Lemons, Market Shutdowns and Learning

Pablo Kurlat

May 2010

Outline

Introduction

The economy

Equilibrium under asymmetric information

Properties of the asymmetric information economy

Informative signals and learning

Conclusion

Introduction

- What makes financial markets fragile?
- Does this matter for the real economy?
- Understanding business cycles
- Financial stabilization policy

Asymmetric information

- One particular imperfection: asymmetric information about quality of assets
- Why this friction?
- Selling assets (or claims to assets) is important and assets are heterogenous
- Asymmetric information is a major concern in corporate finance
- Markets shut down

Plan

1. Macroeconomic model where selling assets matters Implications of asymmetric information
2. Endogenous informational asymmetry through learning

1. Basic Framework

- Entrepreneurs have heterogeneous investment opportunities
- Cannot borrow - raise funds by selling assets
- Asymmetrically informed about the quality of assets they own (lemons and nonlemons)
- Good reason for selling assets: need funds for investment
- Bad reason for selling assets: getting rid of lemons

1. Results

- Equivalence between asymmetric information and taxes on financial transactions
- Implicit tax is countercyclical
- Positive shock \Rightarrow more demand for assets \Rightarrow higher asset prices
\Rightarrow more sales of nonlemons
- Amplification of asset price and investment movements
- Market shutdowns under large negative shocks
- Risk/liquidity premium in asset prices

2. Learning

- Endogenize informational asymmetry
- Each project issues signals
- Imperfectly known correlation between signals and project quality
- Better estimates of correlation \Leftrightarrow signals are more informative \Leftrightarrow less informational asymmetry.
- Learning-by-doing through financial transactions
- Results
- Temporary shocks can have persistent effects
- Shocks to learning

Related work

- Macroeconomics with financial-market imperfections

Kiyotaki \& Moore (1997,2005,2008), Bernanke \& Gertler (1989), Bernanke, Gertler \& Gilchrist (1999), Carlstrom \& Fuerst (1997)

- Asymmetric information in corporate finance

Myers \& Majluf (1984), Choe, Masulis, Nanda (1993)

- Credit markets

Stiglitz \& Weiss (1981), Mankiw (1986), de Meza \& Webb (1987), House (2006)

- Lemons markets and liquidity

Eisfeldt (2004), Bolton et. al. (2008), Malherbe (2009), Rocheteau (2009)

- Financial crises

Gorton (2009), Claessens et. al. (2008), Cecchetti et. al. (2009), Cerra \& Saxena (2008)

- Speed of learning and business cycles

Caplin \& Leahy (1996), Veldkamp (2004), Ordoñez (2009)

A true story

Dear Sir,

My client is selling a cheese factory in Córdoba, Argentina in order to raise funds for profitable investment opportunities in soybean processing.

In FY 2002 it made a loss (under Argentine inflationary accounting rules) of $\$ 30$ million, but increased market share from 10% to 12%.

Would you be interested in purchasing it?

Outline

Introduction

The economy

Equilibrium under asymmetric information

Properties of the asymmetric information economy

Informative signals and learning

Conclusion

Households

- Entrepreneurs have standard preferences

$$
\mathbb{E} \sum \beta^{t} u\left(c_{t}^{j}\right)
$$

with $u\left(c_{t}^{j}\right)=\log \left(c_{t}^{j}\right)$

- Workers supply labour L inelastically and live hand to mouth

Technology

- Capital consists of projects
- Fraction λ become useless lemons; the rest enter production function and then grow at rate γ
- Output is $Y_{t}=Y\left((1-\lambda) K_{t}, L ; Z_{t}\right)$

Investment technology

- Each entrepreneur can convert consumption goods into projects at rate A_{t}^{j}
- Better investment opportunities are modeled as creating more capital
- $A_{t}^{j} \sim F$ and is iid across entrepreneurs and across time
- Resource constraint:

$$
\begin{gathered}
L c_{t}^{w}+\int\left(c_{t}^{j}+i_{t}^{j}\right) d j \leq Y\left((1-\lambda) K_{t}, L ; Z_{t}\right) \\
K_{t+1}=\gamma(1-\lambda) K_{t}+\int i_{t}^{j} A_{t}^{j} d j
\end{gathered}
$$

Complete markets benchmark

- Spot factor markets: $w=Y_{L}$ and $r=Y_{K}$
- All physical investment undertaken by entrepreneurs with $A=A^{\max }$
- Finance by selling claims on future consumption goods (or projects)

Imperfection 1: no (uncollateralized) borrowing

- Entrepreneurs cannot pledge future goods or projects
- Moral hazard
- Outright stealing
- Selling existing projects is the only financial transaction
- Selling used machines
- Spinning off divisions
- Issuing securities
- Binary outcome + divisible projects \Rightarrow selling is (almost) w.l.o.g.
- Kurlat (2009) - security design
- Entrepreneurs sort into Buyers and Sellers:

Buyer:	A^{*}	A
Keep nonlemons Buy projects		Seller: Sonlemons
Invest		

Imperfection 2: asymmetric information

- Seller knows whether project is a lemon or a nonlemon
- Buyer only knows λ^{M} : equilibrium fraction of lemons among sold projects

Outline

Introduction
 The economy

Equilibrium under asymmetric information

Properties of the asymmetric information economy

Informative signals and learning

Conclusion

Entrepreneur's program

Choose consumption, investment, project demand, lemon supply and nonlemon supply

$$
V(k, A, X)=\max _{c, k^{\prime}, i, s_{L}, s_{L L}, d} u(c)+\beta \mathbb{E}\left[V\left(k^{\prime}, A^{\prime}, X^{\prime}\right) \mid X\right]
$$

s.t.

$$
\begin{gathered}
c+i+p(X)\left[d-s_{L}-s_{N L}\right] \leq r(X)(1-\lambda) k \\
k^{\prime}=\gamma\left[(1-\lambda) k+\left(1-\lambda^{M}(X)\right) d-s_{N L}\right]+A i \\
i \geq 0 \quad d \geq 0 \\
s_{L} \in[0, \lambda k] \quad s_{N L} \in[0,(1-\lambda) k]
\end{gathered}
$$

* X is aggregate state: productivity and the joint distribution $\Gamma(K, A)$

Recursive Competitive Equilibrium

- prices $\{p(X), r(X), w(X)\}$
- market proportions of lemons $\lambda^{M}(X)$
- law of motion for capital holdings $\Gamma^{\prime}(X)$
- $c^{w}(X)$
- value function $V(k, A, X)$ and policy function $\left\{c(k, A, X), k^{\prime}(k, A, X)\right.$, $\left.i(k, A, X), s_{L}(k, A, X), s_{N L}(k, A, X), d(k, A, X)\right\}$
such that
- $w(X)=Y_{L}(X), r(X)=Y_{K}(X)$
- $c^{w}(X)=w(X)$
- policy and value functions solve entrepreneur's problem
- $S(X)=\int s_{L}^{j}(X)+s_{N L}^{j}(X) d j \geq D(X)=\int d^{j}(X) d j \quad(=$ if $p(X)>0)$
- $\lambda^{M}(X)=\frac{S_{L}(X)}{S(X)}$
- Law of motion of capital derives from entrepreneur's decisions

Entrepreneur's problem

Step 1: Linear in k

Step 2: Given k^{\prime}, choose $d, s_{L}, s_{N L}$ and i to maximize c

- Simple arbitrage condition

Step 3: Solve relaxed problem (as though budget set were linear)

- Thanks to log preferences, solution can be found statically

Step 4: Show that in equilibrium, relaxed and original problem must coincide

Step 2: Entrepreneurs sort into Buyers, Keepers and Sellers

- Clearly all sell their lemons
- Return of buying: $A^{M}(p)=\frac{\gamma\left(1-\lambda^{M}(p)\right)}{p}$
- $t+1$ projects given up when selling nonlemons: $\frac{\gamma}{p}$

Recall constraints:

$$
\begin{gathered}
c+i+p(X)\left[d-s_{L}-s_{N L}\right] \leq(1-\lambda) r(X) k \\
k^{\prime}=\gamma\left[(1-\lambda) k+\left(1-\lambda^{M}(X)\right) d-s_{N L}\right]+A i
\end{gathered}
$$

Step 2: Entrepreneurs sort into Buyers, Keepers and Sellers

- Clearly all sell their lemons
- Return of buying: $A^{M}(p)=\frac{\gamma\left(1-\lambda^{M}(p)\right)}{p}$
- $t+1$ projects given up when selling nonlemons: $\frac{\gamma}{p}$
- Sorting depending on A :

- The market proportion of lemons is

$$
\lambda^{M}(p)=\frac{\lambda}{\lambda+(1-\lambda)\left(1-F\left(\frac{\gamma}{p}\right)\right)}
$$

Step 3: Budget constraints

Demand

Equilibrium conditions

- Demand of projects from Buyers

$$
D=\left[\beta\left[\lambda+(1-\lambda) \frac{r}{p}\right]-\frac{(1-\beta)(1-\lambda)}{\left(1-\lambda^{M}(p)\right)}\right] F\left(\frac{\gamma\left(1-\lambda^{M}(p)\right)}{p}\right) K
$$

- Supply (lemons + nonlemons) from arbitrage conditions:

$$
S=\left[\lambda+(1-\lambda)\left(1-F\left(\frac{\gamma}{p}\right)\right)\right] K
$$

- Market clearing:

$$
S \geq D \text {, with equality if } p>0
$$

- Same condition must hold if relaxed and full programs don't coincide
- Because if they don't, $D<0$

Outline

Introduction
 The economy
 Equilibrium under asymmetric information

Properties of the asymmetric information economy

Informative signals and learning

Conclusion

Equivalence with taxes

- Assume
- Symmetric information
- An ad-valorem tax on sale of projects: Buyer pays $p(1+\tau)$
- Revenue is redistributed in proportion to capital holdings

Symmetric info \& taxes	Asymmetric info
$c+i+p(\mathbf{1}+\tau) d_{N L}-p s_{N L}-\boldsymbol{T}$	$c+i+p d-p s_{N L}-p s_{L}$
$\leq(1-\lambda) r k$	$\leq(1-\lambda) r k$
$k^{\prime}=\gamma\left[(1-\lambda) k+d_{N L}-s_{N L}\right]+A i$	$k^{\prime}=\gamma\left[(1-\lambda) k+\left(1-\lambda^{M}\right) d-s_{N L}\right]+A i$

If:

$$
\tau(X)=\frac{\lambda^{M}(X)}{1-\lambda^{M}(X)}
$$

\Rightarrow budget constraints (and prices and allocations) coincide

* Part "intertemporal wedge", part "efficiency wedge" (Chari et. al., 2007)

Response to shocks

- Coconut-productivity shock: Proportional increase in $Y((1-\lambda) K, L)$
- Higher r
\Rightarrow increased demand for projects (via wealth of Buyers)
\Rightarrow higher asset prices
\Rightarrow more sales of nonlemons
\Rightarrow lower implicit tax
- Project-productivity shock: Proportional shift in $F(A)$:
- Physical investment more attractive
\Rightarrow more sales of nonlemons
\Rightarrow lower implicit tax

Amplification

Compare asymmetric information vs. symmetric information plus taxes

- Capital accumulation response
- (fixing taxes) Positive output shock increases K^{\prime}
- Lower implicit taxes further increase $K^{\prime *}$
\Rightarrow Asymmetric information amplifies the response of K^{\prime}
- Asset price and interest rate responses
- (fixing taxes) Positive output shocks increase p and lower A^{M}
- Lower implicit taxes further increase p but increase A^{M}
\Rightarrow Asymmetric information
- Amplifies asset price responses
- Moderates A^{M} responses

Market Shutdowns

- Due to selection effect, $A^{M}(p)$ can be bounded
- Compute the A^{M} required to tempt Buyers to choose k^{\prime} above the kink: see graph

$$
\frac{\gamma}{r} \frac{(1-\beta)}{\beta}
$$

- For low enough r, then

$$
\max _{p} A^{M}(p)<\frac{\gamma}{r} \frac{(1-\beta)}{\beta}
$$

$\Rightarrow p=0$
\Rightarrow A negative productivity shock can lead the market to shut down

Risk / liquidity premium

- Offer entrepreneur a safe asset yielding R^{f} consumption goods at $t+1$
- For each possible value for R^{f} and each entrepreneur, solve portfolio problem: invest in projects or in safe asset
- For each entrepreneur, define the implicit risk-free rate $R^{f, j}$ as the rate such that the entrepreneur invests zero in risk-free asset
- Compare this to the expected return on projects:

$$
R^{p, j} \equiv \mathbb{E}\left[\max \left\{A^{j}, A^{M}\right\} W_{k}\left(k^{\prime}, A^{\prime}, X^{\prime}\right)\right]
$$

where $W_{k}\left(k^{\prime}, A^{\prime}, X^{\prime}\right)$ is the shadow value of projects tomorrow

Risk / liquidity premium

Prop.: $R^{p, j}>R^{f, j}$
Proof: Higher A^{\prime} means

- Lower $W_{k}\left(k^{\prime}, A^{\prime}, X^{\prime}\right)$
- Lower consumption \Rightarrow higher marginal utility
\Rightarrow shadow value of projects negatively correlated with $u^{\prime}(c)$
- Under symmetric information and no aggregate risk, shadow value of projects is always $p \Rightarrow$ premium disappears
- Kiyotaki \& Moore (2008) have similar result assuming exogenous "resaleability constraints"

Conclusions so far

- Amplification
- As in Kiyotaki \& Moore $(1997,2008)$, mediated through asset prices
- Endogenous magnitude of the friction
- In Kiyotaki \& Moore (2008), this is a parameter
- Prediction about external financing across the cycle
- Opposite to Bernanke \& Gertler (1989)

Outline

Introduction

The economy

Equilibrium under asymmetric information

Properties of the asymmetric information economy

Informative signals and learning

Conclusion

Why introduce signals and learning?

- Pure informational asymmetry is a limiting case
- Asymmetry can be a matter of degree
- Study how that degree is determined

Information structure

- Financial statements, analyst reports, etc.

- μ close to $\frac{1}{2} \Rightarrow$ signals uninformative
- μ close to 0 or $1 \Rightarrow$ signals informative

Information structure

- Financial statements, analyst reports, etc.

- μ close to $\frac{1}{2} \Rightarrow$ signals uninformative
- μ close to 0 or $1 \Rightarrow$ signals informative

Uncertainty about how to interpret signals

- $\mu_{l} \in\{\bar{\mu}, 1-\bar{\mu}\}$
- For each l, μ_{l} follows independent Markov process with switching probability σ
- At any point in time, agents do not know μ_{l}
- Beliefs $B_{l}\left(\mu_{l}\right)$, with mean $\hat{\mu}_{l}$, derived from learning
- Next:

1. Equilibrium given beliefs
2. How beliefs are formed

Equilibrium given beliefs $B_{l}\left(\mu_{l}\right)$

- A different submarket for each value of l, s
- In each submarket, infer $\hat{\lambda}_{l, s} \equiv \operatorname{Pr}[$ Lemon \mid signal $]$

$$
\begin{aligned}
\hat{\lambda}_{l, \text { Blue }} & =\frac{\lambda \hat{\mu}_{l}}{\lambda \hat{\mu}_{l}+(1-\lambda)\left(1-\hat{\mu}_{l}\right)} \\
\hat{\lambda}_{l, \text { Green }} & =\frac{\lambda\left(1-\hat{\mu}_{l}\right)}{\lambda\left(1-\hat{\mu}_{l}\right)+(1-\lambda) \hat{\mu}_{l}}
\end{aligned}
$$

- because of binary structure $\hat{\mu}_{l}$ is a sufficient statistic for beliefs $B_{l}\left(\mu_{l}\right)$
- Returns $A_{l, s}^{M}\left(p_{l, s}\right)=\frac{\gamma\left(1-\lambda_{l, s}^{M}\left(p_{l, s}\right)\right)}{p_{l, s}}$ equated across submarkets \Rightarrow
- $p_{l, s}$ decreasing in $\hat{\lambda}_{l, s}$
- Submarkets with high $\hat{\lambda}_{l, s}$ shut down

Learning μ

- Could learn from prices (but \exists nonrevealing equilibrium)
- Between t and $t+1$, observe sample of size N_{l} of t-dated signal-outcome pairs from index l
- Bernoulli trial: "success" (with probability μ_{l}) is Blue, Lemon or Green, Nonlemon
- Bayesian updating about μ_{l}
- Filtering problem, since μ_{l} is not constant

Sample size

- $N_{l} \sim \operatorname{Poisson}\left(\omega_{l}\right)$

$$
\omega_{l}=\left[f_{l} \omega_{S}+\left(1-f_{l}\right) \omega_{K}\right]
$$

f_{l} : fraction of l-projects sold $\omega_{S}>\omega_{K}$

- More activity in financial markets \rightarrow more signals observed
- Let $b_{l, t} \equiv \operatorname{Pr}\left[\mu_{l, t}=\bar{\mu}\right]$. Then by Bayesian updating $b_{l, t+1}=\frac{(1-\sigma) \bar{\mu}^{n_{l}}(1-\bar{\mu})^{N_{l}-n_{l}} \omega_{l}(\bar{\mu})^{N_{l}} e^{-\omega_{l}(\bar{\mu})} b_{l, t}+\sigma(1-\bar{\mu})^{n_{l}} \bar{\mu}_{l}^{N_{l}-n_{l}} \omega_{l}(1-\bar{\mu})^{N_{l}} e^{-\omega_{l}(1-\bar{\mu})}\left(1-b_{l, t}\right)}{\bar{\mu}^{n_{l}}(1-\bar{\mu})^{N_{l}-n_{l}} \omega_{l}(\bar{\mu})^{N_{l}} e^{-\omega_{l}(\bar{\mu})} b_{l, t}+(1-\bar{\mu})^{n_{l}} \bar{\mu}^{N_{l}-n_{l}} \omega_{l}(1-\bar{\mu})^{N_{l}} e^{-\omega_{l}(1-\bar{\mu})}\left(1-b_{l, t}\right)}$
- $\omega_{l} \rightarrow 0 \quad \Rightarrow \hat{\mu}$ moves towards $\frac{1}{2}$ (knowledge "depreciates")
- $\omega_{l} \rightarrow \infty \quad \Rightarrow \hat{\mu} \rightarrow(1-\sigma) \bar{\mu}$ or $(1-\sigma)(1-\bar{\mu})$

There is a nonrevealing equilibrium

- Supply of projects in each submarket depends on true μ
- Expected returns $A_{l, s}^{M}\left(p_{l, s}\right)$ (and therefore demand) depend on beliefs $\hat{\mu}$
- Will market prices reveal the true μ ?
- Assume that
- Entrepreneurs do not learn from own portfolio
- Entrepreneurs do not observe quantities
- When Buyers are indifferent between buying from different submarkets, demand adjusts to meet supply
$\Rightarrow \exists$ equilibrium where prices do not depend on true μ. Prices and aggregate quantities are the same as if $\hat{\mu}$ were the true μ

Computation procedure

- Add a state variable: $H(\hat{\mu})$ - distribution function of means of beliefs about μ_{l}
- Solve period-by-period as though $\hat{\mu}$ were the true μ
- Compute the evolution of H and capital

Persistence

- Mechanism:
- Negative shock
\Rightarrow Fewer transactions in financial market (possibly complete shutdown)
\Rightarrow Observe fewer signals
\Rightarrow Beliefs $H(\hat{\mu})$ shift towards $\frac{1}{2}$
\Rightarrow More informational asymmetry in future periods
\Rightarrow Fewer transactions in future periods
\Rightarrow Lower capital accumulation
- If
- In the no-signals steady state, the market shuts down
- ω_{S} is sufficiently high
- ω_{K} is sufficiently low
then temporary productivity shocks can lead the economy to the autarky level of output for arbitrarily long periods of time

Simulations

Parameter	Value
β	0.92
γ	1.78
λ	0.5
σ	0.2
$\bar{\mu}$	0.9
$F(A)$	Gamma distribution with $E(A)=1$ and $\operatorname{std}(A)=2$
Y	$Z[(1-\lambda) K]^{\alpha} L^{1-\alpha}$ with $\alpha=0.3$
L	1
Z	1
ω_{S}	400
ω_{K}	0.07

Simulation: productivity shock

Simulation: productivity shock

Simulation: "paradigm shift" $\left(\sigma=\frac{1}{2}\right.$ for one period)

4. 1

6. A*

9. \% of projects sold

Simulation: "paradigm shift"

Evidence from Cerra \& Saxena (2008)

012345678910
Latin America

012345678910
High income

012345678910

Africa

Middle East

Upper middle income

Transition countries

Lower middle income

012345678910

Industrial countries

Western Hem. islands

Lower income

Simulation: stabilization (permanent decrease in σ)

Simulation: stabilization

* Uses $\omega_{S}=3$ and $\omega_{K}=1$

Outline

```
Introduction
The economy
Equilibrium under asymmetric information
Properties of the asymmetric information economy
Informative signals and learning
```

Conclusion

$$
\text { 4ロ>4甸 } 4 \equiv \text { • }
$$

Final remarks

- Tractable framework to incorporate asymmetric information, lemons and macro shocks
- Severity of adverse selection problem responds endogenously
- Amplification of asset-price and investment effects of productivity shocks
- Persistent effect when learning is endogenous
- Learning by doing externality from financial market activity
- Liquidity = Experience
- Room for policy?

