Deep Roots of Comparative Development

Oded Galor

AEA Continuing Education Program

Lecture III - AEA 2014

The Origins of Inequality in Income per Capita across the Globe in 2010

Deeply-Rooted Factors of Comparative Development

- Persistent effects of:
 - Geographical characteristics:
 - Climate, Soil quality, Latitude, Isolation
 - Biogeographical conditions that triggered the Neolithic Revolution (NR)
 - Domesticable species, Orientation of continents (Diamond, 1997)
 - Migratory distance from the cradle of humankind in East Africa to indigenous settlements across the globe:
 - Variation in genetic diversity across countries (Ashraf-Galor, AER 2013)

The Neolithic Origins of Comparative Development – Diamond's Hypothesis

- The transition from hunter-gatherer tribes to agricultural communities:
 - Emergence of non-food-producing class:
 - Knowledge creation (science, technology & written languages)
 - Technological head start and its persistent effect via:
 - Urbanization, nation states, colonization
- Variations in biogeographical characteristics conducive for the NR:
 - Origins of the observed patterns of comparative development

Variation in the Onset of the Neolithic Revolution

Independent Origins

Source: Diamond (Nature 2002)

Biogeographical Origins of the Onset of the Neolithic Revolution

- Geographical factors that maximized biodiversity (climate, latitude, landmass)
 - Availability of domesticable species of plants and animals
 - Sometimes of domestication
- Orientation of continents:
 - ⇒ Diffusion of agricultural practices along similar latitudes

Orientation of Continents

Source: Diamond (Nature 2002)

The Diamond Hypothesis

- The domination of Euro-Asia in the pre-colonial era reflects:
 - Larger number of domesticable species of plants and animals
 - East-West orientation
 - ullet \Longrightarrow Technological head start
- The economic domination of Europeans and their offshoots in the contemporary world reflects:
 - Persistence of head start
 - ullet \Longrightarrow Guns, Germs and Steel

Testable Predictions

- Earlier onset of the Neolithic Revolution yields:
 - Over the entire course of development
 - Technological superiority
 - During the Malthusian epoch
 - Higher population density
 - Negligible effect on income per capita
 - Over the contemporary era
 - Higher income per capita (accounting for the time elapsed since the ancestral populations of a country experienced the NR)

The Neolithic Revolution (NR) & Technological Level: 1000 BCE-2000 CE

	(1)	(2)	(3)	(4)			
	Dependent \	/ariable: Log	Technologi	cal Level			
	1000 BCE	1500 CE	2000	2000			
Log Years since NR	4.34***	1.05***	-0.12				
	(1.24)	(0.07)	(0.92)				
Log Years since NR				0.128			
(Ancestry Adjusted)				(0.08)			
Continent Dummies	Yes	Yes	Yes	Yes			
Observations	112	143	132	132			
R ²	0.24	0.51	0.48	0.46			
Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.							
Source: A	shraf-Galor (AEI	R 2011); Ashra	f-Galor (201	4)			

The Neolithic Revolution on Population Density in 1500

	OLS (1)	OLS (2)	OLS (3)	OLS (4)	IV (5)
	Dep	endent Variable:	Log Populati	ion Density in	1500
Log years since Neolithic	0.833*** (0.298)	1.025*** (0.233)	1.087*** (0.184)	1.389*** (0.224)	2.077*** (0.391)
Log land productivity		0.641*** (0.059)	0.576*** (0.052)	0.573*** (0.095)	0.571*** (0.082)
Log absolute latitude		-0.353*** (0.104)	-0.314*** (0.103)	-0.278** (0.131)	-0.248** (0.117)
Mean distance to nearest coast or river			-0.392*** (0.142)	0.220 (0.346)	0.250 (0.333)
% land within 100 km of coast or river			0.899*** (0.282)	1.185*** (0.377)	1.350*** (0.380)
Continental dummies	Yes	Yes	Yes	Yes	Yes
Observations	147	147	147	96	96
R ²	0.40	0.66	0.73	0.73	0.70
First-stage F-statistic					14.65
Overidentification p-value					0.44

Instrumental variables: number of prehistorical domesticable species of plants and animals.

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

The Neolithic Revolution and Income per Capita: 1-1500 CE

	OLS	OLS	OLS	OLS	OLS	OLS
	(1)	(2)	(3)	(4)	(5)	(6)
	Log	Income per C	Capita	Log	Population De	nsity
	1500	1000	1	1500	1000	1
Log years since Neolithic	0.159 (0.136)	0.073 (0.045)	0.109 (0.072)	1.337*** (0.594)	0.832*** (0.363)	1.006*** (0.483)
Log land productivity	0.041 (0.025)	-0.021 (0.025)	-0.001 (0.027)	0.584*** (0.159)	0.364*** (0.110)	0.681*** (0.255)
Log absolute latitude	-0.041 (0.073)	0.060 (0.147)	-0.175 (0.175)	0.050 (0.463)	-2.140** (0.801)	-2.163** (0.979)
Mean distance to nearest coast or river	0.215 (0.198)	-0.111 (0.138)	0.043 (0.159)	-0.429 (1.237)	-0.237 (0.751)	0.118 (0.883)
% land within 100 km of coast or river	0.124 (0.145)	-0.150 (0.121)	0.042 (0.127)	1.855** (0.820)	1.326** (0.615)	0.228 (0.919)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	31	26	29	31	26	29
R^2	0.66	0.68	0.33	0.88	0.95	0.89

Robust standard errors in parentheses; *** p<0.01; ** p<0.05; * p<0.1.

The Neolithic Revolution and Population Density in 1500

Conditional on land productivity, geographical factors, and continental fixed effects.

The Neolithic Revolution and Population Density in 1500 (Income Sample)

 $Conditional\ on\ land\ productivity,\ geographical\ factors,\ and\ continental\ fixed\ effects.$

The Neolithic Revolution and Income per Capita in 1500

 $Conditional\ on\ land\ productivity,\ geographical\ factors,\ and\ continental\ fixed\ effects.$

The Neolithic Revolution and Income per Capita in 2005

	OLS	OLS	OLS	OLS		
	(1)	(2)	(3)	(4)		
	Log Income per Capita in 2005					
Log years since Neolithic	0.525* (0.276)	0.010 (0.216)	-0.336 (0.272)			
Log years since Neolithic (ancestry adjusted)				0.211 (0.322)		
Log land productivity		-0.379*** (0.080)	-0.515*** (0.077)	-0.494*** (0.078)		
Log absolute latitude		0.765*** (0.149)	0.353** (0.138)	0.375*** (0.142)		
Mean distance to nearest coast or river		-0.462 (0.302)	-0.465* (0.261)	-0.425 (0.260)		
% land within 100 km of coast or river		1.624*** (0.364)	0.686* (0.367)	0.768** (0.361)		
Continental dummies	No	No	Yes	Yes		
Observations	143	143	143	143		
R^2	0.04	0.47	0.62	0.62		

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

The Neolithic Revolution and Income per Capita in 2005

Conditional on land productivity, geographical factors, and continental fixed effects.

Source: Ashraf-Galor (2014)

The Neolithic Origins of Contemporary Variation in Life Expectancy

- The Neolithic Revolution increased the exposure and the vulnerability of humans to infectious diseases via:
 - the rise in population density
 - the domestication of animals
 - the increase in work effort
- Natural selection of individuals who were genetically pre-disposed towards resistance to infectious diseases (Galor-Moav, 2005)
- Variation in the timing of the Neolithic Revolution among the ancestral populations of each county contributed to the variation in life expectancy across countires (Galor-Moav, 2007)

The Neolithic Origins of Variation in Life Expectancy in 2004

	OLS	OLS	OLS	IV			
	(1)	(2)	(3)	(4)			
		Life Expectancy in 2004					
Log years since Neolithic (ancestry adjusted)	1.559*** (0.461)	1.463*** (0.355)	1.635*** (0.444)	1.909** (0.889)			
Log land productivity		-1.386*** (0.350)	-1.636*** (0.444)	-1.371*** (0519)			
Log absolute latitude		0.195*** (0.053)	0.124* (0.068)	0.055 (0.048)			
Mean distance to nearest coast or river		-5.030*** (1.084)	-7.130*** (1.937)	-5.121*** (1.668)			
Island		9.365*** (1.990)	8.083 (2.723)	9.154*** (2.670)			
Continental dummies	Yes	Yes	Yes	Yes			
Observations	146	146	96	96			
R^2	0.71	0.80	0.86				
First-stage F-statistic				13.55			

 $Instrumental\ variable:\ number\ of\ prehistorical\ domesticable\ animals.$

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

The Neolithic Origins of Variation in Life Expectancy in 2004

Conditional on land productivity, geographical factors, and continental fixed effects.

Source: Galor-Moav (2007)

The Neolithic Origins of Mortality from Infectious Diseases in 2004

	OLS	OLS	OLS	IV			
	(1)	(2)	(3)	(4)			
	Years o	Years of Life Lost to Infectious Disease 2004					
Log years since Neolithic (ancestry adjusted)	-3.818*** (1.160)	-3.593*** (0.918)	-3.504*** (1.286)	-8.664** (2.918)			
Log land productivity		3.000*** (0.899)	2.016*** (1.468)	2.150 (1.572)			
Log absolute latitude		-0.571*** (0.124)	-0.407*** (0.164)	-0.380 (0.192)			
Mean distance to nearest coast or river		8.026*** (3.032)	10.07*** (4.583)	9.133* (5.514)			
Island		-25.39*** (7.977)	-18.24* (10.90)	-28.56** (13.29)			
Continental dummies	Yes	Yes	Yes	Yes			
Observations	146	146	96	96			
R^2	0.77	0.84	0.87				
First-stage F-statistic				17.59			

Instrumental variable: number of prehistorical domesticable animals.

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

The Neolithic Origins of Mortality from Infectious Diseases in 2004

Conditional on land productivity, geographical factors, and continental fixed effects.

Source: Galor-Moav (2007)

Persistence and Reversals in the Role of Geographical Factors

- Dynamics of the geographical patterns of comparative development
 - · Reversal in the role of
 - Land Productivity
 - Distance from the equator
 - Persistence in the role of
 - Disease environment
 - Ecological diversity
 - Geographical Isolation
 - Range of land quality
 - Land suitable for large plantations

Reversal in the Role of Land Productivity & Absolute Latitude

- Land productivity
 - 1-1500 CE
 - Positive association with population density
 - 2000s
 - Negative association with income per capita
- Absolute latitude
 - 1-1500 CE
 - Negative association with population density
 - 2000s
 - Positive association with income per capita

Reversal in the Role of Land Productivity

	World sample (1)	Non-Colony sample (2)	Ex-Colony sample (3)	World sample (4)	Non-Colony sample (5)	Ex-Colony sample (6)
	Lo	g Population Der	ısity	Lo	g Income per Ca	pita
		1500			2005	
Log years since Neolithic	1.111*** (0.188)	0.769* (0.447)	1.383*** (0.267)			
Log years since Neolithic (ancestry adjusted)				0.211 (0.322)	-0.100 (0.559)	0.083 (0.382)
Log land productivity	0.568*** (0.053)	0.550*** (0.057)	0.585*** (0.115)	-0.494*** (0.078)	-0.518*** 0.087	-0.456*** 0.141
Log absolute latitude	-0.330*** (0.106)	-0.491*** (0.136)	-0.302** (0.123)	0.375*** (0.142)	0.891** (0.432)	0.139 (0.149)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	143	68	75	143	68	75
R^2	0.73	0.72	0.70	0.62	0.64	0.57

Additional Controls: mean distance to nearest coast & river and % land within 100 km of coast & river.

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Origins of the Reversal in the Role of Land Productivity

- The effect is nearly identical in the:
 - World sample
 - Former colonies sample (Acemoglu-Johnson-Robinson, QJE 2002)
 - Non-former colonies sample
 - Reversal in the role of land productivity is largely independent of the forces of colonialism
- Acquired comparative advantage in agriculture & delayed industrial transition

Land Productivity and Population Density in 1500

 $Conditional \ on \ years \ since \ Neolithic \ transition, \ geographical \ factors, \ and \ continental \ fixed \ effects.$

Land Productivity and Income per Capita in 2005

 $Conditional \ on \ years \ since \ Neolithic \ transition, \ geographical \ factors, \ and \ continental \ fixed \ effects.$

Reversal in the Role of Distance from the Equator

	World sample (1)	Non-Colony sample (2)	Ex-Colony sample (3)	World sample (4)	Non-Colony sample (5)	Ex-Colony sample (6)
	Lo	g Population Der	sity	Lo	g Income per Ca	pita
		1500			2005	
Log years since Neolithic	1.111*** (0.188)	0.769* (0.447)	1.383*** (0.267)			
Log years since Neolithic (ancestry adjusted)				0.211 (0.322)	-0.100 (0.559)	0.083 (0.382)
Log land productivity	0.568*** (0.053)	0.550*** (0.057)	0.585*** (0.115)	-0.494*** (0.078)	-0.518*** 0.087	-0.456*** 0.141
Log absolute latitude	-0.330*** (0.106)	-0.491*** (0.136)	-0.302** (0.123)	0.375*** (0.142)	0.891** (0.432)	0.139 (0.149)
Continental dummies	Yes	Yes	Yes	Yes	Yes	Yes
Observations	143	68	75	143	68	75
R^2	0.73	0.72	0.70	0.62	0.64	0.57

Additional Controls: mean distance to nearest coast & river and % land within 100 km of coast & river.

Robust standard errors in parentheses; *** p<0.01, ** p<0.05, * p<0.1.

Distance from the Equator and Population Density in 1500

Conditional on years since Neolithic transition, geographical factors, and continental fixed effects.

Distance from the Equator and Income per Capita in 2005

Conditional on years since Neolithic transition, geographical factors, and continental fixed effects.

Origins of the Reversal in the Role of Distance from the Equator

- The effect is qualitatively simialr in the:
 - World sample
 - Non-former colonies sample
 - Reversal in the role of distance from the equator is largely independent of the forces of colonialism
- Temperate drift hypothesis: Advanced technologies gradually complemented production in temperate zones

Population Density in 1500 and Income per Capita in 2005 - World Sample

Population Density in 1500 & Income per Capita in 2005 – Ex-Colonies Sample

Reversal of Fortune

- This reversal in the relative performance of countries is:
 - Absent in the world sample
 - Present in the former colonies sample
 - Reversal of Fortune is largely triggered by colonialism (Engerman-Sokoloff, 1997; Acemoglu et al., AER 2001, QJE 2002)

Origins of Reversal of Fortune among Ex-Colonies

Persistent effect of institutions implemented by colonial powers (Engerman-Sokoloff,

```
1997; Acemoglu et al., AER 2001, QJE 2002)
```

- Exclusive (growth retarding) institutions imposed in densely populated areas
- Inclusive (growth enhancing) institutions implemented in sparsely populated areas
- Persistent effect of the human capital and diversity brought by the colonists
 - Larger effect of colonizers in sparsely populated areas (Glaeser et al., JEG 2004; Easterly-Levine, 2012; Ashraf-Galor, 2014)

Population Density in 1500 & Subsequent Changes in Genetic Diversity

Persistent Effects of Some Geographical Factors

- Disease environment
 - Persistent effect on labor productivity & investment in human capital (Gallup-Sachs, 2001; Andersen-Dalgaard-Selaya, 2012)
- Geographical isolation
 - Reduced trade and technological diffusion (Gallup-Mellinger-Sachs, 1999)
 - Persistence of culture conducive for innovations (Ashraf-Galor-Ozak, JEEA 2010)

Persistent Effects of Geographical Factors

- Land suitable for large plantations
 - Inequality:
 - Extractive institutions (Engerman-Sokoloff, 1997)
 - Concentration of landownership:
 - Suboptimal investment in public education (Galor-Moav-Vollrath, RES 2009)
- Soil quality conducive for agriculture
 - Specialization in unskilled-intensive goods
 - Reduces human capital formation & increases fertility & slows the transition to modern growth (Galor-Mountford, RES 2008)

Persistent Effects of Geographical Factors

- Range of soil quality
 - Emergence of geographical specific human capital ⇒ reduced mobility
 ⇒ ethnic fractionalization (Michalopoulos, AER 2012)
 - Persistent effect of ethnic fractionalization (Easterly-Levine, QJE 1997)
- Ecological diversity & storable crops
 - Emergence & persistence of state capacity (Fenske, JEEA 2014; Mayshar-Moav-Neeman, 2013)
- Geographical determinants of body size
 - Determined fertility & income per capita in the Malthusian epoch and the timing of the take-off (Dalgaard-Strulik, 2013)