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Abstract

This paper studies games of social activity in a network environ-

ment, in which own activity and cumulative neighbour activity are

strategic complements and agents have concave value functions. Typi-

cal stylised examples for such a situation include activity and linking in

online social networks. We show that there is a unique positive activ-

ity equilibrium on exogenous networks under mild conditions. When

network formation is endogenised, then: (i) Equilibria display a single

positive level of activity i� the network is regular. (ii) There are equi-

libria with many distinct levels of activity; players with higher activity

have more neighbours but sponsor fewer links and the corresponding

networks are (with few exceptions) not minimally connected. (iii) In

strict equilibria, the network is either a complete multipartite graph

or a particular variation of these graphs.

Finally, we show how individual preferences shape the social network

in large societies�mirroring some empirical �ndings e.g. for Facebook

and YouTube.
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1 Introduction

Online social networks have become increasingly important for everyday life

over the last decade and their economic impact steadily rises.1 On these

sites, users typically create a personal pro�le or channel and then interact

through a virtual network represented by a list of friends or followers. Casual

observation indicates two regularities:

First, activity of friends or followers (that is time spent on a particular

social network site) often displays complementarity: if, for instance, a friend

uploads more pictures or sends more messages on Facebook, then there are

stronger incentives to spend time tagging people in these photos as well as

commenting on them or reading and replying to messages.

Second, users typically participate in a variety of social network sites

o�ering di�erent services instead of one integrated platform (for instance

Facebook, Google+, LinkedIn, Twitter, Myspace or even YouTube). This

indicates that there are diminishing returns to using particular services.

In this paper, we take these two observations as given and are interested in

their implications for activity patterns as well as for the network structure.2

For this purpose, we propose a �social activity and network formation� model

with two corresponding key properties:

First, there are strategic complements between an agent's own activity

and the cumulative activity of his friends. In particular, an agent desires to

be active if one of his friends is active and then increases his activity at a

diminishing rate as his friends become more involved. Ugander et al. (2011)

provide some empirical evidence that user activity on Facebook essentially

meets these assumptions.3

1For instance, the initial public o�ering of Facebook in May 2012 was (to that date)
the third largest public o�ering in US history giving the company a $104 billion valuation
(Dembosky and Demos, 2012). On a broader perspective, the McKinsey Global Institute
estimated that �rms can raise the productivity of high-skill knowledge workers by 20 to
25 percent by fully implementing (online) social technologies (Chui et al., 2012).

2Due to the amount of material, we leave welfare considerations in this paper aside and
open for future research.

3The authors measure user logins over a 28-day window. Their results show that a
user's degree as well as the average number of logins of his neighbours are increasing and
(largely) convex functions of his own number of logins (see Figure 7, ibid.). Consequently,
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Second, there are limitations to the bene�ts from social activity: opti-

mising agents�who adjust their activity to their friends' involvement�have

diminishing marginal utility from (cumulative) neighbour activity.

We consider two versions of the game, a pure activity game on exogenous

networks and an activity game with endogenous network formation. Both

versions of the game are one-shot and simultaneous-move.

Our contribution to the literature is twofold: We extend (i) the theory

of games with strategic complementarity on exogenous networks as well as

under endogenous network formation and (ii) introduce a simple model that

replicates some empirical �ndings for online social networks.

For the pure activity game, we provide a necessary and a su�cient con-

dition on the best response function for the existence of a unique (strictly)

positive activity equilibrium.4

In the game with endogenous network formation, an equilibrium displays

a single positive level of activity if and only if the network is regular (that is all

players have a common number of neighbours/degree). The corresponding

equilibrium activity is determined by, and increases in, the degree of the

regular network.5

In principle, positive activity equilibria can display a large number of

distinct activity levels.6 We �nd several regularities for these (generic) multi-

level equilibria: First, players' activity and degree are positively correlated�

in accordance with empirical �ndings for Facebook (see Wilson et al. (2009),

Figure 8). Second, although high activity players have many neighbours,

they tend to sponsor few links themselves. Third, equilibrium networks are

(with few exceptions) not minimally connected.

a user's number of logins is an increasing and concave function of the total logins of his
neighbours.

4Some properties of the positive activity equilibrium as well as comparative statics are
presented in the supplementary material in Appendix B.2, see also Footnote 22 for details.

5We discuss the relation of the interval of equilibrium supporting linking costs and the
degree of a regular equilibrium network in the supplementary material in Appendix B.6.

6As examples, we study two prominent types of networks more in detail: any biregular
bipartite graph�such as the star and the complete bipartite graph�is an equilibrium
network with two levels of activity for some interval of linking costs. Conversely, core-
periphery networks exist in equilibrium only under very particular speci�cations of the
model.
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We also study a stronger solution concept: In strict equilibria, the network

is either a complete multipartite graph or a variation of these graphs in which

one partite set is replaced by a group of fully connected players (i.e. a clique).

Finally, we consider large societies. We �rst show that some positive

activity equilibrium exists for any linking costs smaller than the supremum

value of a single link. We then discuss how individual (user) preferences

shape the social network: If users are relatively satiated even from little

neighbours' activity then the star is a robust equilibrium in large societies

and the complete network ceases to exist. If users get less easily satiated then

the converse holds true. Indeed, Wilson et al. (2009) show empirically that

pure social network sites such as Facebook exhibit signi�cantly higher con-

nectivity than content distribution sites with (less elaborate) social network

components such as YouTube.

Our model extends a new and rapidly evolving literature. Originally,

network formation, such as Bala and Goyal (2000), and (one shot) games on

exogenous networks, as in Bramoullé and Kranton (2007), were two sepa-

rate strands of the literature. Galeotti and Goyal (2010) combine these two

strands of literature�and in fact these two papers�to analyse a local public

goods game with simultaneous and endogenous network formation. Their

model displays strategic substitutes and the authors show that only a small

fraction of players invests into the public good in large societies.7

Our model is most closely related to Hiller (2010) who also studies a

game with strategic complementarity and endogenous network formation but

assumes in contrast to us a convex value function. Hiller's assumption leads

to some kind of �bang-bang� solution: for su�ciently low linking costs, the

complete network is the unique equilibrium and for su�ciently high costs

the empty network. The only (additional) structure that might arise for

intermediate linking costs are core-periphery networks. In our model, much

richer social structures and activity patterns�which are concealed in Hiller

(2010) due to convexity�exist in equilibrium.

7Zhang et al. (2011) extend this research to the case of imperfect substitutes. They
model (pure) content production in online social networks where each player has a taste
for content from di�erent sources.
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There are several other related papers: Ballester et al. (2006) assume lin-

ear best responses and analyse games with local strategic complements and

global substitutes on exogenous networks. They link the equilibrium action

of any player to his Bonacich centrality in the network.8 Lagerås and Seim

(2012) allow for non-linear best responses but assume, in contrast to us, that

the complementarity e�ect from any two neighbours is mutually reinforc-

ing.9 They show that a unique interior equilibrium exists on any exogenous

network. Furthermore, the network structure converges to so-called nested

split graphs in a particular dynamic network formation game with myopic

agents.10 In contrast, equilibrium networks in our model are typically non-

nested graphs as high degree agents sponsor few links (and thus rarely share

links between themselves).11

The paper proceeds as follows: in the next section, we introduce the model

and our solution concept. Section 3 considers the pure activity game on

exogenous interaction networks. In Section 4, we characterise equilibria in

the activity game with endogenous network formation as comprehensively

as possible for a �xed size of society. Subsequently, we consider large soci-

eties in Section 5 and discuss how individual (user) preferences shape the

social network. Finally, the last section concludes. Proofs from the main

body are presented in Appendix A and supplementary material is collected

in Appendix B.

8Recently, Bramoullé et al. (2012) have extended the analysis to arbitrary (bounded)
linear best responses on exogenous networks. In contrast, we assume concave best re-
sponses and (mainly) study endogenous network formation.

9They essentially assume best response correspondences with non-negative cross partial
derivatives; in our model, the cross partial derivatives are strictly negative. It can be easily
checked that Assumption 4 from Lagerås and Seim (2012) is for instance not met for the
family of social activity models in Example 1.

10In these graphs, the neighbourhood of any lower degree player is contained in the
neighbourhood of all higher degree players.

11For instance, biregular bipartite networks in which lower degree players have at least
two neighbours are non-nested equilibrium networks, see Section 4.2.2.
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2 Model

Let N = {1, 2, . . . , n} be the set of agents with n ≥ 2. All agents i ∈ N

choose a level of activity xi ∈ X = [0,∞) simultaneously; the vector xn =

(x1, x2, . . . xn) collects the activity of all n players.

We distinguish two versions of the game: either the social interaction

structure is exogenously given or it is formed endogenously and simultane-

ously with the activity choices. In the latter case, we assume one-sided link

formation.12

Social Interaction Structure

(a) Link Sponsorship If the social interaction structure is formed en-

dogenously, link sponsorship is represented by a directed network or graph

g ∈ Gn where Gn is the set of Boolean n×n matrices with zeros on the main

diagonal.13 We say that a player i sponsors, forms or supports a link to some

other player j i� gij = 1, where gij denotes the (i, j)th entry of g. Player i's

linking choices are collected in the vector gi, the ith row vector of g. The set

of possible linking choices of agent i�i.e. the set of Boolean row vectors of

length n in which the ith entry is zero�is called gi.

We need to introduce some further notation: �rst, the number of links

player i forms in g is counted by ηi,g = |{j ∈ N : gij = 1}|. Second,

g−i�g′i = (gt1, . . . , g
t
i−1, g

′t
i , g

t
i+1, . . . g

t
n)t is an operation which alters i's linking

decision, that is, the ith row of g is replaced by some vector g′i ∈ gi whilst

the remaining network is kept �xed. Last, g ⊕ ij is an operation with which

a single link is added, i.e. the (i, j)th entry of g is set to one keeping the

remaining network �xed.

12Although in some real world social networks (e.g. on Facebook) �friendship invitations�
have to be con�rmed, there are relatively small costs to accepting and maintaining links.
Instead, �nding an o�ine friend within the social network might take some time�e.g. if
he is registered under a pseudonym or if there are several users who share the same name.
Thus one-sided link formation is a reasonable simpli�cation.

13For simplicity, we identify the network or graph with its adjacency matrix. As the
number of agents n is often clear from the context, we suppress the superscript frequently.
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(b) Social Interactions Social interactions are two-sided, that is inde-

pendent of the direction of link sponsorship. We denote the undirected in-

teraction network by ḡ ∈ Ḡn where Ḡn is the set of symmetric Boolean n×n
matrices with zeros on the main diagonal. Applying the same notation as

above, two distinct agents i and j interact i� ḡij = 1.

In the pure activity game, the interaction network ḡ is given exogenously.

If the social interaction structure is formed endogenously instead, then ḡ is

induced by the links formed in g such that entries ḡij = max{gij,gji}.
The set of agents with whom agent i shares a linkNi,ḡ = {j ∈ N : ḡij = 1}

is called the neighbourhood of i in ḡ; the number of i's neighbours ni,ḡ = |Ni,ḡ|
is also known as his degree. As the network is often clear from the context,

we frequently suppress the subscript ḡ.

We say that two players i and j are connected in ḡ if either ḡij = 1 or there

is a path between them, i.e. there are players i1, . . . , il with ḡii1 = ḡi1i2 =

· · · = gilj = 1. A player i is isolated or a singleton in ḡ i� he is not connected

to any other player j. A maximal non-empty subset of mutually connected

players is called a component of ḡ. The network ḡ is called connected if every

pair of players is connected, that is ḡ consists of a single component. Finally,

an independent set is a non-empty subset of players who do not share any

direct links between themselves.

There are two particularly important undirected graphs: In the empty

network ḡemp, there are no links, so ḡemp,ij = 0 for all i, j ∈ N . In the

complete network ḡcom, all pairs of nodes share a link, so ḡcom,ij = 1 for all

distinct i, j ∈ N .

Payo�s and Modeling Assumptions

Let πi(x, ḡ) denote player i's gross payo� under activity x on interaction net-

work ḡ (excluding any costs for link sponsorship). We follow standard for-

mulations in the literature in two aspects: First, gross payo�s of every player

are entirely determined by own activity and the total activity of friends or
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neighbours in the network, that is πi(x, ḡ) = π̃(xi, yi) with yi =
∑

j∈Ni,ḡ xj.
14

Second, if the network is formed endogenously, players bear linking costs

which increase linearly in the number of their sponsored links so that net

payo�s write as

Πi(x, g) = πi(x, ḡ)− ηi,gk, ∀i ∈ N, (1)

where k ∈ (0,∞).15

However, our model di�ers from existing models by implementing and

combining two crucial premises: First, we assume that own activity and the

activity of friends are strategic complements. In particular, the best response

function resembles typical behaviour in online social networks as discussed

in the introduction: a player desires to be active if at least one of his friends

is active then increases his activity at a diminishing rate when his friends

become more active:16

Assumption 1 (Strategic Complementarity). Player i's unique best response

to activity x−i on interaction network ḡ is

x∗i (x−i, ḡ) = f(
∑
j∈Ni,ḡ

xj), ∀i ∈ N, (2)

where f(0) = 0, f ′ > 0, and f ′′ < 0.

Second, we assume that using the (particular) social network is bene�cial

with diminishing marginal utility for optimising agents (e.g. due to time

constraints and unmodeled outside options):17

14See for instance Bramoullé and Kranton (2007); Bramoullé et al. (2012); Galeotti et al.
(2010).

15See for instance Galeotti and Goyal (2010); Zhang et al. (2011); Hiller (2010);
Bramoullé et al. (2004).

16We later strengthen our assumption about f ′ to guarantee existence of a unique and
stable strictly positive activity equilibrium on any exogenous connected network (see Sec-
tion 3). In particular, su�cient concavity bounds total activity in the society under strate-
gic complements (i.e. prevents an in�nite solution). In contrast, Bramoullé et al. (2012)
consider as a special case (increasing) linear best response correspondences (on exogenous
networks) and introduce for the same purpose an upper bound on activity. Although we
can approximate any such best response correspondence with concave functions, some of
our results do not extend to the limit case as it introduces new corner solutions.

17The opposite case of increasing marginal utility, i.e. when h increases convexly, is
essentially covered by the analysis of Hiller (2010).
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Assumption 2 (Concave Value Function). Player i's maximised gross payo�

under activity x−i and interaction network ḡ is

π∗i (x
∗
i ,x−i, ḡ) = h(

∑
j∈Ni,ḡ

xj), ∀i ∈ N,

where h(0) = 0, h′ > 0 and h′′ < 0.

In Appendix B.1, we introduce a family of social activity models and show

that they meet the assumptions above. These models feature gross payo�

functions of the following form:

Example 1 (A Family of Social Activity Models).

πi(x, ḡ) = λ
[
v(
∑
j∈Ni,ḡ

xj)xi
] τ
λ−(cxi)

τ ,

where λ ≥ 2, τ > 0, c ∈ (0,∞), v(0) = 0, v′ > 0, v′′ < 0 and vτ strictly

concave.18

As an example, we frequently refer to the �baseline model� with a Cobb-

Douglas utility function and linear activity costs�i.e. when λ = 2, τ = 1,

and v is a concave power function:

Example 2 (The Baseline Model).

πi(x, g) = 2

√
(
∑
j∈Ni,ḡ

xj)qxi − cxi, (3)

where q ∈ (0, 1).

Equilibrium Concept

We are interested in characterising activity patterns and network structures

that can be sustained in Nash equilibria. As already mentioned above, we

18λ ≥ 2 and v′′ < 0 guarantee concavity of the best response correspondence. Assuming

λ = 2 comes in fact at no loss of generality so that v′(0) > c2 and limx→∞ v′(x) < c2

n−1
ensure existence of a positive activity equilibrium on any (exogenously given) connected
network (see Appendix B.1 for details).
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consider two versions of the game:

(a) Exogenous Networks In Section 3, we assume that a (connected)

interaction network ḡ is exogenously given and known to all players. All

players choose their activity simultaneously and hence a player's strategy is

merely his level of activity xi.

An activity vector x∗ constitutes a (strict) Nash equilibrium i� it solves

the best response functions of all players�as given in Equation (2)�simultaneously:

x∗i = f(
∑
j∈Ni,ḡ

x∗j), ∀i ∈ N. (4)

We call a Nash equilibrium with x∗ = 0 a zero activity equilibrium and an

equilibrium with x∗ > 0 a positive activity equilibrium.

(b) Endogenous Network Formation In Sections 4 and 5, the network

is formed endogenously: players simultaneously choose a level of activity xi

and a vector of supported links gi ∈ gi so that they jointly compose the

social interaction network g = (g1, . . . , gn)t. Thus each player's strategy is

described by a pair (xi, gi) and players' utility is determined by net payo�s

in Equation (1).

A pair (x∗, g∗) constitutes a Nash equilibrium of the game with endoge-

nous network formation i� no player gains from choosing some alternative

strategy (x′i, g
′
i) that is

Πi(x
∗
i ,x

∗
−i, g

∗) ≥ Πi(x
′
i,x
∗
−i, g

∗
−i � g′i), ∀i ∈ N, x′i ≥ 0, g′i ∈ gi.

As a simpli�cation, we can disentangle the equilibrium conditions for

activity and link formation by the following reasoning: since there is a unique

best response activity x∗i (x−i, ḡ) for any given network ḡ, we know that

πi(x
∗
i (x
∗
−i, g

∗
−i � g′i),x∗−i, g∗−i � g′i) ≥ πi(x

′
i,x
∗
−i, g

∗
−i � g′i)

for all i ∈ N, x′i ∈ [0,∞), g′i ∈ gi. That is, if an agent alters his link sponsor-

ship, it is optimal to simultaneously adjust his activity to the new cumulative
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neighbour activity he accesses.

Thus a pair (x∗, g∗) is an equilibrium of the game with endogenous net-

work formation if and only if no agent wants to change his level of activity xi

assuming network ḡ∗ to be �xed and nobody wants to change his sponsored

links gi given simultaneous adjustment of his activity for the new network.

Mathematically, these equilibrium conditions read as

x∗i = f(
∑

j∈Ni,ḡ∗

x∗j), ∀i ∈ N (5)

and for all i ∈ N and g′i ∈ gi

h(
∑

j∈Ni,ḡ∗

x∗j)− ηi,g∗k ≥ h(
∑

j∈N
i,g∗−i�g

′
i

x∗j)− ηi,g∗−i�g′ik. (6)

We collect all pairs (x∗, g∗) that constitute an equilibrium of the game

with endogenous network formation for some linking costs k > 0 in the

set E . Throughout the paper, we apply two equilibrium re�nements: Our

main focus lies on generic equilibria�collected in E+ ⊆ E�which are robust

to small changes in the linking costs.19 We denote the set of undirected

interaction graphs which arise in generic equilibria by ḠE+ = {ḡ ∈ Ḡ :

∃(x∗, g∗) ∈ E+ with ḡ∗ = ḡ}. We also consider strict equilibria�collected in

E++ ⊆ E+�in which Equation (6) holds as a strict inequality.

As in the case of the pure activity game on exogenous networks, we call

equilibria (x∗, g∗) with x∗ = 0 zero activity equilibria and equilibria with

x∗ > 0 positive activity equilibria. We subdivide positive activity equilibria

in single-level equilibria with x∗i = x∗j for all i, j ∈ N and multi-level equilibria

in which there exist i, j ∈ N with x∗i 6= x∗j .

19More precisely, we say that a pair (x∗, g∗) constitutes a generic equilibrium i� there
exists an open interval (k, k̄) such that (x∗, g∗) constitutes an equilibrium for all k ∈ (k, k̄).
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3 Exogenous Networks

In this section, we discuss pure activity games on exogenous interaction net-

works. Without loss of generality, we assume that the interaction network ḡ

is connected. Otherwise, the analysis of each component of a disconnected

network follows the same lines as below.

The �rst proposition addresses the existence of Nash equilibria. For

brevity, we call the minimum degree of a node in ḡ (that is the smallest

number of neighbours any player has) nmin = mini∈N ni,ḡ and the maximum

degree nmax = maxi∈N ni,ḡ.
20

Proposition 1. For any connected network ḡ ∈ Ḡn:

(i) A zero activity equilibrium with x∗ = 0 exists.

(ii) A positive activity equilibrium with x∗ > 0 exists and is uniquely de�ned

(a) if f ′(0) > 1
nmin

and limx→∞ f
′(x) < 1

nmax
.

(b) only if f ′(0) > 1
nmax

and limx→∞ f
′(x) < 1

nmin
.

(iii) There are no other equilibria.

The proposition tells us that there are at most two equilibria: one in which

every player is inactive and another one in which every player has strictly

positive activity. In fact, the existence of the positive activity equilibrium

depends on the slope of the best response function (relative to the properties

of the network). On the one hand, if the best response function is not steep

enough at the origin, some agent prefers to reduce his activity at any positive

activity vector. On the other hand, if the best response is not su�ciently

concave, some agent always prefers to increase his activity.

It is noteworthy that social activity games on exogenous networks are

closely related to supermodular games:

Remark 1. πi has positive cross partial derivatives at best response activity

by Assumption 1, i.e. ∂2πi
∂xi∂xj

∣∣
xi=x∗i (x−i,ḡ)

≥ 0 for all j 6= i ∈ N .

In an orthodox supermodular game, πi would have to be supermodular

in (xi,x−i), i.e.
∂2πi
∂xi∂xj

≥ 0 for all j 6= i ∈ N , and X would have to be a closed

interval in R. Thus similar concepts as used in the literature on supermodular

20Note that n− 1 ≥ ni,ḡ ≥ 1 as ḡ is connected.
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games are applicable by restricting the strategy space conveniently.21 We

discuss some resulting properties of the positive activity equilibrium in the

supplementary material in Appendix B.2.22

Consider now a possibly disconnected interaction network ḡ ∈ Ḡn. Fol-

lowing the insights from Proposition 1, we strengthen our assumption on f ′

for the remainder of the paper to guarantee existence of a positive activity

equilibrium in any (non-singleton) component of ḡ:

Assumption 3. f ′(0) > 1 and limx→∞ f
′(x) < 1

n−1
.

Hence for any network ḡ ∈ Ḡn, a particular type of activity vector x∗ḡ in

which isolated players choose zero activity and non-isolated players choose

strictly positive equilibrium activity is well de�ned, that is:

De�nition 1. For any ḡ ∈ Ḡn, let x∗ḡ be such that x∗i > 0 i� ni,ḡ ≥ 1 and

x∗i = f(
∑

j∈Ni,ḡ x
∗
j) for all i ∈ N .

Note that if ḡ is connected then x∗ḡ coincides with the strictly positive

activity equilibrium vector discussed in the proposition.

4 Endogenous Network Formation

In the social activity game with endogenous network formation, each player

simultaneously chooses some level of activity and forms links. Players' actions

can be summarised in a pair (x, g) and an equilibrium is denoted by (x∗, g∗).

As discussed in Section 2, an equilibrium of this game has to ful�ll two

di�erent conditions: First, each player's activity has to be optimal given the

activity of his neighbours in the induced network, see Equation (5). Second,

21The main results of the literature were developed in the classic papers Topkis (1979),
Vives (1990), and Milgrom and Roberts (1990). For a more recent overview see Vives
(2005).

22In particular, we show that the equilibrium is stable, displays multiplicative e�ects
so that every player gains from the introduction of an additional link, and that individ-
ual equilibrium activity is smaller than the cumulative neighbour activity. Note that our
results for endogenous network formation determine activity patterns on particular ex-
ogenous networks. However, a general characterisation of activity patterns on arbitrary
exogenous networks (e.g. by connecting individual equilibrium activity with some measure
of centrality) is left open for future research.
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each player's link sponsorship has to be optimal given the actions of all other

players (even when he simultaneously adjusts his own activity) as stated in

Equation (6).

The second condition can be split into three separate (sub-)statements

due to concavity of h�i.e. due to the diminishing marginal utility of op-

timising agents: the most pro�table potential linking deviation is either to

add a single link to the most active non-neighbour or delete the single least

valuable self-sponsored link or to do both simultaneously. Thus we �nally

arrive at four simple equilibrium conditions:

Lemma 1. A pair (x∗, g∗) constitutes a Nash equilibrium of the endogenous

network formation game for linking costs k ∈ (0,∞) i� for all i ∈ N

i. x∗i = f(
∑

j∈Ni,ḡ∗ x
∗
j),

ii. h(
∑

j∈Ni,ḡ∗ x
∗
j + x̄i)− h(

∑
j∈Ni,ḡ∗ x

∗
j) ≤ k,

iii. h(
∑

j∈Ni,ḡ∗ x
∗
j)− h(

∑
j∈Ni,ḡ∗ x

∗
j − xi) ≥ k,

iv. xi ≥ x̄i,

where x̄i = maxj: ḡ∗ij=0{x∗j , 0} and xi = minj: g∗ij=1{x∗j ,∞}.23

Recall that x∗ḡ denotes a uniquely de�ned vector of activity in which non-

isolated players (and only those) choose strictly positive equilibrium activity

by De�nition 1 from Section 3. As linking costs are strictly positive, it is easy

to see that in equilibrium a player chooses zero activity if and only if he is

isolated, i.e. E ⊆ {(x∗ḡ, g) : g ∈ G}. Furthermore, isolated and non-isolated

players cannot co-exist in generic equilibria.24 The following proposition

provides a formal statement and elaborates on the implied partition of E+:

23For completeness, we de�ne h(−∞) = −∞.
24In such an equilibrium, isolated players would have to be indi�erent between their

isolation and forming a single link to the / a most active player (with simultaneous activity
adjustment). These equilibria are not robust to small changes of k and thus excluded from
E+. We fully characterise them in the supplementary material in Appendix B.3. Note that
E+ also rules out some non-generic positive activity equilibria from E .
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Proposition 2. E ⊆ {(x∗ḡ, g) : g ∈ G} and E+ is partitioned into two sets:

(i) A zero activity equilibrium with x∗ = 0 and empty network ḡ∗emp
(ii) Positive activity equilibria with x∗ > 0 and ni,ḡ∗ ≥ 1, ∀i ∈ N

As in the pure activity game on exogenous networks, all players are

either active or all are inactive in generic equilibria. However, so far we

have not discussed for which (interval of) linking costs the respective equi-

libria exist. The next proposition provides some general insights, where

k̄max = limx→∞ h(f(x)) is the supremum value of a single link:

Proposition 3. The zero activity equilibrium exists for any k.

There are thresholds 0 < kn ≤ k̄n < k̄max such that

(i) a positive activity equilibrium exists i� k ≤ k̄n.

(ii) there is a unique positive activity equilibrium with ḡ∗ = ḡcom if k < kn.

The proposition sets the agenda for the remainder of the paper as it sug-

gests two di�erent sorts of questions: The �rst sort of questions concern the

existence of di�erent types of positive activity equilibria. For instance, we

would like to �nd out which interaction networks�apart from the complete

and the empty network�can arise for linking costs k ∈ [kn, k̄n] in equi-

librium. Likewise, we would like to determine the distribution of activity

in such equilibria�e.g. the number of di�erent activity levels that can be

sustained. The remainder of this section is dedicated to this agenda. Sec-

tion 4.1 discusses equilibria with a single positive level of activity whereas

Section 4.2 addresses equilibria that display multiple positive activity levels

and Section 4.3 studies strict equilibria.

The second sort of questions concern �prominence� of di�erent equilibria�

that is �nding out which positive activity equilibria are supported by large

intervals of linking costs. If, for instance, k̄n ≈ 0 then the zero activity

equilibrium is the unique equilibrium for most k. Conversely, if k̄n � 0 and

kn ≈ k̄n then an equilibrium with a complete network exists for most k and

is the unique positive activity equilibrium. We discuss these questions in Sec-

tion 5 in the context of large societies and show how individual preferences

determine which positive activity equilibrium prevails.
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Figure 1: Regular Networks

4.1 Single-Level Equilibria

In this section, we analyse single-level equilibria in which each agent chooses

symmetric equilibrium activity x∗i = x > 0.

For the discussion of our results we need to introduce the notion of a (non-

empty) �regular network�: a network ḡ is called ∆-regular i� each player i

has common degree ni,ḡ = ∆ ≥ 1. Some regular networks are depicted in

Figure 1. We de�ne Ḡreg as the set of all regular graphs and Ḡ
∆
reg ⊂ Ḡreg as

the set of all ∆-regular graphs.25 The following results hold:

Proposition 4.

(i) (x∗ḡ, g) ∈ E+ and displays a single positive level of activity i� ḡ ∈ Ḡreg.
26

(ii) If ḡ ∈ Ḡ∆
reg then x

∗
i,ḡ = x∆ independent of n with x∆ > x∆−1.

27

The proposition tells us, �rst, that every regular network is an equilib-

rium outcome for some interval of linking costs. Second, every single-level

equilibrium has a regular interaction network. Third, the common individual

25It is a well established result in graph theory that a ∆ -regular graph of size n exists
if ∆n is even due to the existence condition in Erd®s and Gallai (1960).

26The proof in fact also shows that any single level is generic, i.e. there are no non-
generic single-level equilibria in E .

27For the comparative statics we implicitly assume n ≥ ∆ + 1 and x0 = 0.
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activity is solely determined by, and increases in, the degree ∆ of the regular

network�independent of the population size n.

This last �nding stems from the locality of social interactions on the

network. Consider for instance regular networks with ∆ = 2, i.e. circles: As

each player interacts with exactly two other players, the (common) individual

equilibrium activity is the same in networks with three circles of three players

(Figure 1 (c)), one circle of nine players (Figure 1 (d)), and one circle of nine

hundred players.

Two further regularities follow immediately: As all players access the

same cumulative neighbour activity in equilibria with ∆-regular networks,

they have common equilibrium (gross) payo� π∗ = h(∆x∆). For the same

reason, all equilibria with ∆-regular networks have a common interval of

equilibrium supporting linking costs [k∆, k̄∆]�independent of the population

size n�as long as ∆ < n − 1.28 If ∆ = n − 1 instead, then the network is

complete (e.g. Figure 1 (a)); as no player can add a link even if desired, the

equilibrium exists for all k ∈ (0, k̄∆] instead.

Finally, note that our results in Proposition 4 crucially depend on the

concavity of the value function. Lemma 5 in Hiller (2010) essentially shows

that, under a convex value function, players choose symmetric equilibrium

activity if and only if the network is either empty or complete.

4.2 Multi-Level Equilibria

In this section, we examine (generic) multi-level equilibria. In these equilib-

ria, all agents choose positive activity and there are at least two agents i and

j with x∗i 6= x∗j .

We split this section into three di�erent parts: �rst, we discuss general

properties that hold in any multi-level equilibrium. Subsequently, we analyse

two prominent types of networks as examples more in detail: we show that ev-

ery biregular bipartite network exists in equilibrium, whereas core-periphery

structures only arise under particular speci�cations of the model.

28It depends on the concrete payo� function how the bounds k∆ and k̄∆ change as a
function of ∆ as shown by example of the baseline model in the supplementary material
in Appendix B.6.
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4.2.1 General Properties

To begin with, it is important to �nd out whether (and how many) di�erent

levels of activity can be sustained in equilibrium in principle. A detailed dis-

cussion of so-called complete multipartite networks in Appendix B.4 supports

the following general insight:

Result 1. There are multi-level equilibria which display a substantial number

of distinct levels of activity.

Next, we consider the direction of link sponsorship in multi-level equilib-

ria. The lemma below tells us that for any equilibrium in which a highly

active player sponsors a link to a less active player, there exists another

equilibrium in which the less active player sponsors the link, i.e. the link

sponsorship is switched. Furthermore, the latter equilibrium is sustainable

under a greater�and sometimes strictly greater�interval of linking costs

than the former.

Lemma 2. Let (x∗, g∗) ∈ E and consider g′ with (i) g′ij = 1 and g′ji = 0 if

ḡ∗ij = 1 and x∗i < x∗j ; (ii) g
′
ij = g∗ij otherwise. Then (x∗, g′) is an equilibrium

for a weakly greater interval of k.

The lemma has strong implications: when we (dis-)prove existence of

equilibria with certain interaction networks, we can assume that there is

�upward linking�, i.e. no link is sponsored by an adjacent player with strictly

higher activity. There is quite a neat interpretation for those equilibria: links

are always sponsored by the adjacent player with higher valuation.

Under endogenous network formation, we can show a strong connection

between an agent's activity and his position in the network. First note that

as utility increases in the activity of neighbours, players with higher activity

are more �popular� friends. As a result, higher activity players have more

neighbours in any equilibrium. In the case of Facebook, a strong positive

correlation between social degree and user activity has indeed been con�rmed

empirically (see Wilson et al. (2009)).

Although high activity players have many neighbours, they tend to initi-

ate few links themselves: as they have already many friends, their marginal
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value for any particular link�and thus their willingness to pay for links�is

small. Thereby, high activity or �popular� player bene�t twice from their

attractiveness: they not only have many friends but also tend to pay little

for link formation.

If we assume upward linking explicitly, there are two more regularities:

�rst, an agent who sponsors a link to another agent with some particular

level of activity also forms links to all agents with higher activity. Second,

agents who access the same cumulative neighbour activity through incoming

links behave similarly: they sponsor the same number of links and choose

the same level of activity. The next proposition describes these properties

formally:

Proposition 5. Let (x∗, g∗) ∈ E+ such that g∗ij = 1 implies x∗i ≤ x∗j .

(i) gij = 1 and x∗j′ > x∗j imply gij′ = 1.

(ii) x∗i > x∗j implies ηi ≤ ηj and ni > nj.

(iii)
∑

l: gli=1 x
∗
l =

∑
l: glj=1 x

∗
l i� ηi = ηj and x

∗
i = x∗j .

Finally, casual observation shows that online social networks are (nor-

mally) not minimally connected and contain cycles.29 Similarly, we can show

that �sparse� interaction networks arise in our model in equilibrium only un-

der special conditions. First, if there are more than two levels of activity

then the network is connected that is there is a path between any two nodes.

Second, the only minimally connected components are stars or lines with four

players.30

Proposition 6. Let (x∗, g∗) ∈ E+ with x∗ > 0.

(i) If x∗ displays more than two levels of activity then ḡ∗ is connected.

(ii) Any minimally connected component of ḡ∗ is either a star or a four-line.

4.2.2 Example: Biregular Bipartite Networks

An interaction network is a bipartite graph if the set of agents N can be

partitioned into two independent sets P1,2 (so-called partite sets or parts).

29A connected network (or a component of a network) is called minimally connected

if it does not contain any cycles, i.e. the removal of any link disconnects the network
(component).

30A line is a minimally connected network (component) with maximal degree two.
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Figure 2: Bipartite Networks

Some bipartite graphs are depicted in Figure 2.

A bipartite graph is biregular if there exists a bipartition such that players

within each partite set have common degree. We implicitly assume that the

common degree di�ers between both parts that is ni,ḡ = ∆j for all i ∈ Pj and
1 ≤ ∆1 < ∆2.

31 We collect these biregular bipartite graphs in the set Ḡ
∆1,2

bp .

Biregular bipartite graphs include for instance star networks and complete

bipartite graphs. The bipartite graph in Figure 2 (c) is biregular. Bipartite

network (d) is biregular as well, which can be seen by rede�ning the partite

sets, whereas (b) is regular and (a) is neither regular nor biregular. The

following results apply:

Proposition 7. (i) Ḡ
∆1,2

bp ⊂ ḠE+.

(ii) If ḡ∗ ∈ Ḡ∆1,2

bp then x∗i = xj for all i ∈ Pj and ∆1 < ∆2 implies

1 <
x2

x1

<
∆2

∆1

=
|P1|
|P2|

.

The proposition states that every biregular bipartite graph can be sus-

tained in equilibrium for some interval of linking costs (part (i)). Players from

the same partite set choose common equilibrium activity, which is higher in

31If ∆1 = ∆2, then ḡ is regular and thus, by Proposition 4, there is a single-level
equilibrium with ḡ∗ = ḡ.
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Figure 3: Core-Periphery Networks

the smaller set (part (ii)).

Moreover it is noteworthy that any collection of similar biregular bipartite

graphs constitutes a biregular bipartite graph itself. That is, not only a single

star with n − 1 spokes is an equilibrium network for some linking costs but

also any collection of stars with s spokes such that s+ 1 divides n.

4.2.3 Example: Core-Periphery Networks

An interaction network is a core-periphery network if players can be parti-

tioned into two sets, core players in C and periphery players in P , and the

following three conditions are met:

(i) Core players share links with all other core players, ḡij = 1, ∀i, j ∈ C.
(ii) Periphery players do not share links among themselves, ḡij = 0, ∀i, j ∈ P .
(iii) Core players have a link to a per. player, ∀i ∈ C, ∃j ∈ P s.t. ḡij = 1.32

We collect all core-periphery networks in the set Ḡcp. The subset Ḡ
com
cp ⊂

Ḡcp contains the special class of complete core-periphery network in which

32The last condition is w.l.o.g. and purely introduced for presentation purposes. It
guarantees that |C| is well de�ned for any core-periphery network: otherwise, for instance,
network (c) in Figure 3 could be regarded as a core-periphery network with either |C| = 2
or with |C| = 3.
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all periphery players share a link with all core players. Some examples are

depicted in Figure 3, where network (c) is the only complete core-periphery

network.

The following proposition summarises our main �ndings:

Proposition 8. Let |P| ∈ {3, . . . , n− 2}.33 Then:

(i) ḡ ∈ Ḡcp ∩ ḠE+ implies ḡ ∈ Ḡcom
cp .

(ii) For any ḡ ∈ Ḡcom
cp , ḡ ∈ ḠE+ i� |h′′| is (locally) su�ciently close to 0.34

(iii) If ḡ∗ ∈ Ḡcom
cp then x∗i = xp and x

∗
j = xc for all i ∈ P and j ∈ C with

xp < xc < |P|xp.

The intuition for the results is quite simple: Core players have higher

equilibrium activity in any (exogenous) core-periphery interaction network

due to complementarity. Thereby, the marginal value of a link is relatively

small for core players. Any linking costs preventing them from deleting their

marginal link to another core player makes periphery players willing to add

a link to a core player. Therefore, non-complete core-periphery networks do

not exist in equilibrium (part (i)).

In contrast, in a complete core-periphery network, periphery players al-

ready share a link with all (more active) core players and could only add a

link to a (less active) periphery player. That alleviates the tension between

correct incentives for core and periphery players so that those networks exist

in equilibrium if h is su�ciently linear (part (ii)).

33If |P| = 1 the network is complete which is analysed in Proposition 4. If |P| = n− 1
then the network is a star which is covered by Proposition 7. Finally, the special case
|P| = 2 is covered in Appendix B.5.

34The reader might worry that by changing the value function h, the best response func-
tion f and, thereby, the equilibrium activity is altered. However, any payo� function π can
be transformed to a payo� function π̂�by adding an appropriate function υ(

∑
j∈Ni,ḡ

xj)

which does not depend on xi�such that f̂ = f and ĥ becomes (locally) arbitrarily close
to a linear function.
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Figure 4: Complete Multipartite Network

4.3 Strict Nash Equilibria

We now apply an equilibrium re�nement and study strict Nash equilibria

E++ ⊂ E+. As an example, recall from Section 4.2.2 that biregular bipartite

graphs can be sustained in generic equilibria, i.e. Ḡ
∆1,2

bp ⊂ ḠE+ . However, the

equilibrium might not be strict : If a player (only) shares links with a subset

of players from the other partite set, he can relocate one of his self-sponsored

links to a non-neighbour (in that partite set) without e�ecting his payo�.

In order to �nd the set of networks which can be sustained in strict

equilibria, some additional notation is necessary: Multipartite networks are

a generalisation of bipartite networks, in which the set of agents N can be

partitioned into any number of independent sets (so-called partite sets or

parts). In a complete multipartite network, every agent shares a link with

all agents outside its own part. An example of such a network can be seen

in Figure 4. Also recall that a clique is a group of fully connected players.

Proposition 9. Any network ḡ∗ ∈ ḠE++which is supported by a strict Nash

equilibrium takes either of the following forms:

(i) a complete multipartite graph of di�erent-sized partite sets, or

(ii) variations of these graphs in which one partite set is replaced by a clique.

The proposition allows�among others�for the empty network, the com-

plete network, complete core-periphery networks and complete bipartite graphs

in strict equilibria. Conversely, (non-complete) regular graphs and (non-

complete) biregular bipartite graphs are not supported in strict equilibria�

even though they are supported in generic equilibria as shown in Sections 4.1

and 4.2.
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Due to complementarity, the activity levels in strict equilibria can easily

be ranked: If it exists, agents in the clique have the highest level of activity

as they share a link with every other player. Other than that, agents in the

same partite set have symmetric activity which is anti-proportional to the

number of agents in their part.

5 Large Societies

While the last section was concerned with existence of di�erent types of

positive activity equilibria, this section focuses on the prominence of di�erent

equilibria in large societies�that is �nding equilibria that can be sustained

for large intervals of linking costs. We are going to show two main results:

First, we show in Section 5.1 that a positive activity equilibrium exists

in large societies for any linking costs smaller than the supremum value of a

single link (as long as individual activity is not bounded from above).

Second, in Section 5.2, we demonstrate by example of the baseline model

that it depends on the player's preferences which type of positive activity

equilibrium prevails in large societies and which ceases to exist.

5.1 Positive Activity Equilibria in Large Societies

From our previous discussion, we already know that positive activity equi-

libria exist in large societies for some linking costs : First, equilibria with

(non-complete) ∆-regular interaction networks exist for linking costs in the

interval [k∆, k̄∆] independent of population size n (see Section 4.1).35 Second,

biregular bipartite networks of any size are supported by a non-degenerate

interval of linking costs (see Proposition 7). However, we are going to show

in this section that equilibria with a star or a complete network are special

insofar as one of them exists in large societies independent of the linking

costs.

For that purpose, we extend our assumptions on f and h as follows:

35Assuming a (non-complete) ∆-regular network with n players exists, see also Foot-
note 25.
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Assumption 4. (i) limx→∞ f
′(x) = 0; (ii) limx→∞ f(x) =∞;

(iii) h(x + f(x)) − h(x) and h(x) − h(x − f(x)) have �nitely many (local)

extrema in R+.

The assumption is, for instance, met by the baseline model in Example 2.

We now provide a brief intuition for the e�ects of each part of the assumption:

By the �rst part, Proposition 1 implies that the equilibrium activity vector

x∗ḡ, in which every non-isolated player chooses strictly positive activity, exists

for any ḡ ∈ Ḡ�independent of the number of players n. Thus it becomes

meaningful to study the game with endogenous network formation in the

limit as n goes to in�nity.

The second part implies that individual activity�and thereby the activ-

ity that can be accessed through a single link�is unbounded from above.

Otherwise, the complete network would not be an equilibrium for large link-

ing costs and, for small linking costs, spokes in a star network would like to

form links among themselves�even as the societies becomes large.

Finally, the third part is a technical assumption which ensures that the

limit intervals of linking costs (for which the star or the complete network

can be sustained in equilibrium) are well de�ned.36

Recall from Proposition 3 that k̄max = limx→∞ h(f(x)) is the supremum

value of a single link so that for k ≥ k̄max the unique equilibrium displays

zero activity and has an empty network. The following result holds true

under Assumption 4:

Proposition 10. A positive activity equilibrium with either the star or the

complete network exists for any k ∈ (0, k̄max) for su�ciently large n.

The proposition implies that k̄n�the upper bound of linking costs for

positive activity equilibria (see Proposition 3)�converges to k̄max in n. If,

additionally, the value function h is unbounded from above then k̄max = ∞
and an equilibrium with either the star or the complete network exists for

36A weaker version of the third part states that both functions either converge to a �nite
limit for x→∞ or diverge to ±∞. Then a weaker version of Proposition 10 holds: there
is at most one k ∈ (0, k̄max) for which neither the star nor the complete network are an
equilibrium for su�ciently large n.
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any linking costs k ∈ (0,∞) in su�ciently large societies. As we demonstrate

in the next section, it depends on the players' preferences which of the two

equilibria prevails and which ceases to exist in large societies.

There is a deeper reason for our �ndings in this section. As we are going

to argue, the complete and the star network are conceptional counterparts.

Take the complete network �rst. No player can add any links, even if desired,

and therefore there is no lower bound of linking costs under which such an

equilibrium is supported. Conversely, as the star is minimally connected,

there are very strong incentives to keep this single link. For this reason, the

upper bound of linking costs supporting a star in equilibrium converges to

k̄max as the society becomes large�independent of the details of the model.

5.2 Individual Preferences and the Social Network

In this section, we show how individual preferences shape the social network

in large societies. We focus on the baseline model (Example 2) which meets

Assumption 4. Recall that agents have in this model a Cobb-Douglas utility

function and linear activity costs, that is

πi(x, g) = 2

√
(
∑
j∈Ni,ḡ

xj)qxi − cxi,

where q ∈ (0, 1). Both the best response function f and the value function

h are then proportional to the concave power function (
∑

j∈Ni xj)
q. If q is

small, the power function takes the form of a step function and players are

relatively satiated even from little neighbours' activity. If q is closer to one,

the power function becomes more linear and agents get less easily satiated.

To present our results, we denote by K∞ the limiting set of linking costs

which support a certain type of network in large societies.37 For short, we say

that a type of network is robust if K∞ = (0,∞) and is not robust if K∞ = ∅.
Details and proofs of all results presented in this section as well as further

37Formally, consider an in�nite sequence of networks with increasing number of players
ḡ = (ḡ2 ∈ Ḡ2, ḡ3 ∈ Ḡ3, . . . ). Then k ∈ K∞(ḡ) if and only if there exist a threshold
n̂(k) ≥ 2 such that, for all n′ > n̂(k), there exists an equilibrium (x∗, g∗) with ḡ∗ = ḡn′

for linking costs k.
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∈ (1
2
, 1) (0,∞) (0,∞) ∅

= 1
2

(0,∞) (0, 1
2
c−3] [1

2
c−3,∞)

∈ (0, 1
2
) (0,∞) ∅ (0,∞)

Table 1: Limit supporting sets K∞ of selected networks (baseline model)

discussion are relegated to the supplementary material in Appendix B.6.

Table 1 summarises the limit supporting sets K∞ of selected network-

types in the baseline model. The empty network in which all players are

inactive is robust independently of q in accordance with Proposition 3. Fur-

thermore, a positive activity equilibrium with either the star or the complete

network always exists for su�ciently large n as argued in Proposition 10. In

particular, if q > 1
2
then the complete network is robust and if q < 1

2
then

the star is robust.

These �ndings indicate how di�erent individual user preferences can shape

(online) social networks. If users are foremost interested in participation per

se (e.g. have some people that follow them on the social network or provide

some content) but get quickly satiated, having several links is a waste and the

star is a robust equilibrium. Conversely, if social interaction plays a more

prominent role (and own activity is responsive to neighbour activity even

at high levels) then users want to form links to many other users and the

complete network is robust.

Although our model is rather simple and static, empirical �ndings for

online social networks point in a similar direction. User interaction in the

network plays a much more central role in pure online social networks such

as Facebook than in content distribution sites with (less elaborate) social

network components such as YouTube. Most activities on Facebook (includ-

ing messaging, tagging people in photos, and many apps) are direct social

interaction between Facebook-friends. In contrast, many people who watch

videos on YouTube do not even own a channel and hence are not part of the

social network. Wilson et al. (2009) show that pure social networks typically
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exhibit much higher social connectivity and their degree distributions �rst-

order stochastically dominate those of content distribution sites with social

network components.

6 Conclusion

This paper discusses games of social activity with strategic complementarity

on exogenous networks as well as under endogenous network formation. Our

assumptions resemble key features of online social networks and we are able

to replicate several empirical �ndings.

On any exogenous network, there is a zero activity equilibrium as well as

a positive activity equilibrium (under mild conditions).

Under endogenous network formation, either all players are isolated and

have zero activity or all players have at least one neighbour and strictly

positive activity. In the latter case, they have a common level of activity i�

the network is regular.

In general, there are equilibria with many di�erent levels of activity. We

have highlighted several regularities: as in empirical �ndings, the degree of

an agent and his equilibrium activity are positively correlated. Furthermore,

�popular� players with many friends tend to sponsor few links themselves and

equilibrium networks are�with few exceptions�not minimally connected.

In strict equilibria, interaction networks take a distinct form: they are either

complete multipartite graphs or particular variations of them.

Finally, we have shown how individual preferences shape the social struc-

ture in large societies. Our results suggest that we should expect denser social

networks for services with a more elaborate range of features in which users

get less easily satiated. Empirical �ndings indeed show that pure social net-

work sites such as Facebook exhibit a signi�cantly higher connectivity than

content distribution sites with social network components such as YouTube.

Our research is extendable in several directions. First, our results on

endogenous networks only characterise activity patterns on selected (exoge-

nous) networks. It would be desirable to characterise activity on arbitrary

exogenous networks more comprehensively. Second, we have left welfare con-

28



siderations out of this paper due to the amount of material. Third, we only

consider one-shot interactions whereas real world social networks evolve dy-

namically. Finally, agents are homogenous in our model. Introducing hetero-

geneity might lead to further insights and a better description of real world

social networks.

A Proofs from the Main Body

Proof of Proposition 1. Part (i): Pick some player i randomly and as-

sume that ∀j ∈ N \ {i}, x∗j = 0. Then the best response in Equation (2)

implies x∗i = 0 for any g; thus x∗i = 0, ∀i is an equilibrium for any g.

Part (ii): We are �rst going to show that there is at most one equilib-

rium with x∗ > 0 and then discuss the conditions for its existence separately.

We de�ne the following function fḡ : Xn → Xn as

fḡ(x) =


f(
∑

j∈N1,ḡ
xj)

...

f(
∑

j∈Nn,ḡ xj)

 ;

fḡ,i(x) denotes the ith entry of fḡ(x).

From the equilibrium conditions in Equation (4), it is clear that x∗ is an

equilibrium of the social activity game on exogenous network ḡ i� x∗ is a

�xed point of fḡ that is fḡ(x
∗) = x∗.

We are going to use three important properties of fḡ. First, fḡ is non-

decreasing that is x ≥ y implies fḡ(x) ≥ fḡ(y) as f is strictly increasing

and so f(
∑

j∈Ni,ḡ xj) ≥ f(
∑

j∈Ni,ḡ yj), ∀i. Second, x > 0 implies fḡ,i(x) > 0

as g is connected so that each player i has at least one neighbour. Third,

fḡ(λx) > λfḡ(x) for λ ∈ (0, 1) and x > 0 as f is strictly concave and g

connected i.e. f(
∑

j∈Ni,ḡ λxj) > λf(
∑

j∈Ni,ḡ xj), ∀i.
Let u(x) = fḡ(x)−x. Using notation from Kennan (2001), u is strictly R-

quasiconcave: u(x) = 0, x > 0, and λ ∈ (0, 1) implies u(λx) = fḡ(λx)−λx >
λ(fḡ(x) − x) = 0. u is also quasi-increasing: xi = yi and xj ≥ yj for all j

implies ui(x) = fḡ,i(x) − xi ≥ fḡ,i(y) − yi = ui(y). Thus the conditions of
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theorem 3.1 in Kennan (2001) are met and fḡ has at most one �xed point

with x∗ > 0.

Part (ii) (a): First, we show that f ′(0) > 1
nmin

implies existence of a

with fḡ(a) > a > 0. Let a = (ε, . . . , ε)t. As ḡ is connected and f strictly

increasing, fḡ,i(a) = f(ni,ḡε) ≥ f(nminε). Consequently, if there is some ε

with f(nminε) > ε then a exists. Consider the Taylor expansion of f around

0 evaluated at nminε

f(nminε) = f(0) + f ′(0)nminε+
f ′′(0)

2!
(nminε)

2 + . . . .

As f(0) = 0 and higher order terms vanish for small ε, f ′(0) > 1
nmin

implies

f(nminε)− ε = (f ′(0)nmin−1)ε+ f ′′(0)
2!
n2
minε

2 + · · · > 0 for ε su�ciently small.

Second, we show that limx→∞ f
′(x) < 1

nmax
implies existence of b =

(b, . . . , b)t > a with fḡ(b) < b. Consider the function g(x) = f(nmaxx) − x.
Note that g(x) is eventually decreasing as

lim
x→∞

g′(x) = lim
x→∞

nmaxf
′(nmaxx)− 1 < 0.

As g(x) is also concave, there exists some x0 with g(x) < 0 for all x ≥ x0

or, equivalently, b with f(nmaxb) < b. Then fḡ(b) < b as f strictly increases

and each i ∈ N has at most nmax neighbours in ḡ.

Third, as fḡ is non-decreasing, a < fḡ(x) < b for x ∈ (a,b). Therefore,

fḡ : [a,b]→ [a,b], Tarski's �xed point theorem (Tarski (1955)) is applicable

and fḡ has at least one �xed point x∗ ∈ [a,b]. Recall that we already know

from part two that there is at most one �xed point x∗ > 0 so x∗ is unique.

Part (ii) (b): First, assume by contradiction f ′(0) ≤ 1
nmax

and the

positive �xed point x∗ > 0 exists. Then for all i ∈ N

x∗i = fḡ,i(x
∗) < f ′(0)(

∑
j∈Ni,ḡ

x∗j) ≤
1

nmax
(
∑
j∈Ni,ḡ

x∗j),

where the second inequality follows as f(x) < f(0) + f ′(0)x for x > 0 by
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strict concavity. Summing both sides over all i ∈ N implies

∑
j∈N

x∗j <
1

nmax

∑
j∈N

njx
∗
j ≤

∑
j∈N

x∗j ,

a contradiction.

Second, assume by contradiction limx→∞ f
′(x) ≥ 1

nmin
and the positive

�xed point x∗ > 0 exists. Then for all i ∈ N

x∗i = fḡ,i(x
∗) > lim

x→∞
f ′(x)(

∑
j∈Ni,ḡ

x∗j) ≥
1

nmin
(
∑
j∈Ni,ḡ

x∗j),

where the second inequality follows as f(x) > f(0) + limx→∞ f
′(x)x for

x > 0 by strict concavity. Summing both sides over all i ∈ N leads to a

similar contradiction as above.

Part (iii): Assume by contradiction that there is some equilibrium x∗ =

fḡ(x
∗) such that ∃ i, j with x∗i > 0 but x∗j = 0. Fix i with x∗i > 0 and pick

some l ∈ Ni,ḡ arbitrarily. As x∗ is an equilibrium, x∗l = f(
∑

j∈Nl,ḡ x
∗
j).

From f(
∑

j∈Nl,ḡ x
∗
j) ≥ f(x∗i ) > 0 we conclude x∗l > 0. By repeating the

argument and as ḡ is connected by assumption, x∗w > 0 for all w ∈ N , a

contradiction.

Proof of Remark 1. Assumption 1 states that there is a unique best re-

sponse x∗i (x−i, ḡ) which is an increasing, concave function of i's cumulative

neighbour activity. Thus x∗i maximises πi and
∂x∗i
∂xj
≥ 0.

The necessary condition for a maximum implies ∂πi
∂xi

∣∣
xi=x∗i (x−i,ḡ)

= 0. Using

the implicit function theorem and rewriting we get

∂2πi
∂xi∂xj

∣∣
xi=x∗i (x−i,ḡ)

= − ∂2πi
∂xi∂xi

∣∣
xi=x∗i (x−i,ḡ)

∂x∗i
∂xj

.

As x∗i is a maximum ∂2πi
∂xi∂xi

∣∣
xi=x∗i (x−i,ḡ)

< 0 and the claim follows.
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Proof of Lemma 1. Condition one is simply the optimal activity condition

from Equation (5).

Conditions two to four are clearly implied by the linking condition in

Equation (6). Conversely, they jointly imply Equation (6) for strictly concave

h as violation of condition (6) implies a violation of either condition two,

three or four. To see that, assume some linking vector g′i ∈ gi is a pro�table

deviation for player i in some candidate equilibrium.

If player i's deviation g′i strictly increases the set of players to whom i sup-

ports links, then only adding a link to the most active player, arg maxj: ḡ∗ij=0{x∗j},
must also be a pro�table deviation by concavity of h.

If player i's deviation g′i strictly decreases the set of players to whom i sup-

ports links, then only deleting the link to the least active player, arg minj: g∗ij=1{x∗j},
must also be a pro�table deviation by concavity of h.

Finally, consider a pro�table deviation g′i that demands to delete some

links currently supported and form some new ones instead. Then either

condition four is violated or the activity of all players to whom i forms a new

link is strictly lower than the activity of all players to whom i deletes his link.

As g′i is by de�nition a pro�table deviation, there is in such a case another

(strictly better) deviation g′′i : if the net number of added links under g′i is

positive, g′′i demands to form some new links without deleting any old links.

If the net number of added links is negative, g′′i demands to delete some links

without adding any. Both these cases are discussed above.

Proof of Proposition 2. To show E ⊆ {(x∗ḡ, g) : g ∈ G}, consider some

arbitrary equilibrium (x∗, g) ∈ E and assume by contradiction that x∗ 6= x∗ḡ.

By the �rst condition of Lemma 1 and the de�nition of x∗ḡ, this implies that

there is some player with x∗i = 0 and ni,ḡ ≥ 1. As x∗i = f(
∑

j∈Ni,ḡ x
∗
j)

and x∗j ≥ 0, every player in i's component has zero activity. As ni,ḡ ≥ 1

there is at least one link in i's component. As k > 0, deleting this link then

strictly increases the sponsoring player's net payo� but leaves his gross payo�

unaltered, a contradiction.
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By the reasoning above, there can arise three di�erent cases: either all

players are isolated, i.e. ni,ḡ = 0 for all i ∈ N , and choose x∗i = 0 (case 1) or

no player is isolated, i.e. ni,ḡ ≥ 1 for all i ∈ N , and choose x∗i > 0 (case 2)

or there are some isolated players and some non-isolated players (case 3).

We now brie�y show that case 3 only exists in non-generic equilibria.

De�ne x̃ = h−1(k). As some players sponsor links maxx∗i ≥ x̃ because no

link is sponsored to any player with x∗i < x̃ by Lemma 1 and concavity of

h. Conversely, as some players are isolated maxx∗i ≤ x̃ because isolated

players strictly gain from linking to a player with x∗i > x̃ (and adjusting

their activity). Thus maxx∗i = x̃ and links are only formed to players with

x∗i = x̃. Fix the interaction network ḡ and thus the equilibrium activity.

If k decreases by any small ε, isolated players strictly prefer to form a link

to a maximum activity player (and adjust their activity). Conversely, if k

increases by ε, players who sponsor a link prefer to delete their link(s) and

become inactive.

Proof of Proposition 3. The zero activity equilibrium with an empty net-

work exists for any linking costs as all conditions in Lemma 1 are met: it is

optimal for an isolated player to choose zero activity and forming a link to

any non-active player is costly as k > 0.

To prove the remaining claims, let Q ⊂ E be the set of all positive activity
equilibria existing under some linking costs k. As E ⊆ {(x∗ḡ, g) : g ∈ G} by
Proposition 2, G is �nite for �xed n and there is a unique x∗ḡ for any g ∈ G,
we conclude Q is �nite.

For any element of Q we can �nd the maximal linking costs k̄g such that

condition 3 of Lemma 1 is ful�lled for every edge in g∗, i.e. nobody wants

to delete any links. This number is �nite and positive as each player has

�nite positive activity and the graph is not empty. As Q is a �nite set,

we can �nd the desired threshold k̄n = max{k̄g}(x∗
ḡ∗ ,g

∗)∈Q. Also note that

k̄n < k̄max = limx→∞ h(f(x)), as this is the supremum utility increase due

to any link.
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Likewise, for any element of Q in which ḡ∗ 6= ḡcom, there is a positive

�nite number kg > 0, which is de�ned as the minimal linking costs such that

condition 2 of Lemma 1 is ful�lled for every edge in g, i.e. nobody wants to

add any links. Note that no links can be added in the complete network ḡcom.

As Q is �nite we can �nd kn = min{kg}(x∗
ḡ∗ ,g

∗)∈Q: ḡ∗ 6=ḡcom , that is the unique

positive minimal linking cost such that a positive activity equilibrium with

a non-complete network exists.

Proof of Proposition 4. We �rst show the �only if� claim of part (i), then

prove part (ii) and �nally the �if� claim of part (i).

�Only if� claim of part (i): Assume that (x∗ḡ, g) is a single-level equi-

librium and let x∗ > 0 be the common (positive) level of activity. Condition

one for optimal activity from Lemma 1 tells us that x∗i = x∗ = f(ni,ḡx
∗) for

any player i in equilibrium. As f is strictly increasing, every player must then

have a common number of links ni,ḡ = ∆ ∈ {1, 2, . . . , n− 1}�i.e. ḡ ∈ Ḡreg.

Part (ii): Let ḡ ∈ Ḡ∆
reg be a ∆-regular interaction network. We want

to determine the corresponding positive activity equilibrium vector x∗ḡ. As

f is concave and by Assumption 3, there is a unique x∆ > 0 that solves

x∆ = f(∆x∆) for any ∆ ∈ {1, . . . , n − 1}. Thus x∆ = (x∆, . . . , x∆)t is a

positive activity equilibrium vector and from uniqueness in Proposition 1

x∆ = x∗ḡ.

For the comparative statics results, �rst note that the de�nition x∆ =

f(∆x∆) is independent of the size of the society. Second, assuming that

∆ ≥ 1 is continuous and di�erentiating both sides gives

∂x∆

∂∆
=

x∆

1
f ′(∆x∆)

−∆
> 0

as x∆ = f(∆x∆) > f(0) + ∆x∆f
′(∆x∆) = ∆x∆f

′(∆x∆).

�If� claim of part (i): Assume that g∆ is an arbitrary directed graph

with ḡ∆ ∈ Ḡ∆
reg. As x∆ = x∗ḡ from the reasoning above, it su�ces to show

(x∆, g∆) ∈ E+, i.e. that equilibrium conditions 2 to 4 from Lemma 1 are met

for some non-degenerate interval [k∆, k̄∆]. Condition two and three translate
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into the upper bound of linking costs k̄∆ and the lower bound k∆as shown

below

k∆ =

h((∆ + 1)x∆)− h(∆x∆) ∆ < n− 1

0 ∆ = n− 1

k̄∆ = h(∆x∆)− h((∆− 1)x∆).

Condition four is automatically met. The claim follows as k∆ < k̄∆ since the

function h(∆a) − h((∆ − 1)a) is strictly decreasing in ∆ for any a > 0 by

concavity of h.

Proof of Lemma 2. First note that g′ di�ers from g∗ only insofar as links

between two players with unequal activity are now sponsored by the lower

activity player; in particular ḡ′ = ḡ∗ and Ni,ḡ′ = Ni,ḡ∗ . Therefore, x∗ is an

equilibrium activity vector on ḡ′�that is (x∗, g′) meets the �rst equilibrium

condition of Lemma 1�and the cumulative neighbour activity accessed by

any player is unaltered, that is
∑

j∈Ni,ḡ′
x∗j =

∑
j∈Ni,ḡ∗ x

∗
j .

As ḡ′ = ḡ∗ and every player has unaltered activity x∗i in g′, no player

wants to form any additional link(s) in g′ under any linking costs k under

which he refrains from adding a link in g∗; hence, in particular, (x∗, g′) meets

the second equilibrium condition from Lemma 1.

Consider any link which is sponsored by the same player in g′ as in g∗,

i.e. g′ij = g∗ij = 1. For the same reason as above, no player wants to delete

(or switch) such a link for any linking costs k under which he refrains from

deleting (or switching) it in g∗. Thus equilibrium conditions three and four

from Lemma 1 are met for these links.

Instead, consider some players m and l who share a link with altered

sponsorship, i.e. g′lm = g∗ml = 1. As the link between l and m is sponsored

by l in g′ but by m in g∗, x∗l < x∗m by the assumptions of the lemma. To

�nalise the proof, we are going to show (i) that l refrains from deleting his

sponsored link to m in g′ for a greater interval of linking costs k than the
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interval under which m refrains from deleting his sponsored link to l in g∗

(equilibrium condition three). Subsequently, we are going to show (ii) that

l does not want to switch his link (equilibrium condition four).

(i) As (x∗, g∗) ∈ E and g∗ml = 1, equilibrium condition three of Lemma 1

implies

h(
∑
j∈Nm

x∗j)− h(
∑

j∈Nm\{l}

x∗j) ≥ k.

Thus l refrains from deleting his sponsored link to m in g′ for a greater

interval of linking costs k if

h(
∑
j∈Nl

x∗j)− h(
∑

j∈Nl\{m}

x∗j) > h(
∑
j∈Nm

x∗j)− h(
∑

j∈Nm\{l}

x∗j)

Since activity x∗l < x∗m and as f is strictly increasing, condition one of

Lemma 1 implies that cumulative neighbourhood activity of l is smaller than

m's,
∑

j∈Nl x
∗
j <

∑
j∈Nm x

∗
j under both g∗ and g′. Thus x∗l < x∗m implies∑

j∈Nl\{m} x
∗
j <

∑
j∈Nm\{l} x

∗
j . As h is strictly increasing and concave, and

from the �ndings above

h(
∑
j∈Nl

x∗j)− h(
∑

j∈Nl\{m}

x∗j)

> h(
∑

j∈Nl\{m}

x∗j + x∗l )− h(
∑

j∈Nl\{m}

x∗j)

> h(
∑

j∈Nm\{l}

x∗j + x∗l )− h(
∑

j∈Nm\{l}

x∗j).

(ii) Finally, let us turn to condition four. If this condition does not

hold for (x∗, g′) then there must be some player o ∈ N with x∗o > x∗m and

ḡ′lo = ḡ∗lo = 0 so that l prefers to form a link to o instead of m. As shown

below, this leads to a contradiction as (x∗, g∗) would not be an equilibrium

if such a player o exists.

Assume (x∗, g∗) ∈ E but, by contradiction, player o as described above

exists. On the one side, since player m supports a link to l in g∗ and x∗o > x∗l
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we infer

k ≤ h(
∑

j∈Nm\{l}

x∗j + x∗l )− h(
∑

j∈Nm\{l}

x∗j)

< h(
∑

j∈Nm\{l}

x∗j + x∗o)− h(
∑

j∈Nm\{l}

x∗j).

Since player l does not form a link to o in g∗ (and o is currently no neighbour

of l) we also know

k ≥ h(
∑
j∈Nl

x∗j + x∗o)− h(
∑
j∈Nl

x∗j).

As h is strictly concave, these two inequalities imply
∑

j∈Nl x
∗
j >

∑
j∈Nm\{l} x

∗
j

or

x∗l >
∑
j∈Nm

x∗j −
∑
j∈Nl

x∗j . (7)

On the other side, we also know that player l only supports links to players

with activity x∗i ≥ x∗o in g
∗ as he does not support a link to o. Conversely, as

m supports a link to l in g∗, he must have a link to all player i with x∗i > x∗l�

i.e. in particular to all players with x∗i ≥ x∗o. Thus every player to whom l

forms a link is a neighbour of m. Furthermore, every player that forms a link

to l must have a link to all players with x∗i > x∗l�i.e. in particular to m.

These two �ndings and the fact that o is a neighbour of m but not of l

imply ∑
j∈Nm

x∗j −
∑
j∈Nl

x∗j ≥ x∗o + x∗l − x∗m > x∗l ,

in contradiction to Equation (7).

Proof of Proposition 5. Part (i): Assume gij = 1 in equilibrium and, by

contradiction, that there exists some j′ ∈ N with x∗j′ > x∗j but gij′ = 0. As

i sponsors a link to j and there is upwards linking, x∗j ≥ x∗i . This implies

x∗j′ > x∗i so that gj′i = 0 i.e. j′ does not sponsor a link to i. But then i

37



can increase his payo� by deleting the link to j and linking to j′ instead, a

contradiction.

Part (ii): Assume by contradiction x∗i > x∗j but ηi > ηj in some

(x∗, g∗) ∈ E+ with upward linking. Let x = min{xl : gil = 1}, i.e. min-

imum level of activity accessed by i through a self-sponsored link, and let

κi = |{l ∈ N : xl = x ∧ gil = 1}| be the number of players with activity

x to whom i sponsors a link. Note that x ≥ x∗i as there is upwards linking

so that x > x∗j and no player with activity x or higher sponsors a link to j.

The reasoning above from the proof of the �rst statement�i.e. each player

preferring to link to higher activity players�and ηj < ηi implies κj < κi so

that j sponsors less links to players with activity x.

On the one hand, as i sponsors a link to somebody with activity x in

equilibrium and j refrains from adding a link to one more person with activity

x (which would be possible as κj < κi and players with activity x do not

sponsor links to j), Lemma 1 tells us:

h(
∑
l∈Ni

x∗l )− h(
∑
l∈Ni

x∗l − x) ≥ k ≥ h(
∑
l∈Nj

x∗l + x)− h(
∑
l∈Nj

x∗l ). (8)

As h is strictly concave, this can only hold true if∑
l∈Ni

x∗l ≤
∑
l∈Nj

x∗l + x. (9)

On the other hand, as x∗i > x∗j , any player l who sponsors a link to j has

to sponsor a link to i as well by the �rst statement of this lemma so that i

receives more cumulative neighbour activity than j through incoming links.

And as κj < κi, i also receives at least (κi−κj)x more cumulative neighbour

activity than j through self-sponsored links. Together this implies∑
l∈Ni

x∗l ≥
∑
l∈Nj

x∗l + (κi − κj)x. (10)
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Combining Equations (9) and (10), we get∑
l∈Nj

x∗l + (κi − κj)x ≤
∑
l∈Ni

x∗l ≤
∑
l∈Nj

x∗l + x,

which can only hold true if κi − κj = 1 and
∑

l∈Ni x
∗
l =

∑
l∈Nj x

∗
l + x. The

latter �nding together with Equation (8) implies

h(
∑
l∈Ni

x∗l )− h(
∑
l∈Ni

x∗l − x) = k = h(
∑
l∈Nj

x∗l + x)− h(
∑
l∈Nj

x∗l ).

Then for any small ε > 0, under linking costs k′ = k + ε, player i would

prefer to delete a link and for k′ = k− ε, player j would prefer to add a link.

Thus the equilibrium is non-generic, a contradiction. Thus x∗i > x∗j implies

ηi ≤ ηj.

We now show x∗i > x∗j also implies ni > nj. Let N
in
j be the set of players

who sponsor links to j. By part (i) and x∗i > x∗j , everybody who sponsors a

link to j sponsors a link to i so that N in
j ⊆ N in

i is also the set of players who

sponsor links to i as well as to j. Let A = N in
j ∪ {i, j}. Then Nj \ A is the

set of players to whom j sponsors links apart from i with |Nj \A| = ηj − ḡij.
Similarly, Ni \A is the set of i's neighbours apart from j who do not sponsor

links to i as well as j. As we delete in both cases the same number of

neighbours we have

|Ni \ A| = ni − (nj − |Nj \ A|) = ni − nj + ηj − ḡij.

From optimal activity, x∗i > x∗j implies∑
l∈Ni\A

xl >
∑

l∈Nj\A

xl. (11)

Consider the set N \ A and relabel players such that x̃1 ≥ · · · ≥ x̃|N\A|. By

part (i), j sponsors links to some set of most active players that is

∑
l∈Nj\A

xl =

ηj−ḡij∑
l=1

x̃l,
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whereas the remaining neighbour activity that i accesses is bounded from

above by ∑
l∈Ni\A

xl ≤
ni−nj+ηj−ḡij∑

l=1

x̃l.

Together with Equation (11), ni > nj follows.

�If� claim of part (iii): As there is upward linking and every player

prefers to link to more active players, ηi = ηj implies
∑

l: gil=1 x
∗
l =

∑
l: gjl=1 x

∗
l .

x∗i = x∗j implies
∑

l∈Ni x
∗
l =

∑
l∈Nj x

∗
l from optimal activity. Thus the claim

holds.

�Only if� claim of part (iii): Assume
∑

l: gli=1 x
∗
l =

∑
l: glj=1 x

∗
l and

by contradiction x∗i > x∗j . The second part of the lemma then implies ηi ≤ ηj.

As i only forms links to players with x∗j′ ≥ x∗i > x∗j due to upward linking,

players j′ to whom i sponsors links do not sponsor a link to j. Thus j could

copy i's linking decisions and strictly increase his payo�, a contradiction.∑
l: gli=1 x

∗
l =

∑
l: glj=1 x

∗
l and x

∗
i = x∗j together imply

∑
l: gil=1 x

∗
l =

∑
l: gjl=1 x

∗
l .

As there is upward linking and by part one ηi = ηj follows.

Proof of Proposition 6. Part (i): Consider any generic equilibrium with

at least three distinct levels of positive activity. From Proposition 2, we know

there are no isolated players in such an equilibrium and, applying Lemma 2,

we can assume that no link is sponsored by an adjacent player with strictly

higher activity.

First note that any least activity player who has no incoming links has

to sponsor at least one link to a highest activity player. We distinguish two

cases.

If there is some least activity player who sponsors a link to another least

activity player then such a player sponsors by Proposition 5 a link to all

higher activity players. Thus ḡ∗ is connected.

Assume on the contrary that there are no links between least activity

players. As there is upward linking and they do not link among themselves,

they have no incoming links and by Proposition 5 sponsor a common number
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of links η̃ ≥ 1. Any player with the second lowest level of activity has at least

one incoming link as he would otherwise, by Proposition 5 again, have similar

activity as lowest activity players. Furthermore, any player who sponsors a

link to a second lowest activity player, sponsors links to all higher activity

players. As there are at least three levels of activity, the network is connected.

Part (ii): Consider any minimally connected component of ḡ∗. If the

longest path in the component is two or three, then the component is a star.

If it is four (and as it is minimally connected), the component is a core-

periphery network�as introduced in Section 4.2.3�with two core players

and with periphery players who only link to one of the two core players.

Proposition 8 from that section and Proposition 14 from Appendix B.5 imply

that the line with four players is the only network with these properties that

exists in equilibrium.

Thus consider a minimally connected component with a longest path of

at least �ve. Consider any player i with ni = 1 and let j be the single player

he is linked to. As the component consists of at least �ve players nj ≥ 2, i.e.

j has another neighbour. Assume by contradiction x∗i ≥ x∗j . Then optimal

activity and strictly increasing f imply

f(x∗j) ≥ f(x∗i +
∑

j′∈Nj\{i}

x∗j′)

⇒ x∗j > x∗i ,

a contradiction. Applying Lemma 2, we can assume that all players with

ni = 1 sponsor their link. Then optimal linking implies that they sponsor

their single link to some player with highest activity x̄ (in the entire network)

and, thus, all players with ni = 1 have common activity x < x̄.

Consider some player with ni = 1 from whom a path of (at least) �ve

players extends. We call these players a, . . . , e. From the reasoning above,

x∗a = x and x∗b = x̄. Consider player c. As he is linked to b as well as to d his

cumulative neighbour activity is higher than a's so that x∗c > x.

Assume that x∗c < x̄. Then d cannot sponsor a link to c as he would

strictly improve his payo� by switching the link to b (whom he is currently not
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linked to as the component is minimally connected). But then (by upwards

linking) c sponsors links to b and d so that ηc ≥ 2, ηa = 1 but x∗c > x∗a,

a contradiction to Proposition 5. As x̄ is the maximal level of activity, we

conclude x∗c = x̄.

Similar reasoning shows that x∗d = x̄. As x∗b,c,d = x̄ a stronger version of

Lemma 2 holds:38 if any such equilibrium exist, then there is an equilibrium

with any arbitrary direction of link sponsorship between b and c or c and d.

In particular, there is an equilibrium in which c sponsors both links, a similar

contradiction to Proposition 5 arises as above.

Proof of Proposition 7. We prove part (ii) �rst and then turn to part (i).

Part (ii): Fix any ḡ∗ ∈ Ḡ∆1,2

bp arbitrarily. We conjecture that all players

within partite set j choose symmetric positive activity xj in equilibrium.

Under the conjecture the best response activity of all players in P1 implies

x∗i = x1 = f(∆1x2) and the best response of players in P2 implies x∗i =

x2 = f(∆2x1). The arguments presented in Proposition 1 and Assumption 3

guarantee that there is a positive solution x1,2 that solves both equations

simultaneously. That is we have found a positive activity equilibrium vector

x∗ for ḡ∗. As there is a unique positive activity vector by Proposition 1 for

every component of ḡ∗ and x∗ > 0 in any generic equilibrium with non-empty

interaction network by Proposition 2, the conjecture is con�rmed.

Assume by contradiction x1 ≥ x2. As f is strictly increasing, optimal

activity then implies ∆1x2 ≥ ∆2x1. Since ∆1 < ∆2 it follows x2 > x1, a

contradiction.

By x1 < x2, optimal activity then implies ∆1x2 < ∆2x1. Finally, ∆2|P2| =
∆1|P1| as the total number of links in both independent sets has to be equal.

Part (i): Pick any ĝ ∈ Ḡ∆1,2

bp arbitrarily. We need to show that there is

some g∗ with ḡ∗ = ĝ and x∗ such that (x∗, g∗) ∈ E+.

38Note that as these players have maximal activity, equilibrium condition four is au-
tomatically met when link sponsoring between any two players is switched. Then the
stronger version follows immediately from the proof of the lemma.
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From part (ii), we know that players in P1 choose symmetric activity x1

whereas players in P2 choose symmetric activity x2 > x1 in any (x∗, g∗) ∈ E+

with ḡ∗ = ĝ. Fix some g∗ with ḡ∗ = ĝ such that all links are sponsored

by players in P1. To prove the statement we need to show that equilibrium

conditions 2 to 4 from Lemma 1 hold for k ∈ [k, k̄] 6= ∅ given the equilibrium

activity pattern described above.

It is obvious that equilibrium condition 4 is met as x1 < x2, all links are

sponsored by players in P1 and are directed towards players in P2. As all

links are sponsored by players in P1, equilibrium condition 3 of the lemma

preventing link deletion writes as

h(∆1x2)− h(∆1x2 − x2) ≥ k. (12)

Equilibrium condition 2 of the lemma preventing link adding can be split into

three conditions, namely that players in P2 do not gain from adding a link

to another player in P2 (which they strictly prefer to adding a link to some

player in P1) and that players in P1 do not gain from adding a link to either

a player in P1 or�if possible�in P2. However, as h is strictly increasing and

concave and ∆1x2 < ∆2x1, the following two inequalities hold

h(∆2x1 + x2)− h(∆2x1) < h(∆1x2 + x2)− h(∆1x2)

h(∆1x2 + x1)− h(∆1x2) < h(∆1x2 + x2)− h(∆1x2),

which shows that players in P1 have the strongest incentive to add a link if

there is some (hypothetical) suitable player in P2 available. Therefore, the

condition below preventing players in P1 from adding a link to a player in

P2, is su�cient for equilibrium condition 2:

h(∆1x2 + x2)− h(∆1x2) ≤ k. (13)

As h is strictly concave, we know that

h(∆1x2 + x2)− h(∆1x2) < h(∆1x2)− h(∆1x2 − x2)
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so that Equations (12) and (13) are simultaneously met for k ∈ [k, k̄] 6= ∅
which �nalises the proof.

Proof to Proposition 8. We are going to prove part (i) �rst, then part (iii)

and �nally turn to part (ii).

Part (i): We are going to show that (x∗, g∗) ∈ E+ with ḡ∗ ∈ Ḡcp\Ḡcom
cp =

Ḡ¬comcp and min{|C|, |P|} > 1 implies |P| = 2.

Throughout the proof, we denote by C = {c ∈ C : x∗c ≤ x∗c′ , ∀c′ ∈ C}
the set of least active core players with typical element c ∈ C and P̄ = {p ∈
P : x∗p ≥ x∗p′ , ∀p′ ∈ P} the set of most active periphery players with typical

element p̄ ∈ P̄ . The following claim holds:

Claim. If (x∗, g∗) ∈ E+ with ḡ∗ ∈ Ḡ¬comcp then xp̄ < xc.

Proof. Assume by contradiction that xp̄ ≥ xc and p̄ and c do not share a

link. As c is linked to some (other) periphery player p̃ by assumption, we get

f(
∑
c∈C

xc − xc) ≥ xp̄ ≥ xc ≥ f(
∑
c∈C

xc − xc + xp̃),

which implies xp̃ ≤ 0, a contradiction.

Assume instead p̄ and c share a link. On the one hand, if xp̄ > xc then

f(
∑
c∈C

xc) ≥ xp̄ > xc ≥ f(
∑
c∈C

xc − xc + xp̄),

which implies xc > xp̄, a contradiction. On the other hand, xc = xp̄ can

only hold true if p̄ is the only periphery player linked to c and is himself

linked to all players in C. As p̄ and c are linked to the same set of people

we can assume without any loss of generality that g∗p̄c = 1, i.e. p̄ sponsors

the link. As Np̄ = C and p̄ sponsors a link to c with lowest core activity x∗c
any other player in the periphery p′ ∈ P has to have Np′ = C in any generic

equilibrium. Thus, the core-periphery network is complete, ḡ∗ ∈ Ḡcom
cp , a

contradiction.
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As xp̄ < xc, we can apply Lemma 2 and assume that periphery players

sponsor all their links. As periphery players do not link among themselves,

Proposition 5 then implies that all periphery players sponsor a common num-

ber of links ηp in any generic equilibrium and have a common level of activity

x∗p′ = x∗p, ∀ p, p′ ∈ P . As ḡ∗ ∈ Ḡ¬comcp we know that ηp < |C| (recall that
|C| > 1 by assumption). Then there cannot be a single least active core

player as no periphery player would sponsor a link to him if a higher activity

core player is available.

In conclusion, 1 < |C| ≤ |C| so that there are at least two players in

|C|. In equilibrium, periphery players sponsor links to all core players with

x∗c > x∗c and a strict subset of players in C, i.e. ηp ∈ (|N c̄|, |C|). Therefore,

all players in N c̄ = C \ C have the same common activity x∗c̄ . As all players

in C have the same common activity x∗c , they access the same cumulative

neighbour activity, i.e. they have links a common number of neighbours

from the periphery κc ≥ 1.

As |C| ≥ 2, there must be a player in C sponsoring a link to another player
in C and thus the equilibrium conditions in Lemma 1 imply

h(
∑
j∈C

x∗j − x∗c + κcx
∗
p)− h(

∑
j∈C

x∗j − 2x∗c + κcx
∗
p) ≥ k,

whereas any periphery player p ∈ P refrains from adding a link to another

player with x∗c which implies

h(
∑

j∈C∩Np

x∗j + x∗c)− h(
∑

j∈C∩Np

x∗j) ≤ k.

Since h is strictly concave, both statements can only be met simultaneously

if ∑
j∈C

x∗j − x∗c + κcx
∗
p ≤

∑
j∈C∩Np

x∗j + x∗c . (14)

As κcx
∗
p > 0 the inequality above implies

∑
j∈C x

∗
j−
∑

j∈C∩Np x
∗
j < 2x∗c so that

ηp > |C| − 2. As ηp < |C| by assumption, every periphery player sponsors

sponsors exactly ηp = |C|− 1 links so that
∑

j∈C∩Np x
∗
j +x∗c =

∑
j∈C x

∗
j . Then
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Equation (14) reads as x∗p ≤ 1
κc
x∗c .

Assume by contradiction κc > 1. Optimal activity in Lemma 1, concavity

of f and f(0) = 0 imply

x∗p = f(
∑
j∈C

x∗j − x∗c) ≤
1

κc
x∗c < f(

1

κc
(
∑
j∈C

x∗j − x∗c + κcx
∗
p)).

As f is strictly increasing (�rst step),
∑

j∈C x
∗
j ≥ |C|x∗c (third step), and

κcx
∗
p ≤ x∗c (fourth step), we can reformulate that condition

∑
j∈C

x∗j − x∗c <
1

κc
(
∑
j∈C

x∗j − x∗c) + x∗p

⇔ (
∑
j∈C

x∗j − x∗c)(1−
1

κc
) < x∗p

⇒ (|C| − 1)x∗c(1−
1

κc
) < x∗p

⇒ (|C| − 1)(κc − 1) < 1

which can only hold true for κc = 1 as |C| > 1 by assumption.

As κc = 1, every player in C shares a link with exactly one periphery

player. As ηp = |C| − 1 every periphery player shares a link with all but one

player in C. Together with |C| ≥ 2 and |P| ≥ 2, we conclude |C| = |P| = 2.

Part (iii): Assume there is some equilibrium with a complete core-

periphery interaction graph ḡ∗ ∈ Ḡcom
cp . We want to determine the positive

activity equilibrium vector, which exists by Assumption 3. As all periphery

players are linked to (and only to) all core players, they choose common

activity x∗i = xp.

Similarly, all core players choose common activity x∗i = xc: assume by

contradiction x∗c′ < x∗c′′ . Then optimal activity implies

f(
∑

j∈N\{c′,c′′}

x∗j + x∗c′′) < f(
∑

j∈N\{c′,c′′}

x∗j + x∗c′),

which implies x∗c′′ < x∗c′ , a contradiction.

These common equilibrium activity levels can be ranked: �rst, assume by
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contradiction that xc ≤ xp. Then optimal activity and increasing f imply

(|C| − 1)xc + |P|xp ≤ |C|xc,

which implies xp < xc as |P| > 1, a contradiction.

Second, assume by contradiction that |P|xp ≤ xc. From equilibrium

condition 1 of Lemma 1, as |P| > 1, and f strictly increasing and concave it

follows

|P|xp ≤ xc

⇔ |P|f(|C|xc) ≤ f(|P|xp + (|C| − 1)xc)

⇒ |P||C|xc < |P|xp + (|C| − 1)xc

⇔ {(|P| − 1)|C|+ 1}xc < |P|xp,

which by (|P| − 1)|C| > 0 implies xc < |P|xp, a contradiction.

Part (ii): Pick any ĝ ∈ Ḡcom
cp arbitrarily. From part (iii), we know that

core players choose symmetric activity xc whereas periphery players choose

symmetric activity xp < xc in any (x∗, g∗) ∈ E+ with ḡ∗ = ĝ, i.e. when

equilibrium conditions one in Lemma 1 is met. Furthermore, condition four

of the lemma is then met trivially in any core-periphery network.

We now show that (the remaining) equilibrium conditions two and three

from Lemma 1 are met for a non-degenerate interval of linking costs k ∈
[k, k̄] 6= ∅ (and when |P| > 2) i� h is su�ciently linear:

As xp < xc and by Lemma 2, incentives to deviate are minimised when

periphery players sponsor all their links. Then the third condition of the

lemma demands that neither a core player (15) nor a periphery player (16)

is allowed to gain from deleting a link to a core player and hence

h(|P|xp + (|C| − 1)xc)− h(|P|xp + (|C| − 2)xc) ≥ k (15)

h(|C|xc)− h((|C| − 1)xc) ≥ k. (16)

The �rst inequality is su�cient for the second since xc < |P|xp by part (iii)

and h concave. In other words, if core players prefer to sustain their marginal
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link to other core players, then periphery players also prefer to sustain their

marginal link.

The second equilibrium condition of Lemma 1 (preventing adding of links)

is met trivially for core players as they are already linked to all remaining

players. Thus we only need to assure that a periphery player does not gain

from adding a link to another periphery player i.e.

h(|C|xc + xp)− h(|C|xc) ≤ k. (17)

In conclusion, for any ĝ ∈ Ḡcom
cp there is (x∗, g∗) ∈ E+ with ḡ∗ = ĝ i� Equa-

tions (15) and (17) are ful�lled simultaneously for a non-degenerate interval

of linking costs. That is

h(|P|xp + (|C| − 1)xc)− h(|P|xp + (|C| − 2)xc)

> h(|C|xc + xp)− h(|C|xc). (18)

For |P| > 2, the inequality holds true if h is (locally) su�ciently linear as

xc > xp; however, if h is (locally) su�ciently concave, the inequality is not

satis�ed since�as shown below�|P|xp + (|C| − 2)xc > |C|xc.
To see that, assume |P| > 2 and by contradiction |P|

2
xp ≤ xc. Then from

optimal activity and the properties of f and as |C| ≥ 2 we get

|P|
2
xp ≤ xc

⇔ |P|
2
f(|C|xc) ≤ f(|P|xp + (|C| − 1)xc)

⇒ |P|
2
|C|xc < |P|xp + (|C| − 1)xc

⇔ (
|P| − 2

4
|C|+ 1

2
)xc <

|P|
2
xp

⇒ xc <
|P|
2
xp
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Proof of Proposition 9. Consider any equilibrium (x∗, g∗) ∈ E++. We can

partition the set of players N into l̄ sets of equi-activity players N l, i.e.

∪l̄l=1N
l = N and x∗i = xl, ∀i ∈ N l. We order these sets by activity so that

x1 < x2 < · · · < xl̄.

For our proof, two observations are decisive: (i) If a player i ∈ N i spon-

sors a link to some player j ∈ N j in a strict equilibrium, then he must share

a link with all other players j′ ∈ N j. Otherwise player i can�without chang-

ing his payo��delete his link to j and create a new link to some j′ ∈ N j

(with whom he currently does not share a link) instead and the equilibrium

is not strict.

(ii) If player i shares a link with all other players j ∈ N \ {i} then his

activity is maximal, i.e. i ∈ N l̄ and x∗i = xl̄. By contradiction assume there

exists j ∈ N with x∗j > x∗i . Then from optimal activity we have

x∗i = f
(∑
s∈Ni

x∗s
)

< f
(∑
s∈Nj

x∗s
)

= x∗j

⇒
∑
s∈N

x∗s − x∗i <
∑
s∈Nj

x∗s ≤
∑
s∈N

x∗s − x∗j

⇒ x∗j < x∗i .

For the proof, we apply Lemma 2 and assume that links are sponsored

by an adjacent player with weakly smaller activity.

Consider players in N1 �rst. There are three possible con�gurations: (a)

If players in N1 do not sponsors any links then they have maximal activity

x1 = xl̄: Due to complementarity, any hypothetical higher activity players

would have to share some links among themselves, in contradiction to Propo-

sition 5 part (ii). Thus the network is empty, i.e. a �complete� onepartite

graph.

(b) Or some player i ∈ N1 sponors a link to another player in N1. Then

he must (in equilibrium) share a link with all higher activity players inN\N1.

By the two observations above, l̄ = 1 follows and the network is complete.

The complete network is a variation of a �complete� onepartite network as

described by the proposition.
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(c) Or players in N1 (only) sponsor links to higher activity players (and

N1 is an independent set). Assume by contradiction that they did not sponsor

any links to players in N2. Then Proposition 5 parts (ii) and (iii) implies

x1 = x2 which is not possible by de�nition. Therefore and as players in

N1 have to sponsor the same number of links (again by Proposition 5), from

Observation (i) above and as players prefer to sponsor links to higher activity

players, players in N1 have to sponsor links to all higher activity players

∪l̄l=2N
l.

Repeating a similar argument for N2 to N l̄ concludes the proof.

Proof of Proposition 10. First consider equilibria with a complete interac-

tion network and n ≥ 2 players. The (positive) equilibrium activity solves

xn = f((n − 1)xn) > 0. Furthermore, xn is increasing in n: assuming that

n ≥ 2 is continuous, di�erentiating both sides gives

∂xn
∂n

=
xn

1
f ′((n−1)xn)

− (n− 1)
> 0

where the denominator is positive since xn = f((n−1)xn) > f ′((n−1)xn)(n−
1)xn by concavity of f and as f(0) = 0.

There is no lower bound of linking costs in a complete network as no player

can add a link even if desired; the upper bound of linking costs preventing

players from deleting their marginal link is given by

k̄comn = h((n− 1)xn)− h((n− 2)xn)

= h((n− 1)xn)− h((n− 1)xn − f((n− 1)xn)).

Finally as (n− 1)xn increases in n and goes to in�nity

k̄com∞ = lim
n→∞

k̄comn = lim
x→∞

h(x)− h(x− f(x)),

which is well de�ned as h(x) − h(x − f(x)) is eventually monotone by As-

sumption 4 and the limit of a monotone function exists. Thus an equilibrium
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with a complete network exists for any k ∈ (0, k̄∞com) for �nite but su�ciently

large n.

Consider instead equilibria with a (single) star network with n−1 spokes.

The centers (positive) equilibrium activity xc solves xc = f((n − 1)xs) and

the spokes activity xs is determined by xs = f(xc). Similar arguments about

complementarity as above imply that xs as well as xc increase in n. Also note

that for n ≥ 3, the center's activity is higher than the activity of the spokes.

Then Lemma 2 implies that incentives to deviate from linking are minimised

if links are sponsored by spokes�which we assume henceforth. As spokes

have a single link, there is the following upper bound on linking costs that

prevent them from deleting their link

k̄starn = h(xc)− h(0)

= h(f((n− 1)xs)).

As (n− 1)xs goes to in�nity in n

k̄star∞ = lim
n→∞

k̄starn = lim
x→∞

h(f(x)) = k̄max.

Conversely, there is a lower bound of linking costs preventing spokes from

linking to other spokes

kstarn = h(xc + xs)− h(xc)

= h(xc + f(xc))− h(xc).

As f is unbounded from above, we know that the centers activity xc converges

to in�nity in n and thus

kstar∞ = lim
n→∞

kstar = lim
x→∞

h(x+ f(x))− h(x),

where the limit exists again due to Assumption 4. Thus the star network

exists for any k ∈ (kstar∞ , k̄max) for �nite but su�ciently large n.

Finally, we need to compare kstar∞ and k̄com∞ . As h is strictly concave we
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know for each �nite x > 0

0 < h(x+ f(x))− h(x) < h(x)− h(x− f(x)).

Thus in the limit for x → ∞ it follows kstar∞ ≤ k̄com∞ . If kstar∞ < k̄com∞ or

kstar∞ = k̄com∞ ∈ {0, k̄max} the claim holds trivially. Thus assume that kstar∞ =

k̄com∞ ∈ (0, k̄max) i.e. both functions converge to the same �nite limit. As

both functions are eventually monotone and as there is a positive gap between

them for any �nite x, it can then not be the case that h(x + f(x)) − h(x)

eventually decreases while h(x) − h(x − f(x)) eventually increases. If the

former eventually increases, the star is an equilibrium for k ∈ [kstar∞ , k̄max)

for su�ciently high n, if the latter eventually decreases the complete network

is an equilibrium for k ∈ (0, k̄com∞ ] for su�ciently high n. Thus either a star

or a complete network are an equilibrium for all k ∈ (0, k̄max) for su�ciently

high n.
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B Supplementary Material for �Social Activity

and Network Formation�

B.1 A Family of Social Activity Models

In this appendix, we present a family of social activity models which ful�l

the properties assumed in the main part of the paper. Consider the following

gross payo�s before linking costs are realised

πi(x, ḡ) = λ
[
v(
∑
j∈Ni,ḡ

xj)xi
] τ
λ−(cxi)

τ , (19)

where c ∈ (0,∞) denotes marginal costs from activity and τ > 0 so that

these costs increase in activity. The value of neighbour activity v(·) is strictly
increasing, concave and normalised, i.e. v(0) = 0 and v′ > 0 and v′′ < 0.

For consistency with the general model, we additionally assume that vτ is

strictly concave and λ ≥ 2 (where λ = 2 comes at no loss of generality as

shown below).

There is a unique optimal level of activity for agent i given any activity

x−i and any network ḡ which solves the �rst order condition of the gross

payo� in Equation (19):

x∗i (x−i, ḡ) =
v(
∑

j∈Ni,ḡ xj)
1

λ−1

c
λ
λ−1

≡ f(
∑
j∈Ni,ḡ

xj), ∀i ∈ N. (20)

Note that v(·)
1

λ−1 is strictly increasing and concave by the assumptions on v

and as 1
λ−1
∈ (0, 1). Thus all assumptions on f from the main part are met.

For λ = 2, which is without loss of generality as shown below, v′(0) > c2

and limx→∞ v
′(x) < c2

n−1
ensures existence of a positive activity equilibrium

on any non-singleton component of ḡ ∈ Ḡn by Proposition 1.

Plugging the best response activity back into the gross payo� πi we get

i



the maximised gross payo� as

π∗i (x
∗
i ,x−i, ḡ) = (λ− 1)

v(
∑

j∈Ni,ḡ xj)
τ
λ−1

c
τ
λ−1

≡ h(
∑
j∈Ni,ḡ

xj), ∀i ∈ N, (21)

where v
τ
λ−1 is strictly increasing and concave as 1

λ−1
∈ (0, 1) and vτ is strictly

increasing and concave. Thus the assumptions on h from the main part of

the paper are met.

Finally, we quickly show that assuming λ = 2 comes without any loss

of generality for the model. Fix any marginal activity costs c, linking costs

k, τ , and some λ > 2. Consider the following transformation of the model:

v̂ ≡ v
1

λ−1 , ĉ = c
λ

2(λ−1) , k̂ = k
λ−1

c
τ(2−λ)
2(λ−1) , λ̂ = 2, and unaltered τ̂ = τ . As

we show below, a pair (x∗, g∗) constitutes a Nash equilibrium in the original

model if and only if it constitutes a Nash equilibrium in the transformed

model (compare with the equilibrium conditions in Lemma 1).

The optimal activity under the transformed model and the original model

is identical as
v̂(
∑

j∈Ni,ḡ xj)

ĉ2
=
v(
∑

j∈Ni,ḡ xj)
1

λ−1

c
λ
λ−1

.

Furthermore, optimal linking behaviour is also identical as ĉτ̂ k̂ = k
λ−1

c
τ
λ−1 so

that

v̂(
∑

j∈Ni,ḡ xj)
τ̂

ĉτ̂
≷ k̂

⇔ (λ− 1)
v(
∑

j∈Ni,ḡ xj)
τ
λ−1

c
τ
λ−1

≷ k.

B.2 Properties of Positive Activity Equilibria on Exoge-

nous Networks

In this section we discuss some properties of positive activity equilibria on

exogenous and connected networks (or on any non-empty component of a

disconnected network) and elaborate on comparative statics as the network

density increases:
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Proposition 11. Let ḡ be connected and x∗ > 0:

(i) x∗ is globally asympt. stable for x > 0 under best response dynamics.

(ii) ḡij = 0 implies x∗
g⊕ij > x∗ḡ.

(iii) n > 2 implies x̂ < x∗i <
∑

j∈Ni x
∗
j where x̂ = f(x̂) > 0.

Proof of Proposition 11. Throughout the proof we carry over de�nitions

from the proof of Proposition 1.

Part (i): The proof follows similar reasoning as applied in theorem 8

of Milgrom and Roberts (1990). Fix some x̃ > 0. x∗ is globally asymptoti-

cally stable under best response dynamics if iterative application of fḡ on x̃

converges to x∗.

By Assumption 3, there is a unique positive �xed point x∗ > 0. Using

the same notation as in the proof of Proposition 1, we can �nd a, b such

that x∗, x̃ ∈ (a,b) and restricted fḡ : [a,b] → (a,b) as a can be arbitrarily

close to 0 and b can be arbitrarily large.

Consider three sequences starting at α1 ∈ {a,b, x̃} and αs = fḡ(α
s−1).

As fḡ is non-decreasing and fḡ(a) > a, the sequence as is non-decreasing. As

it is also bounded above by b, it converges to some x0 = sup(as). As both

sides of as = fḡ(a
s−1) converge to x0, x0 is a �xed point of fḡ in (a,b) and

thus x0 = x∗. For similar reasons, bs is a non-increasing sequence converging

to x∗. Finally, x̃s ∈ [as,bs] at the sth elements of the three series as fḡ is

non-decreasing so that the sequence x̃s converges to x∗ as well.

For the proofs of the other two parts, we need to provide a stronger �nding

to facilitate strict comparative statics:

Claim 1. Consider some x1 > 0 with fḡ(x
1) ≥ x1 and at least one strict

entry fḡ,i(x
1) > x1

i . Then the sequence xs with fḡ(x
s) = xs−1 converges to

the unique positive �xed point x∗ > x1.

Proof. From the reasoning above, it is clear that the sequence xs converges

to the unique positive �xed point x∗ = fḡ(x
∗). As fḡ(x

1) ≥ x1 and fḡ is non-

decreasing, the sequence xs is also non-decreasing and thus x∗ ≥ x1. Assume

by contradiction that there exists i ∈ N with x∗i = x1
i . As x∗ ≥ x1 and by
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the �xed point �nding x∗i = fḡ,i(x
∗) it follows immediately that x∗j = x1

j for

all neighbours j ∈ Ni,ḡ. Iterating the argument and as ḡ is connected this

implies x∗ = x1. As x∗ is a �xed point, fḡ(x
1) = x1, a contradiction to the

assumptions of the claim.

Part (ii): Consider some network with gij = 0. Since fḡ(x
∗
ḡ) = x∗ḡ > 0

it follows fg⊕ij(x
∗
ḡ) ≥ fḡ(x

∗
ḡ) = x∗ḡ and fg⊕ij,i(x

∗
ḡ) > fḡ,i(x

∗
ḡ). By Claim 1, the

sequence xs = fg⊕ij(x
s−1) with x1 = x∗ḡ then converges to x∗

g⊕ij > x1 = x∗ḡ.

Part (iii): Note that there is a unique positive x̂ for which x̂ = f(x̂) as

f(0) = 0, f ′(0) > 1, f strictly concave and limx→∞ f
′(x) < 1. Furthermore,

for y > 0 and y T x̂ we have y T f(y). Consider any connected graph g with

n > 2 and assume x1 = x̂. There is at least one player who has more than

one neighbour in ḡ and for whom fḡ,i(x
1) > x1

i by de�nition of x̂. All other

players have only one neighbour, i.e. fḡ,i(x
1) = x1

i . By Claim 1, this implies

x∗ > x1 = x̂ and so x∗i <
∑

j∈Ni x
∗
j for all i.

The proposition illuminates some properties of the positive activity equi-

librium: the �rst �nding tells us that the positive activity equilibrium is

stable under best response dynamics even if the society is severely shocked.

Conversely, it is easy to see that the zero activity equilibrium is unstable:

if two adjacent players�i.e. two neighbours�simultaneously make an error

and choose some non-zero activity, then best response dynamics inevitably

lead to the positive activity equilibrium.

The second �nding shows that increasing the density of a connected net-

work by adding a single link is not just bene�cial for adjacent players who are

directly e�ected from additional positive externalities. By complementarity,

their strategic reaction to higher marginal bene�ts is increasing activity on

their own which is in turn bene�cial for all their neighbours. Thus there is

a multiplicative e�ect and ultimately all players increase their activity and

bene�t from the new link.

The third �nding re-emphasises that diminishing activity incentives�

su�cient concavity of f�is crucial to keep total network activity in balance.

Although there is complementarity, players' activity is strictly lower than
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their cumulative neighbour activity in any positive activity equilibrium with

more than two players.

B.3 The Partition of E

In this section, we characterise the equilibrium-types that exist in E with a

special focus on some non-generic equilibria which are excluded from E+.

Proposition 12. E ⊆ {(x∗ḡ, g)}g∈G so that E is partitioned into three sets:

i. A zero activity equilibrium with x∗ = 0 and empty network ḡ∗emp

ii. Positive activity equilibria with x∗ > 0 and ni,ḡ∗ ≥ 1, ∀i ∈ N

iii. Non-generic equilibria in which�for x̂ = f(x̂) and x̃ = h−1(k)�either

(a) x∗i ∈ {0, x̃}, x̃ = x̂, i.e. k = h(x̂); the network consists of isolated

players with x∗i = 0 and pairs of players with x∗i = x̃ each; or

(b) x∗i ∈ {0, f(x̃), x̃}, x̃ > x̂, i.e. k > h(x̂); the network consists of

isolated players with x∗i = 0 and stars in which the center has

activity x∗c = x̃ = f(rx∗s) and all r > 1 spokes have activity x∗s =

f(x̃).39

Proof of Proposition 12. The proposition is an extension of Proposition 2.

Thus we only need to discuss the non-generic equilibria in case 3 from its

proof in more detail. Recall that there are isolated as well as non-isolated

players in these equilibria and de�ne x̃ = h−1(k). As some players sponsor

links maxx∗i ≥ x̃ because no link is sponsored to any player with x∗i < x̃ by

Lemma 1 and by concavity of h. Conversely, as some players are isolated

maxx∗i ≤ x̃ because isolated players strictly gain from linking to a player

with x∗i > x̃. Thus maxx∗i = x̃ and the following statements are true: links

are only formed to players with x∗i = x̃, every player sponsors at most one

39For instance, x̂ = 1 and x̃ = k2 in the baseline model with c = 1 and q = 1
2 . Then a

non-generic equilibrium with isolated players and stars�in which the center has activity
k2 and the r > 1 spokes activity k�exists i� linking costs k = 3

√
r, e.g. for linking costs

k = 2 stars with eight spokes and any number of isolated players constitute an equilibrium.
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link and if he sponsors a link, he has no incoming links. We consider two

sub-cases in turn.

For part (iii) (a), assume that there exists some player i with x∗i = x̃

who sponsors a link to some other player j (with x∗j = x̃) in equilibrium.

Then x̃ = x̂ where x̂ = f(x̂) from optimal activity. As f strictly increases,

no player has more than one (incoming) link and there is a unique positive

level of activity�i.e. the network consists of pairs of players with x∗i = x̂ = x̃

each and isolated players with x∗i = 0.

For part (iii) (b), assume that no player with x∗i = x̃ sponsors any links.

Then only players with x∗s ∈ (0, x̃) sponsor links to players with x∗i = x̃.

As all those players sponsor only one link and have no incoming links, they

must choose a symmetric level of activity solving x∗s = f(x̃) = f(h−1(k)) by

the equilibrium condition. Consequently, there are three di�erent levels of

activity in such an equilibrium x∗i ∈ {0, f(x̃), x̃} and the equilibrium network

consists of any number of isolated players with zero activity and stars�in

which the center's activity is x∗c = x̃ and the spokes' activity is x∗s = f(x̃).

Furthermore, x∗s = f(x̃) < x̃ = x∗c implies x̃ > x̂ = f(x̂) as f is concave

and �xed point x̂ exists by Assumption 3. x̃ > x̂ implies k = h(x̃) > h(x̂).

Finally, if each star consists of a center and r > 1 spokes, optimality of center

activity implies x∗c = x̃ = f(rx∗s).

The two non-generic equilibria are special cases in which the value from

linking to (and only to) one of the most active players is exactly equal to

the linking costs, i.e. the most active players choose activity x̃ = h−1(k).

Therefore, isolated players are indi�erent between their isolation and forming

a single link to one of the most active players (with simultaneous activity

adjustment to f(x̃)). Although these non-generic equilibria are contained in

E they are excluded from the set E+: for any k
′ < k, isolated players would

strictly prefer to form a link to some player with x̃ and for any k′ > k, players

who support a link prefer to delete it.
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Figure 5: Complete Multipartite Network

B.4 Complete Multipartite Networks

Multipartite networks are a generalisation of bipartite networks as discussed

in Section 4.2.2: the set of agents N can be partitioned into any number of

independent sets (so-called partite sets or parts). In a complete multipartite

network, every agent shares a link with all agents outside his own part. An

example of such a network can be seen in Figure 5.

We assume in this section additionally that there are at least two parts

and all of them are of di�erent size, that is the parts can be labeled in

descending order

|P1| > |P2| > · · · > |Pl̄| ≥ 1.

We collect (undirected) networks which ful�l these properties in the set Ḡcom
mp .

There are some regularities for the equilibrium activity on any (exoge-

nously given) complete multipartite network: First, as all players from a

partite set share the same neighbours, they choose common equilibrium ac-

tivity. Second, as players from smaller partite sets share links with a larger

fraction of the entire society and due to strategic complementarity, they have

higher equilibrium activity.

Next, consider some directed network g′ with ḡ′ ∈ Ḡcom
mp . We apply

Lemma 2 and assume that all links are sponsored by the adjacent player

from the larger partite set (who has smaller equilibrium activity) so that

incentives to deviate are minimised. We call the lower (respectively upper)

bound of linking costs such that no player from the lth partite set changes

his linking behaviour in g′ as kl (respectively k̄l).

We are able to show that there is always a non-zero interval of linking
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costs [kl, k̄l] such that players from partite set Pl do not deviate from their

linking. However, (x∗ḡ′ , g
′) is only an equilibrium if all the intervals [kl, k̄l]

have a non-zero intersect, that is ∩l̄l=1[kl, k̄l] 6= ∅. Unfortunately, we are not
able to determine in general when this holds (apart from the special case

of a complete bipartite network). The proposition below states our partial

results formally:

Proposition 13. Let ḡ ∈ Ḡcom
mp .

(i) Every i ∈ Pl chooses common x∗i = xl in equilibrium with xl < xl+1.

(ii) If gij = 1 implies x∗i < x∗j then k
l < k̄l and kl+1 < k̄l.

Proof of Proposition 13. Part (i): Players from the same partite set are

linked to the same set of players, thus access the same cumulative neighbour

activity and hence choose some common level of activity by condition one of

Lemma 1.

Assume xl ≥ xl+1. As f is strictly increasing, optimal activity implies

|Pl+1|xl+1 ≥ |Pl|xl. As |Pl+1| < |Pl|, this in turn implies xl+1 > xl, a contra-

diction.

Part (ii): Let yl be the total cumulative neighbour activity accessed by

any player from the lth partite set. As players from lower partite sets have

less equilibrium activity by part (i) and by upwards linking, the remaining

equilibrium conditions in Lemma 1 demand that�for any l ∈ {1, . . . , l̄}�
players in the lth partite set refrain from adding a single link to another

player in the lth partite set and (if l < l̄) from deleting a single link to a

player in the l + 1th independent set. Thus

k ≥ h(yl + xl)− h(yl) ≡ kl

k ≤ h(yl)− h(yl − xl+1) ≡ k̄l.

First, kl < k̄l as by concavity of h

h(yl + xl)− h(yl) < h(yl + xl+1)− h(yl) < h(yl)− h(yl − xl+1).

Second, note that as xl < xl+1, optimal activity implies yl < yl+1. Hence
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q |P1| ∆|Pl| l̄max

0.4 21 1 7
21 3 5
100 3 5

0.5 21 1 21
0.7 21 1 3

21 3 3
21 5 2

Table 2: Equilibria with Complete Multipartite Interaction Networks

kl+1 < k̄l since

h(yl+1 + xl+1)− h(yl+1) < h(yl + xl+1)− h(yl) < h(yl)− h(yl − xl+1).

As we are unable to provide general theoretical results regarding equilib-

rium existence (i.e. determine when ∩l̄l=1[kl, k̄l] 6= ∅ under upward linking),

table 2 instead presents some numerical analyses for the baseline model.40

Fixing di�erent values of q (the power of the root function), the size of

P1, and a (constant) rate of decrease between succeeding partitions ∆|Pl| =
|Pl|−|Pl+1|, the table shows the maximal number of partite sets l̄max that can

be sustained in equilibrium�that is the maximal number of activity levels

achievable in a complete multipartite network under these conditions.

We draw two major insights from the numerical analyses: �rst, there

can be a considerable number of partite sets in equilibrium. In other words,

multi-level equilibria can display a substantial number of distinct levels of

activity. For example if q = 0.5 and |P1| = 21, a complete 21-partite network

(with 21 distinct levels of activity) is an equilibrium for some linking costs.41

Second, whether a particular complete multipartite network can be sus-

tained in equilibrium depends on the details of the model, that is on the

40The baseline model is covered in more detail in Section 5.2 and Appendix B.6. For
the numerical analysis, we normalise the marginal cost of activity c = 1.

41In fact, we conjecture that for q = 0.5 complete multipartite networks with any number
of partitions can be sustained in equilibrium for k = 0.5.
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shape of f and h. For instance, there is an equilibrium (for some linking

costs) inducing a complete �ve-partite network with |P1| = 21 and ∆|Pl| = 3

if q = 0.4 but not if q = 0.7.

B.5 Core-Periphery Networks with two Periphery play-

ers

For the discussion in this section, we need to specify some networks: The

set Ḡ¬comcp contains all non-complete core-periphery networks and networks

in the special subclass Ḡ¬com∗cp consist of two periphery players, an arbitrary

number of �high activity� and two �low activity� core players, i.e. |P| = 2

and C = C̄ ∪ C with |C| = 2. Additionally, both periphery players are linked

to all �high activity� core players as well as one and di�erent �low activity�

core players. An example with two high activity core players is depicted in

Figure 3 (d) in Section 4.2.3.

The proposition below summarises our �ndings for core-periphery net-

works with two periphery players:

Proposition 14. Let |P| = 2. Then:

(i) Ḡcom
cp ⊂ ḠE+

(ii) ḡ ∈ Ḡ¬comcp ∩ ḠE+ implies ḡ ∈ Ḡ¬com∗cp .

(iii) For any ḡ ∈ Ḡ¬com∗cp , ḡ ∈ ḠE+ i� |h′′| is (loc.) su�. small or |C̄| ∈ {0, 1}.
(iv) If ḡ∗ ∈ Ḡ¬com∗cp then players within P, C, and C̄ have common activity

with

xp < xc < xc̄ < xp + xc.

Proof of Proposition 14. We are going to prove part (i), part (ii), and part

(iv) �rst and turn to part (iii) subsequently.

Part (i): The claim follows directly from the proof of part (ii) of Propo-

sition 8 since Equation (18) is always met for |P| = 2 as h is concave, xp < xc,

and 2xp + (|C| − 2)xc < |C|xc.
Part (ii): The claim follows directly from the proof of part (i) of Propo-

sition 8.
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Part (iv): Assume there is some equilibrium with an incomplete core-

periphery interaction graph ḡ∗ ∈ Ḡ¬com∗cp . We want to determine the positive

activity equilibrium vector, which exists by Assumption 3. As all players

in C̄ link to all other players, they choose common activity xc̄ by the same

argument as presented in the previous proposition.

Furthermore, both periphery players have common equilibrium activity xp

and both C -player have common equilibrium activity xc. Assume not. Then

�xing the activity of C̄-player and switching the activity of both periphery

players as well as both C-player gives a second distinct positive activity equi-

librium vector by symmetry of the network; a contradiction to the uniqueness

result in Proposition 1.

These common equilibrium activity levels can be ranked: �rst, xp <

min{xc, xc̄} as shown in the proof of part (i) of Proposition 8. Second, assume

by contradiction that xc ≥ xc̄. Optimal activity and increasing f implies

|C̄|xc̄ + xc + xp ≥ (|C̄| − 1)xc̄ + 2xc + 2xp

⇔ xc̄ ≥ xc + xp,

a contradiction as xp > 0. By the same reasoning, xc < xc̄ implies xc̄ <

xc + xp.

Part (iii): Pick any ĝ ∈ Ḡ¬com∗cp arbitrarily. From part (iii), we know

that both periphery, both C, and all C̄-player choose common activity with

xp < xc < xc̄ in any (x∗, g∗) ∈ E+ with ḡ∗ = ĝ, i.e. when equilibrium

conditions one in Lemma 1 is met. Equilibrium condition four of the lemma

is then met trivially in any core-periphery network. We now discuss the

remaining two conditions in turn.

As xp < xc < xc̄ and by Lemma 2, incentives to deviate are minimised if

periphery players sponsor all their links and C players sponsor their links to
C̄ players. Thus the third equilibrium condition preventing deletion of links

(to lowest activity sponsored friends) writes out for C̄-player (22; if |C̄| ≥ 2),
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C-players (23), and periphery players (24) as follows:

h(2xp + 2xc + (|C̄| − 1)xc̄)− h(2xp + 2xc + (|C̄| − 2)xc̄) ≥ k (22)

h(xp + xc + |C̄|xc̄)− h(xp + |C̄|xc̄) ≥ k (23)

h(xc + |C̄|xc̄)− h(|C̄|xc̄) ≥ k. (24)

As h is concave, Equation (23) is su�cient for Equation (24).

The second equilibrium condition of the lemma preventing adding of links

is met trivially for C̄ players as they are already linked to all remaining

players. Thus we only need to assure that a periphery player does not gain

from adding a link to a C player and vice versa:

h(2xc + |C̄|xc̄)− h(xc + |C̄|xc̄) ≤ k (25)

h(xc + 2xp + |C̄|xc̄)− h(xc + xp + |C̄|xc̄) ≤ k. (26)

Similarly to above, Equation (25) is su�cient for Equation (26) as h is in-

creasing and concave and xp < xc�that is periphery players have a stronger

incentive to add a link than C players.
In conclusion, for any ĝ ∈ Ḡ¬com∗cp there is (x∗, g∗) ∈ E+ with ḡ∗ = ĝ i�

Equations (23), (25), and�for |C| ≥ 2�Equation (22) are ful�lled simulta-

neously for a non-degenerate interval of linking costs. That is

h(2xc + |C̄|xc̄)− h(xc + |C̄|xc̄) < h(xp + xc + |C̄|xc̄)− h(xp + |C̄|xc̄) and

h(2xc + |C̄|xc̄)− h(xc + |C̄|xc̄) < h(2xp + 2xc + (|C̄| − 1)xc̄)

−h(2xp + 2xc + (|C̄| − 2)xc̄).

As h is concave and xp < xc the �rst equation is trivially true and hence

if C̄ ∈ {0, 1} then ĝ ∈ ḠE+ . If h is (locally) su�ciently linear, the second

equation holds true since xc < xc̄. Conversely, if h is (locally) su�ciently

concave, the second equation is not satis�ed since�as shown below�xc +

|C̄|xc̄ < 2xp + 2xc + (|C̄| − 2)xc̄ for |C̄| ≥ 2.

To see that, note that it is equivalent to show 2xc̄ < 3xp < 2xp + xc

and assume by contradiction 3
2
xp ≤ xc̄. Then from optimal activity and the
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properties of f we get

3

2
f(xc + |C̄|xc̄) ≤ f(2xp + 2xc + (|C̄| − 1)xc̄)

⇒ 3

2
(xc + |C̄|xc̄) < 2xp + 2xc + (|C̄| − 1)xc̄

⇔ (|C̄|+ 2)xc̄ < 4xp + xc

⇒ (|C̄|+ 1)xc̄ < 4xp

⇒ xc̄ <
4

3
xp <

3

2
xp.

The proposition shows that equilibrium core-periphery networks with two

periphery players are either complete (part (i)) or from the special class of

incomplete core-periphery networks Ḡ¬com∗cp (part (ii)).

Finally, equilibria with an incomplete core-periphery network from Ḡ¬com∗cp

display three levels of activity: both periphery players have low activity. The

two core players who are only linked to one periphery player have medium

activity whereas the remaining core players have high activity.

B.6 The Baseline Model and Large Societies

Recall that the gross payo� function in the baseline model was given in

Equation (3) as

πi(x, g) = 2

√
(
∑
j∈Ni,ḡ

xj)qxi − cxi,

where q ∈ (0, 1). It follows straight forwardly that f and h then take the

form of root functions, that is

x∗i =
(
∑

j∈Ni,ḡ xj)
q

c2
≡ f(

∑
j∈Ni,ḡ

xj) (27)

π∗i (x
∗
i ,x−i, ḡ) =

(
∑

j∈Ni,ḡ xj)
q

c
≡ h(

∑
j∈Ni,ḡ

xj). (28)
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If the exponent q is close to zero, then agents are already satiated from

little neighbours' activity. The best response function f and the value func-

tion h become closer to a step function, i.e. optimal activity jumps up from

zero abruptly if some neighbours start to be active but does not change much

as cumulative neighbour activity increases any further.

If the exponent q is close to one instead, agents get less easily satiated

and f as well as h are relatively linear. In other words, complementarity

imposes a relatively proportional positive reaction to increasing cumulative

neighbour activity regardless of the current level.

As f ′(x) = qc−2xq−1, Proposition 1 implies that a positive activity equi-

librium exists on any (exogenously given) ḡ ∈ Ḡ�independent of the number

of players n�and thus it becomes meaningful to consider the game with en-

dogenous network formation in the limit case when n gets large.

In the analysis, we focus on three types of interaction networks: Sec-

tion B.6.1 covers the complete and (non-complete) regular interaction net-

works, whereas Section B.6.2 covers the star network.

B.6.1 Regular and Complete Networks

Recall that Proposition 3 tells us that all regular interaction networks arise

in equilibrium for a non-degenerate interval of linking costs. Furthermore,

in any equilibrium that induces a ∆-regular interaction network there is a

single speci�c positive level of activity x∆. In particular, this level of activity

x∆ is independent of the size of the society n (as long as a ∆-regular network

with n agents exists) and the speci�cs of the network structure (as long as it

is ∆-regular).

In the baseline model we can �nd an explicitly expression for x∆. Solving

Equation (27), gives x∆ =
(

∆q

c2

) 1
1−q .

As x∆ is independent of n, we also know that the (non-degenerate) inter-

val of supporting linking costs [k∆, k̄∆] for an equilibrium with a ∆-regular

interaction network does not change in n as long as n − 1 > ∆. In the spe-

cial case n − 1 = ∆, the interaction network is complete and no player can

add any links even if desired. Thus such an equilibrium is supported for all
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k ∈ (0, k̄∆].

The lemma below discusses how the lower bound k∆ and upper bound

k̄∆ of linking costs supporting equilibria with ∆-regular interaction networks

change as the network becomes denser i.e. ∆ increases:

Lemma 3. Consider the baseline model and let ∆ ∈ {1, . . . , n − 3} with

n≫ 1. Then:

q k∆+1 − k∆ lim∆→∞ k∆ k̄∆+1 − k̄∆ lim∆→∞ k̄∆

> 1
2

> 0 ∞ ∞

= 1
2

> 0 1
2
c−3 < 0 1

2
c−3

< 1
2

0 < 0 0

Table 3: Analysis of k∆ and k̄∆

Proof of Lemma 3. From the discussion in the main text above, we know

that x∆ = (∆q

c2
)

1
1−q . Plugging that into k̄∆ and k∆ as given in the proof to

Proposition 4 and substituting for h from Equation (28) gives the following

expression for upper and lower bound of linking costs for equilibria with

∆-regular network in the baseline model:

k̄∆ =
∆

2q−1
1−q ∆1−q(∆q − (∆− 1)q)

c
1+q
1−q

k∆ =
∆

2q−1
1−q ∆1−q((∆ + 1)q −∆q)

c
1+q
1−q

.

For the remainder of the proof, we treat ∆ ≥ 1 as a continuous variable.

The factor ∆
2q−1
1−q is common to both bounds and we consider its behaviour

�rst. The result is summarised in Table 4 below:

q 2q−1
1−q

∂
∂∆

∆
2q−1
1−q lim∆→∞∆

2q−1
1−q

> 1
2

> 0 > 0 ∞
= 1

2
= 0 = 0 1

< 1
2

< 0 < 0 0

Table 4: Analysis of ∆
2q−1
1−q
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Next, we discuss the behaviour of k̄∆. Using a Taylor expansion around

∆ and evaluating it at ∆− 1 gives

(∆− 1)q = ∆q − q∆q−1 − q(1− q)
2!

∆q−2 . . . .

Using this �nding gives

∆1−q(∆q − (∆− 1)q) = q +
q(1− q)

2!
∆−1 +

q(1− q)(2− q)
3!

∆−2 + . . . .

Clearly, this expression decreases in ∆ and converges to q from above. To-

gether with the results from the analysis of ∆
2q−1
1−q we can determine the

behaviour of k̄∆ as shown in Table 5 below:

q ∂
∂∆
k̄∆ lim∆→∞ k̄∆

> 1
2

∞
= 1

2
< 0 1

2
c−3

< 1
2

< 0 0

Table 5: Analysis of k̄∆

The analysis of k∆ follows similar arguments. Using a Taylor expansion

around ∆ and evaluating it at ∆ + 1 gives

(∆ + 1)q = ∆q + q∆q−1 − q(1− q)
2!

∆q−2 +
q(1− q)(2− q)

3!
∆q−3 − . . . .

Using this �nding gives

∆1−q((∆ + 1)q −∆q) = q − q(1− q)
2!

∆−1 +
q(1− q)(2− q)

3!
∆−2 − . . . .

Clearly, this expression converges to q. The expression is strictly increasing as

the absolute value of each negative term is strictly greater than the following

positive term. We can determine the behaviour of k∆ as shown in Table 6

below:

xvi



q ∂
∂∆
k∆ lim∆→∞ k∆

> 1
2

> 0 ∞
= 1

2
> 0 1

2
c−3

< 1
2

0

Table 6: Analysis of k∆

The behaviour of equilibrium supporting linking costs depends quite dras-

tically on exponent q and thus ultimately on the form of the best response

function and the value function. The band of supporting linking costs in-

creases and converges to in�nity in the network's density if q > 1
2
. Conversely,

it decreases and converges to zero if q < 1
2
. Below, we will explain the in-

tuition for these results. We �rst discuss the e�ects of increasing network

density onto equilibrium activity and then onto the value of the marginal

link (and both bounds of linking costs) for di�erent q.

If q > 1
2
, the equilibrium activity x∗∆ = (∆q

c2
)

1
1−q increases convexly as

the equilibrium network becomes denser�i.e. ∆ increases. Conversely, if

q < 1
2
, then equilibrium activity grows concavely as the equilibrium network

becomes denser.

The network density in�uences the value of the marginal link through

two competing channels. As cumulative neighbour activity increases, the

marginal gross payo� from neighbour activity decreases which reduces the

incentive to support the marginal link. However, as the individual activity

increases, the additional activity accessed through the marginal link becomes

higher, which increases the incentive to support the marginal link.

If q > 1
2
and activity grows convexly in the density of the equilibrium

network, the latter channel is more prevalent and the value of the marginal

link rises. Consequently, the upper bound of linking costs for which the

marginal current link can be supported increases. At the same time, the

lower bound preventing players from forming additional links has to increase

as well.

If q < 1
2
and activity grows concavely instead, the opposite holds true:

the former channel is more prevalent and the value of the marginal link is
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depressed. Thus the upper bound of linking costs preventing players from

destroying their marginal link has to lessen and the lower bound preventing

them from forming additional links diminishes as well.

The next proposition illuminates the e�ects of these result in terms of the

limit sets of supporting linking costs:42

Proposition 15. The following table shows the limit sets of supporting link-

ing costs K∞ of complete and (non-compl.) regular interaction networks in

the baseline model:

q complete (non-compl.) regular

> 2−
√

2 (0,∞) ( [(2q − 1)c
1+q
q−1 ,∞)

∈ (1
2
, 2−

√
2] (0,∞) ⊆ [(2q − 1)c

1+q
q−1 ,∞)

= 1
2

(0, 1
2
c−3] [(

√
2− 1)c−3, c−3]

< 1
2

∅ (0, c
1+q
q−1 ]

Table 7: Limit supporting sets K∞ of selected networks (baseline model)

Proof of Proposition 15. First, we discuss non-complete regular networks.

In the limit for large n, a non-complete ∆-regular network is supported in

equilibrium i� k ∈ [k∆, k̄∆] as ∆ < n − 1. The limit supporting set of

non-complete regular networks is the union of these intervals, i.e. K∞ =

∪∞∆=1[k∆, k̄∆]. Applying Lemma 3, we discuss di�erent values of q in turn.

Let q ∈ (0, 1
2
). Then k̄∆ decreases in ∆ and converges to zero. If the

upper bound decreases slowly enough in comparison to the lower bound,

some equilibrium exists for all k ∈ (0, k̄1]. In particular, if k∆ ≤ k̄∆+1 for

all ∆ ≥ 1 then an equilibrium with a non-complete network exists for all

k ≤ k̄1 = c−
1+q
1−q . Using the de�nition of k∆ and k̄∆+1 from the proof of

Lemma 3, one can easily show that k∆ < k̄∆+1 holds as ∆
q2

1−q < (∆ + 1)
q2

1−q .

Let q = 1
2
. As the upper bound decreases in ∆ and the lower bound

increases, there is some equilibrium with i� k ∈ [k1, k̄1] = [(
√

2− 1)c−3, c−3].

42We employ a slight abuse of notation: as discussed in section 4.1, the interval of linking
costs [k∆, k̄∆] supporting equilibria with a non-complete ∆-regular network is independent
of n (if a ∆-regular network with n players exists). Thus we de�ne the limit supporting
set K∞ of non-complete regular networks as ∪∞∆=1[k∆, k̄∆].
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Let q ∈ (1
2
, 1). As k∆ strictly increases in ∆ and goes to in�nity K∞ ⊆

[k1,∞) = [(2q−1)c
1+q
q−1 ,∞). However, if the intervals [k∆, k̄∆] and [k∆+1, k̄∆+1]

are not overlapping then there are some k ∈ [(2q − 1)c
1+q
q−1 ,∞) for which no

equilibrium with a non-complete regular network exists. The intervals are

not overlapping if k∆+1 > k̄∆ for some ∆ ∈ {1, . . . n− 2} or equivalently

(∆ + 1)
q2

1−q ((∆ + 2)q − (∆ + 1)q) > ∆
q2

1−q (∆q − (∆− 1)q).

We are going to show that the ratio
k∆+1

k̄∆
converges to 1 from above if q > 2−√

2 and thus [k∆, k̄∆] and [k∆+1, k̄∆+1] are not overlapping for ∆ su�ciently

large. Expending the ratio by (∆+2)1−q and ∆1−q and collecting terms gives

k∆+1

k̄∆

=
(1 + 1

∆
)
q2

1−q (∆ + 2)1−q((∆ + 2)q − (∆ + 1)q)

(1 + 2
∆

)1−q∆1−q(∆q − (∆− 1)q)
.

Using similar Taylor expansions as in the proof of Lemma 3, we can write

the ratio as

(1 + q2

1−q
1
∆

+ q2

1−q (
q2

1−q − 1) 1
2!∆2 + . . . )(1 + 1−q

2!(∆+2)
+ (1−q)(2−q)

3!(∆+2)2 + . . . )

(1 + (1− q) 2
∆

+ (1− q)(−q) 4
2!∆2 + . . . )(1 + 1−q

2!∆
+ (1−q)(2−q)

3!∆2 + . . . )
.

From this expression it is clear that the ratio converges to 1 for ∆ → ∞.

For large ∆, terms of order 1
∆

determine the behaviour of the ratio and

as ∆ ≈ ∆ + 2, the ratio converges to 1 from above if q2

1−q > 2(1 − q) or

q <
√

2
1+
√

2
= 2−

√
2.

Second, we discuss equilibria with a complete network. For any �xed n

the interval of supporting linking costs is (0, k̄∆] for ∆ = n − 1. Thus the

limit sets of supporting linking costs K∞ for large n follow directly from the

limits of k̄∆ in ∆ as provided in Lemma 3 and from k̄∆ strictly decreasing

for q = 1
2
.

If agents get satiated from little neighbours' activity, single-level equilibria

can only be sustained for small linking costs: as the network becomes denser,

equilibrium activity increases concavely and the value from the marginal link

decreases.
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In contrast, if agents do not get satiated easily then equilibrium activ-

ity (and the value of the marginal link) increases convexly as the network

becomes denser. As a consequence, a single-level equilibria with a complete

network exists for any linking costs (in su�ciently large societies).

B.6.2 Star Networks

In this section, we consider a star network with one center and n− 1 spokes.

The equilibrium conditions in Lemma 1 imply the following activity for the

center x∗c and any spoke x∗s:

x∗c =
(n− 1)

q

1−q2

c
2

1−q

x∗s =
(n− 1)

q2

1−q2

c
2

1−q
.

As q < 1, we can immediately see that the center's activity is higher than any

spoke's activity for n > 2. Thus, we know from Lemma 2 that the incentive

to sponsor a link is maximised if the spoke sponsors it. Therefore, we focus

subsequently on periphery sponsored stars and n > 2.

Let ksn be the lower and k̄
s
n be the upper bound of linking costs supporting

a periphery sponsored star with n− 1 spokes. The following lemma applies:

Lemma 4. ksn and k̄sn behave as summarised below:

q ksn+1 − ksn limn→∞ k
s
n k̄sn+1 − k̄sn limn→∞ k̄

s
n

> 1
2

> 0 ∞ > 0 ∞

= 1
2

> 0 1
2
c−3 > 0 ∞

< 1
2

0 > 0 ∞

Table 8: Analysis of ksn and k̄sn

Proof of Lemma 4. We start our analysis with the upper bound k̄sn which

prevents spokes from deleting their link to the center. From Lemma 1 and
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using the de�nition of the baseline model, the upper bound writes as

k̄sn = h(x∗c)− h(0) =
(n− 1)

q2

1−q2

c
1+q
1−q

,

which converges to in�nity in n.

Next notice that the center is already linked to all other players. Thus

linking costs must (only) be high enough to prevent spokes from linking to

other spokes and from Lemma 1 we know

ksn = h(x∗c + x∗s)− h(x∗c)

=

(
(n− 1)

q

1−q2 + (n− 1)
q2

1−q2
)q − (n− 1)

q2

1−q2

c
1+q
1−q

∝
(
1 + (n− 1)−

q
1+q
)q − 1

(n− 1)
− q2

1−q2

.

As both, denominator and numerator of the last expression converge to zero

for n→∞, we can apply l'Hôpital's rule and get

lim
n→∞

ksn = lim
n→∞
{1− q
c

1+q
1−q

1(
1 + (n− 1)−

q
1+q
)1−q (n− 1)

q(2q−1)

1−q2 }.

The middle term strictly increases and converges to one from below. As

q(2q − 1)

1− q2
T 0⇔ q T

1

2
,

the last term strictly increases and converges to in�nity for q > 1
2
; it strictly

decreases and converges to zero for q < 1
2
. Together with the earlier �ndings,

the claim follows.

The behaviour of the upper bound and the lower bound have direct im-

plications for the limit sets of supporting linking costs of star networks in

large societies:

Proposition 16. The following table shows the limit sets of supporting link-

ing costs K∞ of the star network in the baseline model:
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q Star

∈ (1
2
, 1) ∅

= 1
2

[1
2
c−3,∞)

∈ (0, 1
2
) (0,∞)

Table 9: Limit set K∞ of the star network (baseline model)
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