Agricultural Technology and Structural Change

Markus Eberhardt[†] Dietrich Vollrath[‡]

[‡] University of Nottingham and Centre for the Study of African Economies, Oxford

[♯] University of Houston

'Warwick Summer Workshop in Economic Growth'
10th July 2014

Motivation

- Large share of population in LDCs work in the **agriculture** sector; Y_a/L_a in LDCs is a fraction of that in the developed world.
- 'Food problem' (Schultz, 1953) implies allocation of labour relies of **agricultural or aggregate TFP**.
- Growing literature on structural change driven by non-homothetic preferences (Echevarria, 1997; Duarte & Restuccia, 2010; Gollin et al, 2007;...).
- Agricultural **production technology** $(Y = AL^{\beta}X^{\gamma})$ assumed common across countries.
- Long-running recognition of **differences in agricultural technology** across climate zones and agricultural systems (Hayami & Ruttan, 1970, 1985; Ruthenberg, 1976).

Motivation

- Large share of population in LDCs work in the **agriculture** sector; Y_a/L_a in LDCs is a fraction of that in the developed world.
- 'Food problem' (Schultz, 1953) implies allocation of labour relies of **agricultural or aggregate TFP**.
- Growing literature on structural change driven by non-homothetic preferences (Echevarria, 1997; Duarte & Restuccia, 2010; Gollin et al, 2007;...).
- Agricultural **production technology** $(Y = AL^{\beta}X^{\gamma})$ assumed common across countries.
- Long-running recognition of **differences in agricultural technology** across climate zones and agricultural systems (Hayami & Ruttan, 1970, 1985; Ruthenberg, 1976).

- **Empirics** (i): Estimate agricultural CD production functions (N=128), addressing endogeneity concerns.
- Empirics (ii): Illustrate technology heterogeneity (β_i^L) across agro-climatic zones.
- Theory (i): Build simple dual economy model, establish standard comparative static results. Show that technology heterogeneity affects the speed of structural change.
- Theory (ii): Calibrate model to South Korean data, provide counterfactuals for increase productivity or population growth. Counter-factual income for large sample taken from Caselli (2005).
- Findings (i): Substantial difference for identical productivity increase (20%) between low $(L_a/L \downarrow \downarrow, Y_a/L_a \times 2.3)$ and high $(L_a/L \downarrow, Y_a/L_a \times 1.4) \beta^L$ with change in income pc in the former more than twice that in the latter.

- Empirics (i): Estimate agricultural CD production functions (N=128), addressing endogeneity concerns.
- **Empirics (ii)**: Illustrate technology heterogeneity (β_i^L) across agro-climatic zones.
- Theory (i): Build simple dual economy model, establish standard comparative static results. Show that technology heterogeneity affects the speed of structural change.
- Theory (ii): Calibrate model to South Korean data, provide counterfactuals for increase productivity or population growth. Counter-factual income for large sample taken from Caselli (2005).
- Findings (i): Substantial difference for identical productivity increase (20%) between low ($L_a/L \downarrow \downarrow$, $Y_a/L_a \times 2.3$) and high ($L_a/L \downarrow$, $Y_a/L_a \times 1.4$) β^L with change in income pc in the former more than twice that in the latter

- Empirics (i): Estimate agricultural CD production functions (N=128), addressing endogeneity concerns.
- **Empirics (ii)**: Illustrate technology heterogeneity (β_i^L) across agro-climatic zones.
- Theory (i): Build simple dual economy model, establish standard comparative static results. Show that technology heterogeneity affects the speed of structural change.
- Theory (ii): Calibrate model to South Korean data, provide counterfactuals for increase productivity or population growth. Counter-factual income for large sample taken from Caselli (2005).
- **Findings (i)**: Substantial difference for identical productivity increase (20%) between low $(L_a/L \downarrow , Y_a/L_a \times 2.3)$ and high $(L_a/L \downarrow , Y_a/L_a \times 1.4)$ β^L with change in income pc in the former more than twice that in the latter

- Empirics (i): Estimate agricultural CD production functions (N=128), addressing endogeneity concerns.
- Empirics (ii): Illustrate technology heterogeneity (β_i^L) across agro-climatic zones.
- Theory (i): Build simple dual economy model, establish standard comparative static results. Show that technology heterogeneity affects the speed of structural change.
- **Theory (ii)**: Calibrate model to South Korean data, provide counterfactuals for increase productivity or population growth. Counter-factual income for large sample taken from Caselli (2005).
- **Findings (i)**: Substantial difference for identical productivity increase (20%) between low $(L_a/L \downarrow \downarrow, Y_a/L_a \times 2.3)$ and high $(L_a/L \downarrow, Y_a/L_a \times 1.4) \beta^L$ with change in income pc in the former more than twice that in the latter.

- Empirics (i): Estimate agricultural CD production functions (N=128), addressing endogeneity concerns.
- Empirics (ii): Illustrate technology heterogeneity (β_i^L) across agro-climatic zones.
- Theory (i): Build simple dual economy model, establish standard comparative static results. Show that technology heterogeneity affects the speed of structural change.
- **Theory (ii)**: Calibrate model to South Korean data, provide counterfactuals for increase productivity or population growth. Counter-factual income for large sample taken from Caselli (2005).
- Findings (i): Substantial difference for identical productivity increase (20%) between low $(L_a/L \downarrow \downarrow, Y_a/L_a \times 2.3)$ and high $(L_a/L \downarrow, Y_a/L_a \times 1.4) \beta^L$ with change in income pc in the former more than twice that in the latter.

• Findings (ii): technology heterogeneity accounts for between one-fifth and one-third of observed differences in aggregate income pc across countries

Notes: The figure shows the ratio that agricultural TFP (*A*) would have to increase by to reach $L_a/L = 0.03$ in each country. The 78 countries are from Caselli (2005), who provides the starting level of L_a/L and output per capita.

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- Concluding Remarks

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- Concluding Remarks

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- Concluding Remarks

Data

- UN FAO data on inputs and output in 128 countries.
- Time dimension: annual data **1961 to 2002** (fertilizer as constraint), average *T* 40.3.
- **Output**: Real agricultural net output (in thousand International \$) based on all crops and livestock products adjusted for fodder and seed.
- **Inputs**: total economically active population in agriculture (*L*), tractor count (*K*), livestock (*Live*), fertilizer weight (*F*) and arable and permanent crop land (*N*).
- Large proportion of **estimated** *K* but absence of correlation with technology estimates indicates no systematic over-/underreporting.
- Further data sources include Mayer and Zignago (2006) and Caselli (2005).

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- Concluding Remarks

Common factor model framework for output and inputs:

$$y_{it} = \beta_i' x_{it} + u_{it} \qquad u_{it} = \alpha_i + \gamma_{Si}' f_t^S + \gamma_{Wi}' f_t^W + \varepsilon_{it}$$
 (1)

$$\mathbf{x}_{it} = \mathbf{\eta}_i + \mathbf{\Phi}_{S}' \mathbf{f}_t^S + \mathbf{\Phi}_{W}' \mathbf{f}_t^W + \mathbf{\Psi}_i' \mathbf{g}_t + \mathbf{\Upsilon}_i' \mathbf{y}_{it-1} + \boldsymbol{\epsilon}_{it}$$
 (2)

- Endogeneity: $\mathbb{E}[xu] \neq 0$ More
- Cross-section dependence: dto. plus correlation across i
- Simultaneity: if $\Upsilon \neq 0$ feedback from y to x More
- Technology heterogeneity: no pooled model IV approach (if instruments even exist in the panel) succeeds More
- ullet Time series properties: f and g nonstationary processes.

Common factor model framework for output and inputs:

$$y_{it} = \beta_i' x_{it} + u_{it} \qquad u_{it} = \alpha_i + \gamma_{Si}' f_t^S + \gamma_{Wi}' f_t^W + \varepsilon_{it}$$
 (1)

$$\mathbf{x}_{it} = \mathbf{\eta}_i + \mathbf{\Phi}_{S}' \mathbf{f}_t^S + \mathbf{\Phi}_{W}' \mathbf{f}_t^W + \mathbf{\Psi}_{i}' \mathbf{g}_t + \mathbf{\Upsilon}_{i}' \mathbf{y}_{it-1} + \boldsymbol{\epsilon}_{it}$$
 (2)

- Endogeneity: $\mathbb{E}[xu] \neq 0$ More
- Cross-section dependence: dto. plus correlation across i
- Simultaneity: if $\Upsilon \neq 0$ feedback from y to x More
- Technology heterogeneity: no pooled model IV approach (if instruments even exist in the panel) succeeds More
- ullet Time series properties: f and g nonstationary processes.

Common factor model framework for output and inputs:

$$y_{it} = \beta_i' x_{it} + u_{it} \qquad u_{it} = \alpha_i + \gamma_{Si}' f_t^S + \gamma_{W}' f_t^W + \varepsilon_{it}$$
 (1)

$$\mathbf{x}_{it} = \mathbf{\eta}_i + \mathbf{\Phi}_{S}' \mathbf{f}_t^S + \mathbf{\Phi}_{W}' \mathbf{f}_t^W + \mathbf{\Psi}_{i}' \mathbf{g}_t + \mathbf{\Upsilon}_{i}' \mathbf{y}_{it-1} + \boldsymbol{\epsilon}_{it}$$
 (2)

- Endogeneity: $\mathbb{E}[xu] \neq 0$ More
- Cross-section dependence: dto. plus correlation across i
- Simultaneity: if $\Upsilon \neq 0$ feedback from y to x More
- Technology heterogeneity: no pooled model IV approach (if instruments even exist in the panel) succeeds More
- ullet Time series properties: f and g nonstationary processes.

Common factor model framework for output and inputs:

$$y_{it} = \beta_i' x_{it} + u_{it} \qquad u_{it} = \alpha_i + \gamma_{Si}' f_t^S + \gamma_{Wi}' f_t^W + \varepsilon_{it}$$
 (1)

$$\mathbf{x}_{it} = \mathbf{\eta}_i + \mathbf{\Phi}_{S}' \mathbf{f}_t^S + \mathbf{\Phi}_{W}' \mathbf{f}_t^W + \mathbf{\Psi}_{i}' \mathbf{g}_t + \mathbf{\Upsilon}_{i}' \mathbf{y}_{it-1} + \boldsymbol{\epsilon}_{it}$$
(2)

- Endogeneity: $\mathbb{E}[xu] \neq 0$ More
- Cross-section dependence: dto. plus correlation across i
- Simultaneity: if $\Upsilon \neq 0$ feedback from y to x More
- Technology heterogeneity: no pooled model IV approach (if instruments even exist in the panel) succeeds More
- \bullet Time series properties: f and g nonstationary processes.

Common factor model framework for output and inputs:

$$y_{it} = \beta_i' x_{it} + u_{it} \qquad u_{it} = \alpha_i + \gamma_{Si}' f_t^S + \gamma_{W}' f_t^W + \varepsilon_{it}$$
 (1)

$$\mathbf{x}_{it} = \mathbf{\eta}_i + \mathbf{\Phi}_{S}' \mathbf{f}_t^S + \mathbf{\Phi}_{W}' \mathbf{f}_t^W + \mathbf{\Psi}_{i}' \mathbf{g}_t + \mathbf{\Upsilon}_{i}' \mathbf{y}_{it-1} + \boldsymbol{\epsilon}_{it}$$
 (2)

- Endogeneity: $\mathbb{E}[xu] \neq 0$ More
- Cross-section dependence: dto. plus correlation across i
- Simultaneity: if $\Upsilon \neq 0$ feedback from y to x More
- Technology heterogeneity: no pooled model IV approach (if instruments even exist in the panel) succeeds More
- ullet Time series properties: f and g nonstationary processes.

Common factor model framework for output and inputs:

$$y_{it} = \beta_i' x_{it} + u_{it} \qquad u_{it} = \alpha_i + \gamma_{Si}' f_t^S + \gamma_{Wi}' f_t^W + \varepsilon_{it}$$
 (1)

$$\mathbf{x}_{it} = \mathbf{\eta}_i + \mathbf{\Phi}_{SI}' \mathbf{f}_t^S + \mathbf{\Phi}_{WI}' \mathbf{f}_t^W + \mathbf{\Psi}_{I}' \mathbf{g}_t + \mathbf{\Upsilon}_{I}' \mathbf{y}_{it-1} + \boldsymbol{\epsilon}_{it}$$
 (2)

- Endogeneity: $\mathbb{E}[xu] \neq 0$ More
- Cross-section dependence: dto. plus correlation across i
- Simultaneity: if $\Upsilon \neq 0$ feedback from y to x More
- Technology heterogeneity: no pooled model IV approach (if instruments even exist in the panel) succeeds More
- ullet Time series properties: f and g nonstationary processes.

Identification strategy for β

Pesaran (2006) insight (for illustration applied to simpler setup)

$$y_{it} = \beta_i x_{it} + \alpha_i + \gamma_i f_t + \varepsilon_{it}$$
 (3)

Proxy unobservable factors using cross-section averages (CA)

$$\bar{y}_t = \bar{\beta} \bar{x}_t + \bar{\alpha} + \bar{\gamma} f_t \Leftrightarrow f_t = \bar{\gamma}^{-1} (\bar{y}_t - \bar{\beta} \bar{x}_t - \bar{\alpha})$$
 (4)

...then augment models with these CA...

$$y_{it} = a_i + \beta_i' x_{it} + c_{0i} \bar{y}_t + c_i \bar{x}_t + e_{it}$$
 (5)

... using heterogeneous parameters to capture γ_i .

Country regressions by OLS and averaging across i for consistent estimate of average β_i : Pesaran (2006) Common Correlated Effects Mean Group (CMG) estimator

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- Concluding Remarks

RMSE

	[1] 2FE	[2] MG	[3] CMG	[4] CMG	[5] CMG	[6] CMG
Weight matrix #			standard	neighbor	distance	agro-climate
Labor						
Tractors pw $\hat{\beta}_{K}$						
Livestock pw $\hat{\beta}_{Live}$						
Fertilizer pw $\hat{\beta}_F$						
Land pw $\hat{\beta}_N$						
Returns to Scale \flat Implied Avg $\hat{\beta}_L$						
$\hat{\varepsilon}$ Stationarity † $\hat{\varepsilon}$ CD Test (p) ‡						

Weight matrix #	[1] 2FE	[2] MG	[3] CMG standard	[4] CMG neighbor	[5] CMG distance	[6] CMG agro-climate
Labor	-0.191 [10.60]**					
Tractors pw $\hat{\beta}_K$	0.058 [13.06]**					
Livestock pw \hat{eta}_{Live}	0.358 [25.34]**					
Fertilizer pw \hat{eta}_F	0.073 [19.87]**					
Land pw \hat{eta}_N	0.294 [29.35]**					

Returns to Scale \flat Implied Avg $\hat{\beta}_L$

RMSE

 $[\]hat{\varepsilon}$ Stationarity †

 $[\]hat{\varepsilon}$ CD Test (p) ‡

	[1] 2FE	[2] MG	[3] CMG	[4] CMG	[5] CMG	[6] CMG
Weight matrix #			standard	neighbor	distance	agro-climate
Labor	-0.191 [10.60]**					
Tractors pw $\hat{\beta}_K$	0.058 [13.06]**					
Livestock pw \hat{eta}_{Live}	0.358 [25.34]**					
Fertilizer pw $\hat{\beta}_F$	0.073 [19.87]**					
Land pw $\hat{\beta}_N$	0.294 [29.35]**					
Returns to Scale \flat Implied Avg $\hat{\beta}_L$	DRS 0.027 [2.34]*					
$\hat{\varepsilon}$ Stationarity \dagger $\hat{\varepsilon}$ CD Test (p) \ddagger						

RMSE

	[1] 2FE	[2] MG	[3] CMG	[4] CMG	[5] CMG	[6] CMG
Weight matrix #	2FE	MG	standard	neighbor	distance	agro-climate
Labor	-0.191 [10.60]**					
Tractors pw $\hat{\beta}_K$	0.058 [13.06]**					
Livestock pw \hat{eta}_{Live}	0.358 [25.34]**					
Fertilizer pw $\hat{\beta}_F$	0.073 [19.87]**					
Land pw \hat{eta}_N	0.294 [29.35]**					
Returns to Scale \flat Implied Avg $\hat{\beta}_L$	DRS 0.027 [2.34]*					
$\hat{\varepsilon}$ Stationarity \dagger $\hat{\varepsilon}$ CD Test (p) \ddagger RMSE	I(1) 9.64 (.00) 0.148					

Weight matrix #	[1] 2FE	[2] MG	[3] CMG standard	[4] CMG neighbor	[5] CMG distance	[6] CMG agro-climate
Labor	-0.191 [10.60]**	-0.357 [2.23]*	standard	neighbol	distance	agro-ciiiiate
Tractors pw $\hat{\beta}_K$	0.058 [13.06]**	0.075 [3.31]**				
Livestock pw $\hat{\beta}_{Live}$	0.358 [25.34]**	0.246 [8.07]**				
Fertilizer pw $\hat{\beta}_F$	0.073 [19.87]**	0.030 [4.86]**				
Land pw $\hat{\beta}_N$	0.294 [29.35]**	0.210 [2.79]**				
Returns to Scale \flat Implied Avg $\hat{\beta}_L$	DRS 0.027 [2.34]*	DRS 0.082 [0.45]				
$\hat{\varepsilon}$ Stationarity † $\hat{\varepsilon}$ CD Test (p) ‡ RMSE	I(1) 9.64 (.00) 0.148	I(0) 9.16 (.00) 0.066				

Weight matrix #	[1] 2FE	[2] MG	[3] CMG standard	[4] CMG neighbor	[5] CMG distance	[6] CMG agro-climate
Labor	-0.191 [10.60]**	-0.357 [2.23]*			-0.311 [2.62]**	
Tractors pw $\hat{\beta}_K$	0.058	0.075	0.109	0.096	0.078	0.086
	[13.06]**	[3.31]**	[5.13]**	[4.17]**	[3.60]**	[3.82]**
Livestock pw $\hat{\beta}_{Live}$	0.358	0.246	0.321	0.321	0.278	0.339
	[25.34]**	[8.07]**	[9.47]**	[8.22]**	[7.24]**	[9.97]**
Fertilizer pw $\hat{\beta}_F$	0.073	0.030	0.036	0.035	0.029	0.035
	[19.87]**	[4.86]**	[5.63]**	[5.19]**	[5.11]**	[5.63]**
Land pw $\hat{\beta}_N$	0.294	0.210	0.201	0.237	0.081	0.190
	[29.35]**	[2.79]**	[3.57]**	[4.14]**	[1.14]	[3.63]**
Returns to Scale \flat Implied Avg $\hat{\beta}_L$	DRS	DRS	CRS	CRS	DRS	CRS
	0.027	0.082	0.333	0.311	0.223	0.353
	[2.34]*	[0.45]	[4.81]**	[4.24]**	[1.53]	[5.26]**
$\hat{\varepsilon}$ Stationarity \dagger	I(1)	I(0)	I(0)	I(0)	I(0)	I(0)
$\hat{\varepsilon}$ CD Test (p) \ddagger	9.64 (.00)	9.16 (.00)	-0.23 (0.82)	2.02 (0.04)	-0.49 (0.62)	-1.01 (0.31)
RMSE	0.148	0.066	0.059	0.060	0.053	0.060

Weight matrix #	[1] 2FE	[2] MG	[3] CMG standard	[4] CMG neighbor	[5] CMG distance	[6] CMG agro-climate
Labor	-0.191 [10.60]**	-0.357 [2.23]*			-0.311 [2.62]**	
Tractors pw $\hat{\beta}_{K}$	0.058	0.075	0.109	0.096	0.078	0.086
	[13.06]**	[3.31]**	[5.13]**	[4.17]**	[3.60]**	[3.82]**
Livestock pw $\hat{\beta}_{Live}$	0.358	0.246	0.321	0.321	0.278	0.339
	[25.34]**	[8.07]**	[9.47]**	[8.22]**	[7.24]**	[9.97]**
Fertilizer pw $\hat{\beta}_F$	0.073	0.030	0.036	0.035	0.029	0.035
	[19.87]**	[4.86]**	[5.63]**	[5.19]**	[5.11]**	[5.63]**
Land pw $\hat{\beta}_N$	0.294	0.210	0.201	0.237	0.081	0.190
	[29.35]**	[2.79]**	[3.57]**	[4.14]**	[1.14]	[3.63]**
Returns to Scale \flat Implied Avg $\hat{\beta}_L$	DRS	DRS	CRS	CRS	DRS	CRS
	0.027	0.082	0.333	0.311	0.223	0.353
	[2.34]*	[0.45]	[4.81]**	[4.24]**	[1.53]	[5.26]**
$\hat{\varepsilon}$ Stationarity \dagger	I(1)	I(0)	I(0)	I(0)	I(0)	I(0)
$\hat{\varepsilon}$ CD Test (p) \ddagger	9.64 (.00)	9.16 (.00)	-0.23 (0.82)	2.02 (0.04)	-0.49 (0.62)	-1.01 (0.31)
RMSE	0.148	0.066	0.059	0.060	0.053	0.060

- Simultaneity/reverse causality: provide weak exogeneity tests for preferred CMG model(s) (highlighting FE model failure). More
- Livestock rearing distorts estimates: drop 22 countries with $Y_{live}/Y > .6$, results qualitatively unchanged.
- Factors fail to capture unobserved productivity: add aggregate Y/L to our preferred CMG model(s), correlation between original and resulting $\hat{\beta}_i > .9$.
- Further analysis of endogeneity concerns: production function CMG estimates uncorrelated with each other and average inputs or output.
- Parameter stability over time: Recursive estimates using increasing sample (two directions) provide evidence for stability.

- Simultaneity/reverse causality: provide weak exogeneity tests for preferred CMG model(s) (highlighting FE model failure).
- Livestock rearing distorts estimates: drop 22 countries with $Y_{live}/Y > .6$, results qualitatively unchanged.
- Factors fail to capture unobserved productivity: add aggregate Y/L to our preferred CMG model(s), correlation between original and resulting $\hat{\beta}_i > .9$.
- Further analysis of endogeneity concerns: production function CMG estimates uncorrelated with each other and average inputs or output.
- Parameter stability over time: Recursive estimates using increasing sample (two directions) provide evidence for stability.

- Simultaneity/reverse causality: provide weak exogeneity tests for preferred CMG model(s) (highlighting FE model failure).
- Livestock rearing distorts estimates: drop 22 countries with $Y_{live}/Y > .6$, results qualitatively unchanged.
- Factors fail to capture unobserved productivity: add aggregate Y/L to our preferred CMG model(s), correlation between original and resulting $\hat{\beta}_i > .9$.
- Further analysis of endogeneity concerns: production function CMG estimates uncorrelated with each other and average inputs or output.
- Parameter stability over time: Recursive estimates using increasing sample (two directions) provide evidence for stability.

- Simultaneity/reverse causality: provide weak exogeneity tests for preferred CMG model(s) (highlighting FE model failure).
- Livestock rearing distorts estimates: drop 22 countries with $Y_{live}/Y > .6$, results qualitatively unchanged.
- Factors fail to capture unobserved productivity: add aggregate Y/L to our preferred CMG model(s), correlation between original and resulting $\hat{\beta}_i > .9$.
- Further analysis of endogeneity concerns: production function CMG estimates uncorrelated with each other and average inputs or output.
- Parameter stability over time: Recursive estimates using increasing sample (two directions) provide evidence for stability.

- Simultaneity/reverse causality: provide weak exogeneity tests for preferred CMG model(s) (highlighting FE model failure). More
- Livestock rearing distorts estimates: drop 22 countries with $Y_{live}/Y > .6$, results qualitatively unchanged. More
- Factors fail to capture unobserved productivity: add aggregate Y/L to our preferred CMG model(s), correlation between original and resulting $\hat{\beta}_i > .9$.
- Further analysis of endogeneity concerns: production function CMG estimates uncorrelated with each other and average inputs or output. More
- Parameter stability over time: Recursive estimates using increasing sample (two directions) provide evidence for stability.

Technology Heterogeneity Across Climate Zones Clusters

			Panel A: 1	Four Clusters			
Cluster	Arid & Temp/Cold	Temperate/ Cold		Equatorial		Equatorial & Highland	
Mean \hat{eta}_L	0.143 [0.122]	0.166 [0.078]**		0.320 [0.104]***		0.555 [0.295]*	
N	43	27		42		16	
	Panel B: Five Clusters						
Cluster	Arid & Temp/Cold	Temperate/ Cold	Arid	Equatorial		Equatorial & Highland	
Mean \hat{eta}_L	0.011 [0.177]	0.166 [0.084]*	0.183 [0.116]	0.382 [0.114]***		0.537 [0.236]**	
N	28	25	18	40		17	
	Panel C: Six Clusters						
Group/Cluster	Arid & Temp/Cold	Temperate/ Cold	Arid	Equatorial	Arid & Equatorial	Equatorial & Highland	
Mean \hat{eta}_L	-0.234 [0.220]	0.166 [0.084]*	0.198 [0.132]	0.339 [0.108]***	0.530 [0.258]*	0.646 [0.146]***	
N	15	25	16	43	19	10	

Technology Heterogeneity Across Climate Zones Clusters

				- CT -				
			Panel A: I	Four Clusters				
Cluster	Arid &	Temperate/		Equatorial		Equatorial &		
	Temp/Cold	Cold				Highland		
Mean $\hat{\beta}_I$	0.143	0.166		0.320		0.555		
<u>I. L</u>	[0.122]	[0.078]**		[0.104]***		[0.295]*		
N	43	27		42		16		
	Panel B: Five Clusters							
			ranei B.	rive Ciusiers				
Cluster	Arid &	Temperate/	Arid	Equatorial		Equatorial &		
	Temp/Cold	Cold				Highland		
Mean $\hat{\beta}_L$	0.011	0.166	0.183	0.382		0.537		
/· L	[0.177]	[0.084]*	[0.116]	[0.114]***		[0.236]**		
N	28	25	18	40		17		
			Danal C.	Six Clusters				
			ranei C.	Six Ciusiers				
Group/Cluster	Arid &	Temperate/	Arid	Equatorial	Arid &	Equatorial &		
	Temp/Cold	Cold			Equatorial	Highland		
Mean $\hat{\beta}_L$	-0.234	0.166	0.198	0.339	0.530	0.646		
/· L	[0.220]	[0.084]*	[0.132]	[0.108]***	[0.258]*	[0.146]***		
N	15	25	16	43	19	10		

- 1 Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- Concluding Remarks

Production

$$y_{it} = \beta_{Li} \ln L_{a,it} + \beta'_i \mathbf{x}_{it} + u_{it} \quad \Leftrightarrow \quad Y_{it} = A_{it} L_{a,it}^{\beta_{Li}}$$
 (6)

Production function in agriculture and non-agriculture $(\forall i, t)$

$$Y_a = AL_a^{\beta_L} \qquad Y_n = wL_n \qquad \text{with } L = L_a + L_n \tag{7}$$

Preferences and Individual Optimization

Utility over agricultural (c_a) and non-agricultural good (c_n)

$$U = \alpha \ln (c_a - \overline{c}_a) + (1 - \alpha) \ln (c_n + \overline{c}_n)$$
(8)

where \overline{c}_a is subsistence constraint and \overline{c}_n is an endowment.

$$w = p_a c_a + c_n \tag{9}$$

is the budget constraint, with w equal to income, p_a the relative price of agricultural good.

Preferences and Individual Optimization

Expenditures on the two goods

$$p_a c_a = \alpha (w - p_a \overline{c}_a + \overline{c}_n) + p_a \overline{c}_a$$

$$c_n = (1 - \alpha)(w - p_a \overline{c}_a + \overline{c}_n) - \overline{c}_n.$$
(10)

Equilibrium Allocation of Labour

Free movement between sectors, assume agricultural wage is equal to the average product: no rents. Common setup in models of structural change. Here: removes the impact of β_L on labour allocation, s.t.

$$w = p_a \frac{Y_a}{L_a} \tag{11}$$

Equating supply and demand in both sectors we can then solve for the optimal allocation of labour L_a/L .

Comparative Statics

All standard results (Duarte & Restuccia, 2010; Alvarez-Cuadrado & Poschke, 2011) follow: increase in A

- Agricultural labor declines: $\frac{\partial L_a}{\partial A} \frac{A}{I} < 0$
- Agricultural consumption increases: $\frac{\partial c_a}{\partial A} \frac{A}{c_a} > 0$
- Agricultural labor productivity rises: $\frac{\partial Y_a/L_a}{\partial A} \frac{A}{Y_a/L_a} > 0$
- Relative price of agriculture falls: $\frac{\partial p_a}{\partial A} \frac{A}{n_a} < 0$

Comparative Statics

All standard results (Duarte & Restuccia, 2010; Alvarez-Cuadrado & Poschke, 2011) follow: increase in A

- Agricultural labor declines: $\frac{\partial L_a}{\partial A} \frac{A}{L} < 0$
- Agricultural consumption increases: $\frac{\partial c_a}{\partial A} \frac{A}{c_a} > 0$
- Agricultural labor productivity rises: $\frac{\partial Y_a/L_a}{\partial A} \frac{A}{Y_a/L_a} > 0$
- Relative price of agriculture falls: $\frac{\partial p_a}{\partial A} \frac{A}{p_a} < 0$

β_L affects the magnitudes of these changes

- $\left| \frac{\partial L_a}{\partial A} \frac{A}{L_a} \right|$ falls as β_L rises
- $\left| \frac{\partial c_a}{\partial A} \frac{A}{c_a} \right|$ falls as β_L rises
- $\left| \frac{\partial Y_a/L_a}{\partial A} \frac{A}{Y_a/L_a} \right|$ falls as β_L rises
- $\left| \frac{\partial p_a}{\partial A} \frac{A}{p_a} \right|$ falls as β_L rises

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- Calibration and Counterfactuals
- 5 Concluding Remarks

- Calibrate model to 1963-2005 data for South Korea
- Why Korea?
 - Wanted to capture early stages of structural change and cover post-WWII period of increasing globalisation
 - In 1963 63% of Korea's workforce was employed in agriculture, by 2005 this had dropped to 8%
 - Y^a/L^a increased ×7.4, non-agricultural output ×3.555 population ×1.8 (Timmer and De Vries, 2007)
- A, w, L set to unity, find values α , \bar{c}_a , \bar{c}_n to deliver observed drop in L_a given observed labour productivity

- Calibrate model to 1963-2005 data for South Korea
- Why Korea?
 - Wanted to capture early stages of structural change and cover post-WWII period of increasing globalisation
 - In 1963 63% of Korea's workforce was employed in agriculture, by 2005 this had dropped to 8%
 - Y^a/L^a increased ×7.4, non-agricultural output ×3.5, population ×1.8 (Timmer and De Vries, 2007)
- A, w, L set to unity, find values α , \bar{c}_a , \bar{c}_n to deliver observed drop in L_a given observed labour productivity

- Calibrate model to 1963-2005 data for South Korea
- Why Korea?
 - Wanted to capture early stages of structural change and cover post-WWII period of increasing globalisation
 - In 1963 63% of Korea's workforce was employed in agriculture, by 2005 this had dropped to 8%
 - Y^a/L^a increased ×7.4, non-agricultural output ×3.5, population ×1.8 (Timmer and De Vries, 2007)
- A, w, L set to unity, find values α , \bar{c}_a , \bar{c}_n to deliver observed drop in L_a given observed labour productivity

- Calibrate model to 1963-2005 data for South Korea
- Why Korea?
 - Wanted to capture early stages of structural change and cover post-WWII period of increasing globalisation
 - In 1963 63% of Korea's workforce was employed in agriculture, by 2005 this had dropped to 8%
 - Y^a/L^a increased ×7.4, non-agricultural output ×3.5, population ×1.8 (Timmer and De Vries, 2007)
- A, w, L set to unity, find values α , \bar{c}_a , \bar{c}_n to deliver observed drop in L_a given observed labour productivity

- Calibrate model to 1963-2005 data for South Korea
- Why Korea?
 - Wanted to capture early stages of structural change and cover post-WWII period of increasing globalisation
 - In 1963 63% of Korea's workforce was employed in agriculture, by 2005 this had dropped to 8%
 - Y^a/L^a increased ×7.4, non-agricultural output ×3.5, population ×1.8 (Timmer and De Vries, 2007)
- A, w, L set to unity, find values α , \bar{c}_a , \bar{c}_n to deliver observed drop in L_a given observed labour productivity

Counterfactual Exercise (i)

• For otherwise identical economies, how does β_L affect response to an increase in \bigstar (a) A, or (b) in L?

		Equilibrium outcomes from:						
		20% Increase in Ag. TFP (A) with $\beta =$		5% Increase in Population (L) with $\beta =$				
Outcome	Baseline	0.15	0.35	0.55	0.15	0.35	0.55	
Ag. labour share (L_a/L)	0.800							
Ag. relative price (p_a)	1.000							
Ag. labour productivity (Y_a/L_a)	1.000							
Ag. consumption p.c. (c_a)	1.000							
Non-ag. consumption p.c. (c_n)	1.000							
Real income p.c. (y)	1.000							

			Equili	brium o	utcomes	from:	
		in A	% Increading. TFP with $\beta =$	(A)	in Po	% Increase β Increase β Increase β increase β increase β	(L)
Outcome	Baseline	0.15	0.35	0.55	0.15	0.35	0.55
Ag. labour share (L_a/L)	0.800	0.369					
Ag. relative price (p_a)	1.000	0.432					
Ag. labour productivity (Y_a/L_a)	1.000	2.314					
Ag. consumption p.c. (c_a)	1.000	1.069					
Non-ag. consumption p.c. (c_n)	1.000	3.153					
Real income p.c. (y)	1.000	1.485					

			Equili	brium o	outcomes from:			
		in A	% Increated Increated $^{\prime\prime}$ Increated $^{\prime\prime}$ $^{\prime\prime$	(A)	in Po	% Increase β Increase β Increase β increase β increase β	(<i>L</i>)	
Outcome	Baseline	0.15	0.35	0.55	0.15	0.35	0.55	
Ag. labour share (L_a/L)	0.800	0.369	0.518					
Ag. relative price (p_a)	1.000	0.432	0.629					
Ag. labour productivity (Y_a/L_a)	1.000	2.314	1.591					
Ag. consumption p.c. (c_a)	1.000	1.069	1.030					
Non-ag. consumption p.c. (c_n)	1.000	3.153	2.408					
Real income p.c. (y)	1.000	1.485	1.306					

			Equil	ibrium o	utcomes	from:	
		in A	% Increases Increases $^{\prime\prime}$ Increases $^{\prime\prime}$ $^{\prime\prime$	(A)	in Po	% Increase β Increase β Increase β increase β increase β	(L)
Outcome	Baseline	0.15	0.35	0.55	0.15	0.35	0.55
Ag. labour share (L_a/L)	0.800	0.369	0.518	0.595			
Ag. relative price (p_a)	1.000	0.432	0.629	0.729			
Ag. labour productivity (Y_a/L_a)	1.000	2.314	1.591	1.371			
Ag. consumption p.c. (c_a)	1.000	1.069	1.030	1.019			
Non-ag. consumption p.c. (c_n)	1.000	3.153	2.408	2.026			
Real income p.c. (y)	1.000	1.485	1.306	1.221			

		Equilibrium outcomes from:							
		in A	% Increases Increases $Ag. TFP$ with $\beta = 1$	(A)	in P	% Increation opulation with β =	n (L)		
Outcome	Baseline	0.15	0.35	0.55	0.15	0.35	0.55		
Ag. labour share (L_a/L)	0.800	0.369	0.518	0.595	0.944	0.852	0.823		
Ag. relative price (p_a)	1.000	0.432	0.629	0.729	1.189	1.068	1.031		
Ag. labour productivity (Y_a/L_a)	1.000	2.314	1.591	1.371	0.841	0.936	0.970		
Ag. consumption p.c. (c_a)	1.000	1.069	1.030	1.019	0.992	0.997	0.998		
Non-ag. consumption p.c. (c_n)	1.000	3.153	2.408	2.026	0.281	0.740	0.882		
Real income p.c. (y)	1.000	1.485	1.306	1.221	0.849	0.945	0.975		

Counterfactual Exercise (ii)

- Adopt a sample of 78 countries from Caselli (2005) overlap with our data; three groups: 11 equat./highland, 25 equat., 42 arid/temperate or temperate; pick representative β_L of $\{.55, .35, .15\}$ respectively.
- Normalise L, w, solve for A to yield observed L_a/L
- Counterfactuals
 - (a) What increase in A is necessary to drive L_a/L to 3%?

Relative Ag. TFP Increase to Reach $L_a/L = .03$

Counterfactual Exercise (ii)

- Adopt a sample of 78 countries from Caselli (2005) overlap with our data; three groups: 11 equat./highland, 25 equat., 42 arid/temperate or temperate; pick representative β_L of $\{.55, .35, .15\}$ respectively.
- Normalise L, w, solve for A to yield observed L_a/L
- Counterfactuals
 - (a) What increase in A is necessary to drive L_a/L to 3%?
 - (b) By how much do we need to scale up A and w to double output per worker?

Relative TFP Increase to Double Income pc

Counterfactual Exercise (ii)

- Adopt a sample of 78 countries from Caselli (2005) overlap with our data; three groups: 11 equat./highland, 25 equat., 42 arid/temperate or temperate; pick representative β_L of $\{.55, .35, .15\}$ respectively.
- Normalise L, w, solve for A to yield observed L_a/L
- Counterfactuals
 - (a) What increase in A is necessary to drive L_a/L to 3%?
 - (b) By how much do we need to scale up *A* and *w* to double output per worker?

Counterfactual Exercise (iii)

- How much variation in output pc remains once we eliminate heterogeneity in agricultural technology?
- "Apples and Oranges" problem (Bernard and Jones, 1996): counter-factual analysis where we set $A_1 = A_2$ for $\beta_{L,1} \neq \beta_{L,2}$ is not meaningful.

Income Dispersion, Actual and Counterfactual

	Output	per capita:	Ag. labour productivity:			
	$Var(\ln y)$	90/10 ratio	$Var(\ln Y_A/L_A)$	90/10 Ratio		
Actual	1.185	21.7	2.206	46.0		
Temperate technology	0.996	14.8	2.217	44.1		

Notes: The figures show the actual distribution of the agricultural labor share and agricultural labour output for a sample of 78 countries from Caselli (2005) as well as the counterfactual values for the same countries when they are given a temperate-zone agricultural technology with $\beta = 0.15$.

- Introduction
- 2 Data, Empirical Strategy and Results
 - Data
 - Empirical Strategy
 - Empirical Results
- Theory Model
- (4) Calibration and Counterfactuals
- Concluding Remarks

The Quantitative Significance of Technology Heterogeneity

- Agricultural technology varies widely across countries.
 Seems to follow a pattern linked to agro-climatic conditions.
- Effect of technology heterogeneity in a standard two-sector model is **significant**.
- No 'geographic determinism': fact that agricultural technology differs by climate does not imply anything about TFP or population levels.
- Short of fundamentally altering production technology —
 which may be biologically impossible and/or economically
 inefficient tropical countries will be slower to
 emulate the structural change witnessed in temperate
 regions such as Korea or Japan.

Markus Eberhardt GEP and CSAE

and

Dietrich Vollrath

Appendix: Identification Problem Return

Simplified model setup

$$y_{it} = \beta_i x_{it} + \alpha_i + \gamma_i f_t + \varepsilon_{it}$$
 (12)

$$x_{it} = \eta_i + \phi_i f_t + \psi_i g_t + \epsilon_{it} \tag{13}$$

Solving the regressor for the common factor f and plugging into the production function yields

$$y_{it} = \beta_{i}x_{it} + \alpha_{i} + \gamma_{i}\phi_{i}^{-1}(x_{it} - \eta_{i} - \psi_{i}g_{t} - \epsilon_{it}) + \varepsilon_{it}$$

$$= \underbrace{(\beta_{i} + \gamma_{i}\phi_{i}^{-1})}_{\varrho_{i}}x_{it} + \underbrace{\alpha_{i} + \gamma_{i}\phi_{i}^{-1}\alpha_{i} - \gamma_{i}\phi_{i}^{-1}\eta_{i}}_{\varpi_{i}}$$

$$+ \underbrace{\varepsilon_{it} - \gamma_{i}\phi_{i}^{-1}\psi_{i}g_{t} - \gamma_{i}\phi_{i}^{-1}\epsilon_{it}}_{\varsigma_{it}} = \varrho_{i}x_{it} + \varpi_{i} + \varsigma_{it}$$

Since in the standard case $\varrho_i = \beta_i + \gamma_i \phi_i^{-1} \neq \beta_i$ the slope coefficient on our regressor is not identified.

Appendix: Identification of Average β

- Return 1 Return 2
- Pesaran and Smith (1995): If true model is heterogeneous, then any pooled model misspecified by construction and there exists no instrument which is both valid and informative.
- **Price to pay for CMG**: unless T large difficult to estimate $\hat{\beta}_i$ precisely weak signal-to-noise ratio. Averaging across i boosts the signal. Instead of full sample average we compute averages for specific subsamples.
- CMG methodology and its consistency: extends to multivariate and multifactor setup, nonstationary factors, structural breaks, and cointegration or noncointegration (Chudik, Pesaran and Tosetti, 2011; Kapetanios, Pesaran and Yamagata, 2011; Pesaran and Tosetti, 2011).

Appendix: Weak exogeneity testing

2FE	GM	(<i>p</i>)	Fisher	(<i>p</i>)	mean $\hat{\lambda}_i$	t-ratio	Verdict	
output equation	-0.97	0.00	485.2	0.00	-0.142	-7.91	$x \rightarrow$	y
tractor equation	0.18	0.17	456.2	0.00	0.024	1.81	$x_{-tr}, y \rightarrow$	x_{tr}
livestock equation	0.38	0.00	351.0	0.00	0.043	3.77	$x_{-live}, y \rightarrow$	x_{live}
fertilizer equation	0.10	0.42	432.3	0.00	0.141	1.82	$x_{-f}, y \rightarrow$	X_f
land equation	0.37	0.00	395.2	0.00	0.011	1.91	$x_{-n}, y \rightarrow$	x_n
MG	GM	(<i>p</i>)	Fisher	(<i>p</i>)	mean $\hat{\lambda}_i$	t-ratio	Verdict	
output equation	-2.93	0.00	1,612.1	0.00	-0.976	-24.00	$x \rightarrow$	y
tractor equation	-0.16	0.87	274.7	0.20	-0.029	-0.98	$x_{-tr}, y \rightarrow$	x_{tr}
livestock equation	0.03	0.98	307.6	0.01	0.015	0.55	$x_{-live}, y \rightarrow$	x_{live}
fertilizer equation	-0.06	0.96	257.2	0.47	-0.116	-0.85	$x_{-f}, y \rightarrow$	x_f
land equation	-0.06	0.95	286.5	0.09	-0.004	-0.33	$x_{-n}, y \rightarrow$	x_n
CMG agro-climate	GM	(<i>p</i>)	Fisher	(<i>p</i>)	mean $\hat{\lambda}_i$	t-ratio	Verdict	
output equation	-2.25	0.02	1,035.5	0.00	-0.935	-20.16	x , TFP \rightarrow	y
tractor equation	-0.02	0.98	241.8	0.53	-0.013	-0.42	$x_{-tr}, y, TFP \rightarrow$	x_{tr}
livestock equation	0.15	0.88	380.0	0.00	0.048	1.23	TEE	x_{live}
fertilizer equation	0.07	0.94	242.5	0.52	-0.004	-0.02	TED	x_f
land equation	-0.09	0.93	227.3	0.77	-0.001	-0.08	THE PARTY OF THE P	x_n

Appendix: Livestock rearing distorts estimates

Return

Using average 60% share of VA from livestock as cut-off:

Who drops out? Except for small number of LICs (e.g. Lesotho, Mongolia, Somalia) predominantly developed economies in the temperate or cold climate zones, including Denmark, Germany, and the United Kingdom.

Appendix: Further analysis of endogeneity concerns

Correlation matrix: variable series averages and CMG estimates

Variable averages	$\overline{\mathrm{ly}}_i$	<u>ltr</u> _i	$\overline{\text{llive}}_i$	$\overline{\mathrm{lf}}_i$	$\overline{\ln}_i$	$\hat{eta}_i^{ ext{Tr}}$	$\hat{\beta}_i^{\text{Live}}$	$\hat{\beta}_i^{\mathbf{F}}$	$\hat{\beta}_i^{N}$
Output pw $\overline{\mathrm{ly}}_i$	1								
Tractors pw Itr _i	0.911	1							
Livestock pw $\overline{\text{llive}}_i$	0.816	0.738	1						
Fertilizer $\underline{pw} \overline{lf}_i$	0.902	0.917	0.695	1					
Land pw ln _i	0.780	0.718	0.677	0.673	1				
								-	
Standard CMG	$\overline{\mathrm{ly}}_i$	$\overline{\mathrm{ltr}}_i$	$\overline{\text{llive}}_i$	$\overline{\mathrm{lf}}_i$	$\overline{\ln}_i$	$\hat{eta}_i^{ ext{Tr}}$	$\hat{\beta}_i^{\text{Live}}$	$\hat{eta}_i^{ extbf{F}}$	$\hat{eta}_i^{ extbf{N}}$
$\hat{eta}_i^{ ext{Tr}}$	0.089	0.124	0.052	0.072	0.051	1			
$\hat{eta}_i^{ ext{Live}}$	0.003	-0.015	0.153	-0.051	-0.119	-0.330	1		
$\hat{eta}_i^{ extbf{F}}$	0.115	0.123	0.075	0.223	0.116	-0.067	-0.119	1	
$\hat{eta}_i^{ m Live}$ $\hat{eta}_i^{ m F}$ $\hat{eta}_i^{ m N}$	0.105	0.139	0.076	0.203	0.108	-0.203	0.007	0.124	1
Agro-climatic CMG	$\overline{\mathrm{ly}}_i$	$\overline{\mathrm{ltr}}_i$	$\overline{\text{llive}}_i$	$\overline{\mathrm{lf}}_i$	$\overline{\ln}_i$	$\hat{eta}_i^{ ext{Tr}}$	$\hat{eta}_i^{ ext{Live}}$	$\hat{eta}_i^{ extbf{F}}$	$\hat{eta}_i^{ extbf{N}}$
$\hat{eta}_i^{ ext{Tr}}$	0.128	0.138	0.106	0.150	0.008	1			
$\hat{\beta}_i^{}$ Live	0.040	0.024	0.126	-0.047	-0.007	-0.238	1		
$\hat{\beta}_i^{\mathrm{F}}$	0.148	0.168	0.100	0.282	0.138	-0.002	-0.218	1	
$\hat{eta}_i^{ m Live}$ $\hat{eta}_i^{ m F}$ $\hat{eta}_i^{ m N}$	0.098	0.125	0.037	0.128	0.145	-0.062	-0.053	0.094	1

Appendix: Further analysis of endogeneity concerns

Average β_L by Climate Zone: Recursive Estimates

Appendix: Cluster makeup (examples)

	Panel A: Four Clusters									
Climate Zone	A	В	C/D	Н	N					
Cluster										
Arid & Temperate/Cold	0.059 [0.215]	0.443 [0.396]	0.403 [0.411]	0.094 [0.214]	43					
Temperate/Cold	0.004 [0.015]	0.037 [0.101]	0.920 [0.141]	0.038 [0.096]	27					
Equatorial	0.799 [0.231]	0.099 [0.181]	0.074 [0.139]	0.028 [0.075]	42					
Equatorial & Highland	0.668 [0.307]	0.023 [0.060]	0.050 [0.193]	0.260 [0.256]	16					
	Panel B: Five Clusters									
Climate Zone	A	В	C/D	Н	N					
Cluster										
Arid & Temperate/Cold	0.072 [0.262]	0.285 [0.371]	0.589 [0.409]	0.053 [0.130]	28					
Temperate/Cold	0.003 [0.013]	0.023 [0.065]	0.933 [0.121]	0.041 [0.099]	25					
Arid	0.091 [0.140]	0.723 [0.228]	0.131 [0.214]	0.055 [0.149]	18					
Equatorial	0.837 [0.202]	0.057 [0.107]	0.078 [0.142]	0.029 [0.077]	40					
Equatorial & Highland	0.570 [0.357]	0.044 [0.094]	0.047 [0.188]	0.340 [0.301]	17					

Appendix: Comparing Apples and Oranges

