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Abstract

This paper considers a multivariate system of strongly persistent time series and in-
vestigates the most appropriate way for estimating the Impulse Response Function (IRF )
and their associated confidence intervals. The paper extends the univariate analysis re-
cently provided by Baillie and Kapetanios (2013), and uses a non parametric, time domain
estimator, based on a vector autoregressive (V AR) approximation. This V AR is shown
to have good theoretical and small sample properties for the estimation of the IRF . The
paper also advocates a generic sieve V AR bootstrap for estimating confidence intervals for
the estimated IRF. This is shown to be a valid method for conducting inference on the
IRF , and is proven under mild assumptions. The theoretical and Monte Carlo findings in
this paper indicate that a good strategy for analyzing IRF is to estimate by semi paramet-
ric V AR approximations, and to use the sieve V AR bootstrap for estimating confidence
intervals. One of the great attractions of the methodology is that it is simple to apply
and avoids specification and estimation issues for multivariate time series models. Two
empirical examples on predator/prey series and realized volatility are also included.

Key Words: Persistence, Impulse Response Function, Autoregressive Approximation,
Sieve VAR, Confidence Intervals, Realized Volatility, Mink-Muskrat series.

JEL Codes: C22, C12.

1 Introduction

Impulse Response Functions (IRF ) have long been recognized as an important device for in-

terpreting a time series model, or dynamic econometric model. Sims (1980) wrote a seminal
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article on the practical importance and interpretation of these methods in a vector autoregres-

sion (V AR) context. However, the variability and derivation of confidence intervals for this

approach was first derived for weakly stationary, or stable processes by Schmidt (1973, 1977).

In particular, Schmidt developed techniques for matrix differentiation that allowed the deriva-

tion of the asymptotic distribution of estimated IRF from a stationary dynamic simultaneous

equation model. This approach was further developed by Schmidt (1974) to derive the asymp-

totic distribution of predictions from such models. This work led to the derivation of asymptotic

distributions of estimated IRFs from Vector Autoregressive (V AR) models in articles by Bail-

lie (1987) and Lutkepohl (1988, 1989). While these theoretical results are quite elegant they

essentially rely on a linearized Taylor series expansion of the estimated IRF around the true pa-

rameter estimates. Some papers such as Sims (1986), Kilian and Chang (2000) have questioned

the applicability of the results to obtaining meaningful confidence intervals for the estimated

IRF . The variability and confidence intervals are known to be poorly estimated through the

”delta method” and asymptotic distribution theory when the data generating process has very

persistent autocorrelation, or has near unit root behavior. The delta method is further discussed

in Section 3.

This paper focuses on the problem of inference for estimating the IRF and their confidence

intervals in a multivariate setting where the individual processes are generated by strongly per-

sistent as well as weakly persistent processes. Although this does not cover the unit root case, it

nevertheless covers many practical problems in financial economics and also empirical macroe-

conomics. The necessary technical machinery builds on the methodology for the univariate

case developed by Baillie and Kapetanios (2013), which uses a non parametric, time domain

estimator, based on an autoregressive (AR) approximation and finds that it has good theoreti-

cal and small sample properties for the estimation of the IRF . Baillie and Kapetanios (2013)

also recommend using a generic semi parametric sieve bootstrap, based on an autoregressive

approximation for the construction of confidence intervals for the estimated IRF .

This paper develops the methodology for the multivariate situation and shows that a valid

method for conducting inference on the IRF for very persistent processes can be based on

estimating an approximating V AR. The validity of this approach is proven under quite mild

assumptions. The findings in this paper also indicate that a good strategy for analyzing IRF is

to estimate by a semi parametric V AR and to use the sieve bootstrap for estimating confidence

intervals. Simulation evidence indicates this approach appears to be a very good strategy for

both short, or long memory processes. One of the great attractions of the methodology is that

it is relatively simple to apply and that also avoids specification and estimation issues that can

make multivariate time series modeling difficult to apply in practice. Hence for the purpose of

purely estimating IRFs and their associated confidence intervals, the various difficulties related

with the identification and specification of multivariate ARMA models alluded to by Tiao and

Tsay (1989), Kapetanios, Pagan and Scott (2007) and Poskitt (2011), do not arise.

The plan of the rest of this paper is as follows; Section 2 reviews some basic theory and
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assumptions, while Section 3 discusses the standard approach of deriving the asymptotic distri-

bution for the estimated IRF and the problems with the theory in the presence of persistent

processes. Section 4 then derives the basic ideas behind the Sieve V AR Bootstrap and the theory

behind its validity. Section 5 describes some detailed simulation evidence on the performance of

the V AR for estimation of IRF s and the Sieve V AR for the derivation of confidence intervals

of the estimated IRFs. Section 6 provides the empirical applications of the new methodology

developed in this paper to (i) the well known bivariate mink and muskrat time series data,

which has been the subject of many previous investigations by time series analysts, and (ii)

daily realized volatility in currency markets. Section 7 summarizes the conclusions.

2 Basic Theory

This paper considers the vector time series process where yt is defined as an m dimensional

multivariate stochastic process of the form

yt =
∞∑
j=0

Ψjεt−j,

where εt is an unobserved, vector white noise process, such that E (εt) = 0, E
(
εtε

/
t

)
= Ω which

is an m dimensional, positive semi definite, covariance matrix and E
(
εtε

/
s

)
= 0 for t 6= s. The

sequence of IRF or Wold Decomposition matrices are defined such that Ψ0 = I, and that Ψj is

a sequence of m×m matrices of constants. On defining Ψ(L) =
∑∞

j=0 ΨjL
j then the spectral

density function is fy(ω) = 1
2π

Ψ(eiω)ΩΨ(e−iω). It is also assumed that

∞∑
j=0

ΨjΩΨ
/
j <∞.

Let ‖.‖ denote the Euclidean matrix norm. For subsequent analysis, the following assumptions

are invoked:

Assumption 1 is in two parts: (i) εt is an m dimensional ergodic martingale difference se-

quence, so that E(εt|εt−1, εt−2, ...) = 0, and E(εtε
/
t |εt−1, εt−2, ...) = Ω and the third and fourth

moments are matrices of finite constants.

Assumption 2 Ψ(L) = D(L)−1Ψ̃(L), where D(L) is a diagonal matrix with typical diagonal

element given by (1 − L)di and di is the long memory parameter for the i’th equation and

−0.5 < di < 0.5 for i = 1, 2, ..m. Ψ̃(L) =
∑∞

j=0 Ψ̃jL
j and

∑∞
j=0

∥∥∥Ψ̃j

∥∥∥ < ∞ . Furthermore,

Φ(z) ≡ Ψ(L)−1 =
∑∞

j=0 Φjz
j exists for all |z| ≤ 1 .

Hence, the above class of processes is very wide and includes all vector linear time series

processes considered in the existing literature, and encompasses long memory processes. The
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leading univariate case is the basic ARFIMA model of Granger (1980) and Granger and Joyeux

(1980). The multivariate version of the ARFIMA(p, d, q) model is the MVARFIMA(p, d, q)

which is given by

Π(L)D(L)yt = Θ(L)εt

where Ψ̃(L) = Π(L)−1Θ(L), Π(L) =
∑p

j=0 ΠjL
j, and Θ(L) =

∑q
j=0 ΘjL

j. The population

quantities of the multivariate version of this model are to be found in Sowell (1986) and Chung

(2002). Note that the standard assumption is that the process is weakly stationary with expo-

nentially decaying IRFs with Ψj = O (Cj) where C is a matrix of constants with eigenvalues

that are bounded from above by one in absolute value. Rather than invoking this standard

assumption, this paper considers the case where there is strong persistence in the IRFs, so that

the ‖Ψj‖ = O
(
jd−1

)
for 0 ≤ d < 0.5 as in Chung (2002). This implies that

∥∥∥∑∞j=0 ΨjΨ
′
j

∥∥∥ <∞.

In many practical applications of V ARs and of IRF analysis, there can be an issue of

identification and the desire to obtain the IRFs is response to a standardized shock with variance

equal to the identity matrix rather than Ω. Hence an investigator may wish to provide estimates

of
{
ΨjΩ

1/2
}h
j=1

rather than {Ψj}hj=1. Since Ω1/2 is not unique, then for a given Ω, it is necessary

to provide further identifying assumptions; e.g. Bernanke, Boivin and Eliasz (2005). See chapter

4 of Canova (2007) for a discussion of this literature. This paper abstracts from this issue, which

can be handled in any of the ways discussed in the relevant literature, for example see Baillie

(1987) and Lutkepohl (1988) for the V ARMA case. Hence this paper focuses on providing

estimates of {Ψj}hj=1.

3 Asymptotic Distributions of Estimated IRF

One standard parametric approach has been to specify a stationary and invertible MVARFIMA

model such that Π(L) and Θ(L), and therefore, Ψ(L) are parametrized so that they are functions

of a vector of parameters given by θ, where θ contains di, i = 1, 2, ..m, and to estimate θ by

either approximate or full MLE so that

√
T
(
θ̂ − θ0

)
L→ N(0,V) (1)

Note that θ0 denotes the true value of θ, and the symbol
L→ denotes convergence in distribution.

The theory for full and approximate MLE of multivariate ARFIMA models is described by

Sowell (1986, 1992a) and Chung (2002)1. For examples of some applications of the methodology,

see Diebold, Husted and Rush (1991) for the univariate case and see Sowell (1992b), Baillie and

Chung (2002) and Jensen (2009) for the multivariate case. In order to obtain confidence intervals

for the estimated vectorized IRF matrix at lag j, i.e. vec(Ψj,θ̂), where the subscript θ̂ denotes

1These reults have been explored in more detail for the univariate m=1 case by Baillie and Kapetanios (2013)
who use results of Hosoya (1997) which do not necessarily require the innovations to be i.i.d.. The extension to
vector long memory processes has not been attempted.
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dependence of Ψj on θ̂, a traditional method has been to use the delta method, which is based

on a linearized Taylor Series expansion around the true vectorized IRF at lag j, vec(Ψj,θ0). On

further assuming that εt is an i.i.d. sequence, that
∑∞

j=1 supθ |Ψj,θ| < ∞ and that V, defined

above is nonsingular, then for all j = 1, ..., h
√
T
(
vec(Ψj,θ̂)− vec(Ψj,θ0)

)
L→ N(0,D′jV

−1Dj) (2)

where Dj = ∂vec(Ψj,θ)
∂θ

∣∣∣
θ=θ0

. For stationary and invertible V ARMA models, there are parametric

expressions available for the matrix Dj. However, no corresponding results are yet available for

the MVARFIMA model.

The above traditional methodology is known to deliver poor results in the presence of very

persistent processes, such as long memory processes and also near unit root processes; see Wright

(2000) and Kilian (1998a, 1999). Hence this approach which has been shown to have poor prop-

erties in persistent univariate processes, is unlikely to possess desirable properties for persistent

multivariate processes.

4 Sieve VAR Bootstrap

Given the results in Baillie and Kapetanios (2013) for the persistent univariate process, the

estimation and inference approach taken in this paper is to extend the sieve AR approximations

with bootstrapped confidence intervals in the univariate case to a multivariate setting. Hence,

this paper considers approximating a multivariate persistent process with a V AR(∞) represen-

tation which exists under Assumption 2 by means of a V AR(pT ) model where the lag order, pT ,

is allowed to tend to infinity with the sample size. In particular

yt =

pT∑
j=1

Φ
(pT )
j yt−j + ṽt.

where
∑pT

j=1 Φ
(pT )
j yt−j is the linear projection of yt on yt−1, ...,yt−pT . The OLS estimates of

Φ
(pT )
j are obtained by fitting a V AR(pT ) model to the data and are denoted by Φ̂

(pT )

j . The

estimated IRFs are then obtained by inverting the truncated vector autoregression. It follows

from a straightforward extension of Theorem 5 of Poskitt (2007) that

pT∑
j=1

∥∥∥Φ̂(pT )
j −Φ

(pT )
j

∥∥∥2 = op(1)

for all sequences {pT} such that pT →∞ and pT = o(Tα) for all α > 0. An acceptable sequence

for pT is pT = [ln(T )]α where α > 1 ; [.] denotes the integer part. Also, from an extension of

Baxter’s inequality proven by Inoue and Kasahara (2006)

pT∑
j=1

∥∥∥Φ(pT )
j −Φj

∥∥∥ = o(1)
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as long as pT →∞. The selection of pT can be done through a data dependent method such as

an information criterion (e.g., AIC, or BIC) or by some deterministic rule such as pT = [ln(T )]2.

Then, IRF analysis proceeds by inverting the polynomial defined by Φ̂
(pT )
j , j = 1, ..., pT to give

Ψ̂
(pT )
j . Inference on Ψ̂

(pT )
j can be carried out by means of the bootstrap. A sieve bootstrap, that

is a direct extension of the univariate sieve bootstrap of Baillie and Kapetanios (2013), can be

implemented using the following algorithm:

1. Estimate a V AR(pT ) model on yt and obtain the estimated coefficients, Φ̂
(pT )
j , j = 1, ..., pT

and the residuals, ε̂t = yt −
∑min(pT ,t−1)

j=1 Φ̂
(pT )
j yt−j .

2. Invert Φ̂
(pT )
j (z) =

∑pT
j=1 Φ̂

(pT )
j zj to obtain estimates of the IRF given by Ψ̂

(pT )
j , j = 1, ..., h.

3. Re-center (ε̂1, ..., ε̂T )′.

4. Re-sample with replacement from this vector to obtain the bootstrap sample of error terms

given by (ε∗1, ..., ε
∗
T )′.

5. Use the above quantities together with Φ̂
(pT )
j , j = 1, ..., pT , to generate the bootstrap

sample (y∗1, ...,y
∗
T )′.

6. Estimate a V AR(pT ) for (y∗1, ...,y
∗
T )′ to obtain the bootstrap estimated autoregressive

coefficients given κ̂
∗,(pT )
j , j = 1, ..., pT .

7. Invert Φ̂∗,(pT )(z) =
∑pT

j=1j Φ̂∗,(pT )zj to obtain bootstrap estimates of the impulse responses

given by Φ̂
∗,(pT )
j , j = 1, ..., h.

8. Repeat the above algorithm B times and then use the resulting estimates of the IRF to

construct an empirical distribution of the IRF .

A further requirement for the valid application of the bootstrap requires an extension of

Theorem 1 in Poskitt (2007) to the autocovariances of multivariate processes. In particular

max
0≤τ≤pT

‖CT (τ)− Γ(τ)‖ = O

((
log T

T

)1/2−d
)
,

where Γ(τ) = E
(
yty

′
t+τ

)
and CT (τ) = 1

T

∑T
t=1 yty

′
t+τ . The proof of Theorem 1 of Poskitt

(2007) proceeds in the multivariate case exactly as in the univariate case given the result that

E
(
‖CT (τ)− Γ(τ)‖2

)
= O

(
T−2(1−2d)

)
.

which can be obtained from a straightforward extension of Theorems 3 and 4 of Hosking (1981).

In fact, this multivariate version of the result is provided by Corollary 1 of Chung (2002). This

essentially fulfills the requirements for extending the univariate results in Theorem 3.3 of Baillie

and Kapetanios (2013) to the multivariate framework of this paper and establishes the validity

of the sieve bootstrap given in the above algorithm.

6



5 Simulation Design

This section investigates the properties of the sieve V AR bootstrap procedure compared with

various other schemes. In order to have a meaningful comparison the data generating process

that is used is a MVARFIMA(1, d, 0) which can have substantial persistence given the choice

of the long memory parameter, d and with m = 2 dimensions. The data generating process can

be expressed as

D(L)yt = ut

ut = Φut−1 + εt.

where D(L) is an m dimensional square diagonal matrix and is constrained for convenience to

have the same long memory parameter across equations so that D(L) = (1− L)dIm, where Im is

an m dimensional identity matrix. A critical feature of the different simulation designs concerns

the persistence of the short memory V AR(1) components. The following three designs were used

with the short memory component being weakly persistent, moderately persistent and strongly,

or extremely persistent respectively.

Design 1 has the V AR(1) matrix

Φ =

(
1/3 −1/6
−1/3 1/2

)
which has an associated determinental lag operator polynomial given by |I−ΦL| = 1−(5/6)L+

(1/9)L which has roots of 6 and 1.5; so that the process is stationary and has eigenvalues of

0.17 and 0.667. This process is clearly stationary with low persistence.

Design 2 has the following V AR(1) coefficient matrix of

Φ =

(
0.7 0.4
0.6 −0.3

)
and |I−ΦL| = 1 − 0.40L − 0.45L2 which has roots of 1.11 and -2.00; so that the process is

stationary and has eigenvalues of 0.9 and -0.5; and therefore is moderately persistent.

Design 3 has the following V AR(1) coefficient matrix

Φ =

(
0.70 0.5
0.6 −0.25

)
and |I−ΦL| = 1− 0.45L− 0.475L2 which has roots of 1.053 and −2.00; so that the process is

stationary and has eigenvalues of 0.95 and -0.5; which implies quite extreme persistence.

For each design, Ω was specified to be diagonal, so that the innovation processes are con-

temporaneously uncorrelated; and hence

yi,t = (1− L)−duit
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for i = 1, 2 and with the same value of d assumed across the two series. The designs were chosen

for d = {0.2, 0.4} and for sample sizes of T = {250, 500, 1000} . The number of bootstraps was

599 and 2, 000 Monte Carlo replications were carried out; and the Kilian (1998a) correction was

applied using 2, 000 bootstrap replications. The results for the coverage rates for 90% confidence

level are reported in Figures 1 through 12. Each figure is divided into four parts. Starting with

the top left corner and continuing in a clockwise direction, the first panel depicts the coverage

rates for the IRF of y1 to y1, then y1 to y2, then y2 to y2 and finally y2 to y1. The terminology

V AR denotes the sieve V AR(pT ) bootstrap, where pT = [ln (T )]2, and V AR − K denotes the

sieve V AR(pT ) bootstrap,pT = [ln (T )]2, using the Kilian (1998a) correction and AIC − K

denotes the sieve V AR bootstrap, where P is chosen by the AIC, using the Kilian (1998a)

correction. The maximum order for the AIC is set as pT = [ln (T )]2.

In reporting the results the designs for d = 0.2 have been excluded; partly for reasons of

conserving space, and also since it transpired that they did not produce the degree of persistence

to be a real challenge to the methodology proposed in this paper. Hence, all the reported results

in Figures 1 through 12 relate only to the case of d = 0.4.

Starting with Figure 1, it can be seen that for Design 1, and with T = 250, both V AR and

V AR−K are close to the nominal 90% most of the time, especially after the first ten lags. As

expected the higher sample size of T = 500 for the same Design 1 shown in Figure 2 provides

improved coverage rates for both the V AR and V AR −K. In fact the nominal rate is reached

after only the first three lags. This result is further strengthened for the sample of T = 1, 000

observations in Figure 3. It is worth noting that there are minor differences between V AR and

V AR−K where V AR seems to be slightly better in short horizons and V AR−K has slightly

better performance for long lags; e.g. see the Figure 3 response of y2 to y2.

Figures 4, 5, and 6 present the results from simulation Design 2 using d = 0.4. In this case

the use of the AIC −K results in superior estimates of the IRF in all three sample sizes. The

quality of the estimates only deteriorates after the first thirty five lags. Particularly, in Figure

6, where the sample size of T = 1, 000 is illustrated, it is obvious that AIC −K is closer to the

nominal level in all cases. However, we see that in the response of y1 to y1 V AR−K crosses the

coverage rate of AIC − K from below and approaches the nominal rate after the first twenty

seven lags. However, in the other responses that same fact occurs after the first twenty lags.

Furthermore, analyzing the response of y2 to y2 it is clear that AIC − K decreases for longer

lags and the coverage rate line of V AR−K crosses AIC −K after the first ten lags.

Finally, the results from the last and very persistent Design 3 are illustrated in Figures 7

through 9 for the case of d = 0.4. The extreme persistence of the short memory V AR(1) in this

design is clearly a more challenging situation for the Sieve bootstrapping methodology presented

in this paper. It can be seen that the AIC −K provides coverage rates closest to the nominal

value and the choice of pT = [ln (T )]2 seems to not lead in any significant results.

Another important fact that should be noted in all the above designs is the effect of the

Kilian (1998a) correction. Focusing particularly in the small sample size of T = 250 where the
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correction is more meaningful, it can be seen that for Design 1, the bias correction does not add

any significant value. However, on moving to the more persistent systems in Designs 2 and 3,

the differences between V AR and V AR−K are obvious, with V AR−K providing by far better

coverage rates compared to V AR.

While some of the coverage rates are poor for the small sample size of T = 250, the

methodology nevertheless works extremely well for medium and large samples. In general the

V AR− AIC −K is seen to provide superior estimates and coverage rates.

6 Empirical Applications

6.1 Example of Mink and Muskrat

A number of previous studies have considered the bivariate process of the annual numbers of

mink and muskrat trapped by the Hudson Bay Company in northern Canada. The series are

considered to represent a proxy for the population numbers of these animals since the trapping

activity is considered to be constant over time. The series have fascinated time series analysts

for several reasons. First, the series display strong components of periodicity between nine and

eleven years which have been represented in articles by Bulmer (1974) and Chen and Wallis

(1978) by high order AR processes with complex conjugate roots. Secondly, the series are an

example of predator prey relationships with mink being a predator of muskrat. This feature has

been confirmed by the presence of a negative estimated coefficient in the off diagonal element

of the MA coefficient matrix in estimated V ARMA(2, 1) models by Chen and Wallis (1978)

and in canonical analysis by Terasvirta (1985). A third feature of the series is the uncertainty

over whether both series are weakly stationarity. This has led Bulmer (1974) to impose a unit

root in the muskrat series, but not the mink series; and also led Chen and Wallis (1978) to

detrend the series before estimating V ARMA models. The borderline decision on whether or

not to difference the series has been dealt with by Terasvirta (1985) through estimating canonical

V ARMA models; while Tong (1980) and Lim and Tong (1983) have estimated threshold AR

models.

In this study the bivariate V AR models were estimated over the period 1842 through to

1957, which was a period which appeared to be stationary and also to possess very persistent

autocorrelation. Given the lack of any clear theory for the ordering of the two types of innovations

on mink and muskrat, the bivariate V ARs were estimated for both possible orderings and the

sieve V ARs were inverted to derive estimated IRF s and the bootstrapped sieve V ARs used to

find associated confidence intervals. The four panels in Figure 10 show the estimated IRFs and

their bootstrapped confidence intervals. The estimated IRFs show that both mink and muskrat

respond positively to their own past innovations. The lower left hand panel indicates how recent

past innovations in mink promote a negative response in current muskrat. Furthermore, the top

right hand panel indicates that the innovations on past muskrats lead to positive responses in

current levels of mink. Both of these off diagonal IRF responses are consistent with the basic
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predator prey theory of how increases in mink lead to subsequent reductions in the muskrat

population; and also that increases in the muskrat population leads to subsequent increases in

the mink population. Figure 11 reports corresponding analysis with the ordering of the mink

and muskrat series being reversed. The results are extremely similar with the general pattern

in the estimated IRFs very similar to the previous figure; only with the patterns in the off

diagonals being reversed as expected.

6.2 Example of Realized Volatility

Anderson, Bollerslev, Diebold and Labys (2003) consider three Realized Volatility (RV ) series

composed of daily observations from 1 December 1986 through 30 June 1999 for the RV of the

US dollar, German Deutschmark and Japanese Yen. They conduct univariate analysis of the

three RV series and estimate ARFIMA(0, d, 0) models and also use a multivariate two step

filtering method which uses semi parametric estimates of d from each series and then filters out

the long memory component. One interesting aspect of their study is that they found no evidence

of common stochastic persistence (trends) in the data in the sense that a linear combination of

the three series has virtually the same order of fractional integration as the component series.

Figures 12 and 13 report the estimated IRFs and their bootstrapped confidence intervals for

the Yen-$ and DM-$ realized volatility series. As expected the IRFs for both realized volatility

series, indicate significant long memory effects with past innovations having long and substantial

effects on the current level of both own series’ realized volatility. An interesting feature is that

past innovations of the DM-$ realized volatility has persistent effects on current Yen-$ realized

volatility; yet there was no significant effects from past innovations of Yen-$ realized volatility

on current DM-$ realized volatility. Figure 13 presents the reverse causal orderings with very

similar conclusions.

7 Conclusion

This paper considers a multivariate system of strongly persistent time series and investigates

the most appropriate method for estimating the Impulse Response Function (IRF ) and its

associated confidence intervals. The paper has extended the univariate analysis recently provided

by Baillie and Kapetanios (2013), and has used a semi parametric, time domain estimator, based

on a vector autoregressive (V AR) approximation. This approximation is shown to have good

theoretical and small sample properties for the estimation of the IRF . The paper also advocates

a generic sieve V AR bootstrap for estimating confidence intervals for the estimated IRF. This

is shown to be a valid method for conducting inference on the IRF , and is proven under mild

assumptions. The theoretical and Monte Carlo findings in this paper indicate that a good

strategy for analyzing IRF is to estimate using semi-parametric V AR approximations, and to

use the sieve V AR bootstrap for estimating confidence intervals. One of the great attractions

of the methodology is that it is simple to apply and avoids specification and estimation issues
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for multivariate time series models.
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Figure 1: Design 1, d = 0.4, T = 250, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 2: Design 1, d = 0.4, T = 500, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 3: Design 1, d = 0.4, T = 1000, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 4: Design 2, d = 0.4, T = 250, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 5: Design 2, d = 0.4, T = 500, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 6: Design 2, d = 0.4, T = 1000, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 7: Design 3, d = 0.4, T = 250, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 8: Design 3, d = 0.4, T = 500, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 9: Design 3, d = 0.4, T = 1000, Monte Carlo averages of IRWs and coverage rates.

Notes. Black solid line represents the nominal coverage rate. Sieve VAR denotes the sieve VAR bootstrap with p = ln(T )2, Sieve VAR-K denotes

the sieve VAR bootstrap with p = ln(T )2 and Kilian (1998a) correction, Sieve VAR-AIC-K denotes the sieve VAR bootstrap with p chosen using the

Akaike’s criterion and Kilian (1998a) correction.
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Figure 10: Mink & Muskrat Impulse Response Function.

Notes. Sieve VAR-BIC denotes the VAR(p) with p chosen using the Bayesian criterion, Sieve VAR-K denotes the sieve VAR bootstrap with

p = ln(T )2 and Kilian (1998a) correction; the red dotted lines represent its bounds.
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Figure 11: Muskrat & Mink Impulse Response Function.

Notes. Sieve VAR-BIC denotes the VAR(p) with p chosen using the Bayesian criterion, Sieve VAR-K denotes the sieve VAR bootstrap with

p = ln(T )2 and Kilian (1998a) correction; the red dotted lines represent its bounds.
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Figure 12: DM-$ & DM-Yen Impulse Response Function.

Notes. Sieve VAR-BIC denotes the VAR(p) with p chosen using the Bayesian criterion, Sieve VAR-K denotes the sieve VAR bootstrap with

p = ln(T )2 and Kilian (1998a) correction; the red dotted lines represent its bounds.
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Figure 13: DM-Yen & DM-$ Impulse Response Function.

Notes. Sieve VAR-BIC denotes the VAR(p) with p chosen using the Bayesian criterion, Sieve VAR-K denotes the sieve VAR bootstrap with

p = ln(T )2 and Kilian (1998a) correction; the red dotted lines represent its bounds.
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