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Abstract

The model presented here examines the case of games played on networks
where an agent’s decision to undertake some costly investment is perfectly
complementary with the decisions of his neighbors. Equilibrium actions of in-
dividual agents are found to depend on a measure of their network centrality
known as their coreness. High levels of investment depend on the existence
of densely connected subgroups within the network known in the sociology
literature as k-cores. Peripheral nodes who inhabit sparsely connected areas
of the network will be unable to support high levels of investment, even if they
themselves have low costs and high degrees. Supplementary results which de-
scribe the structure of optimal networks and the relationship between coreness
and Bonacich centrality are also presented.

Potential applications of this framework include models of human capital
investment within firms, costly information transmission, user engagement
in social networking products, and bandwidth allocation decisions in large
autonomous networks.
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1 Introduction

A feature which characterizes many of the day-to-day decisions which are made by
individuals is the dependence on coordination of our action with the actions of others
with whom we frequently meet. These so-called ‘strategic complementarities’ in
action can often be imperfect, such as in the case of investing effort in a team project,
since extra effort by one person is a imperfect substitute for another person’s lack
of effort. In many situations however, strict coordination of decisions is absolutely
necessary. For example, the benefit gained from socializing with co-workers when
starting a new job or moving to a foreign country is strictly limited by the socializing
efforts of other individuals with whom you interact. Such phenomena are generally
classified as peer effects in the literature and so this paper adds to the growing body
of work on peer effects in networks.

Traditional models have often relied on Rousseau’s description of the stag hunt
as a prototypical example of such a coordination problem. More recent models
which examine the relationship between the interaction structure of a society and
such phenomena have however often framed the decision as a binary one e.g. adopt
new technology/don’t adopt, revolt/stay at home, withdraw savings/don’t withdraw
etc. The current paper differs from this tradition by examining how the structure of
social interaction may influence decisions in the case where one-off investments are
made in a continuous ‘capital’ variable by individuals at private cost, and benefits
are realized through pairwise interaction with other individuals’ capital. In that
respect, this paper is most closely aligned with the model of Ballester et al. (2006),
but considers neighboring levels of investment to be perfectly complementary with
one’s own level (and hence there no substitutability in effort).1 In terms of their best
response functions, individuals decide to increase or decrease investment depending
on the number of neighbors who have put in weakly higher levels of investment,
since benefits will be determined by the least investment made by either party in a
pairwise relationship.

One potential application of this framework is to model the emergence of mean-
ingful communication within large groups when there is some privately borne cost.

1In most interpretations of the stag hunt scenario described by Rousseau we have that the
payoff to hunting hare is independent of the action of the other player, so this setup is aligned with
the spirit of the stag hunt game (see Crawford (1991), Skyrms (2003))

2



For example, the learning of new technical terminology in environments of high com-
plexity (e.g. computer programming, options trading, scientific inquiry) requires
some upfront investment cost and increases in attractiveness as others also invest.
However, any two individuals can only communicate at the competence level of the
least able, implying that the minimum investment level determines the transmis-
sion rate of information. Despite the existence of no communication (or ‘babbling’)
equilibria in many such games, the experimental literature has often noted that
meaningful communication tends to emerge, even in situations where no prior com-
mon language exists to facilitate coordination (e.g. Blume et al. (1998), Selten and
Warglien (2007)).

Another example of an application of this framework could be to model users
of a social networking site who have to decide how much time to spend using the
product. In this case, the benefit from time spent is perfectly complementary with
other friends who also use it, as the pairwise surplus gained from interaction is
constrained by the individual contributing the minimal amount of content on the
site. Yet another possible application is to bandwidth allocation problems in au-
tonomous wireless or peer-to-peer networks where nodes can divert costly resources
to maximize the throughput of information.

The model itself bears an initial similarity to a ‘threshold game’, but subtle dif-
ference in the payoff structure give rise to qualitatively different predictions. The
main difference between the setup of this model and that of Young (1998) for ex-
ample, is that costs are only incurred once at the node level rather than at the edge
level, and so thresholds for action depend on the absolute number of neighbors play-
ing a given strategy, rather than a proportion. There will be a marked difference
in equilibrium patterns of play as agents now wish to coordinate, not with a small
cabal of insiders, but with larger ‘core’ groups of the network.

The paper now proceeds with a review of the relevant literature on network
games before moving on to a description of the model in a simple case of pure
complementarity. The following sections then generalize the setting and examine
the construction and stability of efficient networks.
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2 Related Literature

The growing literature looking at games played on networks has been surveyed by
Jackson (2008) and more recently by Jackson and Zenou (2012), so I present a brief
summary of papers directly relevant to the present model.

The bulk of the literature examines the relationship between specific structural
characteristics of the network and Nash equilibria of complete information games.2

Several key contributions have identified a link between the network position of
agents and their equilibrium actions, with a particular focus on different measures
of network centrality. A fundamental contribution to this literature is Ballester et al.
(2006), which was the first model to clearly identify the link between the equilibria
of games played on networks and some variant of the eigenvector centrality of agents.
In their model the utility from exerting effort is a multiplicative function of their
neighbors’ efforts and costs are quadratic and privately borne. This gives rise to best
response functions which are linear in the actions of other agents and can be solved
uniquely by agents selecting their Bonacich centralities as efforts. Calvó-Armengol
et al. (2011) consider a different setting in which agents may invest in active and
passive communication and have quadratic loss functions which are minimized when
actions are matched with their local state and the actions of others. Equilibrium
actions and communication efforts in their model are found to depend on a measure
of centrality named the Invariant Method index, which bears strong similarities to
the Bonacich centrality. These eigenvector centrality results do not hold in the
setting investigated by Bramoullé and Kranton (2007) and Bramoullé et al. (2012)
where actions are considered as strategic substitutes and have a low decay rate along
paths in the network. In the case where network effects are particularly pronounced,
the link between Bonacich centrality and effort disappears and instead we have that
equilibria are characterized by a partition of agents into active and inactive sets,
such that the links from active agents supply all inactive agents with the public
good.

A second strand of the literature on network games of strategic complementarity
which is related to the results presented in this paper is that associated with so-called

2A notable exception is Galeotti et al. (2009) who develop a tractable model of equilibrium play
when the network itself is unknown.
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‘threshold games’. A typical setting is one similar to that described by Granovetter
(1978) where a group of individuals face a collective action problem in the form of
a binary choice, e.g. either to strike or not to strike, but prefer only to take the
action if at least some threshold percentage of the group do the same. Differences
in thresholds can lead to cascading behaviors, where one individual switching strat-
egy forces others to switch, leading to yet more switching until a new equilibrium
is reached. Similar problems were also formally analyzed in an earlier paper by
Schelling (1973), who also discusses some effects of the spatial ‘configuration’ on
cascades and equilibrium outcomes. Since the communication structure of a society
might enable individuals with heterogeneous thresholds to more easily coordinate
on their preferred equilibrium, these issues are addressed in Chwe (1999) and Chwe
(2000). Chwe finds that optimal networks can be formed from a series of interlock-
ing cliques of agents, which allow all agents to take the risky action by making all
locally important thresholds common knowledge, since they are linked to all of their
neighbours’ neighbors.

The model presented in the current paper is perhaps more closely related to that
of Morris (2000), who investigates the role of network structure in a binary decision
threshold game when the modeler is concerned about the robustness of decision
making with respect to contagion. Morris shows that only sufficiently inward looking
groups of nodes can be resilient to an invading (perhaps detrimental) social norm
which has occurred in other areas of the network. In a similar respect to the results
of Chwe (2000), segregated networks prevent best response dynamics from triggering
a cascade of revisions arising from some small local perturbation. The models of
Young (1998) and Young (2001) are also concerned with the structural conditions
which enable different regimes of play in different areas of the network and arrive
at a similar conclusion to Morris (2000).

Young (1998) also highlights a negative result with regard to the ability of any
network structure to prevent a risk-dominant equilibrium from prevailing as the
unique stochastically stable state of play. This in turn builds on an earlier paper
by Ellison (1993), which also examines the robustness of equilibria in a stag hunt
game to trembles in decision making for some simple (exogenously given) structures.
The Ellison (1993) model has also been extended to the setting where the network
is endogenous by Jackson and Watts (2002), who find that stochastically stable
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equilibria may arise which are neither risk-dominant nor Pareto-dominant when
agents can select who they are linked to.

3 Model

The model considers the actions of a set of individuals N = {1, 2, . . . , n} where
n ≥ 3 . These individuals are located on an undirected and possibly weighted
network which can be represented by the triple G = ⟨V, E, w⟩ where V = N is
the set of vertices, E is the set of edges and w is a weighting function from E to
the real numbers. Since the network is undirected, edges are unordered pairs (i, j)
where {i, j} ∈ E (equivalently ij ∈ E) implies not only that node i is linked to j

but also that j is linked to i. Additionally, gij will be used to denote the weight
associated with the edge w(ij) where applicable. Let Ni = {j ̸= i | gij > 0} denote
the neighborhood of agent i, which is the subset of N with whom an agent i interacts,
and let di (G) := |Ni| be the degree of agent i in network G.

Each individual selects a level of investment xi ∈ [0, L] which will be perfectly
complementary with the investment levels of neighboring individuals.3 We can sup-
pose that this setup represents an information transmission game where players as
employees of a firm who must choose capacities, as in Sobel (2012), which repre-
sent their competence at communicating highly complex messages. The investment
is now a form of human capital, which is perfectly complementary with other em-
ployees of the firm. Each individual may also have an idiosyncratic benefit from
the investment αixi, but shall incur a private cost which is quadratic in xi, as in
Ballester et al. (2006). Unlike Ballester et al. (2006), who focus on linear best re-
sponse functions where actions are local complements but global substitutes, this
paper considers the case where there is no substitutability in action across individ-
uals. Utility functions therefore take the form

ui = αixi +
∑

j∈Ni

gij min (xi, xj) − 1
2

x2
i

3The assumption that the strategy space is compact plays no role in formal results and is a
simplification which permits the application of tools from the literature of supermodular games as
in Belhaj et al. (2012).
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This function is strictly concave and continuous in xi, although not continuously
differentiable. Consider for now the special case where αi = 0 for all i and gij ∈
{0, 1}. Define the set of neighbors of i who are choosing weakly higher levels of
investment as Mi (xi) := {j ∈ Ni | xi ≤ xj}. The subnetwork of individuals with
xj ≥ xi will be denoted by H (xi), and in addition, let di (H (xi)) := |Mi (xi)|.
For a given action profile x−i let x∗

i (x−i) denote agent i’s best response. This best
response x∗

i (x−i) must firstly satisfy the condition

x∗
i ≤ di (H (x∗

i )) (1)

To see why, notice that to sustain an investment level x∗
i as a best response to some

x−i we need that at least x∗
i neighbors of i are playing a weakly higher action4.

Since each agent is constrained in what the can obtain by the investment levels
of others, increasing xi brings benefits only along those links for which xi < xj.
Whilst the marginal cost of effort is xi, a reduction in xi by i is pivotal only along
links to neighbors in Mi (xi), implying that xi cannot exceed di (H (x∗

i )) as lowering
investment increases utility.

When ui (x∗
i ) is differentiable at x∗

i this condition (1) met with equality. When
ui (x∗

i ) lies in kinked sections of its range, the largest xi satisfying this condition
is the unique best response since di (H (xi)) is weakly decreasing in xi. The best
response x∗

i must therefore also satisfy

x̃i > di (H (x̃i)) for all x̃i > x∗
i (2)

This second condition ensures that marginally raising xi cannot be beneficial as
we are now increasing utility along a lower number of links. These best response
conditions bear some similarity to those seen in ‘threshold games’ (e.g. Young
(1998), Morris (2000) and Chwe (2000)) as they depend directly on the number of
neighbors playing a given strategy. This model differs from the above mentioned
as optimal actions depend on the absolute number of neighbors playing a (weakly)
higher action, rather than a proportion of a neighborhood, since investment cost is
split across all neighbors.

4When x∗
i is not an integer this implies that x∗

i < di (H (x∗
i )), although ⌈x∗

i ⌉ ≤ di (H (x∗
i )) will

hold in any equilibrium.
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Moreover, the equilibrium level of investment for i will depend not only on
di (H (x∗

i )) but, by association, also on dj (H (x∗
i )) for j ∈ Mi (x∗

i ). Since these
j ∈ Mi (x∗

i ) should also be best responding this implies that x∗
j ≤ dj

(
H

(
x∗

j

))
and,

since x∗
i ≤ x∗

j for all j ∈ Mi (x∗
i ) by definition, that x∗

i ≤ dj (H (x∗
i )). We can extend

this logic to j′ ∈ Mj (x∗
i ), and to their neighbors, and so on.

To summarize, in order to sustain an investment level of x∗
i in equilibrium, agent

i must have at least x∗
i neighbors playing x∗

j ≥ x∗
i , who in turn must have at least

x∗
i neighbors playing x∗

j′ ≥ x∗
i , etc. Clearly this condition implies that for a given

agent to sustain high levels of investment in equilibrium we require not only that
they be highly connected, but that their neighbors and neighbours’ neighbors be
highly connected. The finite nature of the network will however ensure that this
subset of highly connected agents cannot grow arbitrarily large as we iterate this
condition along paths from i. As later results will demonstrate, for groups of agents
to sustain some positive investment level in equilibrium they must be sufficiently
connected but also sufficiently inward looking. This discussion necessitates a more
precise definition of cohesive subgroups in the context of the model.

3.1 Cohesive Subgroups

Notions of group cohesiveness in networks have long been studied in the sociology
literature and there are many seemingly natural definitions, such as cliques, clans
and clubs which are given in standard texts such as Wasserman and Faust (1994).
A variant of these which has been used in the economics literature is the notion of a
p-cohesive subset, which is defined in Morris (2000). Formally, a subset of nodes is
said to be p-cohesive if every node within that subset has (at least) a proportion p
of their neighbors within that subset. A related idea is also found in Young (1998)
and Young (2001) where a subset of nodes S is called r-close-knit if for every S ′ ⊆ S

the proportion of links originating in S ′ and ending in S is at least r. Intuitively,
p-cohesiveness is a condition on the degrees of nodes, whereas r-close-knittedness
is a condition on links within a subgroup and therefore a p-cohesive subgroup is
p/2-close-knit.

This model will utilize a particularly useful concept originally defined by Seidman
(1983) known as the k-core. Seidman (1983) considers subgraphs of G which can
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1-core 2-core 3-core

Figure 1: k-cores of a network

be induced by repeatedly pruning nodes of low degrees from the network in order
uncover groups of densely connected individuals. The graph which is obtained by
iteratively removing all nodes of degree less than k is known as a core of order k, or
a k-core.5 A precise definition of a k-core of a graph G follows:

Definition 1. A k-core of a graph G is a subgraph H ⊆ G such that di (H) ≥ k for
each i ∈ H

The notation di (H) in the above definition denotes the degree of agent i within
the subgraph H. When I state that a group of nodes ‘form’ a k-core, this means
that the subgraph consisting of these nodes and links between them is itself a k-core.

Every connected graph trivially supports a 1-core, whilst the 2-core which can
be formed using the least possible number of edges is the ring network. Also note
that the definition implies that nodes belonging to k-cores of high orders are also
members of lower orders, permitting a nestedk-core decomposition of any given
network. Figure 1 shows such a k-core decomposition of a graph for 1 ≤ k ≤ 3.

If an agent i is contained within a k-core then this would imply that they have
at least k neighbors of degree k or greater. There is an intuitive similarity between
the notion of a k-core and the h-index, a citation metric used to assess the impact
of published academic authors.6 There have been a number of applications of the

5This is a slight abuse of terminology as Seidman (1983) refers to the k-core as maximal subgraph
which can be obtained by iteratively removing nodes of lower degree. I follow Wasserman and Faust
(1994) and the more recent literature by referring to any core of order k as a k-core.

6The h-index of an author is the maximal integer h such that h of their papers have at least h
citations.
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Figure 2: Coreness profile of a bridge network

concept of the k-core outside of economics, for example, in the analysis of protein
networks in bioinformatics (e.g. Bader and Hogue (2003) and Wuchty and Almaas
(2005)) and in the visualization of large networks in computer science (e.g. Baur
et al. (2004)).

Since cores of successive orders are nested within the previous core we can define
a coreness value for each i ∈ N :

Definition 2. An individual i ∈ N has coreness ci = k if it is contained in a core
of order k but not in a core of order k′ for k′ > k.

The coreness of a node can be interpreted as a measure of its centrality, as we can
view it as a condition on its degree centrality and the degree centrality of other nodes
reachable along paths of different lengths starting from i. Nodes with high coreness
are likely to have important roles in the network since they have neighbors with
large degrees (who in turn have neighbors with large degrees, etc). High coreness
can also signal that a given node is a member of a dense and cohesive subset of
the network, since cliques of size n immediately form an (n − 1)-core. Although
the coreness profile of a network, denoted by c (G), can give an indication of dense
subsets of G, more information will be needed in general to establish cohesiveness
of the network as a whole (e.g. the links between different cores).7

As can be seen in the example in Figure 2, the coreness of individual nodes can
depend on structural characteristics of the network which are relatively ‘far away’.
In this example, the addition of a single link between the remaining pair of nodes

7I also write ci (H) when it is convenient to distinguish between the coreness of a node under
different subgraphs or supergraphs of G.
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with degree 2 would raise the coreness of all nodes to 3. Although adding a link can
increase the corenesses of distant nodes, the following lemma shows that increases
in the coreness of any given node can be at best be directly proportional to increases
in their degree.

Lemma 1. Adding an edge between i and j can increase ci and cj by at most 1.
Moreover, cj′ can increase by at most 1 for any other j′ ̸= i, j.

Proof. First note that adding a edge cannot lower the coreness of any node in the
network. Now suppose that edge ij increased ci from k to k + m for some m ≥ 2,
this implies that i now has at least k + m neighbors with coreness k + m in the
network G+ ij. However if we remove this newly added edge this would leave i with
k + m − 1 neighbors with at least coreness k + m − 1, contradicting our assumption
that ci was initially k in G.

To prove for j′ ̸= i, j, suppose again that edge ij raised cj′ from k to k + m

for some m ≥ 2. Focusing on the subset K ⊆ N who form the k-core in G, we
notice that if either i or j were members, their degrees have only increased by 1 in
G + ij and, as established, their coreness increases by at most 1. Since their new
coreness is at best k + 1 they cannot form part of the new (k + m)-core needed
to support cj′ (G + ij) = k + m. If i and j were not members of K ⊆ N then
dκ (G) = dκ (G + ij) for all κ ∈ K and hence cj′ (G) = cj′ (G + ij) due to the fact
that the k-cores are nested.

Although the removal of one link can have a cascading effect which influences all
nodes (e.g the transition from ring to line network), we can also interpret Lemma
1 as saying that the removal of an edge ij cannot lower the coreness of any agent
in the network by more than 1. With these definitions in hand, I now discuss the
properties of equilibrium action profiles in a special case of the model.

3.2 Equilibrium

Now that the coreness of nodes has been defined, the model can be solved for
action profiles x ∈ X = [0, L]n which constitute a Nash equilibrium of the game
Γ = ⟨N, X, u⟩. I will focus for now on the Pareto superior Nash equilibrium of this
game, before considering the set of all equilibria. An observation which can be made
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immediately is that Γ is a supermodular game.8 With this we can establish two facts
using Lemma 2 below:

Lemma 2. The game Γ is supermodular and hence:

1. A greatest and least equilibrium must exist

2. If x and x′ are both equilibrium profiles of Γ such that x > x′ then x Pareto
dominates x′

The proof of this statement follows directly from Theorem 5 and 7 (respectively) of
Milgrom and Roberts (1990).9 The Lemma immediately implies that the greatest
equilibrium is also the Pareto dominant one, so with the existence of this equilibrium
established, we can now characterize it in terms of the coreness of agents.

Proposition 1. The Pareto efficient Nash equilibrium in the case where αi = 0 and
gij ∈ {0, 1} is x∗ = c (G)

Proof. I first show that x∗ = c(G) is an equilibrium. Partition the agents into
subsets {S1, S2, . . . , SK} based on their coreness such that ci = k for all i ∈ Sk.
Take the set of agents with the largest coreness SK , there must exist a connected
graph of at least K+1 such agents. Since di (H (x∗

i )) ≥ K = x∗
i for all i ∈ SK we just

need to show that di (H (x̃i)) < x̃i for any x̃i > K, but since the subgraph composed
of agents playing a strictly higher action is empty this condition is satisfied. Now
take SK−1 and note again that di′ (H (x∗

i′)) ≥ K − 1 = x∗
i′ for all i′ ∈ SK−1 since all

agents have coreness K −1. To show that di′ (H (x̃i′)) < x̃i′ for any x̃i′ > K −1 note
that the subgraph H (x̃i′) is formed from all the individuals in SK , who we assumed
had strictly higher corenesses. Therefore, by the definition of coreness, x∗

i′ = ci′

is the maximal xi′ satisfying di′ (H (xi′)) ≥ xi′ , otherwise i′ ∈ SK . This reasoning
holds for all subsets of lower coreness and so the investment profile x∗ = c is a Nash
equilibrium.

8Firstly, the strategy set X = [0, L]n is a complete lattice using the usual partial order x > x′

if xk ≥ x′
k for all k = 1, . . . , n. By the definition of Milgrom and Roberts (1990), the game is

supermodular since ui has increasing differences in (xi, x−i), ui is supermodular in xi for fixed
x−i, and ui is upper semi-continuous in Xi and order continuous in X−i with a finite upper bound.

9The existence of equilibrium can be trivially established since xi = 0 for all i is always an
equilibrium.
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Now to show that it is equilibrium is maximal, assume that there exists another
equilibrium vector of actions x̂ such that x̂ > x∗. Take any i ∈ N playing x̂i >

x∗
i = ci in equilibrium x̂, the best response condition (1) implies that i has at least

⌈x̂i⌉ neighbors playing x̂j ≥ x̂i, in other words di (H (x̂i)) ≥ x̂i. For investments
x̂j to be equilibrium best responses this further implies that all j ∈ Mi (x̂i) have
at least ⌈x̂j⌉ neighbors playing x̂j′ ≥ x̂j, and so on for j′ ∈ Mj (x̂j) etc. However,
continuing with this reasoning contradicts the assumption that the coreness of node
i was ci = x∗

i < x̂i since we can now construct a subgraph containing i (using
these nodes and links only) where each node has at least degree ⌈x̂i⌉ within that
subgraph.

Intuitively, this result tells us that in order for agents to play the Pareto efficient
levels of investment in equilibrium, the network must be sufficiently cohesive in each
agent’s ‘local’ neighborhood. The proof of this proposition does not directly use the
fact that this is a supermodular game, but supermodularity allows us to infer that
the equilibrium where x∗ = c is Pareto dominant since it is maximal in terms of
investment. The reader can use the supermodularity to verify that beginning with
a action profile x = (L, . . . , L) and iterating along the best responses of agents we
can arrive at xi = ci for all i, implying that x∗ = c (G) is the maximal equilibrium
(see Jackson (2008)).

Despite the fact that the Pareto optimal equilibrium has this simple characteri-
zation in terms of degree coreness, the complementarity of action gives rise to other
equilibria which are Pareto dominated by x∗ = c (G). Unlike the model of Ballester
et al. (2006), the assumption that αi > 0 is not enough to guarantee uniqueness
of equilibrium in this model as there will in general be a multiplicity of interior
equilibria. Before characterizing the set of equilibria in the pure complementarity
case some additional definitions are needed.

In order to describe all equilibria of the game in terms of coreness we need to
introduce definitions which allow us to induce subgraphs on the network as functions
of the action profile x. Recall that H (x) denotes the subgraph of G such that xi ≥ x

for all i ∈ H (x), and now let VH (x) ⊆ N denote the set {i ∈ N | xi ≥ x}, (or the
vertices) which comprise the subgraph H (x). In addition, let H ′ (x) denote the
subgraph constructed using the verticies VH′ (x) = VH (x) and edges EH′ (x) =
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{ij ∈ H (x) | xi > x or xj > x}, this can be thought of as the graph H (x) less the
edges E (x) = {ij ∈ H (x) | xi = xj}. We can also view the remaining edges in
EH′ (x) as the those along which only one member of VH (x) is pivotal in increasing
surplus. Any edge in H (x) which requires a joint deviation to increase surplus can
be considered as ‘inactive’ in H ′ (x).

Proposition 2. An action profile x∗ is a Nash equilibrium in the case where αi = 0
and gij ∈ {0, 1} if and only if, for any xi ∈ x∗, H (xi) is xi-core and di (H ′ (xi)) ≤ xi

for each i ∈ N .

Proof. First note that x∗ being an equilibrium implies the inequality in (1) must
hold for each i and so di (H (xi)) ≥ xi for each i ∈ S (x), implying that H (xi) is
an xi-core. For this condition to become sufficient we need that no agent can join
a higher core by playing a higher action. Since the subnetwork H ′ (x) gives higher
cores of active links which can be reached if investment is increased marginally from
xi to x̃i, the condition that di (H ′ (xi)) is no larger than xi ensures that such an
increase is never beneficial given the action profile of others x−i

To explain the reasoning intuitively, the condition that H (xi) is an xi-core means
that no agent will want to lower their investment, since it is supported by higher
actions from at least xi other agents. However, it must also be the case that no agent
can unilaterally deviate to join a higher core in the network of ‘active’ links H ′ (xi)
given the actions x−i of other agents. To check that a given profile is an equilibrium
one must first verify, for all investment levels x∗

i , that (1) the set of agents playing
x∗

i ≥ x form an x-core, and (2) their degrees in H ′ (xi) does not exceed x∗
i .

The proposition also implies that playing x∗
i = 0 in equilibrium can only occur

if every member of the the component which contains i also plays xj = 0. The least
equilibrium is therefore susceptible to trembles in play, as an exogenous shock to
preferences which induces one node to increase their action to 1 will cascade through
the whole component via the best response dynamics. The same is not necessarily
true for the Pareto efficient equilibrium, the stability of which depends upon the
presence of supplementary links which do not directly contribute to coreness but
can act as a buffer against such shocks. Although a fully fledged analysis of the
stochastic stability would prove useful, these considerations are left for future work.
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Figure 3: Some Equilibria of the Game for the Network in Figure 1

3.3 Coreness and Bonacich Centrality

Before considering the more general case of this model, I first make a comparison
between coreness and the centrality measure proposed by Bonacich (1987). The
Bonacich centrality of a node measures the number of paths of all lengths which
originate at node i, weighted by a decay factor δ which increases with the length l

of the path. Formally, let G be the adjacency matrix of G and define the Bonacich
centrality of a node i as bi = ∑∞

l=0 δl ∑
j∈N gl

ij where ∑
j∈N gl

ij is the sum of all paths
of length l from i, (i.e. the sum across the ith row of Gl). The Bonacich centrality
is well defined whenever δ < 1

|λmax(G)| where |λmax (G)| is the absolute value of the
largest eigenvalue of G. This condition ensures that the sum does not grow too
quickly as we iterate on powers of G.

If we take coreness as a measure of centrality, a question which naturally arises
is whether there is some relationship between coreness and the Bonacich centrality
measures which play a key role in the models of Ballester et al. (2006), Ballester and
Calvó-Armengol (2010) and Bramoullé et al. (2012). In particular, is it the case that
if a node i has a higher coreness than a node j , that i also has a higher Bonacich
centrality? The answer turns out to be ‘no’, but since the coreness of a node places
limitations on paths leading from it to others in the network, we will be able to put
a lower bound on the Bonacich centralities of nodes.

Proposition 3. If node i has coreness ci (G) = k then

bi (G, δ) ≥ 1
1 − δk

(3)
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Proof. Since the Bonacich centrality of a node is increasing in the number of paths
emanating from it, I focus on the case where all nodes reached on paths from i have
exactly degree k. When this is the case I minimize the number of possible paths
from i under the constraint that ci = k. If ci = k then there are at least kl paths
of length l from i to other nodes in the network. Summing paths of all lengths we
get bi (G, δ) = ∑∞

l=0 δl ∑
j∈N gl

ij ≥ ∑∞
l=0 (δk)l and provided |δk| < 1 this implies that∑∞

l=0 (δk)l = 1
1−δk

. To show that this limit is well defined (i.e. δ < 1/k) we rely on
an elementary result from spectral graph theory to arrive at an expression for the
largest eigenvalue of G.

I assume without loss of generality that the graph is connected since both the
coreness and the Bonacich centrality of a node can only depend on structural prop-
erties within the same component. Since we assumed that dj = k for all nodes
reachable from i, these nodes form a k-regular graph . Due to this fact, we conclude
that the largest eigenvalue of the adjacency matrix Gk is k (see Brualdi, 2011) .
The condition that δ < 1

|λmax(G)| now means that 1
1−δk

is well defined as 1
1−δk

> 1 for
any δ where bi is itself well defined.

This bound is tighter when δ is low and the proof of Proposition 3 demonstrates
that when G itself is a regular graph then (3) is met with equality. Although nodes
with higher coreness will usually have higher Bonacich centralities this is not always
the case, as demonstrated in Figure 4. Since the degree of node 9 in Figure 3 is
greater than any other j ∈ N we find that b9 (G, δ) > bj (G, δ) for any other j ∈ N

when the decay factor δ = 0.1, since the paths of length 2 are weighted less by a
factor of 10 when compared with paths of length 1.

Finding an upper bound for bi (G, δ) as a function ci (G) remains an open prob-
lem, however, it seems possible that one may not exist, as we can increase the
Bonacich centrality of a node i arbitrarily whilst holding their coreness fixed by
simply appending cliques of order m > ci to neighbors of i. The remaining issue is
to ascertain whether the relative Bonacich centralities of other nodes in the network
grow at a fast enough rates to counterbalance the increase in bi (G, δ), which in turn
depends on the structural properties of the network.
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Node Coreness Bonacich Centrality Bonacich Centrality
(δ = 0.1) (δ = 0.25)

3 3 1.620 10.298
5 3 1.486 8.696
6 3 1.621 10.186
9 2 1.700 7.615

Figure 4: Coreness and Bonacich Centralities of Nodes in a Bridge Network

4 Agent Heterogeneity and Weighted Links

Although the assumption of identical costs helps to clarify the role of degree coreness
in equilibrium action, it also imposes an undue degree of symmetry on the problem.I
now consider the general case, where for each i ∈ N we assume that αi ∈ R+

and gij ∈ [0, 1], and then solve for Nash equilibrium in this new setting. In order
to characterize equilibria in this case the coreness of a node must be generalized
to include properties other than the degree coreness in an associated subgraph of
H ⊆ G. I borrow terminology from Batagelj and Zaveršnik (2002) to define the
‘generalized coreness’ of a node via the use of a node property function. A node
property function is a function p (i, H) such that for each i ∈ N and some H ⊆ G

the function p (i, H) assigns a value pi ∈ R to node i.

Definition 3. A generalized k-core of a graph G is a subgraph H such that each
i ∈ H has p (i, H) ≥ k

For the concept of degree coreness used in the previous section it is possible
to define the property function as p (i, G) = di (G).10 I define the relevant node

10Similarly, the characterization of all equilibria in Proposition 2 used the same function defined
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property function for Proposition 4 to be p (i, H (xi)) = αi + ∑
j∈H(xi) gij. The

function p (i, H (xi)) gives, for any i ∈ N and subgraph H (xi), the weighted degree
of i in that subgraph H (xi) plus that individual’s cost heterogeneity parameter
αi. The property function p (i, H (xi)) captures what is essentially the marginal
utility that an agent i gets from decreasing xi having fixed x−i. On the other hand,
p (i, H ′ (xi)) captures the marginal gains which are realized by i from raising their
investment level. To simplify notation, I follow Batagelj and Zaveršnik (2002) in
referring to generalized cores of order k which formed using the vertex property
function p (i, H) as k-p-cores.

The investments made in all equilibria of the game are now given in the following
proposition:

Proposition 4. Action profile x∗ is an equilibrium if and only if, for any xi ∈ x∗,
H (xi) is xi-p-core and p (i, H ′ (xi)) ≤ xi for each i ∈ N .

Proof. The proof is a fairly straightforward extension of the proof of Proposition 2.
If x∗ is an equilibrium then p (i, H (xi)) ≤ xi holds for each i, otherwise nodes prefer
to reduce xi, implying that H (xi) is xi-p-core. As before, sufficiency is provided by
the condition p (i, H ′ (xi)) ≤ xi for each i ∈ N

Agents which have higher αi parameters need lower weighted degrees to sustain
a given level of effort since these parameters appear as substitutes in the vertex
property function. Applying Proposition 4 we can see that the Pareto dominant
equilibrium has all agents playing their p-coreness, that is, the maximal k such that
i is in a generalized core of orderk but not one of order k̃ for k̃ > k, as we increase
the order by pruning nodes from H ⊆ G which have αi + ∑

j∈H gij < k.
A brief comment relating these results to those obtained by Morris (2000) is now

necessary. In the case where αi = α but G is weighted we can see that it is not the
degree but rather the weighted degree of i in Hi (xi) which will determine differences
in equilibrium investment across nodes. If we further assume that the matrix G of
weights is row stochastized so that weights are now g′

ij = gij∑
j

gij
we can observe

that high levels of equilibrium effort occur when agents are clustered and cohesive.
The maximal K-cores can indeed look very different if we consider the case of row

on H (xi) and H ′ (xi)
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stochastic weights, since dyads with large αi could now have the highest generalized
coreness. By row stochasizing we are now effectively dividing a node’s benefits by
their degree, thus putting this model more in line with the original literature on
threshold games.

5 Efficient Networks

To consider the properties of optimal networks I focus again on the Pareto dominant
equilibrium x∗ = c (G) and add a link cost γ which is linear in the degree of each
agent. Utility functions now take the form

ui = αixi +
∑

j∈Ni

gij min (xi, xj) − 1
2

x2
i − γdi

Substituting in equilibrium investments and again assuming that αi = 0 for all
i and gij ∈ {0, 1}, the problem for the network designer is

max
G∈G

∑
i∈N

∑
j∈Ni

min (ci, cj) − 1
2

c2
i − γdi

Whilst networks in which agents have high corenesses will in general produce
larger amounts of surplus, higher cores will require a larger number of links to
construct. The question which immediately arises is how to allocate to some S ⊆ N

a coreness of k using the minimal number of links. Moreover, is the marginal cost
of adding extra individuals to that k-core increasing or decreasing in nk = |S|?

The answer to the first question is simple, we must construct a k-regular graph
using nk·k

2 links where possible. In this case all individuals have exactly degree k

within group and no agent i ∈ S is linked to someone of a lower coreness (this link
is wasted since it does not alter the coreness of i). If both k and nk are odd then
we cannot construct a k-regular graph using a non-integer number of links and so
we instead take the ceiling of nk·k

2 denoted by ⌈nk·k
2 ⌉. Whilst the marginal cost of

adding an extra individual to this regular graph is clearly increasing in k, the cost
of adding extra individuals to a given core is essentially linear in nk (ignoring the
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integer problems) and is given by equation (4) below11:

⌈(nk + 1) k

2
⌉ − ⌈nk · k

2
⌉ =


k
2 if k even

⌈k
2 ⌉ if k odd and nkeven

⌊k
2 ⌋ if k odd and nkodd

(4)

Since the utility functions ui exhibit increasing differences in xi and x−i this
suggests that if adding one individual to a core of order k increases the utility
surplus then it should be beneficial to have all n agents in this core. As Proposition
5 shows, complete networks will be optimal provided the linking cost is low enough:

Proposition 5. If ai = 0 for all i with linear link costs the efficient network is the
complete network if γ ≤ (n−1)

2 or the empty network if γ ≥ (n−1)
2

Proof. To find the optimal network G in the feasible set of graphs G we are given
the problem

max
G∈G

∑
i∈N

∑
j∈Ni

min (ci, cj) − 1
2

c2
i − γdi

The utility surplus generated by all nodes in the complete network is n
(
(n − 1)

(
1
2 (n − 1) − γ

))
since di = ci = n−1. This surplus is non-negative when 1

2 (n − 1) ≥ γ. Now consider
some other network G′ and an agent i in that network. Agent i has coreness ci and
therefore has at least ci neighbors with coreness ci. The maximum possible surplus
generated at a given node in any other network is dici− 1

2c2
i −γdi = ci

(
di − 1

2ci

)
−diγ.

Since ci ≤ di in any network this surplus cannot exceed 1
2d2

i − diγ, which ensures
that each node has non-negative surplus only if 1

2di ≥ γ. If γ > 1
2 (n − 1) this

upper bound tells us that no node can have non-negative surplus in any non-empty
network. If γ ≤ 1

2 (n − 1) we have that 1
2d2

i − diγ < 1
2 (n − 1)2 − (n − 1) γ for any

other G′ and so the complete network is optimal.

Corollary 1. If αi = α for all i then the efficient network is the complete network
if γ ≤ α + (n−1)

2 or the empty network if γ ≥ α + (n−1)
2

11If k is even ⌈ (nk+1)k
2 ⌉ − ⌈ nkk

2 ⌉ = k
2 for any nk ∈ N, while if k is odd then either ⌈ nkk

2 ⌉ = nkk
2 or

⌈ (nk+1)k
2 ⌉ = (nk+1)k

2 . In this first case nkk
2 is even and so ⌈ (nk+1)k

2 ⌉−⌈ nkk
2 ⌉ = nkk

2 +⌈ k
2 ⌉− nkk

2 = ⌈ k
2 ⌉,

while in the second case ⌈ nkk
2 ⌉ = nkk

2 + 1
2 and so ⌈ (nk+1)k

2 ⌉ − ⌈ nkk
2 ⌉ = nkk

2 + k
2 − nkk

2 − 1
2 = ⌊ k

2 ⌋
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The above corollary follows from the proof of Proposition 5 as the cost γ must
satisfy the condition n

(
1
2 (α + (n − 1))2

)
≥ n (n − 1) γ + n1

2α2. Efficient networks
will either be complete, if they can be constructed with positive surplus, or else
empty. Intuitively, this comes from the fact that increases in coreness deliver a
weakly positive externality to all others in the neighborhood of the increased node.
This externality increases with the coreness k (as nodes must be linked to more
individuals for higher k) and hence with linear costs we are driven to a boundary
solution.

Since the complete network maximizes total surplus and utility functions exhibit
increasing differences it will also be pairwise stable in the case where αi = α for some
α ≥ 0. An issue which may be of interest for future study would be to consider a
network formation game when agents have different αi and select weighted degrees,
as in the setting of Section 4.12

6 Conclusion

This paper has provided an analysis of the equilibrium properties of games played
on networks where agents’ actions are perfect complements. Although the setting
is related to that of a ‘threshold game’, the results presented here are qualitatively
different from those of Morris (2000) and Young (1998), and give new insights into
the structural factors which may influence equilibrium decisions. The main contri-
bution is a characterization of all equilibria in terms of the coreness of agents in
subgraphs of G. In particular, the action played by each agent i in the Pareto opti-
mal equilibrium is equal to their degree coreness in G for the pure complementarity
case.

In an exogenously given network, agents who are located in dense but large sub-
groups will select high levels of investment. Peripheral nodes who inhabit sparsely
connected areas of the network will be unable to support high levels of investment
even if they themselves have low costs and high degrees. From a designers perspec-
tive, the optimal networks in this framework are always either empty or complete

12 The interplay between the substitutability of αi and gij , and the positive assortativity which
will be present should lead to structures where nodes with high types refuse to link to those with
low types, leaving low types with little opportunity to form a sizable core.

21



due to the strong positive externalities present when increasing the coreness of nodes.
Although this model is the first to highlight the direct link between the equilib-

rium behavior of agents in games played on networks and their coreness, there has
been recent work in computer science which has focused on the concept of coreness
in relation to network games. In particular, Bhawalkar et al. (2012) and Manshadi
and Johari (2009) provide recent examples from outside the economics literature of
models which highlight the link between the k-core of a network and maximal levels
of equilibrium action in network games. The paper of Bhawalkar et al. (2012) finds
that the sensitivity of equilibrium actions to exogenous changes in cost are depen-
dent on the the maximal k-core of the network and present an algorithm to select
nodes whose choices should be “anchored” to prevent unraveling of equilibrium in
sparsely connected graphs. Manshadi and Johari (2009) on the other hand find that
the coreness of individuals puts a lower bound on the maximal equilibrium actions
in a supermodular game where agents benefit from the aggregate actions of their
neighbors.

Future work is required to examine (1) the stability of equilibria in this frame-
work, and (2) the properties of optimal networks in other settings such as heteroge-
neous types and convex link costs.
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