strictly positive only in the

case in which the Paretian player’s strategy is not a Walrasian allocation.

The assumption stated for our exchange economy leads to the existence of

Walrasian equlibria. It is not difficult to show that the strategy in which both

players play the same Walrasian allocation is a Nash equilibrium for the society

game. As the Paretian player can increase her payoff when her strategy is not

an efficient allocation, at any Nash equilibrium the strategy selected by player

1 is required to be Pareto optimal. Hence, the first player represents efficiency

whereas the second one is a weighting player who tries to give balance. Actu-

ally, we will show that at any Nash outcome both payoffs are zero, Paretian

player achieves efficiency and the Aubin player restores Walrasian equilibrium

allocations.

We recall that all the previous works on market games model the economy

as a game where each consumer is a player that announces quantities or both

quantities and prices and, therefore, the economy is recasted as a game with

at least as many players as consumers. However, in this paper the game we

associate to a pure exchange economy is just a two-player game, regardless of

the number of consumers in the economy.

Our main result provides an equivalence between the Walrasian allocations

and the set of Nash equilibria of the associated society game. We obtain a

characterization of Walrasian equilibria of the n-agent economy in terms of Nash

equilibria of a game with only two players. In other words, we show that the

Walrasian mechanism is implementable as a Nash equilibrium of a two-player

game.

In order to obtain our results, the key idea is to exploit the veto power of

the society. In Hervés-Beloso et al. (2005a, 2005b), we provide characteriza-

tions of Walrasian allocations in terms of the blocking power of the “society”
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called there the “grand coalition”. Precisely, in Hervés-Beloso et al. (2005b), it

is shown that the set of Walrasian allocations coincides with the set of alloca-

tions which are not blocked, in the sense of Aubin, by the society. Therefore,

in order to obtain the equilibria it suffices to consider the Aubin blocking power

of just one coalition, namely, the society formed by all the individuals in the

economy. This equivalence between the set of Walrasian allocations and the

set of Aubin non dominated allocations by the society, which is already stated

for the more general case of differential information economies, will be used in

order to show our main result. The proof of that characterization rests on a

Core-Walras equivalence theorem and on the blocking power of large coalitions

in continuum economies (Vind 1972). That is, we apply results which connect

Walrasian equlibria to subtle cooperative solutions. Then, although in this arti-

cle we follow a non-cooperative approach to Walrasian analysis, the underlying

arguments are somehow related to a cooperative approach.

To sum up, this paper is related to the literature on non-cooperative market

games and the main result shows a coincidence between Walrasian equilibria and

Nash equilibria of this society game. On the other hand, it is also related to a

cooperative approach to equilibria because we are using, indirectly, core equiv-

alence results. Moreover, it is easy to show that Nash equilibria of the society

game exist, and that they are strong Nash equilibria. Therefore, we can conclude

that the Walrasian mechanism is implementable as a strong Nash equilibrium of

a game with two players which represent the society. Finally, we remark that, for

simplicity, the model we consider in this paper addresses a complete information

pure exchange economy with a finite number of consumers and a finite number

of commodities. However, the same results hold for more general settings. More

precisely, the equivalence between Walrasian equilibria and Nash equilibria of

this society game does still hold for economies with infinitely many commodities

and for differential information economies. This is so because the key result is

the theorem of Hervés-Beloso et al. (2005b), which was actually proved for those

more general models.

The remainder of the paper is organized as follows. Section 2 states the model

of a finite exchange economy and recalls the solution concepts and the already

mentioned results that will be used in the proof of our theorem. In Section 3, we

define the society game associated to a pure exchange economy and discuss the

definitions of strategy sets and payoff functions that describe the game. Section
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4 includes our main result and some previous lemmas. In Section 5 we modify

the game in order to include extreme situations not contemplated in the previous

section. Finally, Section 6 is the conclusion.

2 The Economy

Consider a pure exchange economy E with n consumers and ` commodities. The

commodity space is IR`. Each consumer i is characterized by the consumption set

IR`+, a preference relation �i on IR`+ and an initial endowment ωi = (ωij)
`
j=1 ∈ IR`+.

We state the following assumptions on endowments and preference relations

for every consumer i:

(H.1) The initial endowment, ωi, is strictly positive, i.e., ωi � 0.

(H.2) The preference relation, �i, is continuous, strictly monotone and convex.

Note that the assumption (H.2) means that each preference relation, �i, is

represented by a continuous, quasi-concave and strictly increasing utility func-

tion Ui : IR`+ → IR+, with Ui(0) = 0. So, the economy is defined by E ≡
(IR`+, (Ui, ωi)

n
i=1).

An allocation x is a consumption bundle xi ∈ IR`+ for every agent i = 1, . . . , n.

The allocation x is feasible in the economy E if
n∑
i=1

xi ≤
n∑
i=1

ωi. A price system

is an element of ∆, where ∆ denotes the (` − 1)-dimensional simplex of IR`+,

that is, ∆ = {p ∈ IR`+ such that
∑̀
h=1

ph = 1}. A Walrasian equilibrium for the

economy E is a pair (p, x) ∈ ∆ × IR`n+ , where p is a price system and x is a

feasible allocation such that, for every agent i, the bundle xi maximizes the

preference relation �i (or equivalently, the utility function Ui) in the budget set

Bi(p) = {y ∈ IR`+ such that p · y ≤ p · ωi}.

A feasible allocation x is blocked by a coalition S if there exists yi, i ∈ S, such

that
∑
i∈S

yi ≤
∑
i∈S

ωi and Ui(yi) > Ui(xi) for every member i in the coalition S. The

core of the economy is the set of feasible allocations which are not blocked by

any coalition of agents. It is well known that under the hypothesis H.1 and H.2

the economy E has Walrasian equilibrium, and that if x is a Walrasian allocation

for the economy E , then x belongs to the core of E .
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Aubin (1979), addressing pure exchange economies with a finite number of

agents and commodities, introduced the pondered veto concept. The veto system

proposed by Aubin extends the notion of ordinary veto in the sense that allows

the agents to participate with a fraction of their endowments when forming a

coalition. This veto mechanism is known in the literature as fuzzy veto. The

term fuzzy is usually used in relation to the elements that belong to a set with

certain probability. In the veto system introduced by Aubin, agents actually

participate in a coalition with a fraction of their endowments (which, under

standard assumptions, is equivalent to the classical Debreu-Scarf participation

of a coalition in a replicated economy - see Florenzano (1990)). Therefore, we

prefer to designate this veto system as Aubin veto or veto in the sense of Aubin.

Following Aubin (1979), we define the Aubin veto as follows: an allocation

x is blocked in the sense of Aubin by the coalition S via the allocation y if

there exist αi ∈ (0, 1], for each i ∈ S, such that (i)
∑
i∈S
αiyi ≤

∑
i∈S
αiωi, and (ii)

Ui(yi) > Ui(xi), for every i ∈ S.

The Aubin core of the economy E is the set of all feasible allocations which

cannot be blocked in the sense of Aubin.

This definition of Aubin core is equivalent to the original one, Aubin (1979).

However, it is important to remark that we require the coefficients αi to be

strictly positive for every agent forming the coalition. If we consider (as in the

original definition by Aubin) the possibility of null weights or contributions, the

coalition formed by all the agents (the society) contains, implicitly, any other

coalition (see Hervés-Beloso and Moreno-Garćıa (2001) for more details).

Aubin (1979) showed that, under standard assumptions, any Walrasian al-

location is in the Aubin core, and, reciprocally, any non-Walrasian allocation

is blocked in the sense of Aubin (see Florenzano (1990) for economies with an

infinite-dimensional commodity space and without ordered preferences).

Hervés-Beloso et al. (2005b), provide a new characterization of Walrasian

equilibrium allocations in terms of the blocking power of the “society” called

there the “grand coalition”. Precisely, under assumptions (H.1) and (H.2), a

feasible allocation is a Walrasian equilibrium allocation in E , if and only if x is

not blocked by the society in the sense of Aubin. It should be remarked that in

the characterization above, the society is able to block, in the sense of Aubin,

any non-walrasian allocation with a contribution of each member close to the

total participation.
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To be more precise, we can write the above result in the following way:

(*) Let E be a pure exchange economy under assumptions (H.1) and

(H.2). The next statements hold:

If x is a feasible allocation which is Aubin blocked by the society,

then x is not a Walrasian allocation.

Reciprocally, if x is feasible but not a Walrasian allocation then, for

any positive α < 1 there exist coefficients αi ∈ [α, 1], and consumption

bundles yi, i = 1, . . . , n, such that
n∑
i=1

αiyi ≤
n∑
i=1

αiωi, and Ui(yi) >

Ui(xi), for every agent i.

This equivalence between the set of Walrasian allocations and the set of allo-

cations that the society cannot block in the sense of Aubin with participations

of every member arbitrarily close to the total participation will be used in the

rest of the paper and we will refer to this characterization by the symbol (*).

3 The Associated Game

Consider the pure exchange economy E ≡ (X = IR`, (Ui, ωi)
n
i=1) defined in the

previous Section.

We define a game G associated to the economy E in order to analyze the

relation between the non-cooperative solution of Nash equilibrium and the de-

centralized solution of Walrasian equilibrium.

There are two players. The strategy set for the player 1 is denoted by S1 and

is given by

S1 = { x = (x1, ..., xn) ∈ IR`n+ such that xi 6= 0 and
n∑
i=1

xi ≤
n∑
i=1

ωi}.

That is, the strategy set for player 1 is the set of feasible allocations that assign

a non-zero consumption for each agent. Observe that ω = (ω1, . . . , ωn) ∈ S1.

Let α be a real number such that 0 < α < 1. The strategy set for the player

2 is denoted by S2 and is defined as follows:

S2 = {(a, y) ∈ [α, 1]n × IR`n+ such that
n∑
i=1

aiyi ≤
n∑
i=1

aiωi}.
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That is, the strategy set for player 2 is the set of allocations that are feasible

in the sense of Aubin with a participation greater or equal to α for every member

of the society. Observe that S2 is a non empty set ( (1, ω) ∈ S2, where 1 is the

vector in [α, 1]n whose coordinates are constant and equal to 1).

Let S denote the product set S1×S2. A strategy profile is any s = (x, a, y) ∈
S, that is, a strategy profile is a strategy x ∈ S1 for player 1 and a strategy

(a, y) ∈ S2 for player 2.

Given a strategy profile s = (x, a, y) ∈ S, the payoff functions Π1 and Π2, for

player 1 and 2, respectively, are defined as follows:

Π1(x, a, y) = min
i
{Ui(xi)− Ui(yi)}

Π2(x, a, y) = min
i
{ ai (Ui(yi)− Ui(xi))}

In short, the game G is defined by the strategy sets and the payoff functions

for each player. We write

G ≡ {S1, S2,Π1,Π2}.

From the definition of the game G we can obtain some immediate conse-

quences.

Let s be a strategy profile. If Π1(s) > 0, then Π2(s) < 0. Reciprocally, if

Π2(s) > 0, then Π1(s) < 0. That is, Π1(s) and Π2(s) can not be strictly positive

for any s, although both Π1(s) and Π2(s) can be strictly negative for some

strategy profile s.

Given the strategy profile s = (x, a, y) ∈ S, note that if x ∈ S1 is not an

efficient allocation, then there exists a feasible allocation z such that Ui(zi) >

Ui(xi) for every i = 1, . . . , n; and then Ui(zi) − Ui(yi) > Ui(xi) − Ui(yi) for

every i = 1, . . . , n, and for any (a, y) ∈ S2. In other words, if x is not a Pareto

optimum, there exists an allocation z ∈ S1 such that Π1(z, a, y) > Π1(x, a, y),

for any (a, y) ∈ S2. That is, if x is not a Pareto optimum, player 1 can improve

upon her payoff.

On the other hand, if player 2 selects (a, x), where x is a feasible and efficient

allocation, then the best response of player 1 is also the Pareto optimum x. To

be precise, if x is a Pareto optimum, we have Π1(x, a, x) ≥ Π1(z, a, x), for any
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z ∈ S1. To see this, note that Π1(x, a, x) = 0 and if there exists z ∈ S1 such

that Π1(z, a, x) > Π1(x, a, x) = 0, then Ui(zi) > Ui(xi) for every individual in

the society, which is in contradiction with the efficiency of x.

Moreover, if Π2(x, a, y) > 0, then x is blocked by the society in the sense of

Aubin. Reciprocally, if x is an allocation blocked by the society in the sense

of Aubin, then there exists (a, y) ∈ S2 such that Π2(x, a, y) > 0. Further-

more, according to the characterization (*) if x is a Walrasian allocation then

Π2(x, a, y) ≤ 0 for any (a, y) ∈ S2.

Definition 3.1 A Nash equilibrium for the game G is a strategy profile s∗ =

(x∗, a∗, y∗) ∈ S such that

Π1(s
∗) ≥ Π1(x, a

∗, y∗), for every x ∈ S1 and

Π2(s
∗) ≥ Π2(x

∗, a, y), for every (a, y) ∈ S2.

Proposition 3.1 The set of Nash equilibria in pure strategies for the game G is

not empty.

Proof. This is a consequence of the existence of Walrasian equilibrium of the

economy E . In fact, if x is a Walrasian allocation, then (x,1, x) a Nash equilib-

rium of the society game G. To see this, note that Π1(x,1, x) ≥ Π1(z,1, x), for

all z ∈ S1, because x is a Pareto-optimum. On the other hand, if there existed

(a, y) ∈ S2 such that Π2(x, a, y) ≥ Π2(x,1, x), it would imply that x could be

blocked in the sense of Aubin, which is a contradiction with the fact that x is

Walrasian.

Q.E.D.

Remark. Note that given any x ∈ S1, the strategy (1, x) belongs to S2. There-

fore the payoff for agent 2 at any Nash equilibrium can not be negative. That

is, if s∗ = (x∗, a∗, y∗) is a Nash equilibrium, then Π2(s
∗) ≥ 0.

As was already observed, if s∗ = (x∗, a∗, y∗) is a Nash equilibrium of the game

G then the allocation x∗ is necessarily Pareto-efficient.

Finally, if s∗ = (x∗, a∗, y∗) is a Nash equilibrium of the game G and Π2(s
∗) = 0,

then the allocation x is a non dominated allocation in the sense of Aubin and,

therefore, applying the characterization (*), x∗ is a Walrasian allocation of the

economy E .
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4 The Main Result

In this Section, we state our main result which shows the equivalence between

the Walrasian equilibria of the economy E and the set of Nash equilibria of the

associated game G. That is, we obtain a characterization of Walrasian equilibria

in terms of Nash equilibria of a game with only two players, independently of

the number of consumers in the economy. Thus, we show that the Walrasian

mechanism is implementable as a Nash equilibrium of a two-player game.

As we have remarked in the Introduction, the game G can be interpreted

as a society game where the society plays two different roles: in the first role,

the society, as player 1, selects feasible allocations and tries to make Pareto

improvements, while as player 2, society comes up with alternative allocations

that are feasible in the sense of Aubin.

As we have already observed, the Paretian player has an incentive to deviate

whenever the strategy she chooses is not an efficent allocation. Hence, at any

Nash equilibrium, the strategy for player 1 is required to be Pareto-optimal.

Then, we may argue that the society, as player 1, seeks efficiency.

The society, as player 2, acts as an adviser who recommends different assign-

ments trying to dominate the allocation proposed by the Paretian player. Player

2 has incentives to deviate whenever the strategy she selects is a dominated allo-

cation in the sense of Aubin. On the other hand, these ”Aubin” player can always

get a non-negative payoff (by choosing the same allocation as player 1) and can

reach a strictly positive payoff only in the case that the allocation proposed by

player 1 is not Walrasian.

We will show that the values of the payoff functions which come from any

Nash equilibrium coincide for both players and are equal to zero. As we will

see, this fact avoids the allocation proposed by player 1 to be Aubin dominated

at any Nash equilibrium. Thus, at any Nash equilibrium s∗ = (x∗, a∗, y∗), the

outcome x∗ is feasible and efficient while player 2 ensures that it is Walrasian.

In order to show our main result we need some previous lemmas. Given a

strategy profile s = (x, a, y) let us define the sets:

B(s)=
{
k ∈ {1, . . . , n}, s.t. Uk(xk)− Uk(yk) = min

i
{Ui(xi)− Ui(yi)}

}
;

B′(s)=
{
k ∈ {1, . . . , n}, s.t. ak(Uk(xk)− Uk(yk)) = min

i
{ai(Ui(xi)− Ui(yi))}

}
.

Given a real number a ∈ [0, 1] we denote a = (a, . . . , a) ∈ [0, 1]n, i.e., a is the
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vector in [0, 1]n whose coordinates are identical and equal to a.

The next lemmas show that, in a Nash equilibrium, the minima which define

the payoff functions Π1 and Π2 are attained by every consumer. That is, if s∗ is

a Nash equilibrium of the game G, then B(s∗) = B′(s∗) = {1, . . . , n}.

Lemma 4.1 If x∗ is player 1’s best response to the strategy (a∗, y∗) selected by

player 2, in particular, if s∗ = (x∗, a∗, y∗) is a Nash equilibrium of the game G,

then Ui(x
∗
i )− Ui(y∗i ) = Uj(x

∗
j)− Uj(y∗j ) for every i, j ∈ {1, . . . , n}.

Proof. Let x∗ be player 1’s best response to the strategy (a∗, y∗) selected by

player 2. Assume that the statement of the Lemma does not hold. Then, B(s∗) 6=
{1, . . . , n}. This implies that there exists a consumer j such that Uj(x

∗
j)−Uj(y∗j ) >

Ui(x
∗
i )− Ui(y∗i ) for every i ∈ B(s∗). By continuity of the utility functions, there

exists some δ > 0 such that player 1 can deviate to x′, where x′j = (1 − δ)x∗j

and x′i = x∗i + δ
n−1

x∗j ,∀i 6= j, and still have Uj(x
′
j)− Uj(y∗j ) > Ui(x

′
i)− Ui(y∗i ) for

every i ∈ B(s∗). By monotonicity of preferences, Ui(x
′
i) > Ui(x

∗
i ) for every i 6= j,

which implies that Π1(x
′, a∗, y∗) > Π1(s

∗). This contradicts the fact that x∗ is

player 1’s best response to (a∗, y∗).

Q.E.D.

Lemma 4.2 If (a∗, y∗) is player 2’s best response to the strategy x∗ selected by

player 1, in particular, if s∗ = (x∗, a∗, y∗) is a Nash equilibrium of the game G,

then ai(Ui(y
∗
i )− Ui(x∗i )) = aj(Uj(y

∗
j )− Uj(x∗j)) for every i, j ∈ {1, . . . , n}.

Proof. Let (a∗, y∗) be player 2’s best response to the strategy x∗ selected by player

1. Then, since (1, x∗) ∈ S2, one has that Π2(s
∗) ≥ 0. Assume that the statement

of the Lemma does not hold. Then, B′(s∗) 6= {1, . . . , n}. This implies that there

exists a consumer j such that aj(Uj(y
∗
j )− Uj(x∗j)) > ai(Ui(y

∗
i )− Ui(x∗i )) ≥ 0 for

every i ∈ B′(s∗). This implies that Uj(y
∗
j ) > Uj(x

∗
j), so, by strict monotonicity of

preferences, y∗j > 0. By continuity of the utility functions, we can take a non null

commodity bundle ε ∈ IR`+ such that aj(Uj(y
∗
j−ε)−Uj(x∗j)) > ai(Ui(y

∗
i )−Ui(x∗i ))

for every i ∈ B′(s∗). Let δ =
a∗j∑

i∈B′(s∗)
a∗i
ε. Consider the allocation y = (y1, . . . , yn)

defined as follows:
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yi =



y∗i − ε if i = j

y∗i + δ if i ∈ B′(s∗)

y∗i otherwise

By construction, we obtain:

n∑
i=1

a∗i yi = a∗j(y
∗
j − ε) +

∑
i∈B′(s∗)

a∗i (y
∗
i + δ) +

∑
i/∈B′(s∗)

i 6=j

a∗i y
∗
i =

= a∗jy
∗
j − a∗jε+

∑
i∈B′(s∗)

a∗i y
∗
i +

∑
i∈B′(s∗)

a∗i δ +
∑

i/∈B′(s∗)
i 6=j

a∗i y
∗
i =

=
n∑
i=1

a∗i y
∗
i ≤

n∑
i=1

a∗iωi.

Then we have that (a∗, y) ∈ S2. On the other hand, by monotonicity of pref-

erences, Ui(yi) > Ui(y
∗
i ) for every i ∈ B′(s∗). Therefore, we conclude that

Π2(x
∗, a∗, y) > Π2(s

∗), which is a contradiction with the fact that (a∗, y∗) is

player 2’s best response to x∗.

Q.E.D.

As an immediate consequence of the previous lemmas we obtain the following

proposition.

Proposition 4.1 If s∗ = (x∗, a∗, y∗) is a Nash equilibrium for the game G, then

Ui(y
∗
i ) = Ui(x

∗
i ) for every i = 1, . . . , n, and Π1(s

∗) = Π2(s
∗) = 0.

Proof. Let s∗ = (x∗, a∗, y∗) be a Nash equilibrium for the game G. Since (1, x∗) ∈
S2, one has that Π2(s

∗) ≥ 0. Assume that the statement of the proposition does

not hold. Then, Π2(s
∗) > 0, which implies that Π1(s

∗) < 0. By the two previous

lemmas, a∗i = a > 0 for every i = 1, . . . , n. This implies that
n∑
i=1

y∗i ≤
n∑
i=1

ωi, so

y∗ belongs to S1. Hence, Π1(y
∗, a∗, y∗) = 0 > Π1(s

∗), a contradiction.

Q.E.D.

Before stating our characterization result, we show as an easy consequence of

the previous lemmas that the Nash equilibria of the society game are actually

strong Nash equilibria.
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Proposition 4.2 Any Nash equilibrium of the associated game G is a strong

Nash equilibrium.

Proof. Let s∗ = (x∗, a∗, y∗) be a Nash equilibrium for the game G. Since there

are only two players in the game, it is enough to show that the coalition formed

by both players has no incentive to deviate. Otherwise, there is a strategy profile

s = (x, a, y) ∈ S such that player 1 and player 2 get better. Then, by Proposition

4.1, one has that Π1(s) > Π1(s
∗) = 0 and Π2(s) > Π2(s

∗) = 0. But, by the

definition of the payoff functions, this is impossible, that is, both inequalities

above can not hold together because if Π1(s) > 0, then necessarily Π2(s) < 0.

Q.E.D.

The next Theorem is our main result in this paper. It shows the relation

between the set of Walrasian equilibria of the economy E and the set of Nash

equilibria of the associated game G. This characterization of Walrasian equilibria

allows us to conclude that the Walrasian mechanism is implementable as a Nash

equilibrium of the society game.

Theorem 4.1 Let E be a pure exchange economy under assumptions (H.1) and

(H.2).

If s∗ = (x∗, a∗, y∗) is a Nash equilibrium for the game G, then x∗ is a Walrasian

equilibrium allocation for the economy E .

Reciprocally, if x∗ is a Walrasian equilibrium allocation for the economy E ,
then any s∗ = (x∗, a∗, y∗) ∈ S, with Ui(y

∗
i ) = Ui(x

∗
i ) for every i = 1, . . . , n, is a

Nash equilibrium for the game G.

In particular, x∗ is a Walrasian equilibrium allocation for the economy E , if

and only if (x∗,b, x∗) with bi = b, for every i = 1, . . . , n, (for instance (x∗,1, x∗))

is a Nash equilibrium for the game G.

Proof. Let s∗ = (x∗, a∗, y∗) be a Nash equilibrium for the game G. Assume

that x∗ is not a Walrasian equilibrium allocation. Then, by (*), we can take

a = (a1, . . . , an) ∈ [α, 1]n and yi, for each i ∈ {1, . . . n}, such that

(a)
n∑
i=1

aiyi ≤
n∑
i=1

aiωi and
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(b) Ui(yi) > Ui(x
∗
i ) for every i = 1, . . . , n.

Then, there exists (a, y) ∈ S2 such that Π2(x
∗, a, y) > Π2(s

∗), which contra-

dicts the fact that s∗ is a Nash equilibrium.

Reciprocally, let x∗ be a Walrasian equilibrium allocation. Assume that

(x∗, a, y) is not a Nash equilibrium and (a, y) ∈ S2 is such that Ui(x
∗
i ) =

Ui(yi) for every i = 1, . . . , n. Then, we have: (i) there exists x ∈ S1 such

that Π1(x, a, y) > Π1(x
∗, a, y) = 0; or (ii) there exists (b, z) ∈ S2 such that

Π2(x
∗, b, z) > Π2(x

∗, a, y) = 0.

If (i) is the case, we obtain that Ui(xi) > Ui(yi) = Ui(x
∗
i ) for every consumer

i. Since x is a feasible allocation in the economy E , we conclude that x∗ is not

an efficient allocation. By the first Welfare Theorem, it is a contradiction with

the fact that x∗ is a Walrasian allocation.

Assume that (ii) holds. Then, Ui(zi) > Ui(x
∗
i ) for every i = 1, . . . , n, and

n∑
i=1

bizi ≤
n∑
i=1

biωi, with bi > 0 for all i. This implies that x∗ is a dominated

allocation in the sense of Aubin, which is a contradiction with the fact that x∗

is a Walrasian equilibrium allocation.

Q.E.D.

Observe that in spite of the fact that we may obtain a continuum of Nash

equilibria for the game G with the same strategy for player 1, we can select a

canonical representation. If (x∗, a∗, y∗) is a Nash equilibrium then (x∗,1, x∗) is

also a Nash equilibrium for the game G.

5 A Remark

The reader may observe that we have excluded null consumption from the strat-

egy set of player 1. In particular, Pareto-optimal allocations that assign all the

initial endowments to one of the agents are excluded as strategies for player 1.

Note that xi 6= 0 was used only in the proof of Lemma 4.1. Without this tech-

nical device, there could be an equilibrium of the game that did not correspond

to a Walrasian allocation (see the example below).

On the other hand, assuming that the utility functions are concave, we may

allow null consumptions and still obtain the same result if we define a new game
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G ′ where the strategy set and the payoff function for player are changed to S ′1

and Π′1.

To be precise, S ′1 is the set of feasible allocations:

S ′1 = { x = (x1, ..., xn) ∈ IR`n+ such that
n∑
i=1

xi ≤
n∑
i=1

ωi},

Let f(x) be a positive differentiable function defined in [α, 1], such that

f ′(x) x > f(x). For example, f(x) = ebx, with b > 1
α

. Observe that f(x)
x

is

a positive and strictly increasing function, therefore: max {f(x)/x} = f(1).

Given a strategy profile s = (x, a, y) ∈ S ′, the new payoff function of player 1

is:

Π′1(x, a, y) = min
i
{f(ai) (Ui(xi)− Ui(yi))}.

Both strategy sets, S ′1 and S2, are compact. Obviously, S1 is convex, but

S2 is not (we owe this observation to an anonymous referee). Thus, we cannot

conclude from the strategies and payoff functions that the game has a Nash

equilibrium. Observe that the considerations made for the game G also apply to

G ′. In particular, Proposition 3.1 also establishes existence of Nash equilibrium

of the game G ′.

In order to prove Proposition 4.1, assume that Π2(s
∗) = C > 0.

Start by seeing that if Π2(s
∗) > 0, then a∗max = max{a∗i } = 1. Or else, by

deviating to s = (x∗, a, y∗), where ai =
a∗i
a∗max

, player 2 improves its payoff. Since

player 2 cannot improve its payoff, max{a∗i } = 1.

If all a∗i = 1, then y∗ is feasible and player 1 can obtain a null payoff by

selecting x∗ = y∗. This would give Π2 = 0.

Lemma 4.2 is still valid in this modified game. In a Nash equilibrium: Π1 =

min{f(ai)(Ui(xi) − Ui(yi))} = min{f(ai)
−C
ai
} = −Cf(1). The properties of the

function f(·) would guarantee that the payoff of player 1 is determined in the i

such that ai = 1.

Now observe that if a∗i < 1, then x∗i 6= 0. Otherwise, player 2 could deviate,

in the ith coordinate, to (a′, y′) = [(1 + ε)a∗i , y
∗
i /(1 + ε)], obtaining at least the

same payoff:

a′i[Ui(y
′
i) − Ui(x

∗
i )] = a′iUi(y

′
i) = (1 + ε)a∗i Ui(y

∗
i /(1 + ε)) ≥ a∗iUi(y

∗
i ) =

a∗i [Ui(y
∗
i )− Ui(x∗i )].

This is an interior Aubin allocation:
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∑
a′jy
′
j =

∑
a∗jy

∗
j ≤

∑
a∗jωj <

∑
a∗jωj + εa∗iωi =

∑
a′jωj.

Therefore, we can redistribute the remaining resources (εa∗iωi) and obtain a

higher payoff. This contradiction implies that if a∗i < 1, then x∗i 6= 0.

The coefficients aren’t all equal, so there is some i such that a∗i < 1 (and

x∗i 6= 0) for which f(a∗i ) [Ui(x
∗
i ) − Ui(y∗i )] > Π1(s

∗). Then, by continuity, player

1 can select a strategy x′ in which x′i = (1− δ)x∗i and x′j = x∗j + δ
n−1

x∗i , obtaining

a higher payoff. This contradiction implies that Π2 = 0, proving Proposition 4.1

and, as a consequence, Theorem 4.1.

An example:

We will show that if null consumptions are allowed as strategies for player one

in game G, then the main result is no longer true.

Consider an economy with two agents and one commodity. Both agents have

the same preference relation represented by the utility function U(x) = x. Let

ω1 = ω2 = ω > 0. We will see that the non-Walrasian allocation that assigns all

the resources to one consumer can be a Nash equilibrium strategy for player one.

Let s∗ = (s∗1, s
∗
2) ∈ S1 × S2 with s∗1 = (2ω, 0) and s∗2 = ((a, b), (x, y)), such that

Π2(s
∗) > 0. As we have seen, if s∗ is a Nash equilibrium, then a < 1, b = 1 and, by

Lemma 4.2, a(x−2ω) = y. On the other hand, s∗2 ∈ S2 implies ax+y = (a+1)ω.

This implies x = 2ω +
1− a

2a
ω and y =

1− a
2

ω. Then Π2(s
∗) =

1− a
2

ω and

a = α guarantees that player two has no incentive to deviate. Observe that

in the game G, given s∗2, when player one chooses the strategy (z, t) her payoff

Π1((z, t), s
∗
2) = min

{
z −

(
2ω +

1− α
2α

ω
)
, t− 1− α

2
ω
}

is attained in the first

term and then the best response for player 1 is (2ω, 0). It is now clear that the

profile s∗ = ((2ω, 0), (α, 1), (2ω +
1− α

2α
ω,

1− α
2

ω)) is a Nash equilibrium.

However, in the modified game G ′ the profile s∗ can not be a Nash equilibrium

because s∗1 is not a Walrasian allocation. Observe that the payoff for player one is

Π′1((z, t), s
∗
2) = min

{
f(α)

(
z − 2ω − 1− α

2α
ω
)
, f(1)

(
t− 1− α

2
ω
)}

where each

term is increasing in z and t respectively. We have Π′1(s
∗) = f(1)

(
1− α

2
ω
)
.

Then player 1 increases her payoff by choosing the strategy (2ω−ε, ε) for ε small.
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6 Conclusion

In this paper, we have provided a characterization of Walrasian equilibria alloca-

tions in terms of Nash equilibria of an associated two-player game that we have

referred to as the society game. Moreover we have established that, indepen-

dently of the number of consumers and commodities, Walrasian equilibrium is

implementable as a strong Nash equilibrium of a two-player game.

This equivalence result adds to the great deal of works on strategic approaches

to economic equilibrium. However, our society game differs substantially from

those games considered in the literature on strategic market games with respect

to several points: our society game involves only two players (it makes no differ-

ence the number of consumers in the economy); each player represents a role of

the society formed by all the consumers in the economy and not an individual;

the outcomes are given by the strategies themselves and prices appear neither in

the strategy sets nor in the payoff functions.

The parameter α and the utility functions representing preferences are used

in the definition of the game. However, as a consequence of our main result, we

conclude that the allocations underlying Nash equilibria are the same, indepen-

dently of the value of α and only depend on preferences.

Finally, as we have pointed out in the Introduction, our results do still hold for

economies with infinitely many commodities and also for differential information

economies. For this, it suffices to apply the characterization result (*) which is

proved in Hervés-Beloso et al. (2005b) for those more general settings.
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1 Introduction

In this paper we consider a pure exchange economy with a continuum of agents

and finitely many commodities (Aumann 1964, 1966). We associate a game with

only two players to each Aumann’s economy. Our aim is to characterize the

core and the competitive allocations of the economy as Nash equilibria of the

associated two-player game.

In the associated two players game, the strategies of the first payer are feasible

allocations of the economy. Each strategy of the second player consists in a

coalition of agents and a feasible allocation for this coalition. Given a strategy

profile, if all the agents in the coalition proposed by player 2 are better off

with the allocation proposed by player 1, then player 1’s payoff depends on the

difference of utilities that the agents in the coalition obtain with the allocations

proposed by the two players. Otherwise, her payoff is the essential infimum of

the difference of utilities in that coalition. The payoff of the second player is

defined symmetrically.

Given any strategy selected by player 1, player 2 can get zero payoff by choos-

ing the strategy given by the coalition of all agents and the same allocation

as player 1. Furthermore, she could obtain a positive payoff if and only if the

allocation proposed by player 1 can be blocked by a coalition. Moreover, by

showing that in any Nash equilibrium both payoffs are zero, we prove that in

this two-plater game any Nash equilibrium is a strong Nash equilibrium.

Our main result (Theorem 3.1) proves that any allocation in the core of the

economy is a strong Nash equilibrium of the two-player game and, reciprocally,

any Nash equilibrium can be identified with a core allocation in the economy.

Therefore, the assumptions that guarantee the core-Walras equivalence and the

non-emptiness of the core (Aumann 1964, 1966) lead us to conclude (Corollary

3.1) that the competitive allocations of the continuum economy are characterized

as Nash equilibria of the associated two-player game.

In Hervés-Beloso and Moreno-Garćıa, (2008), we have characterized the wal-

rasian allocations of an n-agents economy as the Nash equilibria of an associated

two-player game. Then Corollary 3.1 is an extension to the continuum case of our

previous result. Moreover, Theorem 3.1 holds not only for continuum (atomless)

economies but also for economies with a finite or countable number of agents or

mixed economies. Thus, in the case of a finite pure exchange economy, we have
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two different two-player games, associated to the economy, which characterize

the core and the Walrasian allocations, respectively.

In order to emphasize the power of the veto mechanism in atomless econo-

mies, we address the particular case of a continuum economy with n types of

agents. We then consider a finite pure exchange economy with n consumers

which we identify with this n-types continuum economy. Assuming convexity

of preferences, for each competitive allocation in the n types economy, we can

construct a competitive allocation which is constant on types, i.e., a competitive

allocation with the equal treatment property. This step function corresponds

to a Walrasian allocation in the finite economy (see Garćıa-Cutŕın and Hervés-

Beloso, 1993). The attempt to apply our main result to the finite economy, via

an n-types continuum economy, does no longer allow us to exploit the veto power

of the coalitions as we do in the continuum case. This is due to the fact that the

measure of the set of agents of each type forming the coalition proposed by player

2 is the only coalitional data collected in the payoff functions. For this reason

we cannot ensure that any Nash equilibrium underlies a Walrasian allocation, as

we show in an example. Actually, in our example there is a Nash equilibrium

of the game associated to the finite economy with a positive payoff for player 2

and, therefore, the allocation proposed by player one cannot be Walrasian.

In our study we have only considered a finite number of commodities. This

assumption is not essential. Our main result is actually a characterization of

the core of the economy. Therefore, if we consider a continuum economy with

infinitely many commodities, in which the core-Walras equivalence holds (Bewley,

1973), we would also obtain the characterization of the competitive allocations

as Nash equilibria of the associated two-player game.

The remainder of this paper is organized as follows. In Section 2 we define

the continuum economy and the associated two-players game. In Section 3 we

present the properties of the game, we prove our main results and we state some

remarks regarding the size of the coalition selected by player 2 in which the main

results still hold. In Section 4, we consider the particular case of a continuum

economy with n types of agents in order to recast the associated game for an

Arrow-Debreu pure exchange economy. A final example points out that the

discrete version of the game does not allow us to characterize Nash equilibria as

Walrasian allocations.
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2 The economy and the game

Consider a pure exchange economy E with ` commodities. The space of con-

sumers is represented by an atomless finite measure space (I,A, µ).

Each agent t ∈ I is characterized by her consumption set IR`
+, her initial en-

dowment ω(t) ∈ IR`
+ and her preference relation �t on consumption bundles,

which is represented by the continuous utility function Ut : IR`
+ → [0, 1]. The

mapping ω : I → IR`
+, which assigns to each agent her recourses, is µ-integrable

and the mapping U that assigns to each consumer her utility function is mea-

surable.

An allocation is a µ-integrable function f : I → IR`
+. An allocation f is feasible

in the economy E if
∫

I
f(t)dµ(t) ≤

∫
I
ω(t)dµ(t).

A price system is an element of ∆, where ∆ denotes the (` − 1)-dimensional

simplex of IR`
+, that is, ∆ = {p ∈ IR`

+ such that
∑̀
h=1

ph = 1}.

A competitive equilibrium for E is a pair (p, f), where p is a price system

and f is a feasible allocation such that, for almost every agent t, the bundle f(t)

maximizes the utility function Ut in the budget set Bt(p) = {y ∈ IR`
+ such that p·

y ≤ p · ω(t)}.

A coalition is any measurable set S with µ(S) > 0. A coalition S blocks an

allocation f via another allocation g in the economy E if:

(i)
∫

S
g(t)dµ(t) ≤

∫
S
ω(t)dµ(t) and

(ii) Ut(g(t)) > Ut(f(t)) for almost all t ∈ S.

A feasible allocation belongs to the core of the economy if it is not blocked by

any coalition of agents.

We define a game G associated to the economy E in order to analyze the

relation between the non-cooperative solution of Nash equilibrium and the de-

centralized solution of competitive equilibrium.

There are two players. The strategy set for the player 1 is denoted by Θ1 and

is given by

Θ1 = {f : I → IR`
+ :

∫
I
f(t)dµ(t) =

∫
I
ω(t)dµ(t)}

That is, a strategy for player 1 is a feasible allocation f. Observe that ω ∈ Θ1.
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The strategy set for the player 2 is denoted by Θ2 and is defined as follows:

Θ2 = {(S, g) :
∫

S
g(t)dµ(t) =

∫
S

ω(t)dµ(t)}

That is, the strategy set for player 2 is the set of pairs which specify a coalition

of agents and a feasible trade for such a coalition. Observe that if f is a feasible

allocation then (I, f) ∈ Θ2. Furthermore, (S, ω) ∈ Θ2 whatever coalition S may

be.

Let Θ denote the product set Θ1×Θ2. A strategy profile is any θ = (f, S, h) ∈
Θ, that is, a strategy profile is a strategy θ1 = f ∈ Θ1 for player 1 and a strategy

θ2 = (S, g) ∈ Θ2 for player 2.

In order to define the payoff functions, given a function F : I → IR and a

coalition of agents S ⊂ I, let be

ess inf{F (t), t ∈ S} = sup{c ∈ IR | F (t) ≥ c for almost all t ∈ S}.

Given a strategy profile (f, S, g), we define the following real valued functions

α(f, S, g) = ess inf{Ut(f(t))− Ut(g(t)), t ∈ S}

β(f, S, g) = ess inf{Ut(g(t))− Ut(f(t)), t ∈ S}

Now for every (f, S, g) ∈ Θ, the payoff functions Π1 and Π2 for player 1 and

2, respectively, are defined as follows

Π1(f, S, g) =


∫

S
(Ut(f(t))− Ut(g(t))) dµ(t) if α(f, S, g) ≥ 0

α(f, S, g) otherwise

Π2(f, S, g) =


∫

S
(Ut(g(t))− Ut(f(t))) dµ(t) if β(f, S, g) ≥ 0

β(f, S, g) otherwise

A strategy profile is a Nash equilibrium if no player has an incentive to deviate.

That is, θ = (f, S, g) is not a Nash equilibrium of G if either there exists f̂ ∈ Θ1,

such that Π1(θ) < Π1(f̂ , S, g) or there exists (Ŝ, ĝ) ∈ Θ2 such that Π2(θ) <

Π2(f, Ŝ, ĝ).
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A strategy profile is a strong Nash equilibrium if no coalition has an incentive

to deviate. Therefore, in our game G a profile is a strong Nash equilibrium if

and only if it is an efficient Nash equilibrium.

3 Main Results

In this section we analyze some properties of the game G, which we have previ-

ously associated to the economy E . The aim is to present our main results which

characterize the core and the competitive equilibrium allocations of the economy

as strong Nash equilibria of G.

Given the associated game G, note that if Π1(f, S, g) > 0 (resp. Π2(f, S, g) >

0) then Π2(f, S, g) < 0 (resp. Π1(f, S, g) < 0). That is, both payoffs can be

negative for some strategy profiles but cannot be strictly positive at the same

time. Observe also that Π1(f, S, g) = 0 if and only if Π2(f, S, g) = 0.

Note that given any strategy f ∈ Θ1, player 2 can always get null payoff by

selecting (I, f) ∈ Θ2. We also show that for each (S, g) ∈ Θ2, there exists f ∈ Θ1

such that Π1(f, S, g) = 0 (see the proof of the Lemma 3.1 below).

Lemma 3.1 If θ∗ is a Nash equilibrium then Π1(θ
∗) = Π2(θ

∗) = 0.

Proof. Let θ∗ = (f ∗, S∗, g∗) be a Nash equilibrium. Since (I, f ∗) is a possible

strategy for player 2, we have Π2(θ
∗) ≥ 0. Assume Π2(θ

∗) > 0. Then Π1(θ
∗) < 0.

Consider the allocation f given by

f(t) =

 g∗(t) if t ∈ S∗

ω(t) otherwise

Note that f ∈ Θ1 and Π1(f, S∗, g∗) = 0, which is a contradiction.

Q.E.D.

Remark 1.1 Consider now a strategy (S, g) ∈ Θ2, with µ(S) > 0 and∫
I\S

ω(t)dµ(t) > 0. Define the following feasible allocation

f(t) =


g(t) +

1

µ(S)

∫
I\S

ω(t)dµ(t) if t ∈ S

0 otherwise

1We thank Andrés Carvajal for pointing out this remark.
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If preferences are monotone we have Π1(f, S, g) > 0. Therefore, under mono-

tonicity of preferences and requiring that
∫

A
ω(t)dµ(t) > 0 for every coalition A,

we can conclude that if (f, S, g) is a Nash equilibrium then µ(S) = µ(I).

Proposition 3.1 Any Nash equilibrium of the game G is a strong Nash equilib-

rium.

Proof. Let θ∗ be a Nash equilibrium. By Lemma 3.1., Π1(θ
∗) = Π2(θ

∗) = 0.

By definition of the payoff functions, both Π1 and Π2 cannot be strictly positive

at the same time and Π1(θ) = 0 if and only if Π2(θ) = 0. This implies that the

coalition formed by the two players has no incentive to deviate from the profile

θ∗.

Q.E.D.

Theorem 3.1 If θ∗ = (f ∗, S∗, h∗) is a Nash equilibrium for the game G, then f ∗

belongs to the core of the economy E .

Reciprocally, if f ∗ is core allocation for the economy E , then any strategy

profile (f ∗, I, h∗) ∈ Θ, with Ut(f
∗(t)) = Ut (h∗(t)) , for almost all t ∈ I, is a Nash

equilibrium for the game G.

In particular, f ∗ belongs to the core of the economy E if and only (f ∗, I, f∗)

is a strong Nash equilibrium for the game G.

Proof. Let θ∗ = (f ∗, S∗, h∗) be a Nash equilibrium. By Lemma 3.1 Π1(θ
∗) =

Π2(θ
∗) = 0. Assume that f ∗ does not belong to the core of the economy E . Then

there exists (S, g) ∈ Θ2 such that Π2(f
∗, S, g) > 0 = Π2(θ

∗).

Reciprocally, let f ∗ be a core allocation and (I, h∗) ∈ Θ2 such that Ut(f
∗(t)) =

Ut (h∗(t)) , for almost all t ∈ I. Assume that (f ∗, I, h∗) ∈ Θ is not a Nash

equilibrium. Then, either player 1 or player 2 has an incentive to modify her

strategy. If player 1 has an incentive to deviate then the allocation f ∗ is not

efficient, that is, it is blocked by the coalition I. If there exists (S, g) ∈ Θ2 such

that Π2(f
∗, S, g) > 0 = Π2(f

∗, I, h∗) then f ∗ is blocked by the coalition S, via g

which is a contradiction with the fact that f belongs to the core of E .

Q.E.D.

We remark that the previous theorem provides a characterization of the core

of a general economy. In fact, the above equivalence result holds not only for
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atomless economies but also for economies with a finite or countable number of

agents or mixed economies. However, this equivalence result could be empty in

the sense that, without any assumption on the model, core allocations of the

economy or, equivalently, Nash equilibria of the game G, could not exist. Then,

thereafter, we suppose that our economy E is a continuum economy that fulfills

the assumptions that guarantee the core-Walras equivalence and therefore, the

core and the set of the competitive allocation are non-empty (see Aumman 1964,

1966).

Proposition 3.2 The set of Nash equilibria for the game G is nonempty.

Proof. The non-emptyness of the set of Nash equilibria is a consequence of the

existence of core allocations (or competitive allocations) for the continuum econ-

omy E . In fact, if f is a core allocation for the economy E then (f, I, f) is a Nash

equilibrium for the game G. To see this, note that Π1(f, I, f) = Π2(f, I, f) = 0.

If player 1 has an incentive to deviate then there exists g ∈ Θ1 such that

Π1(g, I, f) > 0 and therefore f is not efficient. If Π2(f, S, g) > 0 for some

(S, g) ∈ Θ2, then f is blocked by the coalition S, which is a contradiction with

the fact that f belongs to the core.

Q.E.D.

We remark that the assumptions on the continuum economy E which guaran-

tee the core-Walras equivalence allow us to obtain as an immediate consequence

of Theorem 3.1 the corresponding characterization of competitive allocations.

Corollary 3.1 If θ∗ = (f ∗, S∗, h∗) is a Nash equilibrium for the game G, then

f ∗ is a competitive equilibrium allocation for the economy E .

Reciprocally, if f ∗ is a competitive equilibrium allocation for the continuum

economy E , then any strategy profile (f ∗, I, h∗) ∈ Θ, with Ut(f
∗(t)) = Ut (h∗(t)) ,

for almost all t ∈ I, is a Nash equilibrium for the game G.

In particular, f ∗ is a competitive equilibrium allocation for the economy E , if

and only (f ∗, I, f ∗) is a strong Nash equilibrium for the game G.

Remark 2. We highlight that from the proof of the previous results we

can deduce that the requirement of finitely many commodities is not essential.

In particular, Corollary 3.1 is still true for atomless economies with infinitely
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many commodities whenever the core-Walras equivalence holds (see for instance

Bewley, 1973).

Remark 3. Let us consider a number ε ∈ (0, µ(I)). Let G(ε) the game which

coincides with G except for the strategy set of player 2 that is restricted to those

coalitions S, with µ(S) ≥ µ(I) − ε, and feasible allocations for such coalitions.

For the case of finitely many commodities, Vind (1972) showed that in atomless

economies it is enough to consider the blocking power of coalitions with a fixed

measure ε in order to get the core or, alternatively, the competitive equilibria

(see Hervés-Beloso et al. 2000, 2005 and Evren-Husseinov, 2008). Then, we can

conclude that for atomless economies our results hold for any game G(ε).

4 Economies with n types of consumers

Let us consider the particular case of a continuum economy Ec with only n types

of agents. The set of agents is represented by the real interval [0, 1], with the

Lebesgue measure µ. We write I = [0, 1] =
⋃n

i=1 Ii, where Ii =
[

i−1
n

, i
n

)
, if i 6= n,

and In =
[

n−1
n

, 1
]
. Every consumer t ∈ Ii is characterized by her consumption

set IR`
+, her utility function Ut = Ui and her initial endowment ω(t) = ωi ∈ IR`

+.

We will refer to Ii as the set of agents of type i in the atomless economy Ec.

This particular economy Ec can be considered as a representation of a finite

economy En, with n consumers and ` commodities, where each consumer i is

characterized by the utility function Ui and the initial endowments ωi ∈ IR`
+.

In this Section, we assume convexity of preferences and the hypotheses that

guarantee the core-Walras equivalence for the n-types continuum economy Ec.

Observe that an allocation x in En can be interpreted as an allocation fx in

Ec, where fx is the step function given by fx(t) = xi, if t ∈ Ii. Reciprocally, an

allocation f in Ec can be interpreted as an allocation xf = (xf
1 , . . . , x

f
n) in En,

where xf
i =

1

µ(Ii)

∫
Ii

f(t)dµ(t). Observe also that (x, p) is an equilibrium for the

economy En if and only if (f, p) is an equilibrium for the continuum economy Ec,

where f(t) = xi if t ∈ Ii.

Let Gc denote the two-player game associated to the n-types continuum econ-

omy Ec. A discrete approach of the game Gc to an associated game Gn for the

finite economy En is related with the equal treatment property of allocations.
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Note that if the strategy profiles in Gc are required to satisfy the equal treatment

property, then each player selects the same bundle for agents of the same type

and, therefore, the payoff functions depend on the weight of the types in the

coalitions selected by player 2 and on the corresponding step functions but do

not reflect the possibility of any other different distribution of resources among

members of the same type. On the other hand, any Nash equilibrium for the Gc

underlies a core or competitive allocation. Therefore, under convexity of pref-

erences, we can deduce any Nash equilibrium for the game Gc, defines a Nash

equilibrium for which the equal treatment property holds.

Next we show how the game Gc provides a two-player game Gn associated to

the economy with n consumers. For this, observe that, without loss of generality,

we can assume that the strategy set of player 2 can be restricted to those strate-

gies (S, g) such that g is feasible for the coalition S and µ(S) > 1− 1
n

(see Remark

3 in the previous Section). This guarantees that all types are represented in the

coalition selected by player 2.

Thus, in the game Gc the strategy set for the player 1 is is given by

{x ∈ IR`n
+ :

n∑
i=1

xi =
n∑

i=1

ωi}

The strategy set for the player 2 is as follows:

{(a, y) ∈ [δ, 1]n × IR`n
+ :

n∑
i=1

aiyi =
n∑

i=1

aiωi},

where δ is any real number in the interval (0, 1).

Given a ∈ [δ, 1]n let us denote by S(a) the set of coalitions Sa in the continuum

economy Ec such that nµ(Sa
⋂

Ii) = ai for every i = 1, . . . , n. Observe that the

game Gn does not distinguish among the coalitions in S(a).

Then, in practice, the strategy set for player 2 is the set of pairs which specify

a parameter (a rate of participation) and a commodity bundle for each agent

such that the resulting allocation is feasible in the sense of Aubin (1979).

Observe that if x is a feasible allocation then (1, x) is a possible strategy for

player 2, where 1 denotes the vector (1, . . . , 1) ∈ [δ, 1]n. Furthermore, (a, ω) is

also a strategy that player 2 can choose whatever a ∈ [δ, 1]n may be.

Now, the payoff functions Φ1 and Φ2 for player 1 and 2, respectively, are

defined as follows
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Φ1(x, a, y) =


n∑

i=1

ai(Ui(xi)− Ui(yi)) if Ui(xi) ≥ Ui(yi) for every i

min{Ui(xi)− Ui(yi), i = 1, . . . , n} otherwise

Φ2(x, a, y) =


n∑

i=1

ai(Ui(yi)− Ui(xi)) if Ui(yi) ≥ Ui(xi) for every i

min{Ui(yi)− Ui(xi), i = 1, . . . , n} otherwise

Theorem 4.1 If (x∗, 1, x∗) is a Nash equilibrium for the game Gn, then x∗ is a

Walrasian equilibrium allocation for the economy En.

Reciprocally, if x∗ is a Walrasian equilibrium allocation for the economy En,

then any strategic profile (x∗, a∗, y∗) with Ui(y
∗
i ) = Ui(x

∗
i ) for every i = 1, . . . , n,

is a Nash equilibrium for the game Gn.

In particular, x∗ is a Walrasian equilibrium allocation for the economy En, if

and only if (x∗,b, x∗) with bi = b, for every i = 1, . . . , n, (for instance (x∗,1, x∗))

is a Nash equilibrium for the game Gn.

Proof. Let s∗ = (x∗, 1, x∗) be a Nash equilibrium for the game Gn. If x∗ is

not a Walrasian allocation, then x∗ is blocked in the sense of Aubin with weights

ai as closed to one as one wants, for every i = 1, . . . , n (see Hervés-Beloso and

Moreno-Garćıa, 2001, 2005, for details). That is, a strategy (a, y) for player 2

exists, such that Φ2(x
∗, a, y) > 0 = Φ2(s

∗).

Reciprocally, let x∗ be a Walrasian allocation and let (x∗, a∗, y∗) be a strategy

profile, with Ui(y
∗
i ) = Ui(x

∗
i ) for every i = 1, . . . , n, a strategy profile. If player

1 has an incentive to deviate, then x∗ is not efficient. If there is a strategy (a, y)

for player 2 such that Φ2(x
∗, a, y) > 0 then x∗ is blocked by the grand coalition in

the sense of Aubin which is in contradiction to the fact that x∗ is Walrasian (see

again Hervés-Beloso and Moreno-Garćıa, 2001, 2005, for details in the infinite

dimensional case).

Q.E.D.
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5 Some Remarks

Let us consider the finite economy En and the continuum n-types economy Ec

with their associated games Gn and Gc, respectively.

Let (x, a, y) be a strategy profile in the game Gn. Note that if ai < 1 for every

i, then player 2 has an incentive to deviate by selecting the strategy (b, y) where

bi =
ai

maxi ai

. Therefore if (x, a, y) is a Nash equilibrium in the game Gn then

ai = 1 for some i.

Let x be a feasible allocation in the economy En. Recall that if (fx, S, g) is a

Nash equilibrium for the game Gc then both players get a null payoff. This is

due to the fact that if player 2 obtains a strictly positive payoff, then player 1

can select the strategy which assigns g to the individuals in the coalition S and

ω to the individuals outside S. However, this kind of strategy is not possible for

player 1 in the game Gn. The reason is that the game Gn only takes into account

the size of the members of a coalition belonging to each type and does not reflect

differences in the distribution of commodities among agents with the same type

as the Gc, associated to the continuum economy, does.

Furthermore, as we have already remarked, in the continuum case, the strat-

egy set for player 2 can be restricted to coalitions with any size and, therefore, to

arbitrarily big coalitions. This implies that, in the particular case of an atomless

n-types economy we can consider, without loss of generality, that player 2 only

selects coalitions where all types are actually represented. Therefore, when one

goes from the continuum to the finite economy, in the associated game Gn player

1 would be restricted to select equal treatment allocations. This implies that the

distribution properties among agents of the same type are not contemplated as

strategies. That is, when we recast the game Gc as the game Gn we lose pos-

sibilities of distribution among agents of the same type leading to a reduction

of strategies (basically for player 1) which can result in the existence of Nash

equilibria where player 2 obtains a strictly positive payoff and, therefore, the

allocation proposed by player 1 is not Walrasian. The next example shows our

claim:

An Example. Consider an economy with two agents and one commodity.

Both agents have the same preference relation represented by the utility function

U(x) = x. Let ω1 = ω2 = ω > 0 be the initial endowments. Let us consider the

associated game G2 where, without loss of generality, the parameter a ∈ [1/2, 1]2.
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Consider that player 1 chooses feasible allocation x∗ = (2ω, 0) which is efficient

but it is not a Walrasian allocation. The best response for player 2 is obtained

by maximizing α(y1 − 2ω) + βy2 subject to αy1 + βy2 = (α + β)ω, y1 ≥ 2ω and

y2 ≥ 0. Then β = 1 and α < 1 (see remarks above). Furthermore, taking into

account the restrictions, the payoff function for player 2 takes the value (1−α)ω.

Therefore, the player 2’s best response is given by the weights a∗ = (1/2, 1)

and the allocation y∗ = (5ω/2, ω/4). Observe that Φ2(x
∗, a∗, y∗) = ω/2 whereas

Φ1(x
∗, a∗, y∗) = −ω/2. Also note that when player 2 selects (a∗, y∗) player 1 is not

able to get a positive payoff and then Φ1(x, a∗, y∗) = min{x1 − 5ω/2, x2 − ω/4}.
It is easy to conclude that (x∗, a∗, y∗) is a Nash equilibrium.

Consider now the associated continuum economy with two types of agents.

Let the strategy profile (fx∗ , Sa∗ , fy∗), where Sa∗ is any coalition S such that

µ(S
⋂

I1) = 1/4 and µ(S
⋂

I2) = µ(I2) = 1/2. Note that Π2(fx∗ , Sa∗ , fy∗) =

Φ2(x
∗, a∗, y∗) > 0 which allows us to conclude that (fx∗ , Sa∗ , fy∗) is not a Nash

equilibrium for the two player game associated to the continuum economy (see

Lemma 3.1). Actually, player 1 has an incentive to deviate by selecting the

feasible allocation f given by f(t) = fy∗(t) if t ∈ Sa∗ and f(t) = ω(t) otherwise.

We refer the reader to Hervés-Beloso and Moreno-Garćıa (2008) where the

Walrasian allocations of a finite economy are characterized as the Nash equilib-

ria of a two-player game. In that game, the player 1’s payoff are affected by

coefficients f(ai) that depend on the parameters ai, i = 1, . . . , n. It suffices to

consider f(ai) = a2
i for each i in order to avoid the situation presented in the

example above.
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Blocking Efficacy of Small Coalitions in Myopic Economies. Journal of Eco-

nomic Theory, 93, 72-86.
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