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Abstract

We analyze a dynamic model of agenda formation in which players compete

in each period to place their ideal policies on the agenda. In each period,

with some probability, a decision maker takes an action from the agenda. We

show that in any markov equilibrium of this game, players with extreme ideal

policies will always compete to be in the agenda. On the other hand, there is

a positive probability that in each round a more moderate policy will arise on

the agenda. Therefore, agenda formation is a gradual process which evolves to

include better policies for the decision maker but at a relatively slow pace.

1 Introduction

The process of group decision making involves two main (possibly intertwined) sub-

processes: that of the formation of a set of alternatives to choose from (which below

we refer to as the agenda) and that of choosing an option from this set. In some

cases, the agenda might be exogenously given. Often however, decision makers are

not aware of the feasible options at hand. A newly elected President who has to

tackle major issues such as health reform or climate change, is usually not an expert

on the subject and must be introduced to the feasible policies. The agenda formation

process plays then an important role in bringing the set of feasible options to his or

her attention.

Our main assumption is that the agenda formation process is decentralized. Poli-

cies are suggested by interested parties whereas the decision maker has no control on
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the content of the agenda. Suggesting a policy may however be costly, as time or

attention constraints of the decision maker often induce interested parties to compete

-by exerting resources- to place policies on the agenda.1 In this paper we focus on

the dynamic competition between such interested parties.

To �x ideas let us think about the public debate about climate change. In the

United States, before the 1980�s, the general public was unaware about the evidence

or the main parameters of the debate. The intense drought and heat wave in 1988

were the �rst instances in which scientists publicly claimed that such phenomena

were evidence of climate change. Since then, interested parties have used costly

media campaigns to bring their favorite policies to the public�s attention; among

others, bio-fuels producers push for subsidies for producing their own alternative fuel,

climate sceptics and polluting industries push towards protecting the status quo,

and economists suggest market mechanisms such as taxes on emissions or trading in

pollution permits. But how representative are the current policies on the agenda?

Are the bio-fuels discussed the best possibilities that are available? Are the new grid

feed-in tari¤s for solar panels in the UK the type of policy that should be discussed?2

More generally, in this paper we will focus on the following questions. Do the

best policies arise on the agenda? If they do, how long does it take for these policies to

be put forward? What determines the types of policies that are discussed �rst? How

do interests with relatively moderate policy prescriptions fair against more extreme

interests?

We propose an in�nite horizon model in which a decision maker has to choose an

alternative from an agenda. The timing of the decision is stochastic: in each period,

with probability �; the decision maker will choose his best alternative from the agenda

and with probability 1� � the game continues to the next period. The parameter �
captures the (stochastic) length of the decision making process.

A �nite number of interested players, each with single-peaked preferences on the

one-dimensional policy space, try to in�uence the agenda. In each period, players

play an in�uence game whose winner adds his ideal policy to the agenda. In the

1See Cox (2006) for an argument about the importance of time and attention constraints in

legislatures. Motivated by such constraints, Copic and Katz (2007) analyze the choice of a set of

alternatives that in a later stage would become the agenda for the legislature (see also Barbera and

Coelho 2009).
2For more on this debate see, "Are we really going to let ourselves be duped into this solar panel

rip-o¤?", Guardian, 1st of March 2010.
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in�uence game, players simultaneously take costly actions, and the probability that

a player wins is an exogenous function of the vector of costly actions. The family

of in�uence games we consider includes many all-pay mechanisms that have been

used in the literature (such as all-pay auctions or the Tullock in�uence functions).3

We analyze Markov perfect equilibria of this game where the state is de�ned as the

favorite policy of the decision maker on the current agenda.

The dynamic model brings to the fore the tension between extreme and moderate

players. Extreme players are willing to compete harder than others, due to negative

externalities. These imply that in short decision making processes (for example when

� = 1) the agenda will be polarized.

Moderate players on the other hand represent better policies for the decision

maker. The advantage of moderate players is stronger in long decision making

processes: In these cases they need to win fewer contests in order to be chosen by

the decision maker compared with extremists, who must repeatedly win contests in

order to crowd out better policies. We show that nonetheless, extremists never "give

up": Our main result is that for any �; including arbitrarily small; at any stage in

the process, there is a strictly positive probability that a player di¤erent from the

most moderate will win. We also show that at any stage there is a substantial prob-

ability that a new and more moderate policy will be added to the agenda. Thus the

agenda evolves forward with a positive probability, but in a gradual, or relatively

slow, manner.

The gradual evolution of the agenda rests on the balancing of the short-run and

long-run motivations for placing a policy on the agenda. The short-run motivation

relates to the choice of the decision maker today. When the agenda has not fully

evolved, many players -even extremists- could potentially in�uence this choice. On

the other hand, players must consider the long-run e¤ects of their actions, if the

decision is not taken today. If the process is not gradual, the most moderate player

will be on the agenda fairly quickly. Players should then expect their in�uence on the

future to be rather small, and as a result they would tend to act mainly on the basis

of the short-run considerations. But these induce relatively extreme players to bid

aggressively so that the most moderate player cannot be on the agenda too quickly;

thus, any agenda formation process must be gradual and some extreme players are

3Becker (1983) laid down the framework of in�uence functions. See also Skaperdas (1996) and

the survey in Konrad (2009).
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always active.

We further explore how the parameters of the model - the distribution of ideal

policies and the players� preferences - a¤ect the degree of gradualism. We focus

on a particular equilibrium, the "fully gradual equilibrium", in which any player

becomes active only after all more extreme players have already placed their policy

on the agenda. With three players, and simple all-pay-competition functions (in

particular, all-pay-auction and a simple Tullock contest function), we show that the

existence of such an equilibrium depends on relative rather than absolute polarization

in the distribution of ideal policies. In particular, this equilibrium is more likely

to exist when an extreme player�s ideal policy becomes more extreme. Moreover,

this equilibrium does not exist when players care only about winning themselves

(o¢ ce motivation). Thus, negative externalities play an important role in inducing

gradualism:

Our model combines two strands in the political economy literature, the one on

endogenous agenda formation4 and the one on in�uence games5. We di¤er from the

�rst line of literature by focusing on all pay competitions to determine the right to

place a policy on the agenda. The second line of research analyzes the direct in�uence

of policy while we focus on indirect in�uence, via the e¤orts to place policies on the

agenda.6

Our model is also related to Osborne et al (2004), Osborne and Slivinski (1996)

and Besley and Coate (1997) who have analyzed endogenous entry in political models.

In contrast to these papers our central focus is on the endogenous cost of entry and

on the dynamics of entry.

Other papers have analyzed gradualism in di¤erent contexts, albeit stemming

from di¤erent reasons than the one analyzed in our model. Compte and Jehiel (2004)

analyze a bargaining game in which the outside option of the players depends on

previous o¤ers. Admati and Perry (1991) show that an agent holds back his payments

in contribution games to insure that the other agent contributes his share as well.

In a political set up, Polborn and Klumpp (2006) analyze a dynamic competition

4Early contributions include Austen-Smith (1989) and Baron and Ferejohn (1989) who consider

�xed processes of agents suggesting policies. Recent contributions are Duggan (2006), Penn (2008)

and Dutta et al. (2004) who consider endogenous processes.
5Becker (1983) and Grossman and Helpman (1994) have mostly used contest functions or auctions

to model how players can directly a¤ect political outcomes.
6An exception in this literature which is related to our approach is Austen-Smith (1995) who

assumes that lobbies need to pay a �xed exogenous "access" cost in order to be heard by a politician.
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(primaries) between two candidates, via a contest function, to win di¤erent districts.

Finally, in a multistage patent race game among two players, Konrad and Kovenock

(2009) show that an agent who is losing in the patent race still does not give up, as

long as he can win some strictly positive instantaneous prize. A similar result arises

in our analysis even when the instantaneous prize converges to zero.

The rest of the paper is organized as follows. In the next section we present the

model: In Section 3 we present our main result of gradualism. Section 4 considers the

e¤ects of di¤erent parameters on gradualism, while Section 5 discusses some possible

extensions. All proofs that are not in the text are in an appendix.

2 The model

A set of players, N = f1; 2; :::; ng; are trying to in�uence a �nal policy, y, by placing
their ideal policies on an evolving agenda. player i�s ideal policy is denoted by xi 2
[�1; 1] and the �nal policy satis�es y 2 fx1::; xi; ::; xng: The utility of player i from
the �nal policy y is ui(y) = �jxi � yj:7 Without loss of generality, let x1 = 0; and

jxij < jxi+1j for all i.
At any stage t in the (in�nite) dynamic game, the players engage in an all-pay

competition whose details we specify below. The winner of the competition at stage t

places his ideal policy xt on the agenda. The agenda at time t; At� fx1; ::; xi; ::; xng;
evolves in the following way: A0 = xn; A

t = At�1 [ xt:8 Note that all players can
compete at any stage even if their policy is already on the agenda. After any stage t,

with probability � 2 (0; 1) the game terminates. At the termination node, a decision
maker chooses the policy in At that is closest to his ideal policy. Assume without

loss of generality that his ideal policy is at zero. With probability 1 � � the game
continues to stage t+ 1:

We now describe the all-pay-competition that the players play at each stage. In

this competition each player i places a bid bi � 0 which he must pay regardless of the
outcome. Bids are placed simultaneously. The probability with which player i wins

the competition at stage t is determined according to a function Hi(b); where b is the

vector of bids. We assume that the function Hi(b) satis�es the following properties:

7This simple environment is presented for expositional purposes. Theorem 1 below holds for more

general utility speci�cations with or without negative externalities.
8The results remain the same if A0 = �; provided that utilities are well de�ned on A0:
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H1.
P

i2N Hi(b) = 1

H2. For any K > 0; there exists a K 0 > 0 such that if bi = maxj bj and bi
bj
> K 0

then Hi(b)
Hj(b)

> K:

H3. Monotonicity: Hi(b) (weakly) increases in bi and (weakly) decreases in bj for

j 6= i:

Assumption H1 is made for expositional purposes. Assumption H2 is a weaker

version of a requirement that if one player bids in�nitely more than another player

in relative terms, then he must win with a probability that is in�nitely large than

that of the other player. H3 is a standard monotonicity requirement implying that it

is costly to in�uence decisions.9 The above set of assumptions are general enough to

include many of the functional forms used in the literature, including the generalized

Tullock contests,10 and the all-pay-auction mechanism. Throughout the paper we will

sometimes illustrate our results using the following two H functions:

Example 1 (All Pay Auction)

Hi(b) =

(
1

j argmax bj j if i 2 argmax bj
0 if bi < max bj

Example 2 (A simple contest function)

Hi(b) =

8>><>>:
biX
j

bj

If 9bj > 0

1
n
otherwise

9We �nd monotonicity to be a natural assumption for the application at hand, although it is

quite strong. Instead of both H1 and H3, we can make a weaker assumption. The important feature

for our proof is that players who have a marginal probability of winning a competition can only have

marginal e¤ects on others�chances when they withdraw their bids. We discuss this further after we

present Theorem 1.
10See Skaperdas (1996) for an axiomatic approach that imposes more conditions on the general H

and yields the generalized Tullock contest. Skaperdas (1996)�s axiomatization uses an independence

axiom. Clark and Riis (1998) also use independence and homogeneity and lose anonymity to get

non anonymous Tullock functions.
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The all-pay feature is a relevant one in political economy, where agents invest

e¤orts and resources to gain the attention of (or access to) a decision maker. In

these circumstances, explicit contracts cannot be legally written or enforced and so

these e¤orts must be taken up-front. As it is not transparent how the decision maker

assigns access or attention, we use a general H function for deriving our main results

(we solve speci�c examples in Section 4).

Let J t 2 f1; :::; ng be the index of the player whose ideal policy the decision
maker would choose from the agenda At�1 (the "most moderate" policy in At�1):

The utility of player i from the game is therefore

1X
t=1

(1� �)t�1(�EU ti (bt)� bti)

where

EU ti (b
t) =

nX
j=1

Hj(b)ui(xminfj;Jtg)

Finally, we say that a player is active in period t (in some equilibrium) if the

measure of non-zero bids in his support is strictly positive in this equilibrium.

We will focus our analysis on Markov Perfect Equilibria in which players condition

their bids, on and o¤ the equilibrium path, only on the state variable J t and ignore

both the time index t and past histories. WhenH is continuous our model satis�es the

su¢ cient conditions in Escobar (2008) for the existence of a mixed strategy Markov

perfect equilibrium.

Proposition 1 (Escobar (2008)) Suppose H is continuous. A Markov Perfect

Equilibrium exists.

Note that although in the all-pay-auction mechanism (Example 1) H is not con-

tinuous, we �nd an MPE in the examples that we solve and thus we rather specify

our characterization result in Theorem 1 without imposing continuity on H:

Our main interest in this paper is to consider the dynamics of the process of

agenda formation. But �rst we consider the benchmark of � = 1 which highlights the

importance of negative externalities. These imply that some degree of polarization

always arises in the agenda formation process. For simplicity we focus here on dis-

tributions of preferences that include players with the most extreme ideal policies 1

and -1.
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Proposition 2: There exists an �" > 0, such that in any equilibrium, for any

interval I � [�1; 1] of size " < �"; the probability that the winning policy is in I is

strictly smaller than one.

Proof of Proposition 2: Suppose by way of contradiction that for all �" > 0

there exists a distribution of ideal policies, an equilibrium and an interval I of size

" < �" such that the probability that a policy from within I wins is one. Note that

the willingness to pay of players within I is bounded by ": From H1 and H3 all others

must bid zero. Choose the player who is furthest from the interval I: The willingness

to pay of this player is at least (1� "
2
): By submitting a bid k"; so that k !1 and

k" ! 0, by H2, this player wins with a probability converging to one while his bid

converges to zero. This implies an expected utility close to zero. Alternatively, in

equilibrium his expected payo¤ is at most �(1 � "
2
) and hence he has a pro�table

deviation.�

Example 1 (all-pay-auction): In this case, �" = 1. To see why, note that for any

interval of smaller size there will exist a player outside this interval whose expected

distance from the �nal policy is larger than the length of the interval. As the highest

bidder wins with probability one, such a player will have a higher willingness to pay

than any of the active players and will therefore deviate and submit the bid that

allows him to win against all.

Example 2 (simple contest function): In this case �" = 2; in the unique equilib-

rium the two most extremists are the only ones to compete, and thus the probability

that the winning policy is in any smaller interval is at most a half (we prove this in

the Appendix).

3 Gradualism in dynamic agenda formation

We now turn our attention to the dynamic game. Our main result is concerned with

the positive features of the dynamic agenda formation process: How does the agenda

evolve, and how active are extremists. In short games (large �); as illustrated in

Proposition 2, extremists have a high intensity to win: with a substantial probability

the decision maker might take a decision today and being on the agenda implies

instantaneous bene�ts. On the other hand, when � converges to zero, such bene�ts

do not exist. The most moderate player has a stark advantage in this case; he needs

to win only once in order to guarantee that the decision maker will choose his ideal
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policy. With such high degrees of "patience" he is bound to win at some point: One

may conjecture that in this case extremists will stay out of the competition, not to

waste fruitless resources. Our main result shows that even when the game is long,

extremists never "give up":11

Theorem 1 There exists an " > 0 such that in any Markov Perfect Equilibrium,

for any state J > 1; for any �; (i) player 1 wins with a probability lower than 1� ".
(ii) Some player i < J wins with a probability larger than ":

Theorem 1 implies that the most moderate player will eventually win but that

other policies will arise on the agenda with a strictly positive probability. Even if the

instantaneous bene�ts converge to zero, extreme players (who can potentially still be

chosen by the decision maker) keep on competing for a place on the agenda. As a

result the most moderate player is never guaranteed to win any stage with too large

a probability.

The intuition behind this result could be understood through the decomposition

of players� incentives into short-run and long-run considerations. In particular, we

show that players�willingness to pay at each stage determines their decision of whether

to be active or not. A typical willingness to pay of a player i at state J in the game

takes the form,

wJi = � ~X
J
i + (1� �)(V

minfi;Jg
i � ~V Ji ):

The �rst term, � ~XJ
i ; is the short term incentive to win and its magnitude is of

order �; ~XJ
i is player i

0s static utility di¤erence between winning and being inactive,

i.e., if the decision maker were to pick a policy today, and is thus multiplied by �.

The second expression represents the long-run e¤ect of being active. The ex-

pression V minfi;Jgi � ~V Ji represents the e¤ect of today�s action on future continuation

values; V minfi;Jgi is the continuation value following player i winning this period�s con-

test while ~V Ji represents the expected continuation value if player i remains inactive.

The key to the proof of the Theorem is showing that the short-run and the long-run

e¤ects are of the same magnitude when �! 0:

To understand the magnitude of the long term consideration, V minfi;Jgi � ~V Ji ; we
�rst prove part (ii) of the Theorem which implies that the game will endogenously

end (i.e., reach J = 1) in �nite time in expectations. In turn, as we show, this implies

11The proof is provided in the Appendix.
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that the di¤erence in continuation values V minfi;Jgi � ~V Ji is also of order �; as the future
payo¤ is comprised of a �nite number (in expectations) of instantaneous bene�ts.12

To see how we prove part (ii), and how our assumptions about H play a role, let

us �rst consider a game with just two players, 1 and 2, and the state J = 2: Suppose

to the contrary that when J = 2 there exists a sequence of equilibria in which player

1 wins with probability " converging to zero (which must therefore hold for almost

each bid in his support). As a result, almost every bid in the support of player 1; b�1;

must be in�nitely small than his willingness to win, i.e., b�1 � "w21. To see why, note
that withdrawing and bidding zero instead of b�1 implies, by H1 and H3, that player 1

will lose at most " probability of winning and in turn his relative bene�t of winning,

his willingness to win. As positive bids have to be weakly better than withdrawing,

we get a bound on the bids of player 1 in equilibrium.

But if player 1�s bids are converging to zero, player 20s best reply must do so as

well, as he need not waste too much resources in order to win against very low bids.

In particular, such a best reply is a sequence of b�2 = 
b
�
1 � 
"w21 where 
 ! 1 and


"! 0; so that b�2 ! 0: By H2, this guarantees winning with probability converging

to one and the highest possible utility. We can therefore also derive a limit on the

bids of player 2 in equilibrium:

We have concluded that a player who loses almost for sure, player 1, has a willing-

ness to win which is in�nitely higher than all equilibrium bids. This however cannot

arise in equilibrium. player 1 could then place winning bids which cost in�nitely less

than his gain of winning - w21- a pro�table deviation.
13 We have therefore reached a

contradiction to the proposed sequence of equilibria.

Thus, from state J = 2; we must move forward with a strictly positive probability

so that the game will end in �nite time; the long term incentives of the players must

therefore be of order �, as this is what they can aspire to gain and the most they will

be willing to pay for.14

extending the proof of part (ii) to many players: Lemma A1 in the

appendix extends the argument above for N players and all states J: To do so we

use an induction on J which relies on the structure of the game which renders it is

12That is, 0 < lim�!0 jV
minfi;Jg
i (�)� ~V J

i (�)

� j <1:
13In particular, by H2, as above, he can deviate and place a bid b01 such that

b01
b�2
!1 and b01

w21
! 0:

14Of course one has to take into account the future bids of the players. In the Appendix we show

that these are of order � or lower.
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impossible to move from some state J to any state J 0 > J:15 Extending the above

argument to more than two players involves considering several issues.

First, we have relied above on the fact that a marginal (one with a very small

chance of winning) player�s bid must be in�nitely smaller than his willingness to win.

With more than two players, when a marginal player withdraws his bid, he may

substantially change the balance of power between the other players who compete.

Assumptions H1 and H3 guarantee that this is not the case; alternatively, we can

make a weaker (and more direct) assumption stating that when a marginal player

withdraws, he does not substantially a¤ect the ratio of the winning probabilities of

other players.16

The presence of negative externalities complicates the proof for many players for

another reason; when a losing player withdraws and shifts even a small probability

to others, he may shift it to the player he fears most. His bids are therefore in�nitely

smaller than his willingness to win against his worst (remaining) enemy. This implies

that we need to consider the worst case scenario for each player, or more generally

all bilateral comparisons between players. To do this we use the inductive structure

of the game.

Finally, note that when there are many players, at state J; some players with

i > J may still �ght in order to defend J as the current state. This implies that

many players might submit bids to support the same policy (as well as multiplicity

of equilibria). The proof involves deriving bounds on bids for all these players.17

We have so far concluded that both the short-run and the long-run considerations

composing the willingness to win of players are comparable and of order �. The

implication of this is that player 1 cannot win any stage with probability converging to

one (as stated in part (i)); as players�short-run and long-run incentives are comparable

in equilibrium, no player has an absolute endogenous advantage which implies a quick

resolution of the game.18

More generally, in equilibrium, the magnitude of the two e¤ects -the short-run

and the long-run- must be balanced. Intuitively, if it is expected that the most

15As we have done above, we also rely on the structure of the MPE.
16Note that this holds for the Tullock contest functions also for non-marginal players (the inde-

pendence assumption).
17We discuss this issue more in Section 5.
18To show this formally, we again use the assumptions on H and repeat a similar argument to the

one illustrated above to show that Player 1 cannot win with a probability converging to zero.
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moderate player will be on the agenda very quickly, this will imply that V minfi;Jgi is

fairly close to ~V Ji and so the short-run incentives will play an important role. But

then other more extreme players will decide to be active - as they are the ones who are

most motivated to win today and realise the short term gains. But as extreme players

are active, our initial supposition that the most moderate player wins quickly cannot

be sustained. As a result, equilibria will always involve some short-run considerations,

and relatively extreme players will always be active.

Theorem 1 establishes gradualism for a general environment, but does not tell us

how slow (or quick) is the rate of gradualism. For example, although we know that

at no stage player 1 wins almost for sure, it is not clear at which stage he actually

becomes active. We now explore in more detail the dynamics of gradualism, the role

played by negative externalities and how the distribution of players� ideal policies

a¤ects gradualism.

4 Full gradualism

In a fully gradual equilibrium, all policies are placed on the agenda before player 1

becomes active. More generally, player i� 1 becomes active only at state i; thus, the
decision maker, if the game is long enough, becomes aware of the full set of feasible

options. To achieve this, at each stage, only two players can win with a strictly

positive probability and the agenda evolves starting from the most extreme policies

and adding more and more moderate policies:

De�nition 1: In a fully gradual equilibrium, at any state J > 1; only players J

and J � 1 are active.19

To see whether such an equilibrium exists, for simplicity, we focus on N =

f1; 2; 3g (results can be generalized to any set N). We �rst consider a distribu-

tion of policies in which x2 > 0 and x3 < 0 (where jx3j > x2); or a "two-sided"

in�uence game, in which players 2 and 3 are on di¤erent sides of the most moderate

player. We show that full gradualism exists when relative extremism ( jx3j
x2
) is large

enough. In Section 4.2 we consider the case in which x3 > x2 > 0; we show that in

19An extension of a fully gradual equilibrium is that at some state J; player J�1 competes against
some player i > J where player i "defends" the policy of J; as when he wins a contest, the state

remains J: Our results are robust to a more general de�nition of full gradualism and we discuss such

"defending" behaviour in Section 5.
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such "one-sided" in�uence games, full gradualism is harder to sustain. In Section 4.3

we focus on the role of negative externalities and show that full gradualism does not

arise in their absence for any distribution of policies. Throughout, to obtain more

speci�c comparative static results, we consider the H functions de�ned in Examples

1 and 2, the all-pay-auction and the simple contest function.

4.1 Existence of a fully gradual equilibrium

At J = 2; for any jx3j > x2; it is an equilibrium for only players 1 and 2 to compete,

and they will keep on competing until player 1 wins. To construct a fully gradual

equilibrium we therefore have to check if, at J = 3; it is an equilibrium for only

players 2 and 3 to be active. The binding condition that we need to check is whether

or not player 1 will prefer to enter the competition as well.

Consider �rst the case when x3 < 0: When � is large and close to 1, it is easy

to sustain full gradualism. Intuitively, players 2 and 3�s willingness to win vis a vis

each other is of the order of jx3j+ jx2j whereas that of player 1 is at most jx3j and he
is therefore priced out of the competition. For some parameters (for example when

jx3j � x2), in the all-pay-auction, full gradualism is the unique equilibrium when � is
large enough.

It is not surprising that when negative externalities play a large role then large

polarization in the form of full gradualism takes place in equilibrium; we show however

that this is also the case when � ! 0; when player 1�s dynamic advantage is stark,

and can potentially outweigh negative externalities:

Proposition 4: Suppose that x3 < 0 and consider the all-pay-auction and simple

contest functions. (i) The existence of a full gradual equilibrium depends only on

relative distances: In particular, for all �; full gradualism arises when jx3j
x2
is large

enough. (ii) Full gradualism is an equilibrium for a larger set of parameters under

the all-pay-auction.

Somewhat counter-intuitively, player 1 stays out if player 3 - which represents his

worst case scenario, is located far enough from him. The reason is that the distance

between these players a¤ects mainly the willingness to win of player 3, who knows

that in expected �nite time the agenda will include the ideal policy of player 1 (by

Theorem 1). On the other hand, when considering whether to deviate, player 1 is

aware that player 2 wins the game between 2 and 3 more often (due to his advantage
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of being more moderate), and thus his willingness to win in J = 3 is guided mainly

by his distance from player 2.

It is therefore the relative values of x2 and x3 that are important in characterizing

the equilibria above. This prediction is di¤erent frommodels in which the payments in

equilibria are exogenously �xed (for example, the citizen-candidate or town meeting

models) and so the absolute values of ideal policies matter.20 In our model, when

we polarize society for example by "stretching" both the ideal policies of 2 and 3 to

maintain jx3j
x2
�xed, the identities of the winners of the agenda game do not change

(although the magnitude of the payments changes).

When only players 2 and 3 compete, in the all-pay-auction (and more generally

for highly competitive H functions), the optimal deviation -if such exists- for player

1 is to place the highest equilibrium bid. He will therefore become active if his

willingness to win is higher than the highest bid, in which case he will win for sure

and extract some rent. The highest bid in the game between players 2 and 3 is their

minimum willingness to win. Insuring that the willingness to win of 1 is lower than

this minimum provides us with the condition that polarization ensures full gradualism.

In the simple contest function, player 3 has to be even further away for player 1

to stay out. Under such function, competition is less aggressive. As a result, in the

equilibrium between players 2 and 3, player 3 wins more often compared with the

all-pay-auction, which encourages player 1 to become active to avoid his worst-case

scenario. Moreover, as competition is less aggressive, an optimal deviation for player

1 will actually consist of a small bid which can a¤ect the results with little e¤ort (as

opposed to the more competitive all-pay auction). This makes a deviation easier and

in particular, player 1 may deviate even his willingness to win is lower than that of

the other two players.

4.2 Gradualism in one-sided versus two-sided in�uence games

We now compare between the case above in which x3 < 0 -a "two sided" in�uence

game- and x3 > 0 -a "one sided" in�uence game. To make this comparison meaningful

we �x jx3j; so that the distances of players 2 and 3 from player 1 are �xed.

Proposition 5: Fix jx3j. For both the all-pay-auction and the simple contest
function, when x3 > 0 full gradualism is less likely to be sustained than when x3 < 0:

20See Besley and Coate (1997) and Osborne et al (2004).
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Although jx3j is �xed, player 1 is more motivated to deviate when the distribution
is one-sided. The reason is that in the supposed equilibrium between player 2 and 3,

player 3 is not as disadvantaged when he is on the same side of player 2. Thus, he

wins more often. This increases the willingness to win of player 1 and gives a higher

incentive for player 1 to deviate and become active.

Although harder to sustain, full gradualism still exists in this case as well: in such

an equilibrium, polarization in the present builds on less polarization in the future.

As the future unfolds, players a¤ect outcomes less as polarization decreases, and thus

they focus on the present. In the present though negative externalities are rather

important and imply large polarization. We will now examine the role of negative

externalities in sustaining full gradualism.

4.3 Gradualism and players�motives

In many set ups, it is reasonable to consider the pure winning incentives of politicians

or interest groups.21 We now consider the extreme case in which agents care only

about being chosen by the decision maker but not about the policy that will be

enacted if they are not chosen. This implies that there are no negative externalities

in agents�utilities.

In the previous sections we have shown how negative externalities can persist

throughout the dynamic process to yield a fully gradual equilibrium, in which player

1 is not active unless all other policies have already been placed on the agenda. We

now show that when there are no negative externalities, full gradualism is impossible

to sustain.

Assume that player i0s utility from xi = y is some v; and 0 otherwise.22 We still

consider three players, whereas x3 can be either positive or negative. Note that again,

when J = 2; only players 1 and 2 can compete. We can then show:

Proposition 6: For both the all-pay auction and the simple contest function,

for all �; there is no full gradualism: In equilibrium, player 1 is active in every stage

and wins every stage with a strictly positive probability.

21Our results are robust to the inclusion of small o¢ ce or winning motivations.
22The case of equal valuations is the natural case to consider as an extension of our political

economy model. If valuations di¤er, we can construct valuation vectors in which extreme players

have relatively large valuations, to somewhat mimic the negative externalities that exist in our

model.
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The absence of negative externalities sharpens the advantage of player 1. In

particular, in the game between 2 and 3, player 2 cares only about winning while if

he loses to player 3 he is not concerned with perhaps a very far away implemented

policy. This implies that the willingness to win of player 1 is higher than that of

player 2, when player 1 is assumed to be non-active at J = 3: player 1 knows that

winning will result in the highest prize whereas player 2 knows that winning against

player 3 will just yield this prize with some probability (as if the game doesn�t end,

player 1 will challenge him):

Lemma 1: Suppose that player 1 is not active at J = 3; then for all H, w31 > w
3
2:

Proof of Lemma 1: To see this, let wkij denote the willingness to win of player

i against player j in state k and let V ki denote the continuation value of player i in

state k: Note that w32 = w
3
23 and that w

3
1 = H2w

3
12+H3w

2
13 = H2w

2
1+H3w

2
13:We now

show:

(i) w21 � w22:

w21 = �v + (1� �)(v � V 21 ) � �v + (1� �)(V 22 ) = w22

as V 21 +V
2
2 � v, which is the largest feasible prize in the game. Intuitively, player 1 is

more keen to win against player 2 than the opposite as by winning player 1 terminates

the game and gets the prize.

(ii) w22 > w
3
23 :

w22 = �v + (1� �)V 22 � �v + (1� �)(V 22 � V 32 ) = w323:

Intuitively, player 2 is more keen to win against player 1 than in the game vs. player

3, as losing to player 1 ends his hopes of winning.

(iii) w313 > w
2
1 :

w313 = �v + (1� �)(v � V 31 ) > �v + (1� �)(v � V 21 ) = w21

as V 21 > V
3
1 : in state J = 3 player 1 does not participate and gains nothing, and can

get some payo¤ only when J = 2 arises, thus V 31 is a discounted payo¤ of V
2
1 :

These three results imply that H2w21 +H3w
2
13 > w

3
23 or that w

3
1 > w

3
2.�

As explained in Section 4.1, the higher willingness to win of player 1 than that

of an active player is su¢ cient to insure that player 1 will deviate and enter the game

both in the all-pay-auction and in the simple contest function.23

23We show that this is a necessary condition for a deviation in an all-pay-auction in Lemma A2
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5 Discussion

We now consider several of our main assumptions and some possible extensions.

Strategic choice of policies. In the model we analyze, players can only propose

their ideal policies. Alternatively one can analyze a model in which players strategi-

cally choose policies from a set of feasible policies. The considerations of players in

this case would be similar to the ones in our model. In particular, the short-run incen-

tives will lead players to choose policies close to their ideal ones. As we show that the

short-run and long-run considerations have to be balanced in equilibrium, Theorem 1

can be generalized to this alternative model, when the set of feasible policies is �nite.

"Cost-sharing" to overcome the advantage of moderates. When N > 2; players

may keep on �ghting even when they have no chance of winning, in order to "defend"

the most moderate position on the current agenda. This implies "free riding" as well

as multiplicity of equilibria. In addition, the possibility that players may �ght for

each other raises the following question: What if many agents coordinate their e¤orts

in �ghting for a particular policy? Could they overcome the advantage of player 1

by for example having a di¤erent player �ghting player 1 at each stage? Suppose

that there are in�nitely many players with ideal policy x2, and that at each period,

a di¤erent player �ghts against player 1. We �nd that in this case, the advantage

of player 1 is still maintained. For example, under the all-pay-auction, there exists

such a "cost-sharing" equilibrium but the probability that player 1 wins each stage

is bounded away from zero (we show this in the Appendix).

Uncertainty about the decision maker�s preferences. In our model players know

the preferences of the decision maker. If these are unknown, or more interestingly, if

these change with time, the distinction between moderates and extremists becomes

blurred. Consider the example with three players we analyze in sections 4.1 and 4.2.

Instead of switching the ideal policy of player 3 from being left of the median to right

of the median, we could have kept the position of 3 but changed the preferences of the

decision maker and switch his ideal policy towards that of player 3. Player 3 would

have then the advantage of being a moderate while having the intensity of preferences

of an extremist.

in the appendix, and a su¢ cient condition for a deviation in the simple contest function in Lemma

A3.
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Strategic decision makers and unawareness. Our model abstracts from an im-

portant and interesting strategic consideration of decision makers- when to stop the

process and take a decision. Note that when we allow the decision maker to be strate-

gic we need to model the decision maker�s beliefs about what policies could potentially

arise on the agenda in the future. One way to do this is to assume that the decision

maker knows the ideal policies of all players but is bound to choose from a formal

agenda. Indeed, as long as the probability that the game ends is always bounded

from below, one can generalize the results of Theorem 1 to the case of a strategic

decision maker.

Alternatively, a generalization of our model to a strategic but unaware decision

maker -who is not aware of feasible policies- is more problematic. To analyze such

a model one would have to formalize the expectations of the decision maker about

future policies that might arise on the agenda. To this end, one would need a model

of unawareness that could be applied to this context.

Incomplete information. In the analysis above, players have complete information

about other players�ideal policies or more generally about the available set of policies.

A generalization of the model to incomplete information is complicated by the fact

that the identity of those who actually place their policies on the agenda reveals

information about their types. This creates an additional strategic aspect in which

players might be more reluctant to compete as they would lose information rents.

Levy and Razin (2009) analyzes this new insight in an endogenous agenda formation

model with two periods, two players, and private information on ideal policies. A

possible generalization of this analysis to the framework of the current model is left

for future research.

6 Appendix

6.1 Proofs for Section 2

Further to Proposition 1, we prove here the speci�c result for Example 2.

Claim 1 Assume the simple contest function and � = 1: The unique equilibrium

is that the two most extreme players with positions at �1 and 1 are the only ones
who are active.

Proof of Claim 1 : Suppose that at least three players are active in equilibrium.
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Let M be the set of active players. Rename the set of active players with player 1

being the player with the minimum xi and player m being the player with the highest

xi among the active players. Each i 2M will satisfy the f.o.c:

b1(xi � x1) + :::+ bi�1(xi � xi�1) + bi+1(xi+1 � xi) + :::+ bm(xm � xi) = (
mX
j=1

bj)
2 if i 6= 1;m

b2(x2 � x1) + ::::+ bm(xm � x1) = (
mX
j=1

bj)
2 if i = 1

b1(xm � x1) + :::+ bm�1(xm � xm�1) = (
mX
j=1

bj)
2 if i = m

Take the di¤erence between the f.o.c of two consecutive individuals inM; i and j and

assume w.l.o.g that i < j:

b1(xi � xj) + :::+ bi�1(xi � xj) + bi(xi � xj) + bj(xj � xi) + :::+ bm(xj � xi) = 0

This implies that
iX
l=1

bl =
mX
l=j

bl

But if we take i = 1 and j = 2 and then i0 = 2 and j0 = 3 we get:

b1 = b2 +
mX
l=3

bl and

b1 + b2 =
mX
l=3

bl;

implying that b2 = 0; a contradiction. Therefore any equilibrium has at most two

active players.

Suppose two players i and j are active and it is not the case that they are the

players at 1 and �1: Suppose without loss of generality that xi; xj 6= 1: Note that in
equilibrium they both submit a symmetric bid b�: Let " be the distance between the

policies of i and j: The solution to the �rst order conditions implies that,

b" = (2b)2 ,

b =
"

4

Now write down the �rst order condition for player at xi = 1 at zero,

(1� xi)
"

+
(1� xj)
"

� 1;
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and note that as (1 � xi) > " or (1 � xj) > " this implies that the expression above
is positive, and hence this cannot be an equilibrium.

Finally suppose that only the players with ideal policies 1 and �1 are active, and
they each bid 1

2
: For any other player i, the �rst order condition evaluated at zero is,

1

2
(xi + 1) +

1

2
(1� xi)� 1 = 0

As the �rst order condition is positive for any b > 0 only if it is strictly positive for

b = 0; this corresponds to an equilibrium. �

6.2 Proof of Theorem 1

Let ulij be the utility of player i when player j wins at state l; abstracting from the

possible payments made by player i at state l: That is, ulij = ��jxi� xkj+ (1� �)V ki
where k = minfl; jg: Let wlij = ulii � ulij denote the willingness to win of player i
against player j in state l.

We will often look at sequences of equilibria in which �! 0 and then the relevant

willingness to win is wlijj�, i.e., corresponding to a sequence of equilibria computed for a

sequence �! 0:We will often suppress the notation for � in these expressions, writing

wlij for w
l
ijj� : In what follows we use the following terms to refer to the magnitudes of

sequences converging to zero. We say that wlij is of order � if 0 < lim�!0

����wlijj�� ���� <1
for any sequence of equilibria computed for a sequence �! 0: Similarly we say that

wlij is of order � or lower if 0 � lim�!0

����wlijj�� ���� < 1 and of an order � or higher if

0 < lim�!0

����wlijj�� ���� � 1 : We will also sometimes write x(�) t y(�) for two functions

x(�) and y(�) to imply that lim�!0
x(�)
y(�)

= 1:

We �rst prove the following Lemma.

Lemma A1: (i) There exists an �" > 0; such that for all �; for all states l; the

probability that some i < l wins is larger than �": (ii) For any state l and for any

j 6= 1; wlji is of order � or lower, and wl21 is strictly positive and of order �.

Proof of Lemma A1:

First note that wl1i for all i is of an order � or higher for any state, as w
l
1i =

�jxminfi;lgj+ (1� �)(�V minfi;lg1 ) where V Jj � 0 for all j; J:
We will prove the Lemma by induction.
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Consider J = 2: We will �rst show that the probability that player 1 wins is

bounded away from zero. Suppose to the contrary, that there exists a sequence of

equilibria, as �! 0, in which player 1 wins with probability "n converging to zero. In

what follows we assume mixed strategies for the players denoted by fi and suppress

the notation for the element of the sequence and for state 2.

As Pr(1 wins) =
Z
b1

f1(b1) Pr(1 winsjb1)db1 < "; then Pr(1 winsjb1) < k" for a

measure of at least 1� 1
k
of bids in the support of player 1 for all k > 2: Choosing a

sequence of k !1 and k"! 0 this implies that for almost any bid b�1 in the support

of player 1; Pr(1 winsjb�1) < k":
We now compare the utility of each bid in the support of player 1 with a bid of

zero. Given the strategies of all other players, player 1 is better o¤ using b�1 rather

than zero only if: X
i6=1

(Pr(i winsjb1 = 0)� Pr(i winsjb�1))(w12) > b�1

For almost all b�1; by H1 and H3, Pr(i winsjb1 = 0)�Pr(i winsjb�1) < k", implying
that b�1 < k"w12.

Consider other active players. A possible strategy for each such player j is to

bid a sequence of bj = 
b�1 where 
 ! 1 and 
k" ! 0 so that bj ! 0: By H2,

such bid guarantees winning (and thus maintaining state 2, as in the equilibrium)

with probability converging to 1 and a bid converging to zero. Thus the equilibrium

strategy of all other active players must involve bids b�j with
b�j
w12

! 0:

Now we reach a contradiction. player 1 can deviate from his equilibrium strategy

and place a bid b01 such that
b01
b�j
! 1 and b01

w12
! 0: His (relative) gain is w12 while

his (relative) cost is at most in�nitely smaller than w12; yielding a strictly positive

bene�t.

Now let the probability that 1 wins in J = 2 denoted by z; which is bounded

from zero. Let us focus on an individual j; for which uj(x1) < uj(x2): Note that

V 2j =
�zjxjj � (1� z)(�jxj � x2j)� ~b2j

1� (1� �)(1� z)

where ~bJj refers to the expected payments of player j in state J: We have:

w2j1 = �jx2j+ (1� �)(V 2j + jxjj)

= �jx2j+ (1� �)(
�(1� z)jxjj � (1� z)(�jxj � x2j)� ~b2j

1� (1� �)(1� z) )
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By H1 and H3, 0 � ~b2j < (1� z)w2j1, implying that

�jx2j(1� (1� �)(1� z)) + (1� �)(�(1� z)jxjj � (1� z)(�jxj � x2j)) < w2j1 and

w2j1 < �jx2j+ (1� �)
�(1� z)jxjj � (1� z)(�jxj � x2j)

1� (1� �)(1� z)
and therefore w2j1 is of order � or lower:

Note that for j = 2 we have

�jx2j(1� (1� �)(1� z)) + (1� �)�(1� z)jxjj < w2j1 and

w2j1 < �jx2j+ (1� �)
�(1� z)jxjj

1� (1� �)(1� z)
implying that w221 > 0 and that w

2
21 is of order �:

Note further that for all j > 2; w2j2 = 0:

Note �nally that for j0s such that uj(x1) > uj(x2); we have

w2j1 = ��jx2j+ (1� �)(V 2j + jxjj)

V 2j + jxjj =
��(1� z)(jx2j)� ~b2j
1� (1� �)(1� z) < 0 and therefore ~b2j = 0 and:

w2j1 = ��jx2j+ (1� �)
��(1� z)(jx2j)
1� (1� �)(1� z)

Therefore w2j1 is of order � or lower:

Note that as w2j1 is of order � or lower this implies that

V 2j t �jxjj:

Induction hypothesis: Assume that for all states J � l�1: (i) There exists an
�" > 0; such that for all �; the probability that some i < J wins is larger than �": (ii)

For any j 6= 1; wlji is of order � or lower, and wl21 is strictly positive and of order �.
(iii) For all j 6= 1; V Jj t �jxjj:

Consider state l: Let " be the probability that a player with j < l wins. We

will show that it cannot be that " converges to zero. Suppose it does. By arguments

similar to above, almost all bids must be in�nitely smaller than maxj maxiwlji for

j < l and i � l.
Now consider player 1. His utility is at most (1 � ")u1l + "~u1i where ~u1i is the

expectations over the utility from players i < l winning. On the other hand, there
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exists some sequence of bids b01 with
b01

maxj maxi wlji
! 0 that guarantees winning with

probability almost 1, and b01 ! 0: Thus from such a deviation his utility is u11 � b01
so his gain is (1� ")w1l + " ~w1i � b01:

Note that w1l is of order � or higher. If maxj maxiwlji = wlj0i = w
minfj0;ig
j0i for

some i < l; then by the induction
maxj maxi w

l
ji

w1l
is bounded. Assume therefore that

maxj maxiw
l
ji = w

l
j0l for some j

0 < l, j 6= 1. Then player j0 can deviate to b01 and his
gain is (1� ")wlj0l + " ~wlji � b01 which is strictly positive as ~wlji is of order � or lower, a
contradiction.

Thus " > �" > 0:

Note that wlji = w
maxfj;ig
ji for j; i < l and that wlji = 0 for j; i > l: We now show

that for all other cases, wlji is of order � or lower. Note that w
l
21 = w

2
21:

Suppose that in equilibrium the state remains l with probability 1� z and that
plk is the probability that some player k < l wins in state l:

Consider �rst wlji for j � l > i: We have:

wlji = �(jxj � xij � jxj � xlj) + (1� �)(V lj � V ij )

= �(jxj � xij � jxj � xlj)

+(1� �)(
��((1� z)jxl � xjj+

P
k<l p

l
kjxk � xjj) + (1� �)

P
k<l p

l
kV

k
j � blj

1� (1� �)(1� z) � V ij )

Note that by induction V ij t �jxjj and so

wlji t �(jxj � xi0j � jxj � xlj)

+(1� �)(
��((1� z)jxl � xjj+

P
k<l p

l
kjxk � xjj) + (1� �)

P
k<l p

l
kV

K
j � blj

1� (1� �)(1� z) + jxjj)

Note that

��((1� z)jxl � xjj+
P

k<l p
l
kjxk � xjj) + (1� �)

P
k<l p

l
kV

K
j � blj

1� (1� �)(1� z) + jxjj

=
�(1� z)(jxjj � jxl � xjj) +

P
k<l p

l
kw

k
j1 � blj

1� (1� �)(1� z)

and so

wlji t �(jxj � xi0j � jxj � xlj) + (1� �)
�(1� z)(jxjj � jxl � xjj) +

P
k<l p

l
kw

k
j1 � blj

1� (1� �)(1� z)

23



Note that 0 < blj < maxi0 w
l
ji0 ; assume this is w

l
ji� (for i

� < l): Then we have,

�(jxj � xi0j � jxj � xlj)
1� (1� �)(1� z)
2� (1� �)(1� z) + (1� �)

�(1� z)(jxjj � jxl � xjj) +
P

k<l p
l
kw

k
j1

2� (1� �)(1� z)
/ wlji�

/ �(jxj � xi0j � jxj � xlj) + (1� �)
�(1� z)(jxjj � jxl � xjj) +

P
k<l p

l
kw

k
j1

1� (1� �)(1� z) ;

which implies by the induction that wlji� is of order � (or lower) and hence b
l
j is of

order � or lower. But note that then this applies also to wlji and so by induction and

by the above, wlji is of order � or lower.

Consider now wljk for j < l � k : After some manipulation and substituting

V jj ! �jxjj:

wljk = wljl = �(jxj � xlj) + (1� �)(V
j
j � V lj )

� �(jxj � xlj)

+(1� �)(
��(1�

P
i<j p

l
i)jxjj+ �(1� z)jxj � xlj �

P
i<j p

l
iw

i
j1 +

P
j<i<l p

l
iw

i
ji +

~blj
1� (1� �)(1� z) )

Note that ~blj < maxiw
l
ji: If maxiw

l
ji = w

minfj;kg
jk for some k < l then we know

that from the induction hypothesis that ~blj is of order � or lower. Suppose then that

maxiw
l
ji = w

l
jl: Plugging this maximal value we get that w

l
jl must satisfy,

�(jxj � xlj) + (1� �)(
��(1�

P
i<j p

l
i)jxjj+ �(1� z)jxj � xlj �

P
i<j p

l
iw

i
j1 +

P
j<i<l p

l
iw

i
ji

1� (1� �)(1� z)
< wljl

< �1� (1� �)(1� z)
(1� �)(1� z) �(jxj � xlj)

+(1� �)
�(1�

P
i<j p

l
i)jxjj � �(1� z)jxj � xlj+

P
i<j p

l
iw

i
j1 �

P
j<i<l p

l
iw

i
ji

(1� �)(1� z)

which is of order � or lower by the induction hypothesis. Therefore, ~blj is of order �

or lower implying that wljk is of order � or lower.

Finally, when j � l > i :

wlji = �(jxj � xij � jxj � xlj) + (1� �)(V lj � V ij )

By induction V ij t �jxjj and as wlji is of order � or lower we have that V lj t �jxjj:
When j < l � k :

wljk = �(jxj � xlj) + (1� �)(V
j
j � V lj )
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By the induction V jj t �jxjj and as wljk is of order � or lower we have that
V lj t �jxjj:

This completes the proof of Lemma 1.�

We can now prove the Theorem. Lemma A1 establishes (ii). Suppose by way of

contradiction that at some state l player 1 wins with probability 1� " converging to
1. Similar arguments as in Lemma A1 imply that for all j 6= 1; for almost all bids

in the support of j;
b�j

maxi�l wlji
! 0 and thus player 1�s bid satis�es b�1

maxj maxi�l wlji
! 0

almost surely: Now consider player 2 for whom wl21 > 0 and is of order � by Lemma

A1: player 2 can deviate to some bid b02 with
b02

maxj maxi�l wlji
! 0 and b02

b�1
! 1 which

will guarantee winning with probability converging to 1, and therefore, relative to his

equilibrium strategy, a gain of at least (1� ")w21+ " ~wl2i� b02 which is strictly positive
as ~w2i is of order � or lower, a contradiction.�

6.3 Proofs for Section 4

We start with useful results about equilibria in which only two players bid strictly

positive bids.

Lemma A2: Consider all-pay-auctions. Suppose that in equilibrium, at some

state J; only two players, i and j; place strictly positive bids with strictly positive

probability. Let wji(Fi; �) be the willingness to win of player j against i given the

equilibrium strategy Fi and de�ne analogously wij(Fj; �): Without loss of generality,

let wji(Fi; �) � wij(Fj; �): Then (i) wij(Fj; �) > 0 and Fi and Fj are determined by:

Fj(b) =
b

wij(Fj; �)
; Fi(b) =

wji(Fi; �)� wij(Fj; �) + b
wji(Fi; �)

for all b 2 [0; wij(Fj)]

(ii) For any other player k; let wkh(Fi; Fj; �) be the willingness to win of player k

against particular player h: Let wk(Fi; Fj; �) be k0s willingness to win given the equi-

librium strategies of i and j: If wki(�)+wkj(�) > 0; then wk(Fi; Fj; �) = �Hj(Fi; Fj)wkj+

�Hi(Fi; Fj)wki � wij(Fj; �) (where �H denotes expectations over H):

Proof of Lemma A2: (i) Consider the �rst order conditions for player i and

j :

fj(b)wi(Fj; �) = 1

fi(b)wj(Fi; �) = 1
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This implies the form of the distribution function above, with an atom on zero

for Fi:24 (ii) For some player k; any utility maximizing bid must satisfy the �rst order

condition fiFjwki(�) + fjFiwkj(�) � 1 = 0 but second order condition, using (i), is

fifj(wki(�)+wkj(�)) > 0. Hence utility maximizing bids are either 0 or the maximum

bid which is wij(Fj; �): So for player k not to enter, we must have that his utility from

a bid of zero is higher than the utility from the maximum bid, which implies that

wk(Fi; Fj; �) � wi(Fj; �):�

Lemma A3: Consider the simple contest function. Suppose that at some state

J; only two players, i and j; place strictly positive bids with strictly positive probability

in a pure strategy equilibrium. Then (i) Hi(bi; bj)wJji = Hj(bi; bj)w
J
ij = bi + bj and

(ii) for any other player k, Hi(bi; bj)wJki +Hj(bi; bj)w
J
kj � Hj(bi; bj)wJij(bi; bj; �):

Proof of Lemma A3: The conditions in (i) are the �rst order conditions for

i and j that must hold in equilibrium (and are also su¢ cient for the simple contest

function). For player k, expected utility from the equilibrium, given some bid b is

Hi(bk; bi; bj)(�wJki) +Hj(bk; bi; bj)(�wJkj)� bk

and the �rst order condition is

Hi(bk; bi; bj)

(bk + bi + bj)
wJki +

Hj(bk; bi; bj)

(bk + bi + bj)
(wJkj)� 1

Note that if the �rst order condition is positive at some point, then it also must

be positive for bk = 0 given monotonicity. Thus, to check a possible deviation, it is

su¢ cient to check that the condition is positive at bk = 0: This together with the

conditions in (i) of players i and j imply the following condition:

Hi(bi; bj)w
J
ki +Hj(bi; bj)w

J
kj � Hj(bi; bj)wJij(bi; bj; �):�

Proof of Proposition 4:

All-pay-auctions: We compute �rst the equilibrium for J = 2: Only players 1

and 2 can be active, as explained in the text. The analysis follows Lemma A1:

We conjecture that in equilibrium player 2 has a lower willingness to win25, and is

24Standard arguments from auction theory imply the continuity, non atomness and same support

of the distribution functions used in equilibrium.
25Indeed, conjecturing the opposite leads to a contradiction.
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therefore the one who places an atom on zero of size 1� w22
w21
; where26

w22 = �x2 + (1� �)(V 22 � V 12 )

w21 = �x2 + (1� �)(V 11 � V 21 )

(recall that subscript indicates the player, and superscript indicates the state). By

(ii) in Lemma A1,

V 12 = �x2; V 21 =
w22
w12
(��x2 + (1� �)V 21 )

and plugging for these values, we can solve for the ratio w22
w21
= 1

2�� ; implying that the

atom is of size 1��
2�� : Thus, V

2
1 = ��x2; V 22 = �x2; and V 23 =

�3jx3j�x2�+jx3j�
3�� :

Now consider the equilibrium in which players 2 and 3 only are active at J = 3.

The willingness to win of each player is:

w32 = �(jx3j+ x2) + (1� �)(V 22 � V 32 );

w33 = �(jx3j+ x2) + (1� �)(V 33 � V 23 );

Conjecture that the atom on zero is on player 3 (the opposite cannot arise). Let

the size of the atom be �: Then:

V 32 = �(1� �)(�x2) + (1� �)(��(jx3j+ x2) + (1� �)V 32
V 32 =

�(1� �)(�x2)� (1� �)�(jx3j+ x2)
1� (1� �)(1� �)

V 22 � V 32 =
�(jx3j(1� �)� �x2)

�(1� �) + �
V 33 � V 23 = ��(jx3j+ x2 + V 23 )

We can solve for � = 1� w33
w32
to �nd:

�(�) =
3jx3j+ 3x2�� 4jx3j�� 5x2�2 + 2x2�3 + jx3j�2
6jx3j+ 7x2�� 5jx3j�� 7x2�2 + 2x2�3 + jx3j�2

!
�!0

1

2

Note that �(�) � 0 for all �: This allows to compute

w31 = �(
1 + �(�)

2
x2 + (

1� �(�)
2

)jx3j) +

(1� �)(�1 + �(�)
2

V 21 � (
1� �(�)
2

)V 31 )

26For brevity, we have dropped the index � and the index of the distribution functions.
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where

V 31 = �
1+�
2
(�x2 + (1� �)�x2) + 1��

2
�jx3j

1� (1� �)1��
2

:

To check that w31 � w33 < 0 we note that the lhs is maximal for � ! 0: We

therefore compute lim�!0[w
3
1(�) � w33(�)] = 3x2 � jx3j to get the required condition

on the relative size of x3 and x2:

Simple contest functions: We �rst compute the equilibrium when J = 2 and

players 1 and 2 compete. The expected utility of player 1 from bid b1 is

b1
b1 + b2

u11 +
b2

b1 + b2
u12 � b1

where the �rst order condition is

b2
(b1 + b2)2

u11 �
b2

(b1 + b2)2
u12 � 1 = 0 (1)

which together with the foc for player 2 implies that

w212
w221

=
b1
b2

(2)

where,

w212 = �x2 + (1� �)(�V 21 )

w221 = �x2 + (1� �)(V 22 + x2)

V 21 =
b2

b1+b2
(��x2)� b1

1� b2
b1+b2

(1� �)

V 22 + x2 =
�b2 + x2 b2

b1+b2
�

1� b2
b1+b2

(1� �)
:

Solving the system of the �rst order equations (1) and (2), we �nd that:

b1 = �b2
x2

�2b2 + 2�b2 + �x2
t
�!0

�x2
2

b2 = x2

p
��+ �2 + 1� 1

2�� 2 t
�!0

�x2
4

In the limit, as �! 0:

V 21 t �5�x2
4
;

V 22 + x2 t �3�x2
8

V 23 t (�x3) +
1

2
�(�x3 � x2)
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Now consider the game between players 2 and 3 at J = 3:

Let di be the equilibrium bid of player i: First order conditions for 2 and 3 are:

w323
w332

=
d2
d3

d3
(d2 + d3)2

w323 = 1

where,

w323 = �(x2 + x3) + (1� �)(V 22 � V 32 )

w332 = �(x2 + x3) + (1� �)(V 33 � V 23 )

V 22 � V 32 =

�b2� b1
b1+b2

x2

1� b2
b1+b2

(1��)
�+ d2 +

d3
d2+d3

�(x2 + x3)

1� d3
d2+d3

(1� �)

V 33 � V 23 =

�d3 � d2
d2+d3

�(x2 + x3)� �
b1

b1+b2
(�x3)+ b2

b1+b2
�(�x3�x2)

1�(1��) b2
b1+b2

1� d3
d2+d3

(1� �)

With these expressions we solve the set of �rst order conditions above in the limit

as �! 0 we �nd that

d2 � 1

2
x3�

d3 � 1

4
x3�

Now consider a deviation from player 1.

The expected utility of player 1 from a bid b given the equilibrium is:

u1(b) =
d2

b+ d2 + d3
(�(�x2) + (1� �)V 21 ) +

d3
b+ d2 + d3

(�(�x3) + (1� �)V 31 )� b

where:

V 31 =
d2

d2+d3
(�(�x2) + (1� �)V 21 ) + d3

d2+d3
�(�x3)

1� (1� �) d3
d2+d3

t
�!0

2
3
(�(�x2)� (1� �)5�x24 ) +

1
3
�(�x3)

1� (1� �)1
3

Plugging this and V 21 in his expected utility, assuming that b = 
�x3, dividing

utility by �; and taking the limit, we get:

lim
�!0

U1(b)

�
= �
x3 � 0:25

x3
0:75x3 + 
x3

(2:25x2 + 1:5x3)� 1:125x2
x3

0:75x3 + 
x3
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The derivative of this expression evaluated at 
 = 0 is,

@(lim�!0
U1(
)
�
)j
=0

@

< 0, x3 > 9x2

Note that if
@(lim�!0

U1(
)
�

)

@

is positive, it is positive for 
 = 0: Therefore we conclude

that for small � an equilibrium will exist only for x3 > 9x2:�

Proof of Proposition 5:

Claim 2: Suppose x3 > 0 and that at J = 2; players 1 and 2 compete and that

at J = 3; players 2 and 3 compete. In both the all pay auction and the simple contest

player 3 wins the stage game at J = 3 with a higher probability than he does when

x3 < 0.

Proof of Claim 2: Let x denote the distance between players 2 and 3. We want

to show that the probability that 3 wins the game with 2 is decreasing with x when

jx3j > x2 and x2 is �xed: Consider the equilibrium for some x and now decrease x:

If the players use the same strategies, for both the instantaneous gain increases by

��x: Let z be the probability that 2 wins. The future payo¤s:

V 22 � V 32 = V 22 �
z(1� �)V 22 � (1� z)�x� ~b2

1� (1� z)(1� �) =
�V 22 + (1� z)�x+~b2
1� (1� z)(1� �)

as V 22 remains the same, this decreases with x when strategies remain the same. Thus

it decreases by (1�z)�
1�(1�z)(1��)�x: For player 3:

V 33 � V 23 =
z(1� �)V 23 � z�x� ~b3
1� (1� z)(1� �) � V 23 =

��V 23 � z�x+~b3
1� (1� z)(1� �)

=
�� z1jx3j�z2�x

1�(1��)z2 � z�x+~b3
1� (1� z)(1� �)

which changes by
z2�

2

1�(1��)z2
�z�

1�(1�z)(1��)�x when x decreases. If
z2�2

1�(1��)z2 � z� < 0, then we

know that w32
w23

increases, implying by both Lemma A2 and Lemma A3 that 3 has

to bid more aggressively relatively so that 3 will win more often. Suppose that it is

positive, we then want to show that z2�2

1�(1��)z2 � z� < (1� z)� which holds as z2 < 1
and so we have the same result.�

This implies that the willingness to win of 1 increases. The willingness to 3

converges when � ! 0 to �x3 disregarding its distance form x2 and so we know

that the condition for gradualism becomes harder to sustain in the all-pay-auction.

Moreover, we can follow the same strategy as in the proof of Proposition 4, and �nd
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that the fully gradual equilibrium holds for all � i¤ 4x2 < x3 and that player 3 wins

the stage game when J = 3 with a higher probability than when x3 < 0.

In the simple contest function, note that as H2 decreases and w3 is roughly the

same, again it is easier to have the condition for deviation which is w1 > H2w3 as w1
is higher.�

Proof of Proposition 6:

By Lemma A2, A3 and Lemma 1 in the text, there exists a deviation in both

the all-pay auction and the simple contest function whenever player 1 wins with

probability converging to zero.

To show existence in the all-pay-auction (which is not covered under Proposition

1), we now �nd the equilibria for N players. Note that players�continuation values

are at least 0 at any stage game. Second, consider J = 2 and note that the only

players that may potentially submit strictly positive bids are 1 and 2. The atom

must be on 2 and the solution is the same as in the standard model, and we have that

V 21 = v(1� �), w21 = �v(2� �); V 22 = 0 and w22 = �v: Suppose, by way of induction,
that for every state l < J; the equilibrium is as in Baye et al (1996) in which player 1

has the highest willingness to pay. In particular this implies that there is an atom on

bid zero for all players beside player 1 and so v > V l1 > 0 and V
l
i = 0 for all 1 < i � l;

implying that wl1 > �v and that w
l
i = �v for all 1 < i � l:

Suppose we are now at state J: Note that players who are more extreme than J

do not participate. We then have that wJi = �v + (1 � �)(V ii �
P

j 6=i pi;jV
j
i ) but by

the induction, V ii = 0; and V
j
i = 0 for all j that participate, thus w

J
i = �v for all i

that are weakly more moderate than J:

On the other hand, wJ1 = �v + (1 � �)(v �
P

j 6=1 p1;jV
j
1 ) > �v as V

j
1 < v by the

induction hypothesis. We can therefore apply Baye et al (1996) for this stage to �nd

that, (i) �iFi(0) =
1��
2�� for all i 6= 1 that participates, and so Fi(0) > 0 for any such

i; (ii) player 1 must participate in every stage and he wins with a higher probability

than any other. Also, there is a continuum of equilibria as in Baye et al (1996).�

Proof of "cost sharing" equilibrium in the discussion: Consider an all-

pay-auction and J = 2: Suppose that player 1 places an atom or that there is no

atom. Then: w1 = �x2 + (1 � �)(�V 21 ) = x2 as player 1 loses. For the 2-player

who bids: wi = �x2 + (1 � �)(V 2i + x2); V 2i =
z(�x2)

1�(1�z)(1��) as he does not bid later

on, where z is the probability that player 1 wins any stage when J = 2. Thus,

wi = �x2+(1��)(�x2 1�z
z+��z�) = �(

x2
z+��z�): Obviously the willingness to win of player
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1 is higher unless z = 0; a contradiction to 1 placing an atom or no atom.

Thus the 2-players must place an atom. We have:

V 21 =
�(1� �)�x2

1� (1� �)(1� �)

w1 = �x2[1 +
(1� �)(1� �)

1� (1� �)(1� �) ]

V 2i =
z(�x2)

1� (1� z)(1� �) ; z = � +
1� �
2

wi = �x2 + (1� �)(��x2
z � 1

z + �� z�) = �x2
2

� + �� ��+ 1

� = � 1

�� 1

�p
�2�+ �2 + 2� 1

�
The probability that 1 wins is roughly between (0:5; 0:71) and converges to

0:707 11 when �! 0 as compared to 0:75 when only player 2 is active in any stage:�
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