Identification and Estimation of a Nonparametric Panel Data Model with Unobserved Heterogeneity

Kirill Evdokimov

Yale University
May, 2010

This paper is about:

- Unobserved Heterogeneity
- Nonparametric Panel Data Model
- Distribution of Heterogeneous Marginal Effects
- Nonparametric Identification and Estimation

Plan

- Model and Examples
- Related Literature
- Identification
- Estimation
- Empirical Illustration

Model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t} ; \quad i=1, \ldots, n ; t=1, \ldots, T
$$

- i - individual, t - time period
- Observed: $Y_{i t}$ and $X_{i t}$
- Unobserved: α_{i} - scalar heterogeneity, $U_{i t}$ - idiosyncratic shocks
- function $m(x, \alpha)$ is not known
- $\partial m\left(X_{i t}, \alpha_{i}\right) / \partial x$ depends on $\alpha_{i} \Rightarrow$ heterogeneous marginal effects
- will ID $m(x, \alpha)$ and $F_{\alpha_{i}}\left(\alpha \mid X_{i t}\right)$
- distributions of the outcomes, counterfactuals
- "what percentage of the treated would be better/worse off?"

Model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t} ; \quad i=1, \ldots, n ; t=1, \ldots, T
$$

- i - individual, t - time period
- Observed: $Y_{i t}$ and $X_{i t}$
- Unobserved: α_{i} - scalar heterogeneity, $U_{i t}$ - idiosyncratic shocks
- function $m(x, \alpha)$ is not known
- $\partial m\left(X_{i t}, \alpha_{i}\right) / \partial x$ depends on $\alpha_{i} \Rightarrow$ heterogeneous marginal effects
- will ID $m(x, \alpha)$ and $F_{\alpha_{i}}\left(\alpha \mid X_{i t}\right)$
- distributions of the outcomes, counterfactuals
- "what percentage of the treated would be better/worse off?"

Model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t} ; \quad i=1, \ldots, n ; t=1, \ldots, T
$$

- i - individual, t - time period
- Observed: $Y_{i t}$ and $X_{i t}$
- Unobserved: α_{i} - scalar heterogeneity, $U_{i t}$ - idiosyncratic shocks
- function $m(x, \alpha)$ is not known
- $\partial m\left(X_{i t}, \alpha_{i}\right) / \partial x$ depends on $\alpha_{i} \Rightarrow$ heterogeneous marginal effects
- will ID $m(x, \alpha)$ and $F_{\alpha_{i}}\left(\alpha \mid X_{i t}\right)$
- distributions of the outcomes, counterfactuals
- "what percentage of the treated would be better/worse off?"

Model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t} ; \quad i=1, \ldots, n ; t=1, \ldots, T
$$

- i - individual, t - time period
- Observed: $Y_{i t}$ and $X_{i t}$
- Unobserved: α_{i} - scalar heterogeneity, $U_{i t}$ - idiosyncratic shocks
- function $m(x, \alpha)$ is not known

Some assumptions:

- $E\left[U_{i t} \mid X_{i t}\right]=0$ and $U_{i t} \perp \alpha_{i} \mid X_{i t}$
- no restrictions on $F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right) \Rightarrow$ fixed effects
- no parametric assumptions; $T=2$ is sufficient
- $Y_{i t}$ must be cont.; also, no lagged dep. variables

Motivation

Union Wage Premium

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}
$$

- $Y_{i t}$ is (log)-wage,
- $X_{i t}$ is 1 if member of a union, $0 \mathrm{o} / \mathrm{w}$,
- α_{i} is skill and $U_{i t}$ is luck
- $m\left(1, \alpha_{i}\right)-m\left(0, \alpha_{i}\right)$ is union wage premium
- When $m\left(X_{i t}, \alpha_{i}\right)=X_{i t} \beta+\alpha_{i}$, it becomes

$$
m\left(1, \alpha_{i}\right)-m\left(0, \alpha_{i}\right)=\beta=\text { const }!
$$

Motivation

Union Wage Premium

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}
$$

- $Y_{i t}$ is (log)-wage,
- $X_{i t}$ is 1 if member of a union, $0 \mathrm{o} / \mathrm{w}$,
- α_{i} is skill and $U_{i t}$ is luck
- $m\left(1, \alpha_{i}\right)-m\left(0, \alpha_{i}\right)$ is union wage premium may be NOT monotone in α_{i}
- When $m\left(X_{i t}, \alpha_{i}\right)=X_{i t} \beta+\alpha_{i}$, it becomes

$$
m\left(1, \alpha_{i}\right)-m\left(0, \alpha_{i}\right)=\beta=\text { const }!
$$

Motivation $\left(Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}\right)$

Life Cycle Models of Consumption and Labor Supply

- Heckman and MaCurdy (1980), MaCurdy (1981). Under the assumptions of these papers and $\rho=r$:

$$
C_{i t}=\underbrace{C\left(W_{i t}, \lambda_{i}\right)}_{\text {unknown fn. }}+\underbrace{U_{i t}}_{\text {meas.err. }}
$$

- $C_{i t}$ and $W_{i t}$ - (log) consumption and hourly wage
- λ_{i} - Lagrange multiplier
- Parametric specification of utility \Rightarrow additively separable λ_{i}
- Instead note that:
- $C(w, \lambda)$ is unknown
- $C(w, \lambda)$ is strictly increasing in λ
- (unobserved) λ_{i} is likely to be correlated with $W_{i t}$

Motivation $\left(Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}\right)$

Life Cycle Models of Consumption and Labor Supply

- Heckman and MaCurdy (1980), MaCurdy (1981). Under the assumptions of these papers and $\rho=r$:

$$
C_{i t}=\underbrace{C\left(W_{i t}, \lambda_{i}\right)}_{\text {unknown fn. }}+\underbrace{U_{i t}}_{\text {meas.err. }}
$$

- $C_{i t}$ and $W_{i t}$ - (log) consumption and hourly wage
- λ_{i} - Lagrange multiplier
- Parametric specification of utility \Rightarrow additively separable λ_{i}
- Instead note that:
$C(w, \lambda)$ is unknown
$C(w, \lambda)$ is strictly increasing in λ
(unobserved) λ_{i} is likely to be correlated with $W_{i t}$

Motivation $\left(Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}\right)$

Life Cycle Models of Consumption and Labor Supply

- Heckman and MaCurdy (1980), MaCurdy (1981). Under the assumptions of these papers and $\rho=r$:

$$
C_{i t}=\underbrace{C\left(W_{i t}, \lambda_{i}\right)}_{\text {unknown fn. }}+\underbrace{U_{i t}}_{\text {meas.err. }}
$$

- $C_{i t}$ and $W_{i t}$ - (log) consumption and hourly wage
- λ_{i} - Lagrange multiplier
- Parametric specification of utility \Rightarrow additively separable λ_{i}
- Instead note that:
- $C(w, \lambda)$ is unknown
- $C(w, \lambda)$ is strictly increasing in λ
- (unobserved) λ_{i} is likely to be correlated with $W_{i t}$
- can handle this nonparametrically

Motivation (

Life Cycle Models of Consumption and Labor Supply

- Heckman and MaCurdy (1980), MaCurdy (1981). Under the assumptions of these papers and $\rho=r$:

$$
C_{i t}=\underbrace{C\left(W_{i t}, \lambda_{i}\right)}_{\text {unknown fn. }}+\underbrace{U_{i t}}_{\text {meas.err. }}
$$

- $C_{i t}$ and $W_{i t}$ - (log) consumption and hourly wage
- λ_{i} - Lagrange multiplier
- Parametric specification of utility \Rightarrow additively separable λ_{i}
- Instead note that:
- $C(w, \lambda)$ is unknown
- $C(w, \lambda)$ is strictly increasing in λ
- (unobserved) λ_{i} is likely to be correlated with $W_{i t}$
- can handle this nonparametrically

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature

Semiparametric Models:

- Arellano \& Hahn (2006), Hahn \& Newey (2004), Woutersen (2002) bias reduction
- Honore \& Tamer (2006), Chernozhukov et al. (2006) - set ID

Correlated Random Effects (exchangeability or index restrictions):

- Altonji \& Matzkin (2005), Bester \& Hansen (2009) - avg. derivative
- Altonji \& Matzkin (2005) - struct. fn, but scalar unobs.

Related papers:

- Kitamura (2004) - finite mixture
- Horowitz \& Markatou (1996) - linear panel, deconvolution

Related Literature - 2 (Very recent)

Linear:

- Arellano \& Bonhomme (2008) - linear, distr. of coeffs
- Graham \& Powell (2008) - linear, means of coeffs
- Graham \& Hahn \& Powell (2009) - linear, quantile effects

General Nonlinear:

- Chernozhukov \& Fernandez-Val \& Newey (2009) - set ID, effects
- Hoderlein \& White (2009) - cont. covar., effects

Also:

- Evdokimov (2009) - time-varying struct. fn., full ID

Related Literature - 2 (Very recent)

Linear:

- Arellano \& Bonhomme (2008) - linear, distr. of coeffs
- Graham \& Powell (2008) - linear, means of coeffs
- Graham \& Hahn \& Powell (2009) - linear, quantile effects

General Nonlinear:

- Chernozhukov \& Fernandez-Val \& Newey (2009) - set ID, effects
- Hoderlein \& White (2009) - cont. covar., effects

Also:

- Evdokimov (2009) - time-varying struct. fn., full ID

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain } \operatorname{distr} \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain distr } \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain distr } \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain } \operatorname{distr} \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain distr } \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain } \operatorname{distr} \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain distr } \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain } \operatorname{distr} \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain } \operatorname{distr} \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain distr } \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

(1) Subpopulation $X_{i 1}=X_{i 2}=x$: then

$$
\begin{aligned}
m\left(X_{i 1}, \alpha_{i}\right) & =m\left(X_{i 2}, \alpha_{i}\right)=m\left(x, \alpha_{i}\right) \\
Y_{i 1} & =m\left(x, \alpha_{i}\right)+U_{i 1} \\
Y_{i 2} & =m\left(x, \alpha_{i}\right)+U_{i 2} \\
Y_{i 1}-Y_{i 2} & =U_{i 1}-U_{i 2} \Longrightarrow \text { Obtain distr } \mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)
\end{aligned}
$$

(2) Deconvolve: $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \alpha_{i} \perp U_{i t}$ given $X_{i t}=x$, thus

$$
\underbrace{\mathcal{L}\left(Y_{i t} \mid X_{i t}=x\right)}_{\text {from data }}=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right) * \underbrace{\mathcal{L}\left(U_{i t} \mid X_{i t}=x\right)}_{\text {from step } 1},
$$

where "*" means "convolution" and " \mathcal{L} " means "probability \mathcal{L} aw". Then obtain $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$ by deconvolution
(3) Use $\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i t}=x\right)$, eg. quantiles $Q_{m\left(x, \alpha_{i}\right) \mid X_{i t}}(q \mid x)$ [for nonparametric between- or within- variation]

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(9) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(1) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(9) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(1) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(1) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(1) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

$$
U_{i t}=\sigma_{t}\left(X_{i t}\right) \cdot \epsilon_{i t}, \quad \epsilon_{i t} \sim i . i . d(0,1)
$$

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(9) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Theorem (Identification)

Consider the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t},
$$

and suppose that

(1) $f_{X_{i 1}, X_{i 2}}(x, x)>0$ for all x
(2) $m(x, \alpha)$ is strictly increasing in α
(3) $\mathcal{L}\left(U_{i 1} \mid X_{i 1}, \alpha_{i}, X_{i 2}, U_{i 2}\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}\right)$ (and similarly for $U_{i 2}$)
(9) $E\left[U_{i t} \mid X_{i t}\right]=0$ and some other assumptions...

Then, model (1) is identified, i.e. $m(x, \alpha), F_{\alpha_{i}}\left(\alpha \mid X_{i t}=x\right)$,
$F_{U_{i t}}\left(u \mid X_{i t}=x\right)$ are identified.

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

Kotlarski's (1967) lemma (slightly improved): A, U_{1}, U_{2} are not observed. Observe $\left(Z_{1}, Z_{2}\right)$:

$$
\begin{aligned}
& Z_{1}=A+U_{1} \\
& Z_{2}=A+U_{2}
\end{aligned}
$$

- A, U_{1}, and U_{2} are mutually independent
- characteristic functions $\phi_{U_{t}}(s)$ are nonvanishing
- $E\left[U_{1}\right]=0$
\Longrightarrow then the distributions of U_{1}, U_{2}, and A are ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

- Kotlarski (1967): Observe $\left(Z_{1}, Z_{2}\right)$, where

$$
\binom{Z_{1}}{Z_{2}}=\binom{A+U_{1}}{A+U_{2}}
$$

- KEY: $m\left(X_{i 1}, \alpha_{i}\right)=m\left(X_{i 2}, \alpha_{i}\right)$ when $X_{i 1}=X_{i 2}$. Thus

$$
\binom{Y_{i 1}}{Y_{i 2}}\left|\left\{X_{i 1}=X_{i 2}=x\right\}=\binom{m\left(x, \alpha_{i}\right)+U_{i 1}}{m\left(x, \alpha_{i}\right)+U_{i 2}}\right|\left\{X_{i 1}=X_{i 2}=x\right\}
$$

- ID'ed $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)$
- $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=X_{i 2}=x\right)=\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$, thus $\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)$ is ID'ed

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:
$\underbrace{\mathcal{L}\left(Y_{i 1} \mid X_{i 1}=x\right)=}_{\text {from data }} \mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i 1}=x\right) * \underbrace{\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)}_{\text {from step } 1}$
- Then, for any $q \in(0,1)$:

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

$$
\underbrace{\mathcal{L}\left(Y_{i 1} \mid X_{i 1}=x\right)=}_{\text {from data }} \mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i 1}=x\right) * \underbrace{\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)}_{\text {from step } 1}
$$

- Then, for any $q \in(0,1)$:

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:
$\underbrace{\mathcal{L}\left(Y_{i 1} \mid X_{i 1}=x\right)=}_{\text {from data }} \mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i 1}=x\right) * \underbrace{\mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)}_{\text {from step } 1}$
- Then, for any $q \in(0,1)$:

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

- Then, for any $q \in(0,1)$:

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

- Then, for any $q \in(0,1)$:

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

- Then, for any $q \in(0,1)$:

$$
Q_{m\left(x, \alpha_{i}\right)}\left(q \mid X_{i 1}=x\right)=m\left(x, Q_{\alpha_{i}}\left(q \mid X_{i 1}=x\right)\right)=m(x, q)
$$

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

- Then, for any $q \in(0,1)$:

$$
Q_{m\left(x, \alpha_{i}\right)}\left(q \mid X_{i 1}=x\right)=m\left(x, Q_{\alpha_{i}}\left(q \mid X_{i 1}=x\right)\right)=m(x, q)
$$

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

- Then, for any $q \in(0,1)$:

$$
Q_{m\left(x, \alpha_{i}\right)}\left(q \mid X_{i 1}=x\right)=m\left(x, Q_{\alpha_{i}}\left(q \mid X_{i 1}=x\right)\right)=m(x, q)
$$

Identification, Random Effects

- Random Effects: α_{i} is independent of $X_{i t}$
- Normalization: $\alpha_{i} \sim U[0,1]$
- For any x consider:

- Then, for any $q \in(0,1)$:

$$
Q_{m\left(x, \alpha_{i}\right)}\left(q \mid X_{i 1}=x\right)=m\left(x, Q_{\alpha_{i}}\left(q \mid X_{i 1}=x\right)\right)=m(x, q)
$$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$$
\begin{aligned}
& \mathcal{L}\left(Y_{i 1} \mid \mathcal{G}_{x}\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid \mathcal{G}_{x}\right) * \mathcal{L}\left(U_{i 1} \mid \mathcal{G}_{x}\right) \\
& \underbrace{\mathcal{L}\left(Y_{i 2} \mid \mathcal{G}_{x}\right)}_{\text {from data }}=\mathcal{L}\left(m\left(\bar{x}, \alpha_{i}\right) \mid \mathcal{G}_{x}\right) * \underbrace{\mathcal{L}\left(U_{i 2} \mid \mathcal{G}_{x}\right)}_{\text {from step } 1}
\end{aligned}
$$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$$
\begin{aligned}
& \mathcal{L}\left(Y_{i 1} \mid \mathcal{G}_{x}\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid \mathcal{G}_{x}\right) * \mathcal{L}\left(U_{i 1} \mid \mathcal{G}_{x}\right) \\
& \underbrace{\mathcal{L}\left(Y_{i 2} \mid \mathcal{G}_{x}\right)}_{\text {from data }}=\mathcal{L}\left(m\left(\bar{x}, \alpha_{i}\right) \mid \mathcal{G}_{x}\right) * \underbrace{\mathcal{L}\left(U_{i 2} \mid \mathcal{G}_{x}\right)}_{\text {from step } 1}
\end{aligned}
$$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$$
\begin{aligned}
& \mathcal{L}\left(Y_{i 1} \mid \mathcal{G}_{x}\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid \mathcal{G}_{x}\right) * \mathcal{L}\left(U_{i 1} \mid \mathcal{G}_{x}\right) \\
& \underbrace{\mathcal{L}\left(Y_{i 2} \mid \mathcal{G}_{x}\right)}_{\text {from data }}=\mathcal{L}\left(m\left(\bar{x}, \alpha_{i}\right) \mid \mathcal{G}_{x}\right) * \underbrace{\mathcal{L}\left(U_{i 2} \mid \mathcal{G}_{x}\right)}_{\text {from step } 1}
\end{aligned}
$$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, a_{i}\right)}\left(F_{m\left(\bar{x}, a_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, a_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$Q_{m\left(x, \alpha_{i}\right)}(q \mid x, \bar{x})$
$Q_{m\left(\bar{x}, \alpha_{i}\right)}(q \mid x, \bar{x})$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$Y_{i 1}: \quad Q_{m\left(x, \alpha_{i}\right)}(q \mid x, \bar{x})$
$Y_{i 2}: \quad Q_{m\left(\bar{x}, \alpha_{i}\right)}(q \mid x, \bar{x})$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m(x, a)}\left(F_{m\left(\bar{x}, a_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$Y_{i 1}: Q_{m\left(x, \alpha_{i}\right)}(q \mid x, \bar{x})=m\left(x, Q_{\alpha_{i}}(q \mid x, \bar{x})\right)$
$Y_{i 2}: \quad Q_{m\left(\bar{x}, \alpha_{i}\right)}(q \mid x, \bar{x})$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, a_{i}\right)}\left(F_{m\left(\bar{x}, a_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$Y_{i 1}: Q_{m\left(x, \alpha_{i}\right)}(q \mid x, \bar{x})=m\left(x, Q_{\alpha_{i}}(q \mid x, \bar{x})\right)$
$Y_{i 2}: Q_{m\left(\bar{x}, \alpha_{i}\right)}(q \mid x, \bar{x})=\quad Q_{\alpha_{i}}(q \mid x, \bar{x})$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$Y_{i 1}: Q_{m\left(x, \alpha_{i}\right)}(q \mid x, \bar{x})=m\left(x, Q_{\alpha_{i}}(q \mid x, \bar{x})\right)$
$Y_{i 2}: Q_{m\left(\bar{x}, \alpha_{i}\right)}(q \mid x, \bar{x})=\quad Q_{\alpha_{i}}(q \mid x, \bar{x})$

Then $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

Identification, Fixed Effects

Normalization: for some $\bar{x}, m(\bar{x}, \alpha)=\alpha$ for all α
For any x denote $\mathcal{G}_{x}=\left\{X_{i 1}=x, X_{i 2}=\bar{x}\right\}$:

$$
\begin{array}{llll}
Y_{i 1}: & Q_{m\left(x, \alpha_{i}\right)}(q \mid x, \bar{x}) & =m\left(x, Q_{\alpha_{i}}(q \mid x, \bar{x})\right) \\
Y_{i 2}: & Q_{m\left(\bar{x}, \alpha_{i}\right)}(q \mid x, \bar{x}) & = & Q_{\alpha_{i}}(q \mid x, \bar{x})
\end{array}
$$

Then $m(x, a)$ is ID'ed by

$$
m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)
$$

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

The structural function $m(x, a)$ is ID'ed by

$$
m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)
$$

- ID'ed $m(x, a)$ for all x and all a from $\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$
- Want ID for all α from $\operatorname{Supp}\left(\alpha_{i}\right)$
- May assume: $\operatorname{Supp}\left(\alpha_{i}\right)=\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$ (cf. Altonji and Matzkin, 2005)
- $h(x, q) \equiv m\left(x, Q_{\alpha_{i}}(q)\right)$

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

The structural function $m(x, a)$ is ID'ed by

$$
m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)
$$

- ID'ed $m(x, a)$ for all x and all a from $\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$
- Want ID for all α from $\operatorname{Supp}\left(\alpha_{i}\right)$
- May assume: $\operatorname{Supp}\left(\alpha_{i}\right)=\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$ (cf. Altonji and Matzkin, 2005)
- $h(x, q) \equiv m\left(x, Q_{\alpha_{i}}(q)\right)$

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

The structural function $m(x, a)$ is ID'ed by

$$
m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)
$$

- ID'ed $m(x, a)$ for all x and all a from $\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$
- Want ID for all α from $\operatorname{Supp}\left(\alpha_{i}\right)$
- May assume: $\operatorname{Supp}\left(\alpha_{i}\right)=\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$ (cf. Altonji and Matzkin, 2005)
- $h(x, q) \equiv m\left(x, Q_{\alpha_{i}}(q)\right)$

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

The structural function $m(x, a)$ is ID'ed by

$$
m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)
$$

- ID'ed $m(x, a)$ for all x and all a from $\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$
- Want ID for all α from $\operatorname{Supp}\left(\alpha_{i}\right)$
- May assume: $\operatorname{Supp}\left(\alpha_{i}\right)=\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$ (cf. Altonji and Matzkin, 2005)
- $h(x, q) \equiv m\left(x, Q_{\alpha_{i}}(q)\right)$

Identification, $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}$

The structural function $m(x, a)$ is ID'ed by
$m(x, a)=Q_{m\left(x, \alpha_{i}\right)}\left(F_{m\left(\bar{x}, \alpha_{i}\right)}(a \mid x, \bar{x}) \mid x, \bar{x}\right)$

- ID'ed $m(x, a)$ for all x and all a from $\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$
- Want ID for all α from $\operatorname{Supp}\left(\alpha_{i}\right)$
- May assume: $\operatorname{Supp}\left(\alpha_{i}\right)=\operatorname{Supp}\left(\alpha_{i} \mid X_{i 1}=x, X_{i 2}=\bar{x}\right)$ (cf. Altonji and Matzkin, 2005)
- $h(x, q) \equiv m\left(x, Q_{\alpha_{i}}(q)\right)$

Identification, Comparison RE vs FE

- Random Effects (α_{i} and $X_{i t}$ are independent)

$$
\mathcal{L}\left(Y_{i 1} \mid X_{i 1}=x\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i 1}=x\right) * \mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)
$$

- Uses between-variation
- The effect of time-invariant covariates is identified
- $m(x, \alpha)$ can be weakly increasing in α
- Fixed Effects (α_{i} and $X_{i t}$ are not independent)

$$
\begin{aligned}
& \mathcal{L}\left(Y_{i 1} \mid x, \bar{x}\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid x, \bar{x}\right) * \mathcal{L}\left(U_{i 1} \mid x, \bar{x}\right) \\
& \mathcal{L}\left(Y_{i 2} \mid x, \bar{x}\right)=\mathcal{L}\left(m\left(\bar{x}, \alpha_{i}\right) \mid x, \bar{x}\right) * \mathcal{L}\left(U_{i 2} \mid x, \bar{x}\right)
\end{aligned}
$$

- Uses only within-variation
- The effect of time-invariant covariates is not identified

Identification, Comparison RE vs FE

- Random Effects (α_{i} and $X_{i t}$ are independent)

$$
\mathcal{L}\left(Y_{i 1} \mid X_{i 1}=x\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid X_{i 1}=x\right) * \mathcal{L}\left(U_{i 1} \mid X_{i 1}=x\right)
$$

- Uses between-variation
- The effect of time-invariant covariates is identified
- $m(x, \alpha)$ can be weakly increasing in α
- Fixed Effects (α_{i} and $X_{i t}$ are not independent)

$$
\begin{aligned}
& \mathcal{L}\left(Y_{i 1} \mid x, \bar{x}\right)=\mathcal{L}\left(m\left(x, \alpha_{i}\right) \mid x, \bar{x}\right) * \mathcal{L}\left(U_{i 1} \mid x, \bar{x}\right) \\
& \mathcal{L}\left(Y_{i 2} \mid x, \bar{x}\right)=\mathcal{L}\left(m\left(\bar{x}, \alpha_{i}\right) \mid x, \bar{x}\right) * \mathcal{L}\left(U_{i 2} \mid x, \bar{x}\right)
\end{aligned}
$$

- Uses only within-variation
- The effect of time-invariant covariates is not identified

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Extensions

- Time Effects

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}, \quad \eta_{1}(x) \equiv 0
$$

Remember that $m\left(X_{i t}, \alpha_{i}\right)=m\left(X_{i 1}, \alpha_{i}\right)$ when $X_{i t}=X_{i 1}=x$,

$$
\begin{aligned}
& E\left[Y_{i t}-Y_{i 1} \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[m\left(X_{i t}, \alpha_{i}\right)+\eta_{t}\left(X_{i t}\right)+U_{i t}\right. \\
& \left.-\left(m\left(X_{i 1}, \alpha_{i}\right)+U_{i 1}\right) \mid X_{i t}=X_{i 1}=x\right] \\
= & E\left[\eta_{t}\left(X_{i t}\right)+U_{i t}-U_{i 1} \mid X_{i t}=X_{i 1}=x\right]=\eta_{t}(x)
\end{aligned}
$$

- Similarly, can identify β in the model

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+W_{i t}^{\prime} \beta+U_{i t}
$$

- ID when $U_{i t}=\rho U_{i t-1}+\varepsilon_{i t}$ and $T \geq 3$

Misclassification

- Suppose $X_{i t}^{*} \in\{0,1\}$ and

$$
X_{i t}=\left\{\begin{array}{cc}
X_{i t}^{*}, & \text { with probability } p \\
1-X_{i t}^{*}, & \text { with probability } 1-p .
\end{array}\right.
$$

- Suppose p is known (eg. from a validation study). Write

$$
\begin{aligned}
\phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}, X_{i 2}}\left(s_{1}, s_{2} \mid 0,0\right) & =p^{2} \phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}^{*}, X_{i 2}^{*}}\left(s_{1}, s_{2} \mid 0,0\right) \\
& +p(1-p) \phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}^{*}, X_{i 2}^{*}}\left(s_{1}, s_{2} \mid 0,1\right) \\
& +p(1-p) \phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}^{*}, X_{i 2}^{*}}\left(s_{1}, s_{2} \mid 1,0\right) \\
& +(1-p)^{2} \phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}^{*}, X_{i 2}^{*}}\left(s_{1}, s_{2} \mid 1,1\right),
\end{aligned}
$$

and similarly for $\phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}, X_{i 2}}\left(s_{1}, s_{2} \mid 0,1\right), \ldots$

- Then can solve for $\phi_{Y_{i 1}, Y_{i 2} \mid X_{i 1}^{*}, X_{i 2}^{*}}\left(s_{1}, s_{2} \mid 0,0\right), \ldots$

Estimation, Conditional Deconvolution

- $\phi_{Y_{i 1}}\left(s \mid X_{i 1}=x\right)=E\left[\exp \left\{\mathfrak{i s} Y_{i 1}\right\} \mid X_{i t}=x\right], \mathfrak{i}=\sqrt{-1}$,

$$
\hat{\phi}_{Y_{i t}}(s \mid x)=\frac{\sum_{i=1}^{n} \exp \left(i s Y_{i t}\right) K\left(\left(X_{i t}-x\right) / h_{Y}\right)}{\sum_{i=1}^{n} K\left(\left(X_{i t}-x\right) / h_{Y}\right)},
$$

where $h_{Y} \rightarrow 0$ is a bandwidth

Estimator:

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence

Estimation, Conditional Deconvolution

- $\phi_{Y_{i 1}}\left(s \mid X_{i 1}=x\right)=E\left[\exp \left\{\mathfrak{i s} Y_{i 1}\right\} \mid X_{i t}=x\right], \mathfrak{i}=\sqrt{-1}$,

$$
\hat{\phi}_{Y_{i t}}(s \mid x)=\frac{\sum_{i=1}^{n} \exp \left(i s Y_{i t}\right) K\left(\left(X_{i t}-x\right) / h_{Y}\right)}{\sum_{i=1}^{n} K\left(\left(X_{i t}-x\right) / h_{Y}\right)},
$$

where $h_{Y} \rightarrow 0$ is a bandwidth

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence

Estimation, Conditional Deconvolution

- $\phi_{Y_{i 1}}\left(s \mid X_{i 1}=x\right)=E\left[\exp \left\{\mathfrak{i s} Y_{i 1}\right\} \mid X_{i t}=x\right], \mathfrak{i}=\sqrt{-1}$,

$$
\hat{\phi}_{Y_{i t}}(s \mid x)=\frac{\sum_{i=1}^{n} \exp \left(\mathfrak{i s} Y_{i t}\right) K\left(\left(X_{i t}-x\right) / h_{Y}\right)}{\sum_{i=1}^{n} K\left(\left(X_{i t}-x\right) / h_{Y}\right)}
$$

where $h_{Y} \rightarrow 0$ is a bandwidth

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence

Estimation, Conditional Deconvolution

where $h_{Y} \rightarrow 0$ is a bandwidth

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence

Estimation, Conditional Deconvolution

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence
- Complications: zeros in the denominators

- Ordinary-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$
- eg: Laplace, χ_{k}^{2}, Exp, Gamma
- Super-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C \exp \left(-C_{2}|s|^{\lambda_{U}}\right)$,
- eg: Normal, Student- t_{k}, Cauchy

Estimation, Conditional Deconvolution

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence
- Complications: zeros in the denominators

Estimation, Conditional Deconvolution

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence
- Complications: zeros in the denominators
- $\phi_{U_{i t}}(s \mid x) \rightarrow 0$ as $s \rightarrow \pm \infty$. Two cases:
- Ordinary-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$,
- eg: Laplace, χ_{k}^{2}, Exp, Gamma
- Super-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C \exp \left(-C_{2}|s|^{\lambda_{U}}\right)$,
- eg: Normal, Student- t_{k}, Cauchy

Estimation, Conditional Deconvolution

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence
- Complications: zeros in the denominators
- $\phi_{U_{i t}}(s \mid x) \rightarrow 0$ as $s \rightarrow \pm \infty$. Two cases:
- Ordinary-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda u}$,
- eg: Laplace, χ_{k}^{2}, Exp, Gamma
- Super-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C \exp \left(-C_{2}|s|^{\lambda_{U}}\right)$,
- eg: Normal, Student- t_{k}, Cauchy

Estimation, Conditional Deconvolution

Estimator:

$$
\hat{F}_{m\left(x, \alpha_{i}\right)}(\omega \mid x)=\frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s
$$

- Conditional deconvolution (cf. Fan, 1991; Diggle and Hall, 1993)
- Derive the rates of convergence
- Complications: zeros in the denominators
- $\phi_{U_{i t}}(s \mid x) \rightarrow 0$ as $s \rightarrow \pm \infty$. Two cases:
- Ordinary-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$,
- eg: Laplace, χ_{k}^{2}, Exp, Gamma
- Super-smooth: $\inf _{x}\left|\phi_{U_{i t}}(s \mid x)\right| \sim C \exp \left(-C_{2}|s|^{\lambda_{U}}\right)$,
- eg: Normal, Student- t_{k}, Cauchy

Decomposition of $\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}\left(w \mid x_{t}\right)$

$$
\begin{aligned}
& \frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-i s \omega}}{2 \pi i s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
= & F_{m\left(x, \alpha_{i}\right) * K_{w}\left(\cdot / h_{w}\right)}(\omega \mid x)-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
& +\int_{-\infty}^{\infty} \frac{e^{-i s \omega}}{2 \pi i s} \phi_{w}\left(h_{w} s\right)\left[\frac{\hat{\phi}_{Y_{i t}}(s \mid x)-\phi_{Y_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
& +\int_{-\infty}^{\infty} \frac{e^{-i s \omega}}{2 \pi i s} \phi_{w}\left(h_{w} s\right) \phi_{m\left(x, \alpha_{i}\right)}\left[\frac{\hat{\phi}_{U_{i t}}(s \mid x)-\phi_{U_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
= & \text { deterministic error } \\
& + \text { stochastic error } \\
& + \text { error from est'n of } \phi_{U_{i t}}(s \mid x)
\end{aligned}
$$

Decomposition of $\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}\left(w \mid x_{t}\right)$

$$
\begin{aligned}
& \frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
= & F_{m\left(x, \alpha_{i}\right) * K_{w}\left(\cdot / h_{w}\right)}(\omega \mid x)-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
& +\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right)\left[\frac{\hat{\phi}_{Y_{i t}}(s \mid x)-\phi_{Y_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
& +\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \phi_{m\left(x, \alpha_{i}\right)}\left[\frac{\hat{\phi}_{U_{i t}}(s \mid x)-\phi_{U_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
= & \text { deterministic error } \\
& + \text { stochastic error } \\
& + \text { error from est'n of } \phi_{U_{i t}}(s \mid x)
\end{aligned}
$$

Decomposition of $\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}\left(w \mid x_{t}\right)$

$$
\begin{aligned}
& \frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
= & F_{m\left(x, \alpha_{i}\right) * K_{w}\left(\cdot / h_{w}\right)}(\omega \mid x)-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
& +\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right)\left[\frac{\hat{\phi}_{Y_{i t}}(s \mid x)-\phi_{Y_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
& +\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \phi_{m\left(x, \alpha_{i}\right)}\left[\frac{\hat{\phi}_{U_{i t}}(s \mid x)-\phi_{U_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
= & \text { deterministic error } \\
& + \text { stochastic error } \\
& + \text { error from est'n of } \phi_{U_{i t}}(s \mid x)
\end{aligned}
$$

Decomposition of $\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}\left(w \mid x_{t}\right)$

$$
\begin{aligned}
& \frac{1}{2}+\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi \mathrm{i} s} \phi_{w}\left(h_{w} s\right) \frac{\hat{\phi}_{Y_{i t}}(s \mid x)}{\hat{\phi}_{U_{i t}}(s \mid x)} d s-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
= & F_{m\left(x, \alpha_{i}\right) * K_{w}\left(\cdot / h_{w}\right)}(\omega \mid x)-F_{m\left(x, \alpha_{i}\right)}(\omega \mid x) \\
& +\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi i s} \phi_{w}\left(h_{w} s\right)\left[\frac{\hat{\phi}_{Y_{i t}}(s \mid x)-\phi_{Y_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
& +\int_{-\infty}^{\infty} \frac{e^{-\mathrm{i} s \omega}}{2 \pi i s} \phi_{w}\left(h_{w} s\right) \phi_{m\left(x, \alpha_{i}\right)}\left[\frac{\hat{\phi}_{U_{i t}}(s \mid x)-\phi_{U_{i t}}(s \mid x)}{\phi_{U_{i t}}(s \mid x)}\right] d s \\
= & \text { deterministic error } \\
& + \text { stochastic error } \\
& + \text { error from est'n of } \phi_{U_{i t}}(s \mid x)
\end{aligned}
$$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on

$$
\begin{array}{ll}
k_{w} & \text { - smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } \alpha \\
k_{x} & - \text { smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } x \\
\lambda_{U} & -\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}} \text { as }|s| \rightarrow \infty \\
d & - \text { dimension of } x
\end{array}
$$

Theorem

Under some regularity conditions $x_{n}=(\log (n) / n)^{\text {pos }}$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on

$$
\begin{array}{ll}
k_{w} & \text { - smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } \alpha \\
k_{x} & - \text { smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } x \\
\lambda_{U} & -\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}} \text { as }|s| \rightarrow \infty \\
d & - \text { dimension of } x
\end{array}
$$

Theorem

Under some regularity conditions $x_{n}=(\log (n) / n)^{\rho \text { os }}$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on

$$
\begin{array}{ll}
k_{w} & \text { - smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } \alpha \\
k_{x} & - \text { smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } x \\
\lambda_{U} & -\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}} \text { as }|s| \rightarrow \infty \\
d & \text { - dimension of } x
\end{array}
$$

Theorem

Under some regularity conditions $x_{n}=(\log (n) / n)^{\rho \text { os }}$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on

$$
\begin{array}{ll}
k_{w} & \text { - smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } \alpha \\
k_{x} & - \text { smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } x \\
\lambda_{U} & -\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}} \text { as }|s| \rightarrow \infty \\
d & - \text { dimension of } x
\end{array}
$$

Theorem

Under some regularity conditions $x_{n}=(\log (n) / n)^{\rho \text { pos }}$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on

$$
\begin{array}{ll}
k_{w} & \text { - smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } \alpha \\
k_{x} & - \text { smooth. of } m(x, \alpha) \text { and } F_{\alpha_{i}}(\alpha \mid x) \text { in } x \\
\lambda_{U} & -\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}} \text { as }|s| \rightarrow \infty \\
d & \text { - dimension of } x
\end{array}
$$

Theorem

Under some regularity conditions $x_{n}=(\log (n) / n)^{\text {pos }}$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on
$k_{w} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in α
$k_{x} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in x
$\lambda_{U}-\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$ as $|s| \rightarrow \infty$
d - dimension of x

Theorem

Under some regularity conditions $\varkappa_{n}=(\log (n) / n)^{\rho}$ os

$$
\rho_{O S}=\frac{1}{2} \frac{k_{w}}{k_{w}+1+\lambda_{U}+k_{x} d /\left(2 k_{x}+d\right)} \frac{2 k_{x}}{2 k_{x}+d}
$$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on
$k_{w} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in α
$k_{x} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in x
$\lambda_{U}-\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$ as $|s| \rightarrow \infty$
d - dimension of x

Theorem

Under some regularity conditions $\varkappa_{n}=(\log (n) / n)^{\rho_{O S}}$

$$
\rho_{O S}=\frac{1}{2} \underbrace{\frac{k_{w}}{k_{w}+1+\lambda_{U}+k_{x} d /\left(2 k_{x}+d\right)}}_{\operatorname{Fan}(1991)(\text { when } d=0)} \underbrace{\frac{2 k_{x}}{2 k_{x}+d}}_{\text {Stone }(1982)}
$$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on
$k_{w} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in α
$k_{x} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in x
$\lambda_{U}-\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$ as $|s| \rightarrow \infty$
d - dimension of x

Theorem

Under some regularity conditions $\varkappa_{n}=(\log (n) / n)^{\rho_{O S}}$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on
$k_{w} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in α
$k_{x} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in x
$\lambda_{U}-\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$ as $|s| \rightarrow \infty$
d - dimension of x

Theorem

Under some regularity conditions $\varkappa_{n}=(\log (n) / n)^{\rho_{O S}}$

$$
\rho_{O S}=\frac{1}{2} \underbrace{\frac{k_{w}}{k_{w}+1+\lambda_{U}+k_{x} d /\left(2 k_{x}+d\right)}}_{\operatorname{Fan}(1991)(\text { when } d=0)} \underbrace{\frac{2 k_{x}}{2 k_{x}+d}}_{\text {Stone }(1982)}
$$

Assume $x \in[0,1]^{d}$. Want to obtain \varkappa_{n}

$$
\sup _{(x, w) \in[\delta, 1-\delta]^{d} \times \mathbb{R}}\left|\hat{F}_{m\left(x, \alpha_{i}\right)}(w \mid x)-F_{m\left(x, \alpha_{i}\right)}(w \mid x)\right|=O_{p}\left(\varkappa_{n}\right)
$$

which depends on
$k_{w} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in α
$k_{x} \quad$ - smooth. of $m(x, \alpha)$ and $F_{\alpha_{i}}(\alpha \mid x)$ in x
$\lambda_{U}-\left|\phi_{U_{i t}}(s \mid x)\right| \sim C|s|^{-\lambda_{U}}$ as $|s| \rightarrow \infty$
d - dimension of x

Theorem

Under some regularity conditions $\varkappa_{n}=(\log (n) / n)^{\rho_{O S}}$

$$
\rho_{O S}=\frac{1}{2} \underbrace{\frac{k_{w}}{k_{w}+1+\lambda_{U}+k_{x} d /\left(2 k_{x}+d\right)}}_{\operatorname{Fan}(1991)(\text { when } d=0)} \underbrace{\frac{2 k_{x}}{2 k_{x}+d}}_{\text {Stone }(1982)}
$$

In the super-smooth case the rate is $\varkappa_{n}=(\log n)^{-k_{w} / \lambda_{u}}$

Monte Carlo

- $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \quad n=2500, T=2$
- $X_{i t} \sim$ i.i.d.Uniform $[0,1]$
- $\alpha_{i} \sim \frac{\rho}{\sqrt{T}} \sum_{t=1}^{T} \sqrt{12}\left(X_{i t}-0.5\right)+\sqrt{1-\rho^{2}} \psi_{i}, \rho=0.5$
- $m(x, \alpha)=2 \alpha+(2+\alpha)(2 x-1)^{3}$
- where $U_{i t}=\sigma_{0}^{2}\left(1+X_{i t}\right)^{2} \varepsilon_{i t}$,
- $\varepsilon_{i t} \sim$ i.i.d. Laplace / $N(0,1)$
- $\quad \psi_{i} \sim$ i.i.d. $N(0,1)$ (skewed and bimodal distr'ns are in the paper)

Monte Carlo

- $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \quad n=2500, T=2$
- $X_{i t} \sim$ i.i.d.Uniform $[0,1]$
- $\alpha_{i} \sim \frac{\rho}{\sqrt{T}} \sum_{t=1}^{T} \sqrt{12}\left(X_{i t}-0.5\right)+\sqrt{1-\rho^{2}} \psi_{i}, \rho=0.5$
- $m(x, \alpha)=2 \alpha+(2+\alpha)(2 x-1)^{3}$
- where $U_{i t}=\sigma_{0}^{2}\left(1+X_{i t}\right)^{2} \varepsilon_{i t}$,
- $\varepsilon_{i t} \sim$ i.i.d. Laplace / $N(0,1)$
- $\quad \psi_{i} \sim$ i.i.d. $N(0,1)$ (skewed and bimodal distr'ns are in the paper)

Monte Carlo

- $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \quad n=2500, T=2$
- $X_{i t} \sim$ i.i.d.Uniform $[0,1]$
- $\alpha_{i} \sim \frac{\rho}{\sqrt{T}} \sum_{t=1}^{T} \sqrt{12}\left(X_{i t}-0.5\right)+\sqrt{1-\rho^{2}} \psi_{i}, \rho=0.5$
- $m(x, \alpha)=2 \alpha+(2+\alpha)(2 x-1)^{3}$
- where $U_{i t}=\sigma_{0}^{2}\left(1+X_{i t}\right)^{2} \varepsilon_{i t}$,
- $\varepsilon_{i t} \sim$ i.i.d. Laplace / $N(0,1)$
- $\psi_{i} \sim$ i.i.d. $N(0,1)$ (skewed and bimodal distr'ns are in the paper)

Monte Carlo

- $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \quad n=2500, T=2$
- $X_{i t} \sim$ i.i.d.Uniform $[0,1]$
- $\alpha_{i} \sim \frac{\rho}{\sqrt{T}} \sum_{t=1}^{T} \sqrt{12}\left(X_{i t}-0.5\right)+\sqrt{1-\rho^{2}} \psi_{i}, \rho=0.5$
- $m(x, \alpha)=2 \alpha+(2+\alpha)(2 x-1)^{3}$
- where $U_{i t}=\sigma_{0}^{2}\left(1+X_{i t}\right)^{2} \varepsilon_{i t}$,
- $\varepsilon_{i t} \sim$ i.i.d. Laplace / $N(0,1)$
- $\psi_{i} \sim$ i.i.d. $N(0,1)$ (skewed and bimodal distr'ns are in the paper)

Monte Carlo

- $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \quad n=2500, T=2$
- $X_{i t} \sim$ i.i.d.Uniform $[0,1]$
- $\alpha_{i} \sim \frac{\rho}{\sqrt{T}} \sum_{t=1}^{T} \sqrt{12}\left(X_{i t}-0.5\right)+\sqrt{1-\rho^{2}} \psi_{i}, \rho=0.5$
- $m(x, \alpha)=2 \alpha+(2+\alpha)(2 x-1)^{3}$
- where $U_{i t}=\sigma_{0}^{2}\left(1+X_{i t}\right)^{2} \varepsilon_{i t}$,
- $\varepsilon_{i t} \sim$ i.i.d. Laplace / $N(0,1)$
- $\psi_{i} \sim$ i.i.d. $N(0,1)$ (skewed and bimodal distr'ns are in the paper)

Monte Carlo

- $Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}, \quad n=2500, T=2$
- $X_{i t} \sim$ i.i.d.Uniform $[0,1]$
- $\alpha_{i} \sim \frac{\rho}{\sqrt{T}} \sum_{t=1}^{T} \sqrt{12}\left(X_{i t}-0.5\right)+\sqrt{1-\rho^{2}} \psi_{i}, \rho=0.5$
- $m(x, \alpha)=2 \alpha+(2+\alpha)(2 x-1)^{3}$
- where $U_{i t}=\sigma_{0}^{2}\left(1+X_{i t}\right)^{2} \varepsilon_{i t}$,
- $\varepsilon_{i t} \sim$ i.i.d. Laplace / $N(0,1)$
- $\psi_{i} \sim$ i.i.d. $N(0,1)$ (skewed and bimodal distr'ns are in the paper)

Empirical Illustration - Union Wage Premium

- Data: Current Population Survey (CPS), $T=2$
- matching
- migration
- measurement error
- limited set of variables
- 1987/1988, $n=17,756$ (replicating Card, 1996)
- Most related papers: Card (1996) and Lemieux (1998)

Union Wage Premium

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}
$$

- $Y_{i t}$ is (log)-wage,
- $X_{i t}$ is 1 if member of a union, $0 \circ / \mathrm{w}$,
- α_{i} is skill and $U_{i t}$ is luck.
- $\Delta(\alpha)=m(1, \alpha)-m(0, \alpha)$ is the union wage premium.

Empirical Illustration - Union Wage Premium

- Data: Current Population Survey (CPS), $T=2$
- matching
- migration
- measurement error
- limited set of variables
- 1987/1988, $n=17,756$ (replicating Card, 1996)
- Most related papers: Card (1996) and Lemieux (1998)

Union Wage Premium

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}
$$

- $Y_{i t}$ is (log)-wage,
- $X_{i t}$ is 1 if member of a union, $0 \circ / \mathrm{w}$,
- α_{i} is skill and $U_{i t}$ is luck.
- $\Delta(\alpha)=m(1, \alpha)-m(0, \alpha)$ is the union wage premium.

Empirical Illustration - Union Wage Premium

- Data: Current Population Survey (CPS), $T=2$
- matching
- migration
- measurement error
- limited set of variables
- 1987/1988, $n=17,756$ (replicating Card, 1996)
- Most related papers: Card (1996) and Lemieux (1998)

Union Wage Premium

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}
$$

- $Y_{i t}$ is (log)-wage,
- $X_{i t}$ is 1 if member of a union, $0 \circ / \mathrm{w}$,
- α_{i} is skill and $U_{i t}$ is luck.
- $\Delta(\alpha)=m(1, \alpha)-m(0, \alpha)$ is the union wage premium.

Empirical Illustration - Union Wage Premium

- Data: Current Population Survey (CPS), $T=2$
- matching
- migration
- measurement error
- limited set of variables
- 1987/1988, $n=17,756$ (replicating Card, 1996)
- Most related papers: Card (1996) and Lemieux (1998)

Union Wage Premium

$$
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t}
$$

- $Y_{i t}$ is (log)-wage,
- $X_{i t}$ is 1 if member of a union, $0 \circ / \mathrm{w}$,
- α_{i} is skill and $U_{i t}$ is luck.
- $\Delta(\alpha)=m(1, \alpha)-m(0, \alpha)$ is the union wage premium.

Empirical Illustration - Union Wage Premium

Empirical Illustration - Union Wage Premium

$\Delta\left(Q_{\alpha_{i}}(0.25)\right)=7.0 \%, \Delta\left(Q_{\alpha_{i}}(0.5)\right)=3.2 \%, \Delta\left(Q_{\alpha_{i}}(0.75)\right)=0.7 \%$

Empirical Illustration - Propensity Score

Also interested in $P\left(X_{i t}=1 \mid \alpha_{i}=a\right)$. Examples:

Empirical Illustration - Propensity Score

Summary

- Identification of a nonparametric panel with nonseparable heterogeneity

$$
\begin{equation*}
Y_{i t}=m\left(X_{i t}, \alpha_{i}\right)+U_{i t} \tag{1}
\end{equation*}
$$

- Allows identification of distributional, policy, and counterfactual effects
- Practical estimation procedure
- Rates of convergence for the problem of conditional deconvolution

Empirical Illustration - Union Wage Premium

$$
\Delta\left(Q_{\alpha_{i}}(0.25)\right)=7.0 \%, \Delta\left(Q_{\alpha_{i}}(0.5)\right)=3.2 \%, \Delta\left(Q_{\alpha_{i}}(0.75)\right)=0.7 \%
$$

