Adverse Selection and Switching Costs in Health Insurance Markets: When Nudging Hurts

Benjamin R. Handel Northwestern University
$$
\text { MAY 18, } 2010
$$

http://www.depot.northwestern.edu/~brh956/indexjm.html

InTRODUCTION

- Two potential impediments to efficient health insurance markets:
(1) Switching Costs
(2) Adverse Selection
- Switching costs and adverse selection have each been studied in isolation but interaction can also be important
- Primary questions:
- Are switching costs large?
- Do switching costs significantly impact consumer choices and markets?
- How does the degree of adverse selection depend on switching costs?
- What is the welfare impact of reducing switching costs in equilibrium?
(1) Transaction costs:
- Time / hassle costs of actually changing health plan
- Time / hassle costs of researching alternative options
(2) Fixed Re-Optimization Cost
- Realized price change vs. ex ante expectations
(3) Status-quo bias / inertia:
- Persistence can result from deviations from rational behavior
- Transactions costs low, still persistence
- Default option
(9) Switching providers:
- Do not measure these in my setting

Health Insurance

- Covers \$ 2 trillion dollars in medical expenditures every year
- Current structure:
- 57 \% Employer provided private insurance
- 23% Government insurance
- Health Insurance Exchanges:

Data and Methods

- Unique propriety panel data set on consumer health plan choice and utilization from large firm
(1) Natural experiment: Forced re-enrollment into new health plan menu
(2) Detailed medical utilization data
(3) Leads to simple identification of switching costs
- Panel discrete choice model quantifies:
(1) Switching Costs
(2) Ex ante health risk
(3) Heterogeneous risk preferences

Main Results

(1) Large switching costs lead to poor choices as market changes
(2) Partial equilibrium counterfactual: Policy that eliminates switching costs increases consumer welfare by 10%
(3) Full equilibrium counterfactual: Same policy improves choices conditional on prices but exacerbates adverse selection, leading to 6% decrease in consumer welfare.

Related Literature

- Switching costs and choice inadequacy:
(1) Farrell \& Klemperer (2006)
(2) Dube et al. (2009), Shum (2004), Shcherbakov (2009)
(3) Madrian \& Shea (2001), Samuelson \& Zeckhauser (1988)
- Adverse selection and insurance choice:
(1) Einav et al. (2009), Carlin \& Town (2009)
(2) Levin et al. (2010), Lustig (2009), Cutler \& Reber (1998)
(3) Abaluck \& Gruber (2009)

Outline

(1) Data / Preliminary Results
(2) Choice Model
(3) Results
(4) Counterfactual Analysis
(5) Conclusions

- Sick people should choose more insurance, healthy people less

Motivating Example: Switching Costs

- 35% of families had plan become completely dominanted over time. 89% of those families continue to choose plan once it is dominated.

Data Overview

- Individual-level panel dataset provided by large employer $(\approx 10,000$ employees) from 2004-2009:
(1) Choices: Health, FSA, HSA, dental, vision
(2) Detailed plan characteristics
(3) Demographics: Age, gender, income, family structure, time at firm, advanced degree, quantitative, zip code
- Every claim for every individual and covered dependent in PPO
(1) Medical: Diagnostic code (ICD-9), procedure code (CPT/NDC), provider id, provider specialty
(2) Financial: Total claim, insurer paid, deductible, coinsurance, copayment, claim date, network, pharmacy

4 HMO 1 PPO	Forced Re-Enrollment	2 Incumbent HMO 3 New PPO
1	1	1
Before t_{0}	t_{0}	After t_{0}

- Forced t_{0} re-enrollment:
- Major initiative at firm to ensure 'active' choice - After t_{0}, employees have prior choice as default option - 3 PPO nost-to only differentiated financially

4 HMO 1 PPO	Forced Re -Enrollment	2 Incumbent HMO 3 New PPO
1	1	1
Before t_{0}	t_{0}	After t_{0}

- Forced t_{0} re-enrollment:
- Major initiative at firm to ensure 'active' choice - After t_{0}, employees have prior choice as default option 3 DDO post +o only differentiated financially

4 HMO 1 PPO	Forced Re -Enrollment	2 Incumbent HMO 3 New PPO
1	1	
Before t_{0}	t_{0}	After t_{0}

- Forced t_{0} re-enrollment:
- Major initiative at firm to ensure 'active' choice
- No default option at t_{0}
\qquad
- 3 PPO post- t_{0} only differentiated financially

4 HMO 1 PPO	Forced Re-Enrollment	2 Incumbent HMO 3 New PPO	
Before t_{0}			

- Forced t_{0} re-enrollment:
- Major initiative at firm to ensure 'active' choice
- No default option at t_{0}
- After t_{0}, employees have prior choice as default option

4 HMO 1 PPO	Forced Re -Enrollment	2 Incumbent HMO 3 New PPO
1	1	1
Before t_{0}	$\mathrm{t}_{\mathbf{0}}$	After t_{0}

- Forced t_{0} re-enrollment:
- Major initiative at firm to ensure 'active' choice
- No default option at t_{0}
- After t_{0}, employees have prior choice as default option
- 3 PPO post- t_{0} only differentiated financially

Plan Characteristics

	PPO_{250}	PPO_{500}	PPO_{1200}
DEDUCTIBLE	250	500	(2400)
	(750)	(1500)	20%
CO-INSURANCE	10%	20%	NA
PHY. VISIT CO-PAY	25	25	NA
ER CO-PAY	100	100	50%
MENTAL HEALTH CI	50%	50%	NA
PHARMA CO-PAY	$5 / 25 / 45^{*}$	NA	
	$(10 / 50 / 75)$	$(10 / 50 / 75)$	
			2000
OUT-OF-POCKET MAX	1000	1500	(6000)
Inc. Tier 1	(3000)	(4500)	4000
Tier $2 / 3$	2000	3000	(8000)
	(5000)	(7000)	5000
Tier $4 / 5$	3000	4000	(10000)
	(8000)	(9000)	
P Pran			

[^0]
Health Plan Premiums

- Premiums depend on covered dependents and income
- Significant price changes for years with a default option

Switching Costs

	PPO_{250}	Year t_{0}	Year t_{1}
		21%	20\%
Cohort 1 New Entrants at $\mathrm{t}_{0}$$N=1377$	PPO_{500}	23%	26\%
	PPPO_{1200}	17\%	15\%
	HMO_{1}	20\%	20%
	HMO_{2}	19\%	19\%
Cohort 2 New Entrants at t_{1} $\mathrm{N}=1305$	PPO_{250}	-	11%
	PPO_{500}	-	43%
	$\mathbb{P P P O}_{1200}$	-	14\%
	HMO_{1}	-	20\%
	HMO_{2}	-	12%

Switching Costs

Evidence From New Entrants

Switching Costs

Evidence From New Entrants

Switching Costs

Evidence From New Entrants

Cohort 2
New Entrants at t_{1}
$\mathbf{N}=1305$

Median age	31	31
Mean age	33	32
Income tier 1	50%	47%
Income tier 2	31%	32%
Income tier 3	10%	12%
Income tier 4	4%	4%
Income tier 5	5%	5%

Sample Composition

- Only consider choice among PPO options
- Restriction that employee continuously enrolled over 3 years t_{-1}

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data
- Cost: Potential for selection bias

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data
- Cost: Potential for selection bias
- Benefit and Cost: Switching costs exclude costs of changing providers

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data
- Cost: Potential for selection bias
- Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_{2}

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data
- Cost: Potential for selection bias
- Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_{2}
- Benefit: Past year of medical data for all choices

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data
- Cost: Potential for selection bias
- Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_{2}
- Benefit: Past year of medical data for all choices
- Cost: Specific population not necessarily representative

Sample Composition

- Only consider choice among PPO options
- Benefit: Observe detailed medical data
- Cost: Potential for selection bias
- Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through t_{2}
- Benefit: Past year of medical data for all choices
- Cost: Specific population not necessarily representative
- Cost: Lose 'new entrant' population

Summary Statistics

SAMPLE DEMOGRAPHICS

	All Employees	PPO Ever 04-09	Final Sample
EMPLOYEES	14,248	6,398	2,022
GENDER (MALE \%)	47.4%	45.9%	48.5%
AGE	39.9	39.9	46
	(37)	(37)	(46)
INCOME			
Tier 1	31.3%		
Tier 2	36.6%	31.7%	20.3%
Tier 3	17.3%	39.4%	41.4%
Tier 4	6.5%	18.5%	23.9%
Tier 5	8.3%	5.6%	7.5%
		4.8%	6.9%
FAMILY SIZE	59.9%		
1	15.5%	57.1%	44.5%
2	10.4%	18.4%	21.2%
3	14.2%	10.7%	13.9%
4+		13.8%	27.9%
STAFF GROUPING			
MANAGER	25.7%	24.3%	34.3%
WHITE-COLLAR	46.1%	47.5%	43.1%
BLUE-COLLAR	28.3%	27.9%	21.7%

Adverse Selection

Evidence of significant adverse selection against $P P_{250}$

	N	Mean Fam Size	Mean	25th pct	Median	75th pct
PPO -1	2022	2.24	13331	1257	4916	13022
$\mathrm{PPO}_{250} t_{0}$	1328	2.18	16976	2041	6628	16135
$P P O_{500} t_{0}$	338	2.20	6151	554	2244	6989
$P P O_{1200} t_{0}$	280	2.53	6742	658	2958	8073
$\mathrm{PPO}_{250} \mathrm{t}_{1}$	1244	2.19	17270	2041	6651	16707
$P P O_{500} t_{1}$	461	2.19	7759	708	2659	8588
$\underline{P P O_{1200} t_{1}}$	232	2.57	6008	589	2815	7191

- Table uses t_{-1} claims levels in all years
- Model to quantify switching costs and their welfare impact in environment with adverse selection
- Data alone provide evidence of large switching costs
- Panel discrete choice model from t_{0} to t_{2} quantifies:
(1) Switching costs
(2) Ex ante health risk
(3) Heterogeneous risk preferences
- Explicit estimates of expected-utility function parameters
- Simple supply-side pricing model

Rational Expectations

- Each family k has uncertainty $F_{k j t}(O O P)$ about future health expenditures for plan j at the time t of plan choice
- Consumers maximize expected utility over set of plans J:

$$
\max _{j \in J} U_{k j t}=\int_{0}^{\infty} u_{k}\left(m_{j}, O O P\right) f_{k j t}(O O P) d O O P
$$

- Estimate $\left.F_{k j t} \widehat{(O O P}\right)$ derived from separate cost model
- Consumers have rational expectations

Empirical Setup

- Consumers have constant absolute risk aversion (CARA) utility index:

$$
\begin{gathered}
u_{k}\left(m_{j}, O O P\right)=-\frac{1}{\gamma_{k}} e^{-\gamma_{k}\left(m_{j}-O O P\right)} \\
m_{j}=W_{k t}-P_{k j t}+\eta\left(Y_{k}\right) \mathbf{1}_{j=j-1}+\delta_{k}\left(Y_{k}\right) \mathbf{1}_{P P O_{1200}}+a_{j}\left(Y_{k}\right) H_{k}+\epsilon_{k j t}
\end{gathered}
$$

- $W_{k t}$ - wealth, $P_{k j t}$ - premium, η - switching cost, δ_{k} - CDHP preference, Y_{k} - family status, a_{j} - high-cost heuristic, H_{k} high-cost indicator
- Empirical utility:

$$
\max _{j \in J} U_{k j t}=\int_{0}^{\infty} u_{k}\left(m_{j}, O O P\right) f_{k j t} \widehat{(O O P)} d O O P
$$

- Cost model separate from choice model:
- Assumption: No private information or moral hazard
- Based on data analysis
- Estimate $\left.F_{k j t} \widehat{(O O P} P\right)$ is information set at time of plan choice.
- Incorporates past year of medical information with ACG software
- Consumer could have more or less information than $F_{k j t}$
- Potential sources of private inforamtion:
(1) Pregnancy
(2) Condition Intensity
(3) Genetic predisposition
- ACG software predicts future expenditures θ using past medical information ξ and demographics ζ :

$$
A: \xi \times \zeta \rightarrow \theta
$$

- Divide claims into four distinct categories $c \in C$
- Group individuals into ex ante risk cells for each c
- Estimate joint distribution over C with ex post data
- Plan-specific out-of-pocket expenditure mapping:

$$
\Omega_{j}: C \rightarrow O O P_{j}
$$

- Incorporate family-level restrictions
- Risk preferences normally distributed conditional on income X_{k} :

$$
\begin{array}{r}
\gamma_{k}\left(X_{k}\right) \Rightarrow N\left(\mu_{\gamma}\left(X_{k}\right)\right) \\
\mu_{\gamma}\left(X_{k}\right)=\mu_{0}+\beta X_{k}
\end{array}
$$

- Other assumptions:
- δ_{k} normally distributed $N\left(\mu_{\delta}\left(Y_{k}\right), \sigma_{\delta}^{2}\left(Y_{k}\right)\right)$
- ϵ_{j} normally distribued $N\left(0, \sigma_{\epsilon_{j}}^{2}\right)$
- Switching costs are constant conditional constant on Y_{k}
- Menu change $w /$ no default allows observation of same consumers in periods with and without switching costs
- Unobserved heterogeneity:
- Same within each consumer over time
- Population distribution same over time
- Switching Costs vs. Unobserved Heterogeneity:
- Switching costs shifts choices only t_{1} and after
- Unobserved Heterogeneity shifts choices in all periods
- Risk Prefernce vs. $P P_{1200}$ intercept:
- γ determines choices between all plans
- δ determines choices between $P O_{1200}$ and other two
- Simulated maximum likelihood for choice sequence starting at t_{0} for each k
- Optimization: Maximize probability of choices in data with respect to model parameters
- Simulate draws from $F_{k j t}$
- Simulate draws from preference random coefficients
- Normalization of ϵ and $U_{k j t}$
- Smoothed Accept-Reject of each sequence for given paramaters
- Robustness: Utility function, unobserved heterogeneity

Estimation

- Simulated maximum likelihood
- Q draws from each $F_{k j t}$
- Z draws of preferences conditional on parameters:

$$
\theta \equiv\left(\mu, \beta, \sigma_{\gamma}, \mu_{\delta}\left(Y_{k}\right), \sigma_{\delta}\left(Y_{k}\right), \alpha_{j}\left(Y_{k}\right), \sigma_{\epsilon_{j}}, \eta\left(Y_{k}\right)\right)
$$

- Smoothed Accept-Reject for each choice given θ

$$
\left.\operatorname{Pr}\left(j=j^{*}\right)=\frac{\left(\frac{\frac{1}{-U_{k j^{*}}}(\cdot)}{\sum_{J}^{-U_{k j t}}(\cdot)}\right)^{\tau}}{\sum_{\hat{j}}\left(\frac{1}{\sum_{J} \frac{1}{-U_{k \hat{j}}}(\cdot)}\right)^{-U_{k j t}}(\cdot)}\right)^{\tau}
$$

- Maximize probability that predicted choice sequences ${\hat{P_{k}^{3}}}^{3}$ match actual ones $d_{k j 3}$:

$$
S L L(\theta)=\Sigma_{k \in K} \Sigma_{j^{3} \in J^{3}} d_{k j 3} \ln \hat{P}_{k}^{j^{3}}
$$

Results

LARGE SWITCHING Costs

Parameter	Normal γ	Log-Normal γ
Switching Cost Individual, η_{f}	$\begin{aligned} & \hline 1570 \\ & (132) \end{aligned}$	$\begin{aligned} & \hline 1991 \\ & (165) \end{aligned}$
Switching Cost Family, η_{s}	$\begin{aligned} & 2507 \\ & (160) \end{aligned}$	$\begin{aligned} & 2637 \\ & (201) \end{aligned}$
Risk Aversion Mean - Intercept, μ	$\begin{aligned} & 4.73 * 10^{-4} \\ & \left(4.4 * 10^{-5}\right) \end{aligned}$	$\begin{aligned} & -8.61 \\ & (0.23) \end{aligned}$
Risk Aversion Mean - Income Slope , β	$\begin{aligned} & 7.71 * 10^{-5} \\ & \left(9.0 * 10^{-6}\right) \end{aligned}$	$\begin{aligned} & 0.24 \\ & (0.02) \end{aligned}$
Risk Aversion Std. Deviation, σ_{γ}	$\begin{aligned} & 3.33 * 10^{-4} \\ & \left(3.6 * 10^{-5}\right) \end{aligned}$	$\begin{aligned} & 1.22 \\ & (0.10) \end{aligned}$
$P P O_{1200}$-Mean Individual	$\begin{array}{r} -4993 \\ (190) \end{array}$	$\begin{aligned} & -3613 \\ & (175) \end{aligned}$
$P P O_{1200}$-Std. Error Individual	$\begin{aligned} & 1797 \\ & (151) \end{aligned}$	$\begin{aligned} & 1310 \\ & (140) \end{aligned}$
$P P O_{1200}$-Mean Family	$\begin{aligned} & -5148 \\ & (201) \end{aligned}$	$\begin{array}{r} -5519 \\ (283) \end{array}$
$P P O_{1200}$-Std. Error Family	$\begin{aligned} & 2148 \\ & (130) \end{aligned}$	$\begin{aligned} & 2256 \\ & (155) \end{aligned}$

Results II

	Absolute Risk Aversion	Interpretation
Normal Heterogeneity		
Mean / Median Individual	$6.94 * 10^{-4}$	93.6
25th percentile	$4.69 * 10^{-4}$	94.0
75th percentile	$9.19 * 10^{-4}$	91.5
95th percentile	$1.24 * 10^{-3}$	88.9
99th percentile	$1.47 * 10^{-3}$	86.6
Log normal Heterogeneity		
Mean		92.6
25th percentile	$7.88 * 10^{-4}$	97.1
Median	$1.64 * 10^{-4}$	95.2
75th percentile	$3.74 * 10^{-4}$	92.0
95th percentile	$8.52 * 10^{-4}$	78.1
99th percentile	$2.79 * 10^{-3}$	60.5
Comparable Estimates	$6.40 * 10^{-3}$	
Cohen-Einav (2007) Benchmark Mean		76.5
Cohen-Einav (2007) Benchmark Median	$3.1 * 10^{-3}$	99.7
Gertner (1993)	$3.4 * 10^{-5}$	97.0
Holt \& Laury (2002)	$3.1 * 10^{-4}$	21.0
Sydnor (2006)	$3.2 * 10^{-2}$	83.3

Counterfactual Analysis

- Investigate counterfactual environment with reduced switching costs
- Price-conscious consumer choice is cornerstone of:
- National insurance reform: health insurance exchanges
- Large employer purchasing strategies
- Policies to reduce switching costs:
(1) Personalized plan recommendations
(2) Decision making tools
(3) Standardized/simple benefit representation
(1) Choice framing
(Strong oversight body for all consumer decision issues
- Similar to previous analyses studying choice inadequacy
- Consumer welfare can only increase
- Switching costs reduced to $\eta_{k}-Z$:

$$
U_{k j t}\left(P_{k j t}, \eta_{k}-Z\right)=\int_{0}^{\infty} u\left(O O P, P_{k j t}, \eta_{k}-Z\right) f_{k j t}(O O P) d O O P
$$

- Choose plan to maximize expected utility in each t
- Use certainty equivalent metric to quantify welfare change

Partial Equilibrium Policy Impact

Market Share Changes

	$Z=0$ (Benchmark)	$Z=\frac{\eta}{2}$	$Z=\eta($ No SC $)$
t_{2} Choices			
$P P O_{250}$	1,160	1,037	797
$P P O_{500}$	573	702	994
$P P O_{1200}$	185	179	126
t_{2} Family Average Cost			
$P P O_{250}$	27,796	31,154	31,265
$P P O_{500}$	17,563	18,415	20,496
$P P O_{1200}$	16,922	17,681	16,579

Welfare Analysis

- Certainty equivalent $C E Q_{k j t}$ makes consumer indifferent between certain $C E Q_{k j t}$ and risky payoff from j
- CEQ calculated net of switching costs (depends on source)
- Denote $C E Q$ for choice with policy Z as $C E Q_{k j t}^{Z}$
- Individual level consumer welfare impact:

$$
\Delta C S_{k j t}=C E Q_{k j_{z} t}^{Z}-C E Q_{k j t}
$$

- Mean change in consumer welfare:

$$
C S_{t}=\frac{1}{\|K\|} \Sigma_{k} \Delta C S_{k j t}
$$

- Population welfare change comes from risk preference matching

		t_{1}
Mean Δ CEQ		
Population	192	215
Switchers Only	367	394
Mean Welfare Change: \% Total Premiums		
Mean Employee Premium (MEP)	2,233	2,078
Welfare Change Population	8.6%	10.3%
Welfare Change Switchers	16.4%	19.0%
Mean Welfare Change: \% Total Emp. Spending		4,375
Mean Total Emp. Spending	4,305	5.1%
Welfare Change Population	4.5%	9.0%
Welfare Change Switchers	8.5%	

- Insurance prices adjust along with new choices for $Z>0$
- Recreate exact pricing rule
- Close to prior work, not sophisticated
- Start at given prices p_{0}
- Total premium lagged average cost:

$$
T P_{j t}^{y}=A C_{K_{j, t-1}^{y}}+L
$$

- Firm gives subsidy for all j as $\%$ of $P P O_{1200}$ premium:

$$
P_{k j t}=T P_{j t}^{y}-S\left(X_{k}\right) T P_{P P O_{1200} t}^{y}
$$

Impact of Policy on Market Share

Impact on Plan Prices

Counterfactual Analysis Full Equilibrium

Full Equilibrium Welfare Impact

When Nudging Hurts......

	t_{1}	t_{2}	t_{4}	t_{6}
Mean \triangle CEQ				
Population	\$170	\$117	-\$120	-\$132
Switcher Pop. \%	30\%	53\%	52\%	49\%
Switchers Only	\$567	\$580	\$ 360	\$289
Non-Switchers Only	-\$1	-\$409	-\$569	-\$592
Mean Welfare Change: \% Total Premiums				
Mean Employee Premium (MEP)	2,133	2,326	2,342	2,218
Welfare Change Population	7.9\%	5.0\%	-5.1\%	-5.9\%
Welfare Change Switchers	26.6\%	24.9\%	15.4\%	13.0\%
Welfare Change Non-Switchers	0\%	-17.6\%	-24.3\%	-26.7\%
Mean Welfare Change: \% Total Emp. Spending				
Mean Total Emp. Spending	4,253	4,678	4,739	4,646
Welfare Change Population	4.0\%	2.5\%	-2.5\%	-2.8\%
Welfare Change Switchers	13.3\%	12.4\%	7.6\%	6.2\%
Welfare Change Non-Switchers	0\%	-8.7\%	-11.9\%	-12.7\%

Policy Implications

- Policies to improve choices and combat adverse selection considered independently
- Ignoring link between switching costs and adverse selection can have large welfare consequences
- Conditional on push to improve choices re-evaluate following for insurance exchanges:
- Contract characteristic regulation
- Subsidy policy
- Choice framing
- Who is in risk pool?
- Re-evalute similar issues for large employers

Conclusions

- Evidence of large switching costs
- What are the sources?
- Link between switching costs and adverse selection
- Large welfare impact
- Policy implications
- Sophisticated firm pricing models ?
- Second-best analysis with behavioral decision makers
- Other Improvements:
- Test of dynamic choice / forward-looking consumers
- Inclusion of HMO options
- Moral hazard / private information

Pattern of Active Choice

	$P P O_{250}$ Switchers	$P P O_{250}$ All	All Switchers	Full Sample
Sample Size	129	1916	502	3725
FSA 2008 Enrollee	53%	29%	36%	24%
Dental Switch	9.5%	3.6%	13.2%	4.6%
Mean Income Tier	2.2	2.4	2.1	2.2
Quantitative Manager	11%	18%	14%	18%
Mean Age	40.8	46.8	58.4	32.4
Single	57%	43%	59%	55%

- FSA choice is back to zero default

Moral Hazard / Private Information

- Use exogenous menu change to study 'before' and 'after' utilization
- PPO_{-1} in t_{-1}, similar to PPO_{250} after menu change.
- Study two populations:
- Control group: Individuals enrolled in PPO_{250} in t_{0}
- Treatment group: Individuals enrolled in PPO_{500} or PPO_{1200} in t_{0}
- If moral hazard exists then:

$$
\frac{\text { Claims }_{t_{0}}^{250}}{\text { Claims }_{t_{-1}}^{250}}>\frac{\text { Claims }_{t_{0}}^{500}}{\text { Claims }_{t_{-1}}^{500}}
$$

Moral Hazard / Private Information: Aggregated Evidence

Control			Treatment		
	t_{-1}	t_{0}	$\%$	t_{-1}	t_{0}
Aggregate Expenses					
25th Pctile	$\$ 2,371$	$\$ 2,591$	9%	$\$ 808$	$\$ 994$
Median	$\$ 6,985$	$\$ 7,564$	8%	$\$ 2,852$	$\$ 3,130$
75 th Pctile	$\$ 16,827$	$\$ 17,909$	7%	$\$ 8,020$	$\$ 9,442$
				$\$ 0$	10%
Mean	$\$ 17,531$	$\$ 17,156$	-3%	$\$ 6,816$	$\$ 8,493$
Count	1344			642	21%

Moral Hazard: Diagnostic Level Evidence

	Med $^{250}(t-1)$	Ratio 250	Ratio 500	Δ Ratio	MH
Diagnostic Category					
Benign / Uncertain Neoplasm	$\$ 297$	5.7%	26.8%	-21.11%	$\mathrm{NO}-\mathrm{MH}$
Diabetes	$\$ 290$	-8.2%	22.3%	-30.6%	$\mathrm{NO}-\mathrm{MH}$
Ears, Nose \& Throat	$171 \$$	-1.1%	20%	-21.17%	$\mathrm{NO}-\mathrm{MH}$
Eyes	$\$ 170$	16.5%	28.5%	-12.1%	$\mathrm{NO}-\mathrm{MH}$
Gastrointestinal	$\$ 447$	-13%	-52%	39%	MH
Genital System	$\$ 186$	-5.4%	30.5%	-35.9%	$\mathrm{NO}-\mathrm{MH}$
Heart	$\$ 272$	1.1%	-34.2%	35.3%	MH
Hematological	$\$ 159$	-25.8%	80.7%	-106.7%	$\mathrm{NO}-\mathrm{MH}$
Infectious	$\$ 129$	8.5%	51.5%	$\mathrm{NO}-\mathrm{MH}$	
Injury / Poisoning	$\$ 714$	-8.4%	-9.45%	1.1%	N
Lung	$\$ 130$	10.8%	6.1%	4.6%	N
Malignant Neoplasm	$\$ 1,777$	-33.7%	16.1%	-49.9%	$\mathrm{NO}-\mathrm{MH}$
Mental	$\$ 1,233$	-10.3%	-26.9%	16.6%	N
Musculoskeletal	$\$ 860$	2.1%	-7.3%	9.5%	N
Nutritional / Metabolic	$\$ 170$	1.2%	35.5%	-34.3%	$\mathrm{NO}-\mathrm{MH}$
Preganancy	$\$ 4,246$	12%	-73%	85%	MH
Screening	$\$ 339$	23.3%	19.3%	4%	$\mathrm{NO}-\mathrm{MH}$
Skin	$\$ 171$	6.4%	10.8%	N	
Symptoms / Signs	$\$ 468$	2.6%	-4.4%	N	
Urinary System	$\$ 128$	-3.9%	31.7%	5.3%	

Moral Hazard: Regression Analysis

- Quantile regression that applies to people who have expenditures in a given diagnostic category for two consecutive year
- Denote an individual i and diagnostic category d
$\log ^{0}\left(\right.$ Claims $\left._{i d}\right)=\delta_{d}+\beta \log ^{-1}\left(\right.$ Claims $\left._{i d}\right)+\alpha \log ^{-1}\left(\right.$ Claims $\left._{i d}\right) \mathbf{1}_{500}+\epsilon_{i d}$
- Results:
- $\beta=0.42(\mathrm{~T}=41.07)$
- $\alpha=-0.017(\mathrm{~T}=-2.87)$

[^0]: * Perscription Max of 1500 per person
 ** Out of Network Characteristics not Listed Above

