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Abstract

In this paper we consider a canonical stochastic overlapping generations economy
with sequentially complete markets. We examine how aggregate and individual shocks
translate to changes in the distribution of wealth and how these movements in the
wealth distribution affect asset prices and the interest rate. We show that effects are
generally small if agents have identical beliefs but that differences in opinion lead to
large movements in the wealth distribution. The interplay of belief heterogeneity and
life-cycle savings motives creates very large movements of asset prices and can poten-
tially generate realistic moments of asset returns.
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1 Introduction

How do aggregate and individual shocks affect the distribution of wealth in an economy
and, in turn, how do movements in the wealth distribution affect asset prices and the
interest rate? We answer these classical questions in a calibrated model of a stochastic
dynamic exchange economy with overlapping generations and complete financial markets.
We show that effects are generally tiny if agents have identical beliefs but that differences
in opinion lead to considerable movements in the wealth distribution which in turn lead to
large asset-price volatility.

We examine a canonical stochastic OLG model with dynamically complete markets and
assume that all agents have log-utility. Under this assumption there exists a recursive equi-
librium with linear consumption policies and linear pricing functions. This feature enables
us to solve models with a large number of generations and substantial intra-generational
heterogeneity. In the presence of uncertainty, asset prices depend both on the exogenous
shock and the distribution of wealth (at the beginning of the period). If beliefs are identical
then the wealth distribution changes little in equilibrium and the resulting impact on asset
prices is quantitatively tiny. Differences in beliefs, however, lead to situations where agents
place large bets against each other and, as a result, wealth shifts across agents and across
generations. Such changes in the wealth distribution strongly affect asset prices.

In our examination of the effects of heterogeneous beliefs we first consider a limiting case
with no uncertainty in fundamentals, that is, in endowments and dividends. But agents
can buy Arrow securities for different (materially identical) states. If beliefs are identical
then the unique long-run equilibrium is a steady state with zero asset-price volatility. For
economies with heterogeneous beliefs the predictions of the model are dramatically different.
In fact, we prove that for any given stock-price volatility we can construct an OLG economy
in which the (unique) equilibrium exhibits at least this volatility. This result holds despite
the fact that all agents agree on the distribution of the stock’s dividends (it pays one unit
of the consumption good in all states).

For an economically intuitive understanding of this result it is important to observe that
in OLG models changes in the wealth distribution across generations can lead to very large
changes in asset prices. Older generations have a much higher propensity to consume than
younger generations and as a result have much stronger incentives to divest of their asset
investments. As we would intuitively expect, stock prices will typically be considerably
lower when ‘old’ generations hold most of the stock than when ‘young’ generations hold
most of the stock. Therefore, whether young or old agents hold a majority of the wealth
in the economy greatly matters for asset prices. The question then arises under which
condition the wealth distribution across generations changes over time. It turns out that
differences in beliefs are an important mechanism to generate large changes in the wealth
distribution.

This theoretical result raises the question about the magnitude of the asset price volatil-
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ity for small differences in beliefs. We answer this question for a realistic calibration of life-
cycle income in our model while maintaining the assumption of no uncertainty in dividends
and endowments.

We consider several different specifications for beliefs. We start with the case of two
exogenous shocks that are i.i.d. and equiprobable. There are two agents per generation who
have persistently different beliefs about the shock. Their beliefs are symmetric with respect
to the true law of motion. In this model, moderate differences in beliefs lead to large stock-
return volatility (about 9 percent quarterly) and a sizable equity premium driven by this
volatility (not surprisingly, the market price of risk remains low – markets are complete and
there are no constraints on trades). The example is obviously not satisfactory: Agents do not
learn about the probabilities and both agents’ beliefs remain incorrect even though the true
stochastic process is stationary. While we want to remain silent on learning (introducing
Bayesian learning in our framework would render the model intractable) we do examine two
extensions of the baseline model. First, we consider a specification with three agents, one
having the correct beliefs. In this model, if the fraction of agents with the correct belief is
relatively small, volatility is still large but the market price of risk turns negative. Volatility
decreases as the fraction of agents with correct beliefs becomes larger. However, even when
90 percent of the population has the correct beliefs asset prices can still double due to
changes in the wealth distribution caused by the 10 percent of agents with incorrect beliefs.
Secondly, we assume that agents typically have identical (and correct) beliefs but that with
low probability there can be a regime switch leading to temporary disagreement. There are
still 3 agents and a fraction of the population has the correct beliefs while the other two
disagree. This specification also leads to high albeit slightly lower volatility. Despite the
fact that 2/3 of the time all agents have identical beliefs and the fact that 10 percent of
agents always have the correct beliefs, it is easy construct examples where quarterly stock
return volatility is above 5 percent.

In order to understand whether there could be other channels that lead to movements in
the wealth distribution, we also consider specifications with identical beliefs but with large
shocks to endowments and dividends. We show that effects generally are quantitatively
small. In fact, we prove that if all endowments are collinear our model exhibits a stochastic
steady state and the wealth distribution does not move at all.

There is a large literature on the evolution of the wealth distribution and the effects of
the wealth distribution on prices in general equilibrium models. In a model with infinitely
lived agents, identical beliefs and complete financial markets there are no movements in the
wealth distribution in equilibrium: All shocks are perfectly smoothed out and the wealth
distribution as well as prices and choices just depend on the current exogenous shock. If
beliefs differ, the wealth distribution changes, but in the long run only the agents with
correct beliefs survive (see e.g. Sandroni (2000) and Blume and Easley (2006)). When
markets are incomplete these results are no longer true. However, under identical beliefs, in
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the stochastic growth model with ex ante identical agents and partially uninsurable income
shocks, this does not seem to matter quantitatively. Krusell and Smith (1998) show that in
this model macroeconomic aggregates can be almost perfectly described using only the mean
of the wealth distribution. Incomplete financial markets alone, therefore, cannot generate
movements in asset prices as a result of movements in the wealth distribution (which do
not change its mean).

In models with overlapping generations, the distribution of wealth across generations has
potentially large effects on stock returns and the interest rate since ‘old’ agents have a much
higher marginal propensity to consume than ‘young’ agents. This fact was first discovered
by Huffman (1987). He points out that a stochastic OLG model can “yield price volatility
that would be difficult to rationalize within the context of other models.” However, in many
specifications of the model, the distribution of wealth moves little in response to aggregate
shocks and therefore has a minor effect on aggregate variables. Rios-Rull (1996) shows
that the cyclical properties of a calibrated life-cycle model (with identical beliefs) are very
similar to the properties of the model with a single infinitely lived agent. Storesletten et
al. (2007) consider a model of an exchange economy with incomplete markets and identical
beliefs. The fact that their computational strategy yields accurate results shows that in their
economy movements in the wealth distribution are also negligible. For the case of complete
markets we give a theoretical explanation for these findings as we derive assumptions under
which one can prove that the wealth distribution does not vary at all in equilibrium.

The main result of this paper is that relatively small differences in beliefs across gener-
ations lead to large movements in the wealth distribution which, in turn, strongly impact
aggregate variables. Our model violates the common prior assumption that underlies much
of applied general equilibrium modeling. As Morris (1995) points out, this assumption does
not follow from rationality. However, any reasonable model that attempts to explain prices
in financial markets needs to impose some discipline on the choice of beliefs. Since the
focus of this paper is to point out how large the effects of small differences in beliefs could
potentially be, we do not present a model which explains these differences. Kurz (1994) de-
velops the theory of rational belief equilibrium to study the effects of heterogeneous beliefs
on market volatility. Kurz and Motolese (2001) argue in the context of an OLG economy
with two-period-lived agents that belief heterogeneity is “the most important propagation
mechanism of economic volatility.” Our results support this finding but the underlying
economic mechanism in our model with long-lived agents is quite different. In behavioral
economics there are various models and explanations for different beliefs, see e.g. Bracha
and Brown (2010).

Following Harrison and Kreps (1978), there is a large literature in finance that examines
the effects of differences in beliefs and speculation on asset prices and bubbles. This litera-
ture has little relation to our paper; in our economy bubbles are impossible (see Santos and
Woodford (1997)) and speculation in the sense of Harrison and Kreps (1978) is ruled out
by the absence of short-sale constraints. There is also a large literature on the survival and
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price impact of noise traders, i.e. agents with wrong beliefs (among many other DeLong
et al. (1990), Sandroni (2000), Blume and Easley (2006) and Kogan et al. (2006)). In our
economy, if new noise-trader-like agents are born every period, then these have a persistent
price impact. The relevant question for us is whether this price impact is quantitatively
relevant.

The remainder of this paper is organized as follows. In Section 2 we describe the OLG
model and introduce linear recursive equilibria. Section 3 illustrates the main mechanism in
the context of a special case that allows for an analytical solution. Section 4 considers model
specifications without uncertainty. In Section 5 we discuss the effects of exogenous shocks
on asset prices. Section 6 concludes. The appendix contains all proofs and a description of
the numerical method.

2 Model

In this section we first describe our model of stochastic overlapping generations economies.
Subsequently we show that the unique equilibrium of our OLG model allows for a linear
recursive formulation.

2.1 Stochastic OLG economies

Time is indexed by t = 0, 1, 2, . . .. A time-homogeneous Markov chain of exogenous shocks
(st) takes values in the finite set S = {1, . . . , S}. The S × S Markov transition matrix is
denoted by Π. We represent the evolution of time and shocks in the economy by a countably
infinite event tree Σ. The root node of the tree represents the initial shock s0. Each node
of the tree, σ ∈ Σ, describes a finite history of shocks σ = st = (s0, s1, . . . , st) and is also
called date-event. We use the symbols σ and st interchangeably. To indicate that st′ is
a successor of st (or st itself) we write st′ º st. For σ′ º σ, we denote the conditional
probability of σ′ given σ by Π(σ′|σ) (with a slight abuse of notation).

At each date-event H agents commence their economic lives; they live for N periods.
An individual is identified by the date-event of his birth, σ = st, and his type, h = 1, . . . , H.
The age of an individual is denoted by a = 1, . . . , N ; he consumes and has endowments at
all nodes st+a−1 º st, a = 1, . . . , N . An agent’s individual endowments are a function of
the shock and his age and type alone, i.e. est,h(st+a−1) = ea,h(st+a−1) for some functions
ea,h : S → R+, for all h = 1, . . . ,H, a = 1, . . . , N .

Each agent has an intertemporal time-separable expected utility function,

U st,h(c) = log
(
c(st)

)
+

N−1∑

a=1

δa
∑

st+aºst

πa,h(st+a|st) log
(
c(st+a)

)
.

The discount factor δ > 0 is constant and identical across agents, while the subjective
probabilities πa,h(σ′|σ) > 0, σ′ º σ, may vary with age a and type h. The Markov chain

5



describing the agents’ subjective beliefs1 may not be time-homogenous and vary with age.
In particular it may differ from the “true” law of motion generated by Π.

At each date-event st, there are S Arrow securities in zero net supply available for trade.
Prices of the Arrow securities are denoted by q(st) ∈ RS . The portfolio of such securities
held by agent (σ, h) is denoted by θσ,h(st) ∈ RS . We use subscripts to indicate the Arrow
security for a particular shock. The price at node st of the Arrow security paying (one unit
of the consumption good) at date-event (st, st+1) is denoted by qst+1(s

t). Similarly, the
holding of agent (σ, h) of this security is denoted by θσ,h

st+1(st).
There is also a Lucas tree in unit net supply paying dividends d(st) > 0. Dividends are

a function of the shock alone, so d(st) = d(st) for some function d : S → R++. Let φσ,h(st)
denote the holding of individual (σ, h) at date-event st and let p(st) denote the price of the
tree at that node.

Observe that the presence of a complete set of Arrow securities ensures that markets
are dynamically complete. It is, therefore, without loss of generality that our economy has
only a single Lucas tree since its primary purpose is to ensure that aggregate consumption
exceeds aggregate endowments. Thus, we can aggregate the dividends of multiple Lucas
trees and restrict attention to a single tree. The aggregate endowment in the economy is
ω(st) = ω(st) = d(st) +

∑N
a=1

∑H
h=1 ea,h(st).

At time t = 0, in addition to the H new agents (s0, h), h = 1, . . . , H, commencing their
economic lives, there are individuals of each age a = 2, . . . , N and each type h = 1, . . . , H

present in the economy. We denote these individuals by (s1−a, h) for h = 1, . . . ,H and
a = 2, . . . , N . They have initial tree holdings φs1−a,h summing up to 1. These holdings
determine the ‘initial condition’ of the economy.

2.2 Sequential competitive equilibrium

The consumption at date-event st of the agent of type h born at node st−a+1 is denoted
cst−a+1,h(st). Whenever possible we write ca,h(st) instead. Similarly, we denote this agent’s
asset holdings by φa,h(st) and θa,h(st). This simplification of the notation allows us to use
identical notation for the variables of individuals “born” at t = 0 and later as well as those
of individuals born prior to t = 0.

A sequential competitive equilibrium is a collection of prices and choices of individuals
(

q(st), p(st),
(
θa,h(st), φa,h(st), ca,h(st)

)
a=1,...,N ;h=1,...,H

)

st∈Σ

1We denote the Markov transition matrix for an agent’s subjective law of motion by πa,h. That is, the

agent who is currently of age a assigns the probability πa,h(s, s′) to a transition from the current exogenous

state s to the state s′ in the next period when he is of age a + 1. Occasionally it is necessary to refer to

multi-step probabilities or to transition probabilities between nodes across the event tree. We denote such

probabilities by πa,h(σ′|σ) for nodes σ′ º σ. The same convention applies to the “true” law of motion

generated by Π.
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such that markets clear and agents optimize.

(1) Market clearing equations:

N−1∑

a=1

H∑

h=1

φa,h(st) = 1,
N−1∑

a=1

H∑

h=1

θa,h(st) = 0 for all st ∈ Σ.

(2) For each st, individual (st, h), h = 1, . . . , H, maximizes utility:

(cst,h, φst,h, θst,h) ∈ arg max
c≥0,φ,θ

U st,h(c) s.t.

budget constraint for a = 1

c(st)− e1,h(st) + q(st) · θ(st) + p(st)φ(st) ≤ 0,

budget constraints for all st+a−1 º st, a = 2, . . . , N − 1

c(st+a−1)− ea,h(st+a−1)−
(
θst+a−1(s

t+a−2) + φ(st+a−2)(p(st+a−1) + d(st+a−1))
)

︸ ︷︷ ︸
beginning-of-period cash-at-hand

+

(
q(st+a−1) · θ(st+a−1) + p(st+a−1)φ(st+a−1)

)
︸ ︷︷ ︸

end-of-period investment

≤ 0,

budget constraint for all st+a−1 º st, a = N

c(st+N−1)− ea,h(st+N−1)−
(
θst+N−1(s

t+N−2) + φ(st+N−2)(p(st+N−1) + d(st+N−1))
) ≤ 0.

The utility maximization problems for the agents (s1−a, h), a = 2, . . . , N , h = 1, . . . , H,
who are born before t = 0 are analogous to the optimization problems for agents (st, h).

The budget equation for agents of age N shows that these agents do not invest anymore
but instead consume their entire wealth. As a consequence their portfolios do not appear
in the market-clearing equations.

The price of a riskless bond in this setting is simply equal to the sum of the prices of
the Arrow securities. We denote the price of the riskless bond by 1/Rf , where Rf denotes
the risk-free rate.

2.3 Linear recursive equilibria

Huffman (1987) considers an OLG economy with incomplete markets, a single Lucas-tree,
and logarithmic utility in which agents receive an individual endowment only in the first
period of their life. These assumptions lead to a closed-form function for the price of the
tree. The tree price depends on the dividends and first-period endowment, both of which are
functions of the exogenous shock, and the agents’ tree holdings which are the endogenous
state variables.
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In our OLG model such a closed-form pricing function does not exist. But the assump-
tion of logarithmic utility allows us to express the equilibrium consumption allocations, the
price of the Lucas-tree, and the riskless rate as simple functions of state variables. The
natural endogenous state variables in the OLG economy are the beginning-of-period cash-
at-hand positions of the agents of ages a = 2, . . . , N − 1. Cash-at-hand of agents of age N

who are in the last period of their economic lives do not need to be included in the state
space. Agents of age a = 1 always enter the economy without any initial cash-at-hand. Let
κa,h(st) denote beginning-of-period cash-at-hand of an individual of age a and type h at
node st, that is,

κa,h(st) = φa−1,h(st−1)(p(st) + d(st)) + θa−1,h
st

(st−1)

for a = 2, . . . , N − 1 and h = 1, . . . ,H. The following theorem is proved in the appendix.

Theorem 1 Given a shock st = s ∈ S, consumption of the agent of age a = 1, . . . , N − 1,

and type h = 1, . . . , H, is a linear function of the individual cash-at-hand positions, that is

ca,h(st) = αa,h
1s +

N−1∑

j=2

H∑

i=1

αa,h
jis κj,i(st), (1)

for some coefficients αa,h
jis ≥ 0. The price of the tree is also a linear function of the individual

cash-at-hand positions, that is

p(st) = β1s +
N−1∑

a=2

H∑

h=1

βahsκ
a,h(st), (2)

for some coefficients βahs ≥ 0. The riskless rate Rf satisfies the relation

1/Rf (st) = γ1s +
N−1∑

a=2

H∑

h=1

γahsκ
a,h(st), (3)

for some coefficients γahs ≥ 0.

The three linear functions in the theorem look deceivingly simple. Observe that an
agent’s cash-at-hand κa,h(st) depends on the price of the Lucas-tree p(st) whenever he holds
a nonzero position of the tree. Equation (2), therefore, is a fixed-point equation instead of
a closed-form expression such as the pricing formula in Huffman (1987). Nevertheless the
three formulas prove to be very helpful for our analysis because they enable us to compute
the OLG equilibrium and to simulate the economy. Unfortunately, we cannot determine the
coefficients α, β, and γ analytically unless we make additional assumptions, see Section 3.1
below. We describe how we can compute these quantities numerically in Appendix B.

The state of the economy comprises the exogenous shock s ∈ S and the endogenous
vector of beginning-of-period cash-at-hand holdings κ ≡ (κa,h)h=1,...,H;a=2,...,N−1. A recur-
sive equilibrium consists of a policy function that maps the state of the economy, (s, κ),
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to current prices and choices as well as a transition function that maps the state in the
current period to a probability distribution over states in the subsequent period. We de-
scribe the functional form of all of these functions in Appendix B where we introduce the
computational method in some detail.

2.4 Aggregate statistics

In our quantitative analysis in Section 4 we examine the asset-pricing implications for realis-
tic calibrations of our model and report estimates for the average values of the first moment
and the second central moment of prices and returns. For a given initial state, (s0, κ0), the
expected value of a stochastic process (x(st))st∈Σ at a fixed date τ is

∑
sτ Π(sτ |s0)x(sτ ).

For a fixed time horizon T we can then define averages over time as follows,

ET
s,κ(x) =

1
T

T∑

t=0

∑

st

Π(st|s0)x(st), StdT
s,κ(x) =

√
ET

s,κ(x2)− ET
s,κ(x)2 . (4)

To estimate these figures we repeatedly simulate the OLG economy as described in Appendix
B. In addition to reporting these moments for a large value for the time horizon T (capturing
long-run behavior of the economy) we also report estimates for a fairly small value of T .
Specifically, in the calibrated examples in Section 4 where a period is a quarter we report
results for time horizons of T = 100 and T = 10000. One justification for heterogeneous
beliefs is the argument that some “structural break” leads to disagreement among agents
for some limited time, see e.g. Cogley and Sargent (2008). Obviously, over a short time
horizon the average values strongly depend on initial conditions. As we explain below, we
will regard the deterministic steady state for an economy with identical beliefs as the most
natural initial condition.

3 Some theoretical results

Models with deterministic dividends and endowments serve as a useful benchmark for our
analysis. For the discussion in this section and in Section 4 we assume that ea,h(s) = ea,h

and d(s) = d for all shocks s ∈ S. By continuity, the results for such models are similar
to those for models with very small shocks to these fundamentals. Thus we view this
specification of the general model as a limiting case for economies with little uncertainty.

If in such a model agents have identical beliefs then it is equivalent to a deterministic
OLG economy. The economy has a unique steady state, which is independent of beliefs, and
for all initial conditions the unique equilibrium converges to this steady state. If agents have
differences in beliefs, however, then a steady state does not exist and the wealth distribution
changes along the equilibrium path. These changes can have very strong effects on asset
prices as we show below.

For comparison, note that in a model with infinitely-lived agents and deterministic
endowments and dividends differences in beliefs do not affect asset prices (as long as all
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agents have identical time-preferences). Although the wealth distribution may change over
time and across shocks all agents agree that the price of the tree should equal the discounted
sum of its (safe) dividends.

For our analysis of heterogenous beliefs we need the following Proposition.

Proposition 1 For given deterministic endowments and dividends, the coefficients α of the

consumption functions (1) and the coefficients β and γ of the pricing functions (2) and (3) in

Theorem 1 are independent of the specification of beliefs. That is, for given endowments and

dividends, the consumption function is

ca,h(st) = αa,h
1 +

N−1∑

j=2

H∑

i=1

αa,h
ji κj,i(st), (5)

for some coefficients αa,h
ji , a = 1, . . . , N − 1, h = 1, . . . , H, which do not depend on beliefs.

The price of the Lucas-tree at any date event st is given by an expression of the form

p(st) = β1 +
N−1∑

a=2

βa

H∑

h=1

κa,h(st) (6)

for some coefficients βa, a = 1, . . . , N − 1, which do not depend on beliefs. Similarly, the

risk-free rate Rf satisfies the relation

1/Rf (st) = γ1 +
N−1∑

a=2

γa

H∑

h=1

κa,h(st) (7)

for some coefficients γa, a = 1, . . . , N − 1, which do not depend on beliefs.

Clearly the proposition does not generalize to economies with uncertain dividends. In
such economies the beliefs of the agents owning the Lucas-tree matter for its price.

3.1 A benchmark with an analytic solution

We first examine a special case of our OLG model which admits an analytical solution
and assume that agents only have positive endowments in the first period of their lives.
For notational simplicity, we consider the case H = 1 since intragenerational heterogeneity
adds little to the results in this section – by Proposition 1, the distribution of wealth within
generation plays no role. This allows us to drop the superscript for the type throughout this
section. We assume that ea,1 = ea = 0, for a = 2, . . . , N and that e1 = 1. The Lucas-tree
pays deterministic dividends d > 0. If beliefs are identical, the model is formally identical
to a deterministic model without shocks and without financial assets other than the tree. In
this model we can solve analytically for the pricing and consumption policies. If beliefs are
different across agents it is not clear how to solve the model directly, however Proposition 1
applies and the pricing functions and the consumption functions are the same as in the
deterministic model.
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The model without uncertainty turns out to be a special instance of the asset-pricing
model in Huffman (1987). He also assumes that agents only receive endowments in the first
period in their lives and that the only asset available for trade is the tree. While he allows
for uncertainty, his result obviously also holds in a deterministic model. Huffman’s (1987,
p. 142) analysis yields the following coefficients for the linear tree price expression,

β1 =
δ − δN

1− δN
, βa =

δ − δN−a+1

1− δN−a+1
, for a = 2, . . . , N − 1,

for δ 6= 1. Applying L’Hospital’s rule as δ → 1 we obtain for δ = 1 the coefficients

β1 =
N − 1

N
, βa =

N − a

N − a + 1
, for a = 2, . . . , N − 1.

For all δ > 0 and all N all coefficients are positive and bounded above by 1.
While Huffman considered an economy with a single tree, in our deterministic economy

we can also easily determine the bond-prices. The following corollary of Proposition 1 states
the coefficients of the bond price function.

Corollary 1 In the deterministic economy with ea = 0, for a = 2, . . . , N , and e1 = 1, the

bond-pricing coefficients γ are

γ1 =
δ

(1 + d)
∑N−1

j=0 δj − 1
and γa =

∑N
j=1 δj

(
(1 + d)

∑N−1
j=0 δj − 1

)∑N−a
j=0 δj

, a = 2, . . . , N − 1.

Given the pricing functions for the bond and the tree, we can now ask how asset prices
change with the wealth distribution. For now, we take the wealth distribution as exogenous,
in the next subsection we discuss how it changes across time when beliefs are heterogenous.

For the following discussion of the behavior of the prices of the Lucas-tree and the riskless
bond we consider the special case δ = 1. This assumption greatly simplifies the formulas.
By continuity our qualitative insights carry over to economies with discount factors close
to but different from 1.

For δ = 1, Equation (6) implies that the tree price must be

p(st) =
N−1

N + d
(∑N−1

a=2
N−a

N−a+1φa−1(st)
)

1−∑N−1
a=2

N−a
N−a+1φa−1(st)

. (8)

Suppose the entire tree is held by agents of age a = 2, . . . , N − 1. (This cannot happen
in equilibrium due to the zero endowment after the first period. However, the argument is
also correct but more tedious for a holding of 1− ε.) Then the tree price is

p(st) = (N − a)(1 + d) +
a− 1

N
.

If the entire tree is held by agents of age N then the price is p(st) = β1 = N−1
N .

Since ∂p(st)/∂a < 0 we observe that the younger the agents holding the entire tree the
larger its price. For agents of fixed age a holding the tree and increasing values of N the
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tree price grows without bound. If on the contrary the agents of age N hold the entire
tree, then its price is equal to N−1

N and thus bounded above by 1. In sum, the price of the
Lucas-tree may vary greatly as the wealth distribution changes.

In Appendix A we derive the price of the riskless bond from Equation (7),

1/Rf (st) =
1

N(d + 1)− 1
+

∑N−1
a=2

(
1

N−a+1

)
φa−1(st)

1−∑N−1
a=2

(
1− 1

N−a+1

)
φa−1(st)

. (9)

If the agents of age N have zero holdings of the tree then
∑N−1

a=2 φa−1(st) = 1 and the price
of the riskless bond is constant,

1/Rf (st) = 1 +
1

N(d + 1)− 1
.

If the entire tree is held by agents of age N then the price of the riskless bond is 1/Rf (st) =
γ1 = 1

N(d+1)−1 .
Observe that as long as the agents of age N have zero tree holdings the risk-free rate

is constant. This fact is perhaps somewhat surprising since the tree price may vary from
large values such as (N − 2)(d + 1) + 1

N (if agents of age 2 hold the entire tree) to small
values such as (d + 1) + N−2

N (if agents of age N − 1 hold the entire tree). For large ranges
of the wealth distribution there in no direct link between the risk-free rate and the price of
the Lucas-tree. This is due to the fact that in a deterministic economy agents of age a hold
the tree in the current period, agents of age a + 1 will hold the tree in the next period and
the price of the tree will drop. By the absence of arbitrage, the interest rate will be low.
This counteracts the effect that the young have a higher propensity to save which causes
the tree prices to be high.

Table 1 displays the prices of the Lucas-tree and the riskless bond for an economy in
which agents live for N = 240 periods. The safe dividend of the tree is d = 1/2. The tree

a 2 5 10 100 200 230 239 240

p(st) 357.00 352.52 345.04 210.41 60.829 15.954 2.4917 0.99583

1/Rf (st) 1.0028 0.0027855

Table 1: Prices p(st) and 1/Rf (st) if agents of age a hold the entire Lucas-tree

prices varies between 2.4917 and 357.00 without changes in the risk-free rate.
The described price movements in the deterministic economy can only arise if we consider

unanticipated shocks to the wealth distribution and even then they are only transitory.
The wealth distribution converges quickly to a steady state distribution from any initial
condition. Similarly, the tree price and the risk-free rate converge fast to their respective
steady-state values. Nevertheless the observed effects prove to be important in our model.
In an economy with heterogeneous beliefs the wealth distribution varies endogenously and
no steady state exists. As a result large price movements persist indefinitely.
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3.2 Differences in beliefs and asset price volatility

If we impose no restrictions on beliefs we can obtain arbitrary movements in the wealth
distribution across agents. We can construct beliefs such that in equilibrium, as N or δ

become large, the volatility of the tree price (both in the long run and the short run)
becomes arbitrarily large while the volatility of the bond price remains arbitrarily low. The
following theorem states these facts formally.

Theorem 2 Given any tree-price volatility, v̄ < ∞, and any bond-price volatility, v > 0, for

any time horizon T > 1 and any initial condition κ À 0, we can construct an economy where

the stock price volatility is at least v̄ while the bond-price volatility is at most v, that is,

StdT
s,κ(p) ≥ v̄, StdT

s,κ(1/Rf ) ≤ v .

The proof in the appendix constructs economies with δ = 1, letting N become arbitrarily
large. In light of the benchmark case above, we can either hold N fixed and choose δ and
(πa)a=1,...,N−1 or we can hold δ ≥ 1 fixed and choose N and (πa)a=1,...,N−1 in order to obtain
the desired stock-price volatility. The key idea of the proof is to construct beliefs such that
most of the wealth is alternately held either by agents of age 2 or by agents of age N − 2.
The analysis of the benchmark case revealed that the stock price is very large when the
young agents hold most of the wealth while it is very small when the old agents hold most
of the wealth. In addition, beliefs must be constructed so that agents of age N − 1 never
buy much of the tree and thus the price of the riskless bond remains almost constant.

The result accentuates that differences in beliefs can have potentially huge effects on
the price of the long-lived asset in this economy. If we can freely choose beliefs over the
exogenous shocks then we can generate arbitrary price volatility. The price of the tree
can move arbitrarily far away from the discounted present value of its dividends if these
are discounted using the current interest rate. Following Harrison and Kreps (1978) there
is now a large literature in finance that demonstrates how asset pricing bubbles can arise
from differences in beliefs and speculation. It is important to note that in our model there
can never be bubbles in equilibrium, see Santos and Woodford (1999). Nevertheless, the
economy exhibits large swings in the price of the tree which could not be distinguished from
an asset pricing bubble if we only examined prices and observed aggregate variables. In an
OLG model, movements in the wealth distribution can lead to large changes in the prices
of long-lived assets without changing the short-term interest rate.

These theoretical results raise the question on the quantitative importance of small
differences in beliefs in an otherwise realistically calibrated economy. Before we answer
this question in Section 4, it is interesting to note that equilibrium price volatility in this
economy relies crucially on the existence of a rich asset structure.
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3.3 Incomplete vs. complete markets

In an OLG economy with a single tree but no other securities the pricing formula for the
tree remains the same as in our OLG model. As the analysis in Huffman (1987) shows, there
is a steady state with no trade even if beliefs are heterogeneous. In Huffman’s economy,
agents’ consumption and savings decisions are independent of their beliefs, they depend
only on the discount factor δ and the age of an agent. An agent of age a always consumes
a fixed fraction of his cash-at-hand, no matter what his expectations are for future prices.
Therefore, in the absence of Arrow securities there is no complex trading in this economy
and zero price volatility in equilibrium in the long run – for any beliefs and discount factors.
On the contrary, when there is a complete set of Arrow Securities available for trade as in
our OLG model, price volatility can be arbitrary. In this sense, a rich set of financial assets
can lead to a huge increase in the volatility of the price of the tree.

4 Changes in the wealth distribution in calibrated examples

The income profile in the OLG model of the previous section is obviously unrealistic. We
are, therefore, confronted with the question whether the large asset price volatility in this
model is purely a theoretical artifact or instead of economic importance. In this section we
consider a version of the model with a realistically calibrated labor income process. It is
empirically well documented that observed income processes are “hump-shaped” and clearly
we expect this shape to affect agents’ investment decisions. Knowing that their income will
rise in the future, young agents now have a higher propensity to consume than in the
previous model. We would, therefore, expect that fluctuations in the wealth distribution
lead to quantitatively smaller fluctuations in asset prices. But how much smaller? Or, put
differently, are small differences in beliefs (still) an important source of asset price volatility
in a realistically calibrated model?

For the investigation of this issue we consider a specification of the model with calibrated
labor income but maintain the assumption that endowments and dividends are determin-
istic. A time period is meant to represent a quarter and so we assume that agents live
for N = 240 periods. We use the parameter values estimated by Davis et al. (2006) for a
realistic calibration of life-cycle income. They follow the estimation strategy of Gourinchas
and Parker (2002) and fit a 5th order polynomial to match average income from the Con-
sumer Expenditure Survey (CEX) and the Panel Study of Income Dynamics (PSID). The
resulting age-income profile is given by

log(ea) = 6.62362 + 0.334901(
a

4
+ 20)− 0.0148947(

a

4
+ 20)2 + 3.63424 · 10−4(

a

4
+ 20)3

− 4.41169 · 10−6(
a

4
+ 20)4 + 2.05692 · 10−8(

a

4
+ 20)5

for a ≤ 4 · 43 = 172 and ea = e172

2 for a = 173, . . . , 240. This profile is hump-shaped with
a replacement rate at retirement of 50 percent. We normalize aggregate endowments to be
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ω = 2 and assume that the stock’s dividends are always d = 1.
We examine models with three different belief specifications. In the first specification

of the model there are two different types of agents. All agents have constant beliefs across
time and type 1 agents and type 2 agents disagree at all times. In the second version of the
model there are three agents. Agents 1 and 2 have beliefs as in the first specification, but
now there is also a third agent who has correct beliefs at all times. Finally, we consider the
case where in “normal” times all three agents agree on the probabilities. However, with low
probability regime switches can occur which then lead to temporary disagreement among
the agents of types 1 and 2.

4.1 Persistent subjective beliefs

Throughout this first specification of the model, we assume that there are 2 shocks, s =
1, 2, which are i.i.d. and equiprobable, i.e. the data-generating Markov chain is given by
Π(1, 1) = Π(1, 2) = Π(2, 1) = Π(2, 2) = 1/2.

Using micro-data, Gourinchas and Parker (2002) estimate the annual discount rate to be
around 0.97. This figure corresponds to a quarterly discount factor of 0.9924. Alternatively,
we can choose δ to match the average riskless rate (of about 1 percent p.a.). We report the
risk-free rate from our specifications below and see that for many specifications we need a
value of δ above 1 to match the interest rate. Thus we vary agents’ discount factor and
examine values of δ in {0.99, 0.996, 1.0, 1.005}. For the specification of beliefs, we assume
that both agents believe (correctly) that the process is i.i.d. But all agents of type 1’s beliefs
satisfy

πa,1(1, 1) = πa,1(2, 1) = 1/2 + ε, πa,1(1, 2) = πa,1(2, 2) = 1/2− ε, a = 1, . . . , N − 1

while agents of type 2 have the following probabilities,

πa,2(1, 1) = πa,2(2, 1) = 1/2− ε, πa,2(1, 2) = πa,2(2, 2) = 1/2 + ε, a = 1, . . . , N − 1.

We consider this economy over two time horizons. In the first case, the economy starts off
with identical beliefs in a steady state. Beliefs change and we report average moments over
100 periods (25 years). In the second case, we consider the long run and report average
moments over 10000 periods.

For comparison, Lettau and Uhlig (2002) report that the quarterly standard deviation
of returns of S&P-500 stocks in post-war US data is about 7.5 percent. It is well known
in the economic literature that parsimonious economic models fail to match most empirical
quantities on asset markets. This failure has given rise to many puzzles such as, for example,
the equity premium puzzle, the Sharpe ratio puzzle, the return volatility puzzle, see again
Lettau and Uhlig (2002).
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4.1.1 The short run

We assume that the economy is initially in its deterministic steady state which we denote
by κ̄. One possible justification for this assumption is that beliefs of agents were identical
for a long time and we want to consider the effects of a change in beliefs. Table 2 reports
Std100

κ̄ (Rf ) and Std100
κ̄ (Rtree) for different combinations of the discount factor δ the belief

deviation ε. All entries are in percent. Table 2 shows that with relatively small differences

δ\ε 0.1 0.2 0.3

0.99 0.10 1.53 0.26 4.71 0.37 7.38

0.996 0.10 2.05 0.28 6.54 0.42 10.70

1.00 0.11 2.62 0.29 8.39 0.46 13.67

1.005 0.11 3.16 0.31 10.88 0.52 19.15

Table 2: Second moments (in %) – persistent differences in beliefs

in beliefs volatility of stock returns can be large in the short-run. The effect becomes larger
with larger values of δ. In light of the theoretical findings of the previous section these
results are easy to interpret. Large values of δ lead to large fluctuations in asset prices
as wealth gets redistributed across generations. Large values of ε, i.e. large differences in
beliefs, lead to large fluctuations in the wealth distribution. This last effect is perhaps not
obvious. Naively, one might conjecture that each type only trades with the other type of
his generation and that therefore the differences in beliefs we consider here have no effect
on the wealth distribution across generations. But this is obviously false: Since there are
no borrowing constraints, the young are willing to take much larger bets than the old. So
if the same shock repeats itself several times agents of all ages that believe that this shock
is more likely become relatively rich, but the young disproportionally so than the old. If
differences in beliefs are large, the old are on average poorer than with identical beliefs since
somewhere along their life-cycle they “gamble” away not only their current cash-at-hand
but also a substantial fraction of future incomes. We return to this issue below when we
discuss the market price of risk.

4.1.2 The long run

Table 3 reports the long-run measures Std10000
κ̄ (Rf ) and Std10000

κ̄ (Rtree). All entries are in
percent. As in the short run, stock-price volatility is generally large and increases with δ.
Somewhat surprisingly the volatility is not always increasing in ε. If differences in beliefs are
large, ε = 0.3, the wealth is concentrated among the young and it happens very rarely that
the old become wealthy. Average interest rates actually become negative and the volatility
is smaller than for the intermediate case, ε = 0.2.

Compared to the short run, it is interesting to note that volatility is much larger for
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δ\ε 0.1 0.2 0.3

0.99 0.73 3.18 1.00 4.92 0.66 4.49

0.996 0.82 4.26 1.08 6.96 0.79 6.91

1.00 0.88 5.18 1.22 8.90 0.71 8.98

1.005 1.03 6.47 1.47 11.93 0.99 12.55

Table 3: Second moments (in %) – persistent differences in beliefs

ε = 0.1 while it is smaller for larger values of ε. The results in the short run are mainly driven
by the fact that initially the economy is in its deterministic steady states and the average
wealth distribution with heterogenous beliefs looks quite different than in this steady state.
This transition dominates the results in the short run. We return to this point in the
discussion of temporary disagreement in Section 4.3.

Note that the results are robust in δ. Even for relatively low values such as δ = 0.99 the
effects are still sizable.

4.1.3 The risk-free rate and the market price of risk

Due to the large stock-price volatility generated by the model, the equity premium is siz-
able. However, the Sharpe ratio (or market price of risk) is still unrealistically small. It is
interesting to report how it varies across specifications of the model. We focus on the case
δ = 1. In the data, the Sharpe ratio for quarterly returns of the S&P 500 index lies around
0.25. Table 4 reports the average (quarterly) interest rate (in percent) and the Sharpe ratio.

Measure \ε 0.1 0.2 0.3

E100
κ̄ (Rf ) 0.857 0.705 0.433

E10000
κ̄ (Rf ) 0.579 0.066 -0.230

E100
κ̄ (Rtree−Rf )

Std100
κ̄ (Rtree)

0.064 0.103 0.140
E10000

κ̄ (Rtree−Rf )

Std10000
κ̄ (Rtree)

0.069 0.099 0.112

Table 4: Interest rates (in %) and Sharpe ratios – persistent differences in beliefs

The Sharpe ratio becomes quite large when differences in beliefs are large (although
not surprisingly, since risk aversion is low and markets are complete it obviously never
gets close to the empirically observed values). The differences in beliefs and the resulting
changes in the wealth distribution not only affect the volatility of the stock price but also
have large effects on the Sharpe ratio. Recall that Proposition 1 holds in this economy – for
a given wealth distribution, differences in beliefs have no effect on asset prices. The entire
mechanism only works through changes in the wealth distribution. So how is it possible
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that the Sharpe ratio increases substantially as beliefs become more diverse? It turns out
that in this economy a large fraction of the stock is held by the young. For them, the price
of the stock decreases precisely when they become relatively poor, i.e. when they lose wealth
to the old. Therefore the stock is disproportionally more risky for them than for the other
agents in the economy. They require a premium to hold it which is reflected in the Sharpe
ratio.

Figure 1 shows the evolution of the stock price in the first 1000 periods of the simula-
tion for the case δ = 1 and ε = 0.2. In the figure, the dotted line shows the average stock
price over 500 simulations, while the solid line shows the stock price in one (typical) simu-
lation. The figure clarifies our verbal argument above; on average, the stock price increases
substantially in the initial periods. This effect clearly leads to high stock returns in this
initial phase, but also shows that the typical stockholder is now much younger than in the
economy with identical beliefs. For this typical stockholder, the stock is very risky. This be-
comes clear from the one sample path we show. Stock-price volatility is obviously very large.

[Figure 1 HERE]

4.2 Crowding out of incorrect beliefs?

We now assume that there are three types, one of them holding the correct beliefs, while
the other types’ beliefs are as in the previous specification. Denote by λ the fraction of
type 1 agents that have the correct beliefs, i.e. who think the shocks are equiprobable. We
focus on the case δ = 1 and vary ε, i.e. the beliefs of type 2 and 3 agents. (Both types
make up (1− λ)/2 of the population.) Table 5 reports the long-run measures Std10000

κ̄ (Rf )
and Std10000

κ̄ (Rtree). The table shows that when only a small fraction of agents has correct

λ\ε 0.1 0.2 0.3

0.1 0.79 5.02 1.20 6.94 1.30 7.23

0.25 0.71 4.93 0.80 5.32 0.97 5.65

0.5 0.36 3.09 0.43 3.59 0.48 4.13

0.75 0.17 2.12 0.32 2.36 0.23 2.55

0.9 0.09 1.01 0.16 1.38 0.17 1.50

Table 5: Second moments (in %) – persistent differences in beliefs

beliefs the stock-price volatility is quite similar to our first specification. As the fraction of
agents with the correct beliefs becomes larger, the impact of the two agents with opposite
beliefs vanishes. For the case where only 10 percent of all agents have incorrect beliefs,
the volatility of stock-returns drops to 1.38 for ε = 0.2. However, this number is a little
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misleading. In Figure 2, we plot a typical time series of 10000 periods for the stock price.
While average volatility is very small, large swings in stock prices are still possible. As the
figure shows it is not atypical that in 10000 periods the stock price can move by a factor of
more than 2.

[Figure 2 HERE]

The average interest rates and Sharpe ratios are quite far off from empirically observed
values. The quarterly interest rate is about 1 percent and the Sharpe ratios are negative,
although they are very small. The reason for this is that as opposed to the previous case,
now the old hold a large fraction of the stock. This leads to a high average interest rate
and to negative Sharpe ratios: When the old become poor, the young must become rich,
stock prices must go up and stock returns are high. The stocks are a good hedge for the
old against losing bets to the young.

4.3 Temporary disagreements

Finally we consider a specification of our OLG economy in which agents agree most of the
time but in which regime-switches lead to temporary disagreement. The disagreement is as
before: One agent holds the correct beliefs and the other two agents disagree symmetrically.
This disagreement is temporary and the economy returns to the agreement state with
positive probability.

Concretely, we assume that there are three shocks s = 1, 2, 3. The true law of motion is
as follows,

Π =




0.9 0.05 0.05
0.2 0.4 0.4
0.2 0.4 0.4




In shock 1 agents all agree and have the true probabilities. As before, agents of type 1 have
correct beliefs in all states, i.e. πa,1 = Π for all a = 1, . . . , N − 1. In shocks 2 and 3 we have
for a = 1, . . . , N − 1,

πa,h(2, 1) = πa,h(3, 1) = 0.2, h = 2, 3

but
πa,2(2, 2) = πa,2(3, 2) = 0.4 + ε and πa,3(2, 2) = πa,3(3, 2) = 0.4− ε.

As before, we focus on δ = 1 and vary ε and the fraction λ of agents with the correct beliefs,
λ. Table 6 reports the long-run measures Std10000

κ̄ (Rf ) and Std10000
κ̄ (Rtree). The table

shows that although disagreement is temporary and fundamentals are deterministic there
can be large volatility in the stock return when the agents with the correct beliefs are not
in the majority. The steady-state distribution of the underlying Markov chain of exogenous
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λ\ε 0.1 0.2 0.3

0.5 0.21 1.03 0.37 2.09 0.52 3.17

0.1 0.35 1.75 0.68 3.77 1.21 5.72

Table 6: Second moments (in %) – temporary disagreements

states is (2/3, 1/6, 1/6). So there is disagreement only one-third of the time. Nevertheless
if disagreement is substantial quarterly stock return volatility exceeds 5.7 percent.

The average quarterly interest rate is about 0.9 percent to 1 percent and therefore much
higher than in the data, the Sharpe ratio is positive but close to zero. Higher values of the
discount factor δ obviously lead to more realistic first moments. However, the purpose of
the exercise is not to match the moments in the data but rather to show that changes in the
wealth distribution caused by differences in beliefs are a quantitatively important source of
price volatility in this model.

5 Aggregate uncertainty and the wealth distribution

Up to this point of our analysis we only examined specifications of the model without
uncertainty in endowments and dividends. As a consequence, asset price volatility was
always zero in the presence of identical beliefs. In this section we analyze asset price
volatility for economies with aggregate uncertainty but identical beliefs.

Previous research revealed that in many specifications of the overlapping generations
model with aggregate uncertainty the wealth distribution changes very little in equilibrium
if beliefs are identical (see e.g. Rios-Rull (1996) and Storesletten et al. (2007)). In our model
we can provide a theoretically precise description of these findings. Under the assumptions
of the now following Theorem 3, the economy has a stochastic steady state, that is, there
exist initial conditions κ such that the equilibrium exhibits no fluctuations in the wealth
distribution and prices and choices depend on the exogenous shock alone.

Theorem 3 Consider an economy where all agents a = 1, . . . , N , h = 1, . . . , H, have identical

and correct beliefs, πa,h = Π. Then, under either of the following two assumptions, there exist

initial conditions κ such that in the resulting equilibrium, prices and consumption choices are

time invariant functions of the exogenous shock alone.

1. All endowments and dividends are collinear, i.e. for all agents a = 1, . . . , N , h = 1, . . . , H,

it holds that
ea,h(s)
ea,h(s′)

=
d(s)
d(s′)

for all s, s′ = 1, . . . , S.

2. Shocks are i.i.d., i.e. for all shocks s′, Π(s, s′) is independent of s, and endowments of all
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agents of age a = 1 are collinear to aggregate endowments, i.e. for all h = 1, . . . ,H,

e1,h(s)
e1,h(s′)

=
ω(s)
ω(s′)

for all s, s′.

The theorem describes two benchmark cases of our OLG model with aggregate uncer-
tainty for which the wealth distribution remains constant along the equilibrium path and
thus does not matter for equilibrium allocations and prices. While we can prove the theo-
rem only for a specific initial condition, we found in many simulations that if the economy
starts from other initial conditions then the equilibrium quickly converges to the stochastic
steady state with a constant wealth distribution.

Commonly applied realistic calibrations of asset pricing models deviate from the assump-
tions of Theorem 3 in at least two directions. Either labor endowments are assumed to be
safe or shocks to labor endowments are assumed to be independent of shocks to dividends.
The question arises whether such calibrations of our OLG model lead to substantially differ-
ent equilibrium predictions. They do not. The quantitative effects in calibrated economies
are tiny, fluctuations in the wealth distribution have little impact on stock price volatility.

For an illustration of these results we consider an economy with both endowment and
dividend shocks. There is only one type of agent per generation, so H = 1. To emphasize
the point, we deliberately consider very large shocks; for smaller shocks, the effects are
obviously much smaller. Specifically, let

d(1) = d(2) = 0.9, d(3) = d(4) = 1.1 and ea(1) = ea(3) = 0.9ea, ea(2) = ea(4) = 1.1ea

where the labor endowments ea, a = 1, . . . , N, are calibrated as in Section 4 above. For
simplicity, let beliefs be such that Π(s, s′) = 1/4 for all s, s′.

If the wealth distribution did matter, prices conditional on a given exogenous shock
would fluctuate substantially. For each shock s = 1, . . . , 4, we therefore compute the stan-
dard deviation of the stock price conditional on this shock as well as the average stock price.
Table 7 reports average prices and (conditional) standard deviations for the 4 shocks.

s=1 s=2 s=3 s=4

Avg. price 93.71 100.66 107.59 114.54

Std. dev. 0.0018 0.0020 0.0021 0.0023

Table 7: Large exogenous shocks – small price volatility

Obviously the movements in the wealth distribution must be tiny. This result is in
large part due to market completeness. Theorem 3 provides an excellent approximation
because the only deviation from the assumptions of the theorem is the lack of collinearity
of aggregate endowments and the endowments of the agent of age 1. While the difference
is large for that agent, he only makes up a very small part of the whole economy.
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6 Conclusion

We consider a simple model of asset prices in an exchange economy with overlapping gen-
erations. Our model is both canonical and parsimonious – financial markets are complete
and there are no restrictions on asset trades. We show that with identical beliefs the asset
pricing implications of this model are similar to the implications of a standard Lucas (1978)
model with a representative agents. This finding is in line with the previous literature.
However, differences in opinion, even if they are small and unrelated to fundamentals in
the economy, can lead to completely different asset pricing implications. In particular, the
model generates high excess volatility.

Appendix

A Proofs

For the proofs of Theorem 1, Proposition 1 and Corollary 1 it is useful to consider the Arrow-
Debreu equilibrium of the OLG economy. In finite Arrow-Debreu economies, the assumption
of Cobb-Douglas utility implies that the equilibrium is unique and that equilibrium prices
are the solution of a linear system of equations. These insights carry over to the Arrow-
Debreu equilibrium of our OLG model although the technical details are more complicated.
Since it follows from Santos and Woodford (1997) that there cannot be bubbles in our
sequential equilibrium, there is a one-to-one correspondence between the Arrow-Debreu
equilibria and the sequential equilibria.

We first define the endowments of each agent appearing in the OLG economy at each
node of the event tree. Recall that we identify individuals (born into the economy) by
the date-event of their birth, σ ∈ Σ, and their type h = 1, . . . , H. For each such agent
define his endowment ωσ,h(st) = eσ,h(st) for all nodes st ∈ Σ. Of course, the definition of
e implies that an agent’s endowment is zero at all nodes at which he is not alive. Recall
that we denote individuals who are born before t = 0 by (s1−a, h) for a = 2, . . . , N and
h = 1, . . . ,H. These agents’ endowments include the dividends of the Lucas-tree over the
whole event tree and are thus given by ωs1−a,h(st) = es1−a,h(st) + φs1−a,hd(st) for all nodes
st ∈ Σ. The aggregate endowment in the economy is

ω(st) = ω(st) =
∑

σ∈Σ

H∑

h=1

ωσ,h(st) +
N∑

a=2

H∑

h=1

ω−a+1,h(st).

Note that the aggregate endowment only depends on the current shock st. Denote the price
for the consumption good at each node st ∈ Σ by ρ(st) with the normalization ρ(s0) = 1.

The Arrow-Debreu equilibrium is defined as usual by prices (ρ(σ))σ∈Σ and consumption
allocations cσ,h such that markets clear and agents maximize utility.
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Observe that a finite number of agents, namely those born before t = 0, hold a non-
negligible fraction of the aggregate endowment at all nodes. This fact ensures the exis-
tence of a competitive equilibrium, see Geanakoplos and Polemarchakis (1991, Theorem 2).
Moreover, in every equilibrium the value of the aggregate endowment must be finite. Our
assumption of log utility implies that excess demand functions satisfy the gross substitute
property. As a consequence of these last two properties the Arrow-Debreu equilibrium is
unique, see Kehoe et al. (1991, Theorem A).

Building on the existence of a unique Arrow-Debreu equilibrium we can now prove The-
orem 1.

Proof of Theorem 1. We first determine the income of all agents in the economy. The
income of agent (s1−a, h) who is born before t = 0 is given by

Is1−a,h = φs1−a,h
∑

σ∈Σ

ρ(σ)d(σ) +
N∑

n=a

∑

sn−aºs0

ρ(sn−a)en,h(sn−a)

for a = 2, . . . , N and h = 1, . . . , H. Analogously to our cash-at-hand definition for the
sequential equilibrium we can define cash-at-hand for the Arrow-Debreu equilibrium as

κs1−a,h = φs1−a,h
∑

σ∈Σ

ρ(σ)d(σ)

for a = 2, . . . , N − 1 and h = 1, . . . , H. With this expression we can rewrite agents’ income
as follows,

Is1−a,h = κs1−a,h +
N∑

n=a

∑

sn−aºs0

ρ(sn−a)en,h(sn−a) for a = 2, . . . , N − 1, (10)

H∑

h=1

Is1−N ,h =
∑

σ∈Σ

ρ(σ)d(σ)−
(

N−1∑

a=2

H∑

h=1

κs1−a,h

)
+ ρ(s0)

H∑

h=1

eN,h(s0). (11)

The income of agent (σ, h) entering the economy at node σ = st ∈ Σ is given by

Iσ,h =
N∑

a=1

∑

st+a−1ºσ

ρ(st+a−1)ea,h(st+a−1). (12)

Next we derive the linear system of excess demand equations that determines equilibrium
prices. This system is analog to the system in finite economies with Cobb-Douglas utilities
with the exception that it has infinitely many equations and unknowns. For each agent st, h

and age a = 1, . . . , N define the weight

ξst,h(st+a−1) =
δa−1πst,h(st+a−1|st)∑N−1

j=0 δj
. (13)
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For the agents (s1−a, h) who are present before t = 0 the coefficients ξs1−a,h(st) are given
by

ξs1−a,h(st) =
δtπs1−a,h(st|s0)∑N−a

j=0 δj
, t = 0, . . . , N − a,

for a = 2, . . . , N and st with t = 0, . . . , N − a. Observe that in the case a = N ,

ξs1−N ,h(s0) = 1 for all h = 1, . . . , H. (14)

The Arrow-Debreu prices, normalized such that ρ(s0) = 1, are now the unique solution to
the following linear system of equations.

N∑

a=1

H∑

h=1

ξs1−a,h(s0) Is1−a,h = ω(s0) (15)

N∑

a=1

H∑

h=1

ξst+1−a,h(st) Ist+1−a,h = ρ(st)ω(st), for all st Â s0 (16)

Observe that we can eliminate the income variables of the agents who are of age N at
t = 0 from Equation (15) since they both appear with a weight of 1, see Condition (14), by
the right-hand side of Equation (11). These two income variables do not appear in Equa-
tions (16). Moreover, we can replace the incomes of all other agents by the corresponding
expressions from Equations (10) and (12). A close inspection of the resulting system of
infinitely many equations and unknowns reveals that all equations are linear in the cash-at-
hand positions κs1−a,h for a = 2, . . . , N − 1, h = 1, . . . ,H, and the unknown Arrow-Debreu
prices ρ(st) for st Â s0. Therefore, the Arrow-Debreu prices are a linear (affine) function
of the initial positions κs1−a,h. As a result the incomes and thus the consumption alloca-
tions of all agents are linear functions of the initial conditions. In particular, the individual
consumption allocations at s0 are linear in the cash-at-hand positions. The same must be
true for the price of the Lucas-tree, q(s0) =

∑
stÂs0

ρ(st)d(st), and the price of a riskless
one-period bond, 1/Rf (s0) =

∑
s1∈S ρ(s1).

Since the Arrow-Debreu equilibrium is unique for all initial conditions, the sequential
equilibrium that implements the Arrow-Debreu outcome must be recursive with the state
consisting of the exogenous shock s ∈ S and the beginning of period cash-at-hand across
agents, see Kubler and Schmedders (2002).

Finally, note that all coefficients in the pricing and consumption functions, α, β, γ, must
be non-negative: If one of the coefficients were negative, we could find initial conditions for
a modified economy where the agents of age N at t = 0 have arbitrarily large endowments
and would obtain negative prices or negative individual consumptions. ¤

Proof of Proposition 1. For a model without uncertainty we can simplify the linear
system of equations (15)–(16) that determines the Arrow-Debreu prices. Without uncer-
tainty we can identify an agent by the date of his birth, t, and his type, h. The weights (13)
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aggregate to

ξ̂t,h(t + a− 1) =
δa−1

∑N−1
j=0 δj

for a = 1, . . . , N . Similarly, expression (12) reduces to

Ît,h =
N∑

a=1

ρ̂(t + a− 1)ea,h

where (ρ̂(t)) denotes the sequence of Arrow-Debreu prices. For the agents who are present
before time t = 0 the weights are

ξ̂1−a,h(t) =
δt

∑N−a
j=0 δj

, t = 0, . . . , N − a,

for a = 2, . . . , N . These agents’ income is

Î1−a,h = κ1−a,h +
N∑

j=a

ρ̂(j − a)ej,h.

In an economy with deterministic fundamentals but several states we have for any t that

∑

st∈Σ

ξst−a+1,h(st)Ist−a+1,h = ξ̂t−a+1,h(t)Ît−a+1,h.

with
∑

st∈Σ ρ(st) = ρ̂(t). (Note that we must add over all possible date-events st in the
event tree at time t.) In the economy without uncertainty, the Arrow-Debreu prices are
therefore determined by the simplified linear system

N∑

a=1

H∑

h=1

ξ̂1−a,h(0) I1−a,h = ω (17)

N∑

a=1

H∑

h=1

ξ̂t+1−a,h(t) It+1−a,h = ρ̂(t)ω, for all t = 1, 2, . . . (18)

where ω ≡ ω(t), t = 0, 1, . . ., denotes the constant aggregate endowment. Observe that this
system of equation does not depend on agents’ beliefs.

The prices ρ(st) solve the general system of linear equations (15) and (16) if and only
if the prices ρ̂(t) solve the specialized system (17) and (18). Since the general system has
a unique solution so does the specialized system. This solution does not depend on agents’
beliefs and thus the same must be true for the price of the risk-free bond and the price of
the Lucas-tree.

The consumption of an agent of age a and type h alive at t = 0 is given by ξ̂1−a,h(0) I1−a,h.
Clearly this is the same linear function of cash-at-hand for all beliefs. ¤
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Proof of Corollary 1. We rewrite Equation (18) for t = 1 and the special case ea,h = 0
for a > 1 and e1,1 = 1. For simplicity we write this equation recursively and denote by κa

the cash-at-hand of agents of age a (at t = 0). We obtain

1∑N−1
j=0 δj

ρ̂(1) +
δ∑N−1

j=0 δj
+

δ∑N−2
j=0 δj

κ2 + . . . +
δ

1 + δ
κN−1 = ρ̂(1)(1 + d).

Note that the income of the agent of age 2 at t = 1 is Î0 = ρ̂(0)e1 = 1, while the income
of the agent of age 1 is ρ̂(1). Solving for the bond price, ρ̂(1), then gives the desired result. ¤

Derivation of Equation (9). Following Equation (7) the price of the riskless bond is

1/Rf (st) = γ1 +
N−1∑

a=2

γaφ
a−1(st)

N−1
N + d

1−∑N−1
a=2 βaφa−1(st)

=
1

N(d + 1)− 1
+ (

N − 1
N

+ d)
∑N−1

a=2 γaφ
a−1(st)

1−∑N−1
a=2 βaφa−1(st)

=
1

N(d + 1)− 1
+

N(d + 1)− 1
N

(
N

N(d + 1)− 1

) ∑N−1
a=2

(
1

N−a+1

)
φa−1(st)

1−∑N−1
a=2

(
1− 1

N−a+1

)
φa−1(st)

=
1

N(d + 1)− 1
+

∑N−1
a=2

(
1

N−a+1

)
φa−1(st)

1−∑N−1
a=2

(
1− 1

N−a+1

)
φa−1(st)

. ¤

Proof of Theorem 2. We construct an economy with 3 shocks s = 1, 2, 3, that exhibits the
desired volatility. It suffices to consider an economy with one type per generation, H = 1.
Let δ = 1 and set e1 = 1 and ea = 0 for a = 2, . . . , N . Denote by p̄ the (hypothetical) price
of the tree if all wealth is held by the agent of generation a = 2 and denote by p the price
of the tree if all wealth is held by the agent of generation N − 2. Given a bound v̄, the
discussion in Section 3.1 implies that for all sufficiently large N p̄− p > 2v̄ + 1.

For the described specification of the OLG model, the proof of Proposition 1 (or, in fact,
Huffman (1987)) implies that the consumption function of an agent of age a is independent
of beliefs and just depends on his cash-at-hand. For δ = 1 this function is given by

ca(κa) =
1

N − a + 1
κa for a = 2, . . . , N.

Agents of age 1 always consume 1/N and the aggregate consumption of all other agents
is N−1

N + d. For a ≥ 2 the consumption function is injective, that is, it is a one-to-one
mapping between individuals’ cash-at-hand and consumption allocation. Thus there exist
ε > 0 such the equilibrium tree price exceeds p̄ − 0.1 if and only if c2 ≥ (1 − ε)(N−1

N + d)
and this price is below p + 0.1 if and only if cN−1 ≥ (1 − ε)(N−1

N + d). We now construct
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an economy for which the equilibrium allocations satisfy these properties and choose the
“true” probabilities so that the desired volatility is exhibited in equilibrium.

Choose the true law of motion to be Π(s, 1) = Π(s, 2) = 1/2 and thus Π(s, 3) = 0 for
all s = 1, 2, 3. All agents’ subjective beliefs are i.i.d., that is, we can write πa

s to denote the
subjective probability that the agent of age a = 1, . . . , N −1 attaches to shock s in the next
period. Choose π1

1 < 1 close to one and define the price of the Arrow security for state 1 in
the next period by

q1 = π1
1

1
N(N−1

N + d)(1− ε)
.

This is the supporting price that ensures that in the next period the agent of age 2 consumes
exactly (N−1

N + d)(1− ε) if shock 1 occurs. Whenever the equilibrium price for this Arrow
security is below this supporting price, the agent consumes more. Analogously, choose
πN−2

2 < 1 close to one and define for some lower bound on consumption, c,

q2(c) = πN−2
2 c

1
(N−1

N + d)(1− ε)
.

To achieve market clearing we now have to show that there exist probabilities such that
for these prices all other agents choose consumption below (N−1

N + d)ε/(N − 2) and that
consumption of agents of age N − 2 is bounded below by c > 0. Define πa

1 = πa
2 = ζ for all

a = 2, . . . , N − 3 as well as π1
2 = πN−2

1 = ζ. Clearly we can choose ζ ≤ ε small enough to
ensure that the agent of age 3 consumes below (N−1

N +d)ε/(N−2) even if the previous state
was s = 1 and he consumed (1− ε)(N−1

N + d) in the previous period when he was of age 2.
This choice of beliefs also ensures that all other agents consume below (N−1

N + d)ε/(N − 2)
on the equilibrium path. In fact, it follows from the first order conditions that it suffices to
choose

ζ = ε/(N − 2)min {q1, q2(c)} .

Iterating on the first order conditions then yields a lower bound c on the consumption of
agents of age N − 2, namely

c ≥ εN−3

(N − 2)N−3

1
N

.

Finally, we choose πN−1
1 = πN−1

2 > 0 sufficiently small to ensure that via equation (9) the
bond price never falls much below its maximal value and thus never varies by more than v.
This completes the proof of the theorem. ¤

Proof of Theorem 3. We prove the theorem by a “guess and verify” approach. We
guess that consumption allocations are collinear and then derive values for all endogenous
variables that satisfy the equilibrium equations.

Suppose that consumption only depends on the shock and that individual consumption
allocations are given by ca,h

s = νa,hωs with νa,h > 0 and
∑N

a=1

∑H
h=1 νa,h = 1 for all states
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s = 1, 2, . . . , S. Substituting these consumption allocations into the Euler equations yields
the prices of the Arrow securities,

qss′ = δΠ(s, s′)
νa,hωs

νa+1,hωs′
, ∀ a = 1, . . . , N − 1, h = 1, . . . ,H. (19)

The asset prices qss′ are obviously independent of the agent and thus we can define a new
constant f such that

f ≡ δ
νa,h

νa+1,h
∀ a = 1, . . . , N − 1, h = 1, . . . , H. (20)

We can write an agent’s lifetime budget constraint, if he does not initially own shares of
the tree, as follows,

c1,h
s −e1,h

s +
S∑

s′=1

qss′

(
c2,h
s′ − e2,h

s′ +
S∑

s′′=1

qs′s′′

(
c3,h
s′′ − e3,h

s′′ +
S∑

s′′′=1

qs′′s′′′
(
c4,h
s′′′ − e4,h

s′′′ + . . .
)))

= 0.

Case 1. Individual labor endowments are collinear, that is, for each agent (a, h), there
is a weight ηa,h such that his endowments are given by ea,h

s = ηa,hωs. Note that the weights
ηa,h ≥ 0 do not sum to 1,

∑N
a=1

∑H
h=1 ηa,h < 1, since the social endowment ωs includes

dividends ds.
In this case

c1,h
s − e1,h

s = (ν1,h − η1,h) ωs

and using (19) and (20) also

S∑

s′=1

qss′(c
2,h
s′ − e2,h

s′ ) =
S∑

s′=1

Π(s, s′)f
ωs

ωs′
(ν2,h − η2,h) ωs′

= f (ν2,h − η2,h) ωs.

Similarly,
S∑

s′=1

qss′

S∑

s′′=1

qs′s′′(c
3,h
s′′ − ω3,h

s′′ ) = f2 (ν3,h − η3,h) ωs

and so on. Thus, the budget constraint of an agent of type h, born at shock s is equivalent
to (

N∑

a=1

fa−1 (νa,h − ηa,h)

)
ωs = 0

which in turn is equivalent to

N∑

a=1

fa−1 (νa,h − ηa,h) = 0. (21)

The definition of the ratio f implies that fνa+1,h = δνa,h and thus fa−1νa,h = ν1,hδa−1 and
so we obtain for each agent h,

ν1,h

N∑

a=1

δa−1 −
N∑

a=1

fa−1ηa,h = 0.

28



These H equations together with the market-clearing condition
N∑

a=1

H∑

h=1

νa,h =
H∑

h=1

(
ν1,h

N∑

a=1

δa−1

fa−1

)
= 1

yields a system of H + 1 equations in the H + 1 unknowns f and ν1,h, h = 1, . . . , H.
Substituting for ν1,h we obtain a polynomial equation in the single unknown f ,

fN−1
N∑

a=1

δa−1 −
(

N∑

a=1

fa−1
∑

h

ηa,h

)(
N∑

a=1

(
fN−aδa−1

)
)

= 0. (22)

Observe that the polynomial on the left-hand side is of the form g(f) =
∑2N−2

k=0 rkf
k with

coefficients rk satisfying rk < 0 for k 6= N − 1 and rN−1 > 0. The classical Sign Rule of
Descartes now implies that equation (22) can have at most two positive solutions. Moreover,
g(0) = r0 < 0 and g(f) → −∞ as f → ∞. And since g(1) > 0 the polynomial g has two
distinct positive roots, one less than 1 and a second larger than 1.

There are no bubbles in this OLG economy, see Santos and Woodford (1997). Moreover,
the stationarity of the prices of the Arrow securities implies that the tree price is also
stationary, i.e. p(st) = pst . Agents’ Euler equations then require

ps =
∑

s′
qss′ (ps′ + ds′) for all s = 1, . . . , S,

or, equivalently,
P = Q (P + d) (23)

where P (d) denotes the S-vector of tree prices (dividends) and Q denotes the (S×S)-matrix
of prices of Arrow securities. The matrix Q is the element-wise (Hadamard) product of the
rank-one positive matrix Ω with elements Ωss′ = ωs/ωs′ and the matrix fΠ with largest
eigenvalue f . Thus the matrix Q has also largest eigenvalue f . But for the solution f > 1
of (22) Equation (23) does not yield a finite solution for P . The equation delivers only
for f < 1 a finite price vector, namely P = [I −Q]−1 d. Therefore, the solution f < 1 of
Equation (22) yields the unique equilibrium. In this equilibrium consumption allocations
are collinear. This completes the proof of Case 1.

Case 2. Only the individual labor endowments of cohort 1 are assumed to be collinear
with the social endowment, e1,h

s = η1,hωs. Beliefs are i.i.d. so we can write Πs′ ≡ Π(s, s′)
for all s = 1, 2, . . . , S. As before we have for cohort 0,

c1,h
s − e1,h

s = (ν1,h − η1,h) ωs.

Now using (19) and (20) we obtain
S∑

s′=1

qss′(c
2,h
s′ − e2,h

s′ ) =
S∑

s′=1

Πs′f
ωs

ωs′

(
ν2,hωs′ − e2,h

s′

)

= fωs

(
ν2,h −

S∑

s′=1

Πs′
e2,h
s′

ωs′

)
.
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Similarly,
S∑

s′=1

qss′

S∑

s′′=1

qs′s′′(c
3,h
s′′ − ω3,h

s′′ ) = f2ωs

(
ν3,h −

S∑

s′′=1

Πs′′
e3,h
s′′

ωs′′

)

and so on. Thus, the budget constraint is equivalent to

N∑

a=1

fa−1νa,h − η1,h −
N∑

a=2

fa−1




S∑

s(i)=1

Πs(i)

ea,h

s(i)

ωs(i)


 = 0

where s′ = s(1), s′′ = s(2), and so on. Following the same steps as in Case 1 leads to the
single polynomial equation

fN−1
N−1∑

i=0

δi −

η0 +

N−1∑

i=1

f i




S∑

s(i)=1

Πs(i)

ei
s(i)

ωs(i)







(
N−1∑

i=0

fn−iδi

)
= 0. (24)

in the single unknown f . As in Case 1 the left-hand side of this equation is a polynomial
g(f) with two sign changes and g(0) < 0, g(1) > 0 and g(f) → −∞ for f →∞. Thus there
are again two solutions but, again, only the solution f < 1 leads to a well-defined stock
price. This completes the proof of Case 2. ¤

B Numerical solution

Recall that in our OLG economy markets are dynamically complete since each date-event
st has S successor nodes and agents can trade a full set of S Arrow securities at each
date-event. Moreover, the equilibrium consumption allocation is unique as the discussion
preceding the proof of Theorem 1 in Appendix A demonstrates. But agents’ portfolios are
not unique in equilibrium since the agents can trade the Lucas-tree in addition to the Arrow
securities. Thus, in equilibrium, a continuum of portfolios supports the unique consumption
allocation. At each date-event equilibrium portfolios are a one-dimensional subspace of RS .
For the computation of the linear policy and pricing functions we exploit this multiplicity of
portfolios supporting the equilibrium by imposing an additional restriction. This condition
on portfolios then uniquely determines one point in the one-dimensional subspace.

B.1 Equilibrium equations

The additional restriction forces the agent of age N − 1 and type 1 to buy the entire Lucas-
tree. He holds it for one period and then sells it in the last, Nth, period of his life to the
subsequent agent of age N − 1 and type 1. All agents of ages a = 1, . . . , N − 2 and the
type h = 2, . . . , H agents of age N − 1 are only permitted to trade Arrow securities. This
choice of equilibrium portfolio greatly simplifies the beginning-of-period cash-at-hand for
all agents except for the one of age N−1 and type 1. The respective cash-at-hand positions
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at date-event st+1 = (st, st+1) are then simply κa+1,h(st+1) = θa,h
st+1(st), that is, an agent’s

cash-at-hand is just his holding of the Arrow security that pays in the current shock st+1.
With the special choice for the equilibrium portfolios we can now derive a nonlinear

system of equations that must hold in equilibrium. Let the current shock be s ∈ S and the
current cash-at-hand positions be κa,h for a = 2, . . . , N − 1, and h = 1, . . . , H.

The first set of equations are the necessary and sufficient first-order optimality condi-
tions for the agents’ utility maximization problems. The generic first-order conditions with
respect to portfolio holdings of the Arrow securities are of the form

−qs′(st)u′(ca,h(st)) + δπa,h(s′|s)u′(ca+1,h(st, s′)) = 0 for a = 1, . . . , N − 1, (25)

where qs′(st) denotes the price of the Arrow security with a payoff in shock s′ in the next
period. Substituting the expressions (1) and (2) into these first-order conditions yields the
following equations.

For a = 1:

−qs′


α2,h

1s′ +
N−1∑

j=2

H∑

i=1

α2,h
jis′θ

j−1,i
s′


 + δπ1,h(s′|s)

(
e1,h
s −

∑

s′
qs′θ

1,h
s′

)
= 0. (26)

For a = 2, . . . , N − 2:

−qs′


αa+1,h

1s′ +
N−1∑

j=2

H∑

i=1

αa+1,h
jis′ θj−1,i

s′


 + δπa,h(s′|s)

(
ea,h
s + κa,h −

∑

s′
qs′θ

a,h
s′

)
= 0. (27)

For a = N − 1 and h = 1:

−qs′


eN,1

s′ + θN−1,1
s′ + ds′ + β1s′ +

N−1∑

j=2

H∑

i=1

βjis′θ
j−1,i
s′


 + δπN−1,1(s′|s)


eN−1,1

s + κN−1,1 −
∑

s′
qs′θ

N−1,1
s′ −


β1s +

N−1∑

j=2

H∑

i=1

βjisκ
j,i





 = 0. (28)

For a = N − 1 and h = 2, . . . ,H:

−qs′
(
eN,h
s′ + θN−1,h

s′

)
+ δπN−1,h(s′|s)

(
eN−1,h
s + κN−1,h −

∑

s′
qs′θ

N−1,h
s′

)
= 0. (29)

Next we have the first-order condition of the agent of age N −1 and type 1 with respect
to his holding of the Lucas-tree,

−p(st)u′
(
cN−1,1(st)

)
+ δ

S∑

s′=1

πN−1,1(s′|s) (
u′(cN,1(st, s′))

(
ds′ + p(st, s′)

))
= 0.
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Using the prices of the Arrow securities, see Equation (25), we can write the condition on
the price of the Lucas-tree as follows,

−

β1s +

N−1∑

j=2

H∑

i=1

βjisκ
j,i


 +

∑

s′
qs′


ds′ + β1s′ +

N−1∑

j=2

H∑

i=1

βjis′θ
j−1,i
s′


 = 0. (30)

This equation completes the set of equations derived from agents’ first-order conditions.

We have S market-clearing equations.

N−1∑

a=1

H∑

h=1

θa,h
s′ = 0 for s′ = 1, . . . , S. (31)

The third and last set of equations imposes consistency conditions on the linear con-
sumption functions.

For a = 2, . . . , N − 2, h = 1, . . . , H, and the agents of age N − 1 and type h = 2, . . . , H:

αa,h
1s +

N−1∑

j=2

H∑

i=1

αa,h
jis κj,i = ea,h

s + κa,h −
∑

s′
qs′θ

a,h
s′ (32)

For the agent of age N − 1 and type 1

αN−1,1
1s +

N−1∑

j=2

H∑

i=1

αN−1,1
jis κj,i = eN−1,1

s + κN−1,1 −
∑

s′
qs′θ

N−1,1
s′ −


β1s +

N−1∑

j=2

H∑

i=1

βjisκ
j,i




(33)

Equations (26)–(33) must hold for each s ∈ S and each initial condition κa,h for a =
2, . . . , N − 1 and h = 1, . . . ,H. For fixed s and fixed initial condition, Equations (26)–(30)
consist of H(N − 1)S + 1 equations. In addition, there are S market-clearing equations.
Finally there are H(N − 2)S consistency conditions. For all s ∈ S combined there are

S (H(N − 1)S + 1 + S) + H(N − 2)S

equations. Observe that unlike the first-order conditions and market-clearing equations the
consistency conditions appear exactly once and are thus not again multiplied by S.

The unknowns in our system of equations are H(N − 2)S linear consumption functions
(the functions for agents of age 1 do not appear in the equations) with 1 + H(N − 2)
coefficients each, S price functions for the Lucas-tree with 1 + H(N − 2) coefficients each,
S2 Arrow security prices and H(N − 1)S2 portfolio variables for agents’ holdings of Arrow
securities for all possible combinations of s and s′.
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To determine the coefficients of the linear policy and pricing functions we also need to
vary the initial conditions. For each value of κa,h we obtain another set of Equations (26)–
(33). We do not increase the number of coefficients but only the number of Arrow security
prices and portfolio variables. If we choose 1 + H(N − 2) affinely independent values for
the initial conditions then we obtain a system with

(1 + H(N − 2))
(

S (H(N − 1)S + 1 + S) + H(N − 2)S
)

= (H(N − 1) + 1)(H(N − 2) + 1)S2 + (H(N − 2) + 1)2 S

equations and unknowns. A convenient choice for the initial conditions are the zero vector
and all possible unit vectors for κa,h for a = 2, . . . , N − 1 and h = 1, . . . , H. We denote this
set of 1 + H(N − 2) values by G(κ).

For interesting model specifications the system of nonlinear equations becomes very
large. For example, for H = 2, N = 240 and S = 4 the system consists of 4,565,844
equations and unknowns. Systems of such size are impossible to solve on a laptop without
state-of-the-art software for Newton’s method or some other algorithm for nonlinear equa-
tions. We solve these systems with a simple but slower iterative method based on a Jacobi
scheme.

B.2 Iterative Jacobi method

At the beginning of an iteration, current iterates are available for the S(1 + H(N − 2))-
dimensional coefficient vectors αa,h and β. For each of the S(1 + H(N − 2)) possible
combinations of s ∈ S and κ ∈ G(κ) we solve a linear system of equations. Observe that
Equations (26)–(29) are linear in qs′ and qs′θ

a,h
s′ for s′ ∈ S, a = 1, . . . , N − 1, h = 1, . . . , H.

We can rewrite the market-clearing equations (31) as

N−1∑

a=1

H∑

h=1

qs′θ
a,h
s′ = 0 for s′ = 1, . . . , S. (34)

The system (26)–(29) and (34) is a square linear system of H(N − 1)S + S equations in
the H(N − 1)S unknowns qs′θ

a,h
s′ and the S unknowns qs′ . We solve this system with QR

factorization with very small error (close to machine precision).
After we have solved S(1+H(N−2)) such systems of linear equations we can determine

the new iterate for the coefficient vectors αa,h and β. Note that after substituting all possible
combinations of s ∈ S and κ ∈ G(κ) and the just computed accompanying solutions for qs′

and qs′θ
a,h
s′ into Equations (30), (32), and (33) these in turn yield a system of S(1+H(N−2))

linear equations in the S(1+H(N − 2)) unknown new coefficients αa,h and β. The solution
to this linear system replaces the current iterate for the coefficients and serves as the next
iterate. Now a new iteration starts. This iterative procedure terminates when the infinity
norm of two subsequent iterates falls below 10−10.
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B.3 Computation of Aggregate Statistics

In our model, the transition matrix Π determines the probability distribution over exogenous
shocks in the next period. For a given shock in the following period the transition function
of the endogenous state vector κ is deterministic. This mapping is not linear but the cash-
at-hand of an agent in the next period can be written as the ratio of two linear functions of
cash-at-hand across agents in the current period. This can be seen easily from the analysis
above. Both the Arrow-prices qs and the expenditure in Arrow-securities qsθs are linear
functions of the endogenous state κ. In our algorithm we therefore not only compute the
pricing and consumption-policy coefficients, but we also compute the coefficients of the two
functions that determine the transition. We can therefore easily simulate the economy and
then compute the moments of interest.

We do not aim to numerically approximate the moments integrated over an invari-
ant distribution. Since the transition function in our economy is not monotone, standard
techniques for proving uniqueness of invariant distributions (see e.g. Bhattacharya and Ma-
jumdar (2007) for an overview) cannot be applied in our setting. Moreover, while we can
do accuracy analysis for our Monte-Carlo approximations for a given finite horizon T , we
do not know of any methods to do the same for the invariant distribution.

B.4 No closed-form solutions

The equilibrium equations (26)–(33) are a polynomial system. For small examples (e.g.
N = 3, 4 and H = 2) we can therefore use Gröbner bases (see Kubler and Schmedders
(2010)) to obtain an equivalent simpler system of equations and to solve for the unknown
coefficients with very high precision. In addition, this approach enables us to explore under
which conditions rational solutions to this system exist. For example, in the special case of
a deterministic economy, if agents only have endowments in the first period of their lives,
Huffman (1987) derives analytic and rational solutions for the coefficients. The Gröbner
bases approach reveals that such simple expressions do not exist for more general models
with agents having positive endowments for several periods. The coefficients are not ratio-
nal expressions even if all exogenous parameters such as endowments, dividends, and the
discount factor are rational numbers or integers.
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Figure 1: Stock prices with persistently incorrect beliefs
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Figure 2: Stock prices when most agents have correct beliefs
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