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Motivation

Large share of population in LDCs work in the
agriculture sector; Ya/La in LDCs is a fraction of that in
the developed world.
‘Food problem’ (Schultz, 1953) implies allocation of
labour relies of agricultural or aggregate TFP.
Growing literature on structural change driven by
non-homothetic preferences (Echevarria, 1997; Duarte &
Restuccia, 2010; Gollin et al, 2007;. . . ).
Agricultural production technology (Y = ALβXγ)
assumed common across countries.
Long-running recognition of differences in agricultural
technology across climate zones and agricultural systems
(Hayami & Ruttan, 1970, 1985; Ruthenberg, 1976).
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Roadmap and Preview of Findings

Empirics (i): Estimate agricultural CD production
functions (N=128), addressing endogeneity concerns.
Empirics (ii): Illustrate technology heterogeneity (βL

i )
across agro-climatic zones.
Theory (i): Build simple dual economy model, establish
standard comparative static results. Show that technology
heterogeneity affects the speed of structural change.
Theory (ii): Calibrate model to South Korean data,
provide counterfactuals for increase productivity or
population growth. Counter-factual income for large
sample taken from Caselli (2005).
Findings (i): Substantial difference for identical
productivity increase (20%) between low (La/L �, Ya/La

×2.3) and high (La/L ↓, Ya/La ×1.4) βL with change in
income pc in the former more than twice that in the latter.
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Findings (ii): technology heterogeneity accounts for
between one-fifth and one-third of observed differences in
aggregate income pc across countries
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Notes: The figure shows the ratio that agricultural TFP (A) would have to
increase by to reach La/L = 0.03 in each country. The 78 countries are from
Caselli (2005), who provides the starting level of La/L and output per capita.
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Data
UN FAO data on inputs and output in 128 countries.
Time dimension: annual data 1961 to 2002 (fertilizer as
constraint), average T 40.3.
Output: Real agricultural net output (in thousand
International $) based on all crops and livestock products
adjusted for fodder and seed.
Inputs: total economically active population in agriculture
(L), tractor count (K), livestock (Live), fertilizer weight (F)
and arable and permanent crop land (N).
Large proportion of estimated K but absence of
correlation with technology estimates indicates no
systematic over-/underreporting.
Further data sources include Mayer and Zignago (2006)
and Caselli (2005).
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Macro Panel Empirics
Common factor model framework for output and inputs:

yit = β′ixit + uit uit = αi + γ ′Sif
S
t + γ ′Wif

W
t + εit (1)

xit = ηi + Φ′Sif
S
t + Φ′Wif

W
t + Ψ′igt + Υ′iyit−1 + εit (2)

Attempts at estimating the above raises well-known and
somewhat less well-known issues:

Endogeneity: E[xu] 6= 0 More

Cross-section dependence: dto. plus correlation across i
Simultaneity: if Υ 6= 0 feedback from y to x More

Technology heterogeneity: no pooled model IV approach
(if instruments even exist in the panel) succeeds More

Time series properties: f and g nonstationary processes.
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Identification strategy for β
Pesaran (2006) insight (for illustration applied to simpler setup)

yit = βixit + αi + γift + εit (3)

Proxy unobservable factors using cross-section averages (CA)

yt = β̄ xt + ᾱ + γ̄ft ⇔ ft = γ̄−1(yt − β̄xt − ᾱ) (4)

. . . then augment models with these CA. . .

yit = ai + β′ixit + c0iyt + cixt + eit (5)

. . . using heterogeneous parameters to capture γi.

Country regressions by OLS and averaging across i for
consistent estimate of average βi: Pesaran (2006) Common
Correlated Effects Mean Group (CMG) estimator More
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Production Function Estimates

[1] [2] [3] [4] [5] [6]
2FE MG CMG CMG CMG CMG

Weight matrix ] standard neighbor distance agro-climate

Labor -0.191 -0.357 -0.311
[10.60]** [2.23]* [2.62]**

Tractors pw 0.058 0.075 0.109 0.096 0.078 0.086
β̂K [13.06]** [3.31]** [5.13]** [4.17]** [3.60]** [3.82]**

Livestock pw 0.358 0.246 0.321 0.321 0.278 0.339
β̂Live [25.34]** [8.07]** [9.47]** [8.22]** [7.24]** [9.97]**

Fertilizer pw 0.073 0.030 0.036 0.035 0.029 0.035
β̂F [19.87]** [4.86]** [5.63]** [5.19]** [5.11]** [5.63]**

Land pw 0.294 0.210 0.201 0.237 0.081 0.190
β̂N [29.35]** [2.79]** [3.57]** [4.14]** [1.14] [3.63]**

Returns to Scale [ DRS DRS CRS CRS DRS CRS
Implied Avg β̂L 0.027 0.082 0.333 0.311 0.223 0.353

[2.34]* [0.45] [4.81]** [4.24]** [1.53] [5.26]**

ε̂ Stationarity † I(1) I(0) I(0) I(0) I(0) I(0)
ε̂ CD Test (p) ‡ 9.64 (.00) 9.16 (.00) -0.23 (0.82) 2.02 (0.04) -0.49 (0.62) -1.01 (0.31)
RMSE 0.148 0.066 0.059 0.060 0.053 0.060

Notes: Stationarity reports the (qualitative) result from panel unit root testing of the residuals (various lag lengths), CD provides
the Pesaran (2004) CD test and p-value, H0 cross-sectionally independent residuals. Results in [2]-[6] are robust mean
coefficients across countries.
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Further Diagnostics and Robustness Checks
Simultaneity/reverse causality: provide weak exogeneity
tests for preferred CMG model(s) (highlighting FE model
failure). More

Livestock rearing distorts estimates: drop 22 countries
with Ylive/Y > .6, results qualitatively unchanged. More

Factors fail to capture unobserved productivity: add
aggregate Y/L to our preferred CMG model(s), correlation
between original and resulting β̂i > .9.
Further analysis of endogeneity concerns: production
function CMG estimates uncorrelated with each other and
average inputs or output. More

Parameter stability over time: Recursive estimates using
increasing sample (two directions) provide evidence for
stability. More
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Parameter stability over time: Recursive estimates using
increasing sample (two directions) provide evidence for
stability. More
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Technology Heterogeneity Across Climate Zones Clusters

Panel A: Four Clusters

Cluster Arid & Temperate/ Equatorial Equatorial &
Temp/Cold Cold Highland

Mean β̂L 0.143 0.166 0.320 0.555
[0.122] [0.078]** [0.104]*** [0.295]*

N 43 27 42 16

Panel B: Five Clusters

Cluster Arid & Temperate/ Arid Equatorial Equatorial &
Temp/Cold Cold Highland

Mean β̂L 0.011 0.166 0.183 0.382 0.537
[0.177] [0.084]* [0.116] [0.114]*** [0.236]**

N 28 25 18 40 17

Panel C: Six Clusters

Group/Cluster Arid & Temperate/ Arid Equatorial Arid & Equatorial &
Temp/Cold Cold Equatorial Highland

Mean β̂L -0.234 0.166 0.198 0.339 0.530 0.646
[0.220] [0.084]* [0.132] [0.108]*** [0.258]* [0.146]***

N 15 25 16 43 19 10
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Production

yit = βLi ln La,it + β′ixit + uit ⇔ Yit = AitL
βLi
a,it (6)

Production function in agriculture and non-agriculture (∀i, t)

Ya = ALβL
a Yn = wLn with L = La + Ln (7)

Preferences and Individual Optimization
Utility over agricultural (ca) and non-agricultural good (cn)

U = α ln (ca − ca) + (1− α) ln (cn + cn) (8)

where ca is subsistence constraint and cn is an endowment.

w = paca + cn (9)

is the budget constraint, with w equal to income, pa the relative
price of agricultural good.



Preferences and Individual Optimization
Expenditures on the two goods

paca = α(w− paca + cn) + paca (10)
cn = (1− α)(w− paca + cn)− cn.

Equilibrium Allocation of Labour
Free movement between sectors, assume agricultural wage is
equal to the average product: no rents. Common setup in
models of structural change. Here: removes the impact of βL on
labour allocation, s.t.

w = pa
Ya

La
(11)

Equating supply and demand in both sectors we can then solve
for the optimal allocation of labour La/L.



Comparative Statics
All standard results (Duarte & Restuccia, 2010; Alvarez-
Cuadrado & Poschke, 2011) follow: increase in A

Agricultural labor declines: ∂La
∂A

A
La
< 0

Agricultural consumption increases: ∂ca
∂A

A
ca
> 0

Agricultural labor productivity rises: ∂Ya/La
∂A

A
Ya/La

> 0

Relative price of agriculture falls: ∂pa
∂A

A
pa
< 0

βL affects the magnitudes of these changes
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Calibration

Calibrate model to 1963-2005 data for South Korea
Why Korea?

Wanted to capture early stages of structural change and
cover post-WWII period of increasing globalisation
In 1963 63% of Korea’s workforce was employed in
agriculture, by 2005 this had dropped to 8%
Ya/La increased ×7.4, non-agricultural output ×3.5,
population ×1.8 (Timmer and De Vries, 2007)

A, w, L set to unity, find values α, c̄a, c̄n to deliver
observed drop in La given observed labour productivity
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Calibration

Calibrate model to 1963-2005 data for South Korea
Why Korea?

Wanted to capture early stages of structural change and
cover post-WWII period of increasing globalisation
In 1963 63% of Korea’s workforce was employed in
agriculture, by 2005 this had dropped to 8%
Ya/La increased ×7.4, non-agricultural output ×3.5,
population ×1.8 (Timmer and De Vries, 2007)

A, w, L set to unity, find values α, c̄a, c̄n to deliver
observed drop in La given observed labour productivity

Counterfactual Exercise (i)

For otherwise identical economies, how does βL affect
response to an increase inF (a) A, or (b) in L?



Heterogeneous Technology and Structural Change

Equilibrium outcomes from:

20% Increase 5% Increase
in Ag. TFP (A) in Population (L)

with β = with β =

Outcome Baseline 0.15 0.35 0.55 0.15 0.35 0.55

Ag. labour share (La/L) 0.800 0.369 0.518 0.595 0.944 0.852 0.823

Ag. relative price (pa) 1.000 0.432 0.629 0.729 1.189 1.068 1.031

Ag. labour productivity (Ya/La) 1.000 2.314 1.591 1.371 0.841 0.936 0.970

Ag. consumption p.c. (ca) 1.000 1.069 1.030 1.019 0.992 0.997 0.998

Non-ag. consumption p.c. (cn) 1.000 3.153 2.408 2.026 0.281 0.740 0.882

Real income p.c. (y) 1.000 1.485 1.306 1.221 0.849 0.945 0.975
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Counterfactual Exercise (ii)

Adopt a sample of 78 countries from Caselli (2005) —
overlap with our data; three groups: 11 equat./highland, 25
equat., 42 arid/temperate or temperate; pick representative
βL of {.55, .35, .15} respectively.
Normalise L, w, solve for A to yield observed La/L
Counterfactuals
(a) What increase in A is necessary to drive La/L to 3%?



Relative Ag. TFP Increase to Reach La/L = .03
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Counterfactual Exercise (ii)

Adopt a sample of 78 countries from Caselli (2005) —
overlap with our data; three groups: 11 equat./highland, 25
equat., 42 arid/temperate or temperate; pick representative
βL of {.55, .35, .15} respectively.
Normalise L, w, solve for A to yield observed La/L
Counterfactuals
(a) What increase in A is necessary to drive La/L to 3%?
(b) By how much do we need to scale up A and w to double

output per worker?
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Counterfactual Exercise (ii)

Adopt a sample of 78 countries from Caselli (2005) —
overlap with our data; three groups: 11 equat./highland, 25
equat., 42 arid/temperate or temperate; pick representative
βL of {.55, .35, .15} respectively.
Normalise L, w, solve for A to yield observed La/L
Counterfactuals
(a) What increase in A is necessary to drive La/L to 3%?
(b) By how much do we need to scale up A and w to double

output per worker?

Counterfactual Exercise (iii)

How much variation in output pc remains once we
eliminate heterogeneity in agricultural technology?
“Apples and Oranges” problem (Bernard and Jones, 1996):
counter-factual analysis where we set A1 = A2 for
βL,1 6= βL,2 is not meaningful. More



Income Dispersion, Actual and Counterfactual
Output per capita: Ag. labour productivity:

Var(ln y) 90/10 ratio Var(ln YA/LA) 90/10 Ratio

Actual 1.185 21.7 2.206 46.0
Temperate technology 0.996 14.8 2.217 44.1
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Notes: The figures show the actual distribution of the agricultural labor
share and agricultural labour output for a sample of 78 countries from Caselli
(2005) as well as the counterfactual values for the same countries when they
are given a temperate-zone agricultural technology with β = 0.15.
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The Quantitative Significance of Technology Heterogeneity

Agricultural technology varies widely across countries.
Seems to follow a pattern linked to agro-climatic
conditions.
Effect of technology heterogeneity in a standard two-sector
model is significant.
No ‘geographic determinism’: fact that agricultural
technology differs by climate does not imply anything
about TFP or population levels.
Short of fundamentally altering production technology —
which may be biologically impossible and/or economically
inefficient — tropical countries will be slower to
emulate the structural change witnessed in temperate
regions such as Korea or Japan.
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Appendix: Identification Problem Return

Simplified model setup

yit = βixit + αi + γift + εit (12)
xit = ηi + φift + ψigt + εit (13)

Solving the regressor for the common factor f and plugging into
the production function yields

yit = βixit + αi + γiφ
−1
i (xit − ηi − ψigt − εit) + εit

= (βi + γiφ
−1
i )︸ ︷︷ ︸

%i

xit + αi + γiφ
−1
i αi − γiφ

−1
i ηi︸ ︷︷ ︸

$i

+ εit − γiφ
−1
i ψigt − γiφ

−1
i εit︸ ︷︷ ︸

ςit

= %i xit +$i + ςit

Since in the standard case %i = βi + γiφ
−1
i 6= βi the slope

coefficient on our regressor is not identified.



Appendix: Identification of Average β Return 1 Return 2

Pesaran and Smith (1995): If true model is
heterogeneous, then any pooled model misspecified by
construction and there exists no instrument which is both
valid and informative.
Price to pay for CMG: unless T large difficult to estimate
β̂i precisely – weak signal-to-noise ratio. Averaging across
i boosts the signal. Instead of full sample average we
compute averages for specific subsamples.
CMG methodology and its consistency: extends to
multivariate and multifactor setup, nonstationary factors,
structural breaks, and cointegration or noncointegration
(Chudik, Pesaran and Tosetti, 2011; Kapetanios, Pesaran
and Yamagata, 2011; Pesaran and Tosetti, 2011).



Appendix: Weak exogeneity testing Return

2FE GM (p) Fisher (p) mean λ̂i t-ratio Verdict

output equation -0.97 0.00 485.2 0.00 -0.142 -7.91 x → y
tractor equation 0.18 0.17 456.2 0.00 0.024 1.81 x−tr, y → xtr

livestock equation 0.38 0.00 351.0 0.00 0.043 3.77 x−live, y → xlive

fertilizer equation 0.10 0.42 432.3 0.00 0.141 1.82 x−f , y → xf

land equation 0.37 0.00 395.2 0.00 0.011 1.91 x−n, y → xn

MG GM (p) Fisher (p) mean λ̂i t-ratio Verdict

output equation -2.93 0.00 1,612.1 0.00 -0.976 -24.00 x → y
tractor equation -0.16 0.87 274.7 0.20 -0.029 -0.98 x−tr, y 9 xtr

livestock equation 0.03 0.98 307.6 0.01 0.015 0.55 x−live, y → xlive

fertilizer equation -0.06 0.96 257.2 0.47 -0.116 -0.85 x−f , y 9 xf

land equation -0.06 0.95 286.5 0.09 -0.004 -0.33 x−n, y → xn

CMG agro-climate GM (p) Fisher (p) mean λ̂i t-ratio Verdict

output equation -2.25 0.02 1,035.5 0.00 -0.935 -20.16 x, TFP → y
tractor equation -0.02 0.98 241.8 0.53 -0.013 -0.42 x−tr, y, TFP 9 xtr

livestock equation 0.15 0.88 380.0 0.00 0.048 1.23 x−live, y, TFP → xlive

fertilizer equation 0.07 0.94 242.5 0.52 -0.004 -0.02 x−f , y, TFP 9 xf

land equation -0.09 0.93 227.3 0.77 -0.001 -0.08 x−n, y, TFP 9 xn



Appendix: Livestock rearing distorts estimates Return

Using average 60% share of VA from livestock as cut-off:

Who drops out? Except for small number of LICs (e.g. Lesotho, Mongolia,
Somalia) predominantly developed economies in the temperate or cold
climate zones, including Denmark, Germany, and the United Kingdom.



Appendix: Further analysis of endogeneity concerns Return

Correlation matrix: variable series averages and CMG estimates

Variable averages lyi ltri llivei lfi lni β̂Tr
i β̂Live

i β̂F
i β̂N

i

Output pw lyi 1
Tractors pw ltri 0.911 1
Livestock pw llivei 0.816 0.738 1
Fertilizer pw lfi 0.902 0.917 0.695 1
Land pw lni 0.780 0.718 0.677 0.673 1

Standard CMG lyi ltri llivei lfi lni β̂Tr
i β̂Live

i β̂F
i β̂N

i

β̂Tr
i 0.089 0.124 0.052 0.072 0.051 1
β̂Live

i 0.003 -0.015 0.153 -0.051 -0.119 -0.330 1
β̂F

i 0.115 0.123 0.075 0.223 0.116 -0.067 -0.119 1
β̂N

i 0.105 0.139 0.076 0.203 0.108 -0.203 0.007 0.124 1

Agro-climatic CMG lyi ltri llivei lfi lni β̂Tr
i β̂Live

i β̂F
i β̂N

i

β̂Tr
i 0.128 0.138 0.106 0.150 0.008 1
β̂Live

i 0.040 0.024 0.126 -0.047 -0.007 -0.238 1
β̂F

i 0.148 0.168 0.100 0.282 0.138 -0.002 -0.218 1
β̂N

i 0.098 0.125 0.037 0.128 0.145 -0.062 -0.053 0.094 1



Appendix: Further analysis of endogeneity concerns Return

Average βL by Climate Zone: Recursive Estimates



Appendix: Cluster makeup (examples) Return

Panel A: Four Clusters

Climate Zone A B C/D H N

Cluster
Arid & 0.059 0.443 0.403 0.094 43
Temperate/Cold [0.215] [0.396] [0.411] [0.214]

Temperate/Cold 0.004 0.037 0.920 0.038 27
[0.015] [0.101] [0.141] [0.096]

Equatorial 0.799 0.099 0.074 0.028 42
[0.231] [0.181] [0.139] [0.075]

Equatorial & 0.668 0.023 0.050 0.260 16
Highland [0.307] [0.060] [0.193] [0.256]

Panel B: Five Clusters

Climate Zone A B C/D H N

Cluster
Arid & 0.072 0.285 0.589 0.053 28
Temperate/Cold [0.262] [0.371] [0.409] [0.130]

Temperate/Cold 0.003 0.023 0.933 0.041 25
[0.013] [0.065] [0.121] [0.099]

Arid 0.091 0.723 0.131 0.055 18
[0.140] [0.228] [0.214] [0.149]

Equatorial 0.837 0.057 0.078 0.029 40
[0.202] [0.107] [0.142] [0.077]

Equatorial & 0.570 0.044 0.047 0.340 17
Highland [0.357] [0.094] [0.188] [0.301]



Appendix: Comparing Apples and Oranges Return
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