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Introduction

Pollution and the economy

A large part of the literature on pollution is primarily concerned with
climate change and global warming.

However, there is a growing scientific literature that details a large
and significant impact of pollution on health and mortality.

This has received much less attention in the economics literature and
is the basis of this paper.
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Introduction

Pollution and mortality

According to WHO:

China: 656,000 annual premature deaths due to air pollution and an
additional 96,000 deaths due to water pollution.

India: 537,000 die annually due to air pollution.

USA: 46,000 deaths due to air pollution.

A survey gives a large estimate: up to 40% of all premature mortality
is due to pollution (Pimentel, et al (2007)).
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Introduction

This paper

Models the combined dynamics of income, environmental quality and
life expectancy.

Assumes a negative relationship between survival and environmental
degradation and a positive income effect on survival

How optimal policy interacts with pollution and income
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Introduction

Literature

Growth-pollution-life expectancy.

Pautrel [2009],[SJE,2011] and Jouvet et al. [JE, 2010])

study first/second best environmental policy

don’t consider possibility of non-convexities and multiple steady states.

Mariani et al. [JEDC,2010]

multiplicity of long-run equilibria via discontinuities in survival
probabilities.

Varvarigos [WP,2011] and Palivos and Varvarigos [WP,2011]

allow for fluctuations in capital along the growth path, also with
discontinuties
concerned with policies that maximize the probability of survival not
welfare.
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Model

Our Model

Discrete time Overlapping Generations model with risk of premature
mortality (Chakraborty [2004]).
Each period a new generation is born, consisting of a continuum of
identical agents.

Agents
born in period t live at most to period t + 1

young at time t survive till old age with probability πt

inelastically supply 1 unit of labour at wage wt which is used to finance
consumption cy

t and savings for old age st

young buy annuities from perfectly competitive intermediares who lend
out proceeds to firms for investment in capital

Production follows constant returns technology yt = Akα
t

set depreciation to 1 so
kt+1 = st ,

kt+1 is capital per worker at time t + 1
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Model

Pollution emission and abatement

Production causes a proportionate flow of pollution,

ζt = γyt ,

γ > 0.

The stock zt of pollutants, evolves as

zt = ζt + φzt−1, where 1 > φ > 0 represent persistence.

Persistence of pollutants (ozone, PM2.5, PM10) up to 3 years in U.K.
(Windsor and Toumi (2001)).
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Model

Pollution emission and abatement

Environmental policy consists of an abatement technology that is
costly to operate:

Funded through a proportional tax τt on young agents’ income: net
wage is (1− τt)wt .

The efficiency of abatement is χ ≥ 0 and given the technology, the
stock of pollution accumulates as

zt = γyt − χτtwt + φzt−1.

After substituting for wt and redefining terms, simplifies to

zt = γ(1− ψτ)Akα
t + φzt−1.

Where ψ = χ(1− α)/γ is assumed to lie in [0, 1].
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Model

Survival Probability

πt = π(y(kt), z(kt)) = π(kt);
πy (y , z) ≥ 0, πz (y , z) ≤ 0,

π ∈ [0, 1], ∀y ≥ 0 & ∀z ≥ 0;

π(0, z) = π ∈ [0, 1] ∀z ≥ 0;

π(y , ∞) = 0 ∀y ≥ 0.
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Model

Preferences

Agents maximize their utility

U = ln cy
t + πt ln co

t

subject to life-cycle budget constraints

cy
t ≤ (1− τ)wt − st

co
t+1 ≤

rt+1
πt

st

The solution to the above problem is

st =
πt

1 + πt
A(1− τ)(1− α)kα

t
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Model

Equilibrium

Using the market clearing condition the dynamic path is completely
characterised by

kt+1 =
πt

1 + πt
A(1− τ)(1− α)kα

t

kt+1 = G(kt)

Given k0 and z−1, the dynamic path of the economy is fully described
- given tax policy τ

Pollution is also a state variable but its path is completely specified
once kt is determined
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Model

Dynamics

A steady state consists of a π, k, y , z that satisfy the following
equations

π = π(y(k), z(k)) = π(k)

k = G(k) = π(k)
1+π(k)A(1− τ)(1− α)kα

z = γ(1−ψτ)Akα

1−φ

y = (1− τ)Akα
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Results

The steady state mapping

G(k): R+ → R+ describes the steady state mapping.

G(0) = 0 there is always a trivial steady state because

G(0) =
π

1 + π
Γ(0)α = 0

Lemma 1 For any α ∈ (0, 1) and τ ∈ (0, 1) there exists an Â and a k̂ and

associated Γ̂: Γ̂ = 1+π(k̂)
π(k̂)

k̂1−α such that Γ > Γ̂, G(Γ, k̂) > k̂.

Proof: G(k) can be rearranged so that Γ = 1+π(k)
π(k) k1−α. Pick k̂ which defines Γ̂.

With this choice for Γ̂, it follows that

k̂ =
π(k̂)

1 + π(k̂)
Γk̂α =

1 + π(k̂)
π(k̂)

k̂1−αk̂α = k̂.

For any Γ > Γ̂, it follows that G (k) > k.
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Results

Proposition 1 If the disembodied productivity, A, is large enough, and
limk→0 π′(k) < ∞ then there are two interior steady states, k?

1 and k?
2

such that k?
1 < k?

2

Proof: limk→0 G
′(k) = limk→0

[
Γkα

1+π(k)

]
limk→0

{
α π

k + π′(k)
1+π(k)

}
= 0 only if

limk→0 π′(k) < ∞. This ensures that at low levels of k that G(k) < k.

Lemma 1 ensures that G(k) > k for A sufficiently large. For sufficiently large k it
is easy to show that k > G(k). The existence of k1 such that k1 < k2 follows
from the intermediate value theorem.
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Results

The transformation mapping

For any k0 ∈ (0, k?
1 ), economy

converges to trivial steady state

For any k0 ∈ (k?
1 , k?

2 ), economy
converges to k?

2

k?
1 represents a poverty trap for

two reasons: it has lower output
but also is a threshold for which
any k < k?

1 will diverge to the
trivial steady state.
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Results

Survival rate along steady state

The survival rate is

π(k) =
k1−α

Γ− k1−α
.

Note Γ = A · (1− τ)(1− α) is a constant.

This is increasing in k.

Note that limk→0 π = π.
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Comparative statics

Change in tax

An increase in tax rate on emissions has following effect on G(k)

∂G(k)
∂τ

=

− π

1 + π
−

[πz γψ](1−τ)Akα

1−φ

(1 + π)2

 (1− α)Akα

We know st = G (kt) and an increase in τ lowers net wage incomes
which at constant π and lowers G(k).
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Comparative statics

Change in tax on steady state capital

As shown, both steady state
capital stocks increase,

but this leads to a widening of
the poverty trap;
while the neoclassical state
moves rightward.
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Comparative statics

Example

Assuming the specific functional form:

π =
π + y β

1 + y β

1

1 + zδ
.

Sufficient conditions for Lemma 1:

min{β, δ} >
1

α
> 1

Following set of parameter values,

α = 1/3,A = 2, γ = 1, π = 0.0, β = δ = 5, ψ = 0.8, φ = 0.1;

MATLAB was used to solve for steady states at different values of τ.

τ k∗` k∗h
0.00 0.0339 0.0965
0.15 0.0404 0.1136
0.35 0.0686 0.1026
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Optimal taxation

Second best policy

The only consequence of pollution is that it creates a negative
external effect on expected lifetimes.

Given the OLG framework, externality only affects expected lifetime
utility of the young

Hence there is the potential for welfare improvement via a tax on the
young with the proceeds going to pollution abatement.

Sequential optimal abatement policies that, John and Pecchenino
[1994], maximize expected lifetime utility of young.

Goenka, Jafarey, Pouliot () Pollution, Mortality & Environmental Policy 20 / 28



Optimal taxation

The planner problem

In each period t, a government chooses an optimal pollution tax to
maximise lifetime welfare of the generation born in that period:

max
τt

Ut = lncy
t + πt lnco

t+1

subject to

agents’ budget constraints

competitive equilibrium savings behaviour;

size restrictions on the tax rate: 1 ≥ τ ≥ 0
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Optimal taxation

The planner problem

After substitution this becomes

max
τt

V (kt , τt) = ln

(
(1− τt)(1− α)Akα

t

1 + π(kt)

)
+ (1)

π(kt)ln
(

α(1− α)αA1+α(1− τ)αk2α

π(kt)1−α(1 + π(kt))α

)
. (2)

The f.o.c. is:

dVt

dτt
=

[
lnco

t+1 −
2− α + πt

1 + πt

]
· ∂πt

∂τt
− 1 + απt

1− τt
≤ 0; (3)

where < 0 implies τt = 0.

The effects are:
Direct effect reduces consumption and savings (last term).
Indirect effect: raises π which increases savings but reduces return
from savings.
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Optimal taxation

Proposition 2: If kt is below some threshold level k, then τt = 0.

Proof: From the following f.o.c:[
lnco

t+1 −
2− α + πt

1 + πt

]
· ∂πt

∂τt
− 1 + απt

1− τt
≤ 0,

a necessary condition for τt > 0 is that
[
lnco

t+1 − 2−α+πt
1+πt

]
> 0 because

the effect of an increase in tax on survival is positive, i.e. ∂π
∂τ > 0. For

initial capital sufficiently small ko this will not hold because consumption
of the old is so small that the log of this small value approaches minus
infinity.

Goenka, Jafarey, Pouliot () Pollution, Mortality & Environmental Policy 23 / 28



Optimal taxation

The tax function

Because the general parameterisation so far it is turns out to be difficult
ensure second-order conditions for the optimal tax to hold. To proceed, we
assume the following parametric form:

π =
[

π + y β

1 + y β

] [
1

1 + zδ

]
min{β, δ} ≥ 1

α
> 1
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Optimal taxation

Proposition 3: Provided that the second-order condition for the optimal
tax is satisfied, and the level of capital is above a threshold k̃

(i) there exists a function h : [k̃, ∞) −→ [0, 1) such that optimal
τ = h(k);
(ii) h(k) is (weakly) increasing in k.

Proof: (i) follows from the parameterisation of the survival probability and
the s.o.c.. (ii) follows from the implicit function theorem

∂h(k)
∂k

= −Hk

Hr
≥ 0
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Optimal taxation

Steady state with optimal taxes

τt = h(kt)

kt+1 =
π(τt , kt)

1 + π(τt , kt)
A(1− τt)(1− α)kα

t = G(τt , kt)

In a steady state:

τ = h(k)

k =
π(k, τ)

1 + π(k, τ)
A · (1− τ)(1− α)kα ⇒ k = g(τ)
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Optimal taxation

Local dynamics

The equation of motion is a first-order difference equation in k

kt+1 =
π(h(kt), kt)

1 + π(h(kt), kt)
A(1− h(kt))(1− α)kα

t = G(h(kt), kt)

Linearising around a steady state

dkt+1

dkt

∣∣∣∣
k∗

= G′(k∗) +
∂G(k∗)

∂τ
h′(k∗)

Simplifying:

dkt+1

dkt

∣∣∣∣
k∗

= G′(k∗) + g ′(τ∗)(1− G′(k∗))h′(k∗). (4)

where

g ′(τ∗) =
∂G(k∗)

∂τ

1− G′(k∗)
.
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Optimal taxation

Local dynamics

Type G′(k) g ′(τ) h′(k)g ′(τ) Dynamics

Neoclassical < 1 < 0 > −G′/(1− G′) Stable

Neoclassical < 1 < 0 < −G′/(1− G′) Oscillations

Neoclassical < 1 > 0 > 1 Unstable

Neoclassical < 1 > 0 < 1 Stable

Poverty Trap > 1 > 0 < 1 Unstable

Poverty Trap > 1 > 0 > 1 Stable

Poverty Trap > 1 > 0 < −G′/(1− G′) Oscillations
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