Adverse Selection and Switching Costs in Health Insurance Markets: When Nudging Hurts

BENJAMIN R. HANDEL NORTHWESTERN UNIVERSITY MAY 18, 2010

http://www.depot.northwestern.edu/~brh956/indexjm.html

INTRODUCTION ADVERSE SELECTION & SWITCHING COSTS

- Two potential impediments to efficient health insurance markets:
 - Switching Costs
 - Adverse Selection
- Switching costs and adverse selection have each been studied in isolation but interaction can also be important
- Primary questions:
 - Are switching costs large?
 - Do switching costs significantly impact consumer choices and markets?
 - How does the degree of adverse selection depend on switching costs?
 - What is the welfare impact of reducing switching costs in equilibrium?

WHAT ARE SWITCHING COSTS?

- Transaction costs:
 - Time / hassle costs of actually changing health plan
 - Time / hassle costs of researching alternative options
- Fixed Re-Optimization Cost
 - Realized price change vs. ex ante expectations
- Status-quo bias / inertia:
 - Persistence can result from deviations from rational behavior
 - Transactions costs low, still persistence
 - Default option
- Switching providers:
 - Do not measure these in my setting

HEALTH INSURANCE INDUSTRY OVERVIEW

- Covers \$ 2 trillion dollars in medical expenditures every year
- Current structure:
 - 57 % Employer provided private insurance
 - 23 % Government insurance
- Health Insurance Exchanges:

- Unique propriety panel data set on consumer health plan choice and utilization from large firm
 - Natural experiment: Forced re-enrollment into new health plan menu
 - Detailed medical utilization data
 - 4 Leads to simple identification of switching costs
- Panel discrete choice model quantifies:
 - Switching Costs
 - Ex ante health risk
 - Heterogeneous risk preferences

- Large switching costs lead to poor choices as market changes
- Partial equilibrium counterfactual: Policy that eliminates switching costs increases consumer welfare by 10%
- Full equilibrium counterfactual: Same policy improves choices conditional on prices but exacerbates adverse selection, leading to 6% decrease in consumer welfare.

RELATED LITERATURE

- Switching costs and choice inadequacy:
 - Farrell & Klemperer (2006)
 - ② Dube et al. (2009), Shum (2004), Shcherbakov (2009)
 - Madrian & Shea (2001), Samuelson & Zeckhauser (1988)
- Adverse selection and insurance choice:
 - Einav et al. (2009), Carlin & Town (2009)
 - Levin et al. (2010), Lustig (2009), Cutler & Reber (1998)
 - 3 Abaluck & Gruber (2009)

OUTLINE

- Data / Preliminary Results
- 2 CHOICE MODEL
- RESULTS
- COUNTERFACTUAL ANALYSIS
- **6** Conclusions

MOTIVATING EXAMPLE: SWITCHING COSTS EVIDENCE FROM DOMINATED PLAN CHOICE

Sick people should choose more insurance, healthy people less

MOTIVATING EXAMPLE: SWITCHING COSTS EVIDENCE FROM DOMINATED PLAN CHOICE

• 35 % of families had plan become completely dominanted over time. 89% of those families continue to choose plan once it is dominated.

Data Overview

- Individual-level panel dataset provided by large employer ($\approx 10,000$ employees) from 2004-2009:
 - Choices: Health, FSA, HSA, dental, vision
 - Detailed plan characteristics
 - Demographics: Age, gender, income, family structure, time at firm, advanced degree, quantitative, zip code
- Every claim for every individual and covered dependent in PPO
 - Medical: Diagnostic code (ICD-9), procedure code (CPT/NDC), provider id, provider specialty
 - Financial: Total claim, insurer paid, deductible, coinsurance, copayment, claim date, network, pharmacy

Forced t₀ re-enrollment:

- Forced t₀ re-enrollment:
 - Major initiative at firm to ensure 'active' choice

- Forced t₀ re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀

- Forced t₀ re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀
 - After t_0 , employees have prior choice as default option

- Forced t₀ re-enrollment:
 - Major initiative at firm to ensure 'active' choice
 - No default option at t₀
 - After t_0 , employees have prior choice as default option
- 3 PPO post- t_0 only differentiated financially

PLAN CHARACTERISTICS

	PPO ₂₅₀	PPO ₅₀₀	PPO ₁₂₀₀
DEDUCTIBLE	250 (750)	500 (1500)	1200 (2400)
CO-INSURANCE	10%	20%	20%
PHY. VISIT CO-PAY	25	25	NA
ER CO-PAY	100	100	NA
MENTAL HEALTH CI	50%	50%	50%
PHARMA CO-PAY	5/25/45*	5/25/45*	NA
	(10/50/75)	(10/50/75)	NA
OUT-OF-POCKET MAX			
Inc.Tier 1	1000	1500	2000
	(3000)	(4500)	(6000)
Tier 2/3	2000	`3000	4000
	(5000)	(7000)	(8000)
Tier 4/5	3000	4000	5000
•	(8000)	(9000)	(10000)

^{*} Perscription Max of 1500 per person

^{**} Out of Network Characteristics not Listed Above

HEALTH PLAN PREMIUMS Large Price Changes

- Premiums depend on covered dependents and income
- Significant price changes for years with a default option

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

Cohort 1 New Entrants at to N = 1377

Cohort 2 New Entrants at t₁ N = 1305

	Year t ₀	Year t ₁
PPO ₂₅₀	21 %	20 %
PPO ₅₀₀	23 %	26%
PPO ₁₂₀₀	17%	15%
HMO_1	20 %	20 %
HMO_2	19%	19%
PPO ₂₅₀	_	11%
PPO ₅₀₀	-	43 %
PPO ₁₂₀₀	-	14%
HMO_1	_	20%
HMO_2	_	12%

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

Cohort 1 New Entrants at to N = 1377

Cohort 2 New Entrants at t₁ N = 1305

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

Cohort 1 New Entrants at to N = 1377

Cohort 2 New Entrants at t₁ N = 1305

	Year t ₀	Year t ₁
PPO ₂₅₀	21%	20%
PPO ₅₀₀	23 %	26%
PPO ₁₂₀₀	17%	15%
HMO_1	20%	20 %
HMO_2	19%	19%
PPO ₂₅₀	-	(11%)
PPO ₅₀₀	-	43%
PPO ₁₂₀₀	_	14%
HIMO_1	-	20%
HIMO ₂		12%

SWITCHING COSTS EVIDENCE FROM NEW ENTRANTS

	Cohort 1 New Entrants at t ₀ N = 1377	Cohort 2 New Entrants at t ₁ N = 1305	
Median age	31	31	
Mean age	33	32	
Income tier 1	50%	47%	
Income tier 2	31%	32%	
Income tier 3	10%	12%	
Income tier 4	4 %	4 %	
Income tier 5	5 %	5%	

SAMPLE COMPOSITION

Only consider choice among PPO options

SAMPLE COMPOSITION

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data

SAMPLE COMPOSITION

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through to

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through to
 - Benefit: Past year of medical data for all choices

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through to
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative

- Only consider choice among PPO options
 - Benefit: Observe detailed medical data
 - Cost: Potential for selection bias
 - Benefit and Cost: Switching costs exclude costs of changing providers
- Restriction that employee continuously enrolled over 3 years t_{-1} through to
 - Benefit: Past year of medical data for all choices
 - Cost: Specific population not necessarily representative
 - Cost: Lose 'new entrant' population

SUMMARY STATISTICS Sample Demographics

	All Employees	PPO Ever 04-09	Final Sample	
EMPLOYEES	14,248	6,398	2,022	
GENDER (MALE %)	47.4%	45.9%	48.5%	
AGE	39.9 (37)	39.9 (37)	46 (46)	
INCOME				
Tier 1	31.3%	31.7%	20.3%	
Tier 2	36.6%	39.4%	41.4%	
Tier 3	17.3%	18.5%	23.9%	
Tier 4	6.5%	5.6%	7.5%	
Tier 5	8.3%	4.8%	6.9%	
FAMILY SIZE				
1	59.9 %	57.1 %	44.5 %	
2	15.5 %	18.4 %	21.2 %	
3	10.4 %	10.7 %	13.9 %	
4+	14.2 %	13.8 %	27.9 %	
STAFF GROUPING				
MANAGER	25.7%	24.3%	34.3%	
WHITE-COLLAR	46.1%	47.5%	43.1%	
BLUE-COLLAR	28.3%	27.9%	21.7%	

Adverse Selection

EVIDENCE OF SIGNIFICANT ADVERSE SELECTION AGAINST PPO₂₅₀

	N	Mean Fam Size	Mean	25th pct	Median	75th pct
PPO_{-1}	2022	2.24	13331	1257	4916	13022
PPO ₂₅₀ t ₀	1328	2.18	16976	2041	6628	16135
$PPO_{500} t_0$	338	2.20	6151	554	2244	6989
$PPO_{1200} t_0$	280	2.53	6742	658	2958	8073
PPO ₂₅₀ t ₁	1244	2.19	17270	2041	6651	16707
PPO ₅₀₀ t ₁	461	2.19	7759	708	2659	8588
$PPO_{1200} t_1$	232	2.57	6008	589	2815	7191

• Table uses t_{-1} claims levels in all years

CHOICE FRAMEWORK REALIZED UTILITY MODEL

- Model to quantify switching costs and their welfare impact in environment with adverse selection
 - Data alone provide evidence of large switching costs
- Panel discrete choice model from t_0 to t_2 quantifies:
 - Switching costs
 - Ex ante health risk
 - Heterogeneous risk preferences
- Explicit estimates of expected-utility function parameters
- Simple supply-side pricing model

CONSUMER EXPECTED UTILITY RATIONAL EXPECTATIONS

- Each family k has uncertainty $F_{kjt}(OOP)$ about future health expenditures for plan j at the time t of plan choice
- Consumers maximize expected utility over set of plans J:

$$\max_{j \in J} U_{kjt} = \int_0^\infty u_k(m_j, OOP) f_{kjt}(OOP) dOOP$$

- Estimate $\widehat{F_{kit}(OOP)}$ derived from separate cost model
- Consumers have rational expectations

Empirical Setup cara

Consumers have constant absolute risk aversion (CARA) utility index:

$$u_k(m_j, OOP) = -\frac{1}{\gamma_k} e^{-\gamma_k(m_j - OOP)}$$

$$m_j = W_{kt} - P_{kjt} + \eta(Y_k) \mathbf{1}_{j=j-1} + \delta_k(Y_k) \mathbf{1}_{PPO_{1200}} + a_j(Y_k) H_k + \epsilon_{kjt}$$

- W_{kt} wealth, P_{kjt} premium, η switching cost, δ_k CDHP preference, Y_k family status, a_j high-cost heuristic, H_k high-cost indicator
- Empirical utility:

$$\max_{j \in J} U_{kjt} = \int_0^\infty u_k(m_j, OOP) \widehat{f_{kjt}(OOP)} dOOP$$

- Cost model separate from choice model:
 - Assumption: No private information or moral hazard
 - Based on data analysis

▶ Details

- Estimate $F_{kjt}(OOP)$ is information set at time of plan choice.
 - Incorporates past year of medical information with ACG software
 - ullet Consumer could have more or less information than F_{kjt}
- Potential sources of private inforamtion:
 - Pregnancy
 - Condition Intensity
 - Genetic predisposition

COST MODEL II OUTLINE OF METHODS

• ACG software predicts future expenditures θ using past medical information ξ and demographics ζ :

$$A: \xi \times \zeta \to \theta$$

- Divide claims into four distinct categories $c \in C$
- Group individuals into ex ante risk cells for each c
 - Estimate joint distribution over C with ex post data
- Plan-specific out-of-pocket expenditure mapping:

$$\Omega_j: C \rightarrow OOP_j$$

Incorporate family-level restrictions

CHOICE MODEL UNOBSERVED HETEROGENEITY

• Risk preferences normally distributed conditional on income X_k :

$$\gamma_k(X_k) \Rightarrow N(\mu_\gamma(X_k))$$

 $\mu_\gamma(X_k) = \mu_0 + \beta X_k$

- Other assumptions:
 - δ_k normally distributed $N(\mu_{\delta}(Y_k), \sigma_{\delta}^2(Y_k))$
 - ϵ_j normally distributd $N(0, \sigma_{\epsilon_i}^2)$
- ullet Switching costs are constant conditional constant on Y_k

MODEL IDENTIFICATION MENU CHANGE

- Menu change w/ no default allows observation of same consumers in periods with and without switching costs
- Unobserved heterogeneity:
 - Same within each consumer over time
 - Population distribution same over time
- Switching Costs vs. Unobserved Heterogeneity:
 - Switching costs shifts choices only t_1 and after
 - Unobserved Heterogeneity shifts choices in all periods
- Risk Prefernce vs. *PPO*₁₂₀₀ intercept:
 - ullet γ determines choices between all plans
 - \bullet δ determines choices between PPO_{1200} and other two

- Simulated maximum likelihood for choice sequence starting at t_0 for each k
- Optimization: Maximize probability of choices in data with respect to model parameters
 - Simulate draws from F_{kit}
 - Simulate draws from preference random coefficients
 - Normalization of ϵ and U_{kit}
 - Smoothed Accept-Reject of each sequence for given paramaters
- Robustness: Utility function, unobserved heterogeneity

ESTIMATION

- Simulated maximum likelihood
- \bullet Q draws from each F_{kit}
- Z draws of preferences conditional on parameters:

$$\theta \equiv (\mu, \beta, \sigma_{\gamma}, \mu_{\delta}(Y_k), \sigma_{\delta}(Y_k), \alpha_j(Y_k), \sigma_{\epsilon_j}, \eta(Y_k)).$$

ullet Smoothed Accept-Reject for each choice given heta

$$Pr(j = j^*) = \frac{(\frac{\frac{1}{\sum_{J=U_{kj^*}t}}(\cdot)}{\sum_{J=U_{kjt}}(\cdot)})^{\tau}}{\sum_{\hat{j}}(\frac{\frac{1}{\sum_{J=U_{kjt}}(\cdot)}}{\sum_{J=U_{kjt}}(\cdot)})^{\tau}}$$

• Maximize probability that predicted choice sequences $\hat{P_k^{j^3}}$ match actual ones d_{ki^3} :

$$SLL(\theta) = \sum_{k \in K} \sum_{j^3 \in J^3} d_{kj^3} \ln \hat{P}_k^{j^3}$$

Results Large Switching Costs

Parameter	Normal γ	Log-Normal γ	
Switching Cost Individual, η_f	1570 (132)	1991 (165)	
Switching Cost Family, η_s	2507 (160)	2637 (201)	
Risk Aversion Mean - Intercept , μ	$4.73 * 10^{-4} $ $(4.4 * 10^{-5})$	-8.61 (0.23)	
Risk Aversion Mean - Income Slope , eta	$7.71 * 10^{-5} $ $(9.0 * 10^{-6})$	0.24 (0.02)	
Risk Aversion Std. Deviation , σ_{γ}	$3.33 * 10^{-4} $ $(3.6 * 10^{-5})$	1.22 (0.10)	
PPO ₁₂₀₀ -Mean Individual	-4993 (190)	-3613 (175)	
PPO ₁₂₀₀ -Std. Error Individual	1797 (151)	1310 (140)	
PPO ₁₂₀₀ -Mean Family	-5148 (201)	-5519 (283)	
PPO ₁₂₀₀ -Std. Error Family	2148 (130)	2256 (155)	

RESULTS II INTERPRETATION OF RISK PARAMETERS

	Absolute Risk Aversion	Interpretation	
Normal Heterogeneity			
Mean / Median Individual	$6.94 * 10^{-4}$	93.6	
25th percentile	$4.69 * 10^{-4}$	94.0	
75th percentile	$9.19 * 10^{-4}$	91.5	
95th percentile	$1.24 * 10^{-3}$	88.9	
99th percentile	$1.47 * 10^{-3}$	86.6	
Log normal Heterogeneity			
Mean	$7.88 * 10^{-4}$	92.6	
25th percentile	$1.64 * 10^{-4}$	97.1	
Median	$3.74 * 10^{-4}$	95.2	
75th percentile	$8.52 * 10^{-4}$	92.0	
95th percentile	$2.79 * 10^{-3}$	78.1	
99th percentile	$6.40*10^{-3}$	60.5	
Comparable Estimates			
Cohen-Einav (2007) Benchmark Mean	$3.1 * 10^{-3}$	76.5	
Cohen-Einav (2007) Benchmark Median	$3.4 * 10^{-5}$	99.7	
Gertner (1993)	$3.1 * 10^{-4}$	97.0	
Holt & Laury (2002)	$3.2 * 10^{-2}$	21.0	
Sydnor (2006)	$2.0 * 10^{-3}$	83.3	

Counterfactual Analysis Reduction in Switching Costs

- Investigate counterfactual environment with reduced switching costs
- Price-conscious consumer choice is cornerstone of:
 - National insurance reform: health insurance exchanges
 - Large employer purchasing strategies
- Policies to reduce switching costs:
 - Personalized plan recommendations
 - Decision making tools
 - Standardized /simple benefit representation
 - Choice framing
 - Strong oversight body for all consumer decision issues

Partial Equilibrium Analysis HOLDING PRICES FIXED

- Similar to previous analyses studying choice inadequacy
 - Consumer welfare can only increase
- Switching costs reduced to $\eta_k Z$:

$$U_{kjt}(P_{kjt}, \eta_k - Z) = \int_0^\infty u(OOP, P_{kjt}, \eta_k - Z) f_{kjt}(OOP) dOOP$$

- Choose plan to maximize expected utility in each t
- Use certainty equivalent metric to quantify welfare change

Partial Equilibrium Policy Impact Market Share Changes

	Z=0 (Benchmark)	$Z = \frac{\eta}{2}$	$Z = \eta$ (No SC)
t ₂ Choices			
PPO ₂₅₀	1,160	1,037	797
PPO ₅₀₀	573	702	994
PPO ₁₂₀₀	185	179	126
t ₂ Family Average Cost			
PPO ₂₅₀	27,796	31,154	31,265
PPO ₅₀₀	17,563	18,415	20,496
PPO ₁₂₀₀	16,922	17,681	16,579

Welfare Analysis

- Certainty equivalent CEQ_{kit} makes consumer indifferent between certain CEQ_{kit} and risky payoff from j
 - CEQ calculated net of switching costs (depends on source)
 - Denote CEQ for choice with policy Z as CEQ_{kit}^Z
- Individual level consumer welfare impact:

$$\Delta CS_{kjt} = CEQ_{kjzt}^{Z} - CEQ_{kjt}$$

Mean change in consumer welfare:

$$CS_t = \frac{1}{\|K\|} \Sigma_k \ \Delta CS_{kjt}$$

Population welfare change comes from risk preference matching

PARTIAL EQUILIBRIUM WELFARE IMPACT $Z = \eta$

	t_1	t_2	
Mean △ CEQ			
Population	192	215	
Switchers Only	367	394	
Mean Welfare Change: % Total Premiums			
Mean Employee Premium (MEP)	2,233	2,078	
Welfare Change Population	8.6%	10.3%	
Welfare Change Switchers	16.4%	19.0%	
Mean Welfare Change: % Total Emp. Spending			
Mean Total Emp. Spending	4,305	4,375	
Welfare Change Population	4.5%	5.1%	
Welfare Change Switchers	8.5%	9.0%	

Insurance Pricing

- Insurance prices adjust along with new choices for Z > 0
- Recreate exact pricing rule
 - Close to prior work, not sophisticated
- Start at given prices p₀
- Total premium lagged average cost:

Full Equilibrium Analysis

$$TP_{jt}^{y} = AC_{K_{j,t-1}^{y}} + L$$

• Firm gives subsidy for all i as % of PPO_{1200} premium:

$$P_{kjt} = TP_{jt}^{y} - S(X_k)TP_{PPO_{1200}t}^{y}$$

IMPACT OF POLICY ON MARKET SHARE DEATH SPIRAL?

IMPACT ON PLAN PRICES

► Average Cost

FULL EQUILIBRIUM WELFARE IMPACT When Nudging Hurts.....

	t_1	t ₂	t ₄	t ₆
Mean △ CEQ				
Population	\$170	\$117	-\$120	-\$132
Switcher Pop. %	30%	53%	52%	49%
Switchers Only	\$567	\$580	\$ 360	\$289
Non-Switchers Only	-\$1	-\$409	-\$569	-\$592
Mean Welfare Change: % Total Premiums				
Mean Employee Premium (MEP)	2,133	2,326	2,342	2,218
Welfare Change Population	7.9%	5.0%	-5.1%	-5.9%
Welfare Change Switchers	26.6%	24.9%	15.4%	13.0%
Welfare Change Non-Switchers	0%	-17.6%	-24.3%	-26.7%
Mean Welfare Change: % Total Emp. Spend	ing			
Mean Total Emp. Spending	4,253	4,678	4,739	4,646
Welfare Change Population	4.0%	2.5%	-2.5%	-2.8%
Welfare Change Switchers	13.3%	12.4%	7.6%	6.2%
Welfare Change Non-Switchers	0%	-8.7%	-11.9%	-12.7%

POLICY IMPLICATIONS

- Policies to improve choices and combat adverse selection considered independently
- Ignoring link between switching costs and adverse selection can have large welfare consequences
- Conditional on push to improve choices re-evaluate following for insurance exchanges:
 - Contract characteristic regulation
 - Subsidy policy
 - Choice framing
 - Who is in risk pool?
- Re-evalute similar issues for large employers

- Evidence of large switching costs
 - What are the sources?
- Link between switching costs and adverse selection
 - Large welfare impact
 - Policy implications
 - Sophisticated firm pricing models?
- Second-best analysis with behavioral decision makers
- Other Improvements:
 - Test of dynamic choice / forward-looking consumers
 - Inclusion of HMO options
 - Moral hazard / private information

	PPO ₂₅₀ Switchers	PPO ₂₅₀ All	All Switchers	Full Sample
Sample Size	129	1916	502	3725
FSA 2008 Enrollee	53%	29%	36%	24%
Dental Switch	9.5%	3.6%	13.2%	4.6%
Mean Income Tier	2.2	2.4	2.1	2.2
Quantitative Manager	11%	18%	14%	18%
Mean Age	40.8	46.8	38.4	32.4
Single	57%	43%	59%	55%

FSA choice is back to zero default

▶ Return

- Use exogenous menu change to study 'before' and 'after' utilization
- PPO $_{-1}$ in t_{-1} , similar to PPO $_{250}$ after menu change.

▶ Return

- Study two populations:
 - Control group: Individuals enrolled in PPO₂₅₀ in t₀
 - ullet Treatment group: Individuals enrolled in PPO₅₀₀ or PPO₁₂₀₀ in t_0
- If moral hazard exists then:

$$\frac{\textit{Claims}_{t_0}^{250}}{\textit{Claims}_{t_{-1}}^{250}} > \frac{\textit{Claims}_{t_0}^{500}}{\textit{Claims}_{t_{-1}}^{500}}$$

Moral Hazard / Private Information: Aggregated Evidence

▶ SKIP SLIDE

Control				Treatment		
	t_{-1}	t ₀	%	t_{-1}	t_0	%
Aggregate Expenses						
25th Pctile	\$2,371	\$2,591	9%	\$808	\$994	23%
Median	\$6,985	\$7,564	8%	\$2,852	\$3,130	10%
75th Pctile	\$16,827	\$17,909	7%	\$8,020	\$9,442	17%
Mean	\$17,531	\$17,156	-3%	\$6,816	\$8,493	21%
Count	1344			642		

MORAL HAZARD: DIAGNOSTIC LEVEL EVIDENCE

	$Med^{250}(t_{-1})$	Ratio ²⁵⁰	Ratio ⁵⁰⁰	Δ Ratio	MH
Diagnostic Category					
Benign / Uncertain Neoplasm	\$297	5.7%	26.8%	-21.11%	NO-MH
Diabetes	\$ 290	-8.2%	22.3%	-30.6%	NO-MH
Ears, Nose & Throat	171\$	-1.1%	20%	-21.17%	NO-MH
Eyes	\$170	16.5%	28.5%	-12.1%	NO-MH
Gastrointestinal	\$447	-13%	-52%	39%	MH
Genital System	\$186	-5.4%	30.5%	-35.9%	NO-MH
Heart	\$272	1.1%	-34.2%	35.3%	MH
Hematological	\$159	-25.8%	80.7%	-106.7%	NO-MH
Infectious	\$129	8.5%	51.5%	-43%	NO-MH
Injury / Poisoning	\$714	-8.4%	-9.45%	1.1%	N
Lung	\$130	10.8%	6.1%	4.6%	N
Malignant Neoplasm	\$1,777	-33.7%	16.1%	-49.9%	NO-MH
Mental	\$1,233	-10.3%	-26.9%	16.6%	N
Musculoskeletal	\$860	2.1%	-7.3%	9.5%	N
Nutritional / Metabolic	\$170	1.2%	35.5%	-34.3%	NO-MH
Preganancy	\$4,246	12%	-73%	85%	MH
Screening	\$339	23.3%	19.3%	4%	NO-MH
Skin	\$171	6.4%	10.8%	-4.4%	N
Symptoms / Signs	\$468	2.6%	-2.7%	5.3%	N
Urinary System	\$128	-3.9%	31.7%	-35.6%	NO-MH

Moral Hazard: Regression Analysis

- Quantile regression that applies to people who have expenditures in a given diagnostic category for two consecutive year
- Denote an individual i and diagnostic category d

$$log^{0}(\mathit{Claims}_{\mathit{id}}) = \delta_{\mathit{d}} + \beta log^{-1}(\mathit{Claims}_{\mathit{id}}) + \alpha log^{-1}(\mathit{Claims}_{\mathit{id}})\mathbf{1}_{500} + \epsilon_{\mathit{id}}$$

Results:

- $\beta = 0.42 \ (T = 41.07)$
- $\alpha = -0.017 \ (T = -2.87)$