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Introduction

I What makes financial markets fragile?

I Does this matter for the real economy?

I Understanding business cycles

I Financial stabilization policy



Asymmetric information

I One particular imperfection: asymmetric information about
quality of assets

I Why this friction?

I Selling assets (or claims to assets) is important and assets are
heterogenous

I Asymmetric information is a major concern in corporate finance

I Markets shut down



Plan

1. Macroeconomic model where selling assets matters

Implications of asymmetric information

2. Endogenous informational asymmetry through learning



1. Basic Framework

I Entrepreneurs have heterogeneous investment opportunities

I Cannot borrow - raise funds by selling assets

I Asymmetrically informed about the quality of assets they own
(lemons and nonlemons)

I Good reason for selling assets: need funds for investment

I Bad reason for selling assets: getting rid of lemons



1. Results

I Equivalence between asymmetric information and taxes on
financial transactions

I Implicit tax is countercyclical

I Positive shock⇒ more demand for assets⇒ higher asset prices
⇒ more sales of nonlemons

I Amplification of asset price and investment movements

I Market shutdowns under large negative shocks

I Risk/liquidity premium in asset prices



2. Learning

I Endogenize informational asymmetry

I Each project issues signals

I Imperfectly known correlation between signals and project
quality

I Better estimates of correlation⇔ signals are more informative⇔
less informational asymmetry.

I Learning-by-doing through financial transactions

I Results

I Temporary shocks can have persistent effects

I Shocks to learning



Related work
I Macroeconomics with financial-market imperfections

Kiyotaki & Moore (1997,2005,2008), Bernanke & Gertler (1989), Bernanke,

Gertler & Gilchrist (1999), Carlstrom & Fuerst (1997)

I Asymmetric information in corporate finance
Myers & Majluf (1984), Choe, Masulis, Nanda (1993)

I Credit markets
Stiglitz & Weiss (1981), Mankiw (1986), de Meza & Webb (1987), House

(2006)

I Lemons markets and liquidity
Eisfeldt (2004), Bolton et. al. (2008), Malherbe (2009), Rocheteau (2009)

I Financial crises
Gorton (2009), Claessens et. al. (2008), Cecchetti et. al. (2009), Cerra &

Saxena (2008)

I Speed of learning and business cycles
Caplin & Leahy (1996), Veldkamp (2004), Ordoñez (2009)



A true story

Dear Sir,

My client is selling a cheese factory in Córdoba, Argentina in
order to raise funds for profitable investment opportunities in soybean
processing.

In FY 2002 it made a loss (under Argentine inflationary
accounting rules) of $30 million, but increased market share from
10% to 12%.

Would you be interested in purchasing it?
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Households

I Entrepreneurs have standard preferences

E
∑

βtu(cj
t)

with u(cj
t) = log(cj

t)

I Workers supply labour L inelastically and live hand to mouth



Technology

I Capital consists of projects

I Fraction λ become useless lemons; the rest enter production
function and then grow at rate γ

I Output is Yt = Y ((1− λ) Kt,L; Zt)

Nonlemon
enters Yt(·)

Lemon

1− λ

λ

1− λ
λ

Period t Period t + 1

Lemon

Nonlemon
enters Yt+1(·)

1 project

γ projects

project disappears

1



Investment technology

I Each entrepreneur can convert consumption goods into projects
at rate Aj

t
I Better investment opportunities are modeled as creating more

capital

I Aj
t ∼ F and is iid across entrepreneurs and across time

I Resource constraint:

Lcw
t +

∫ (
cj

t + ijt
)

dj ≤ Y ((1− λ) Kt,L; Zt)

Kt+1 = γ (1− λ) Kt +
∫

ijtA
j
tdj



Complete markets benchmark

I Spot factor markets: w = YL and r = YK

I All physical investment undertaken by entrepreneurs with
A = Amax

I Finance by selling claims on future consumption goods (or
projects)



Imperfection 1: no (uncollateralized) borrowing
I Entrepreneurs cannot pledge future goods or projects

I Moral hazard
I Outright stealing

I Selling existing projects is the only financial transaction
I Selling used machines
I Spinning off divisions
I Issuing securities
I Binary outcome + divisible projects⇒ selling is (almost) w.l.o.g.
I Kurlat (2009) - security design

I Entrepreneurs sort into Buyers and Sellers:

AA∗

Buyer:
Keep nonlemons

Buy projects

Seller:
Sell nonlemons

Invest

1



Imperfection 2: asymmetric information

I Seller knows whether project is a lemon or a nonlemon

I Buyer only knows λM: equilibrium fraction of lemons among
sold projects
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Entrepreneur’s program
Choose consumption, investment, project demand, lemon supply and nonlemon supply

V (k,A,X) = max
c,k′,i,sL,sNL,d

u (c) + βE
[
V
(
k′,A′,X′

)
|X
]

s.t.
c + i + p (X) [d − sL − sNL] ≤ r(X) (1− λ) k

k′ = γ
[
(1− λ) k +

(
1− λM (X)

)
d − sNL

]
+ Ai

i ≥ 0 d ≥ 0

sL ∈ [0, λk] sNL ∈ [0, (1− λ) k]

* X is aggregate state: productivity and the joint distribution Γ(K,A)



Recursive Competitive Equilibrium

I prices {p (X), r (X), w (X)}
I market proportions of lemons λM (X)

I law of motion for capital holdings Γ′(X)

I cw(X)

I value function V (k,A,X) and policy function {c (k,A,X) , k′ (k,A,X) ,
i (k,A,X) , sL (k,A,X) , sNL (k,A,X) , d (k,A,X)}

such that

I w (X) = YL (X), r (X) = YK (X)

I cw (X) = w (X)

I policy and value functions solve entrepreneur’s problem

I S(X) =
∫

sj
L(X) + sj

NL(X)dj ≥ D(X) =
∫

dj(X)dj (= if p(X) > 0)

I λM (X) = SL(X)
S(X)

I Law of motion of capital derives from entrepreneur’s decisions



Entrepreneur’s problem

Step 1: Linear in k

Step 2: Given k′, choose d, sL, sNL and i to maximize c
I Simple arbitrage condition

Step 3: Solve relaxed problem (as though budget set were linear)
I Thanks to log preferences, solution can be found statically

Step 4: Show that in equilibrium, relaxed and original problem must
coincide



Step 2: Entrepreneurs sort into Buyers, Keepers and Sellers

I Clearly all sell their lemons

I Return of buying: AM(p) = γ(1−λM(p))
p

I t + 1 projects given up when selling nonlemons: γ
p

Recall constraints:

c + i + p (X) [d − sL − sNL] ≤ (1− λ) r (X) k

k′ = γ
[
(1− λ) k +

(
1− λM (X)

)
d − sNL

]
+ Ai



Step 2: Entrepreneurs sort into Buyers, Keepers and Sellers

I Clearly all sell their lemons

I Return of buying: AM(p) = γ(1−λM(p))
p

I t + 1 projects given up when selling nonlemons: γ
p

I Sorting depending on A:

Aγ
p

AM ≡ γ(1−λM )
p

Buyer:
Sell lemons

Keep nonlemons
Buy projects

Keeper:
Sell lemons

Keep nonlemons
Invest

Seller:
Sell lemons

Sell nonlemons
Invest

1

I The market proportion of lemons is

λM (p) =
λ

λ+ (1− λ)
(

1− F
(
γ
p

))



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

A[(1− λ)r + p]

A

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

A

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

γ
p

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

γ
p

A

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

γ
p

A

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

γ
p

A

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

γ
p

AM

1



Step 3: Budget constraints

a

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

(1− λ)r + p

Buyer

Keeper

Seller

A[(1− λ)r + p]

(1− λ) γ+
[(1− λ) r + λp]AM

(1− λ) γ+
[(1− λ) r + λp]A

W Keeper W Buyer

1



Demand

c
k

k′
k

(1− λ)r + λp

(1− λ)γ

Buyer

Keeper

Seller

Demand

1



Equilibrium conditions
I Demand of projects from Buyers

D =
[
β

[
λ+ (1− λ)

r
p

]
− (1− β) (1− λ)

(1− λM (p))

]
F
(
γ(1− λM(p))

p

)
K

I Supply (lemons + nonlemons) from arbitrage conditions:

S =
[
λ+ (1− λ)

(
1− F

(
γ

p

))]
K

I Market clearing:

S ≥ D, with equality if p > 0

I Same condition must hold if relaxed and full programs don’t
coincide

I Because if they don’t, D < 0
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Equivalence with taxes
I Assume

I Symmetric information

I An ad-valorem tax on sale of projects: Buyer pays p(1 + τ)

I Revenue is redistributed in proportion to capital holdings

Symmetric info & taxes Asymmetric info
c + i + p(1 + τ) dNL − psNL−T c + i + pd − psNL− psL

≤ (1− λ) rk ≤ (1− λ) rk

k′ = γ [(1− λ) k + dNL − sNL] + Ai k′ = γ[(1− λ)k+
(
1 − λM)

d − sNL] + Ai

If:
τ(X) =

λM(X)

1− λM(X)

⇒ budget constraints (and prices and allocations) coincide

* Part “intertemporal wedge”, part “efficiency wedge” (Chari et.
al., 2007)



Response to shocks

I Coconut-productivity shock:
Proportional increase in Y((1− λ)K,L)

I Higher r

⇒ increased demand for projects (via wealth of Buyers)

⇒ higher asset prices

⇒ more sales of nonlemons

⇒ lower implicit tax

I Project-productivity shock:
Proportional shift in F(A):

I Physical investment more attractive

⇒ more sales of nonlemons

⇒ lower implicit tax



Amplification
Compare asymmetric information vs. symmetric information plus taxes

I Capital accumulation response

I (fixing taxes) Positive output shock increases K′

I Lower implicit taxes further increase K′ ∗

⇒ Asymmetric information amplifies the response of K′

I Asset price and interest rate responses

I (fixing taxes) Positive output shocks increase p and lower AM

I Lower implicit taxes further increase p but increase AM

⇒ Asymmetric information
I Amplifies asset price responses
I Moderates AM responses

* s.t. technical conditions



Market Shutdowns

I Due to selection effect, AM (p) can be bounded

I Compute the AM required to tempt Buyers to choose k′ above the
kink: see graph

γ

r
(1− β)
β

I For low enough r, then

max
p

AM (p) <
γ

r
(1− β)
β

⇒ p = 0

⇒ A negative productivity shock can lead the market to shut down



Risk / liquidity premium

I Offer entrepreneur a safe asset yielding Rf consumption goods at
t + 1

I For each possible value for Rf and each entrepreneur, solve
portfolio problem: invest in projects or in safe asset

I For each entrepreneur, define the implicit risk-free rate Rf ,j as the
rate such that the entrepreneur invests zero in risk-free asset

I Compare this to the expected return on projects:

Rp,j ≡ E
[
max{Aj,AM}Wk(k′,A′,X′)

]
where Wk(k′,A′,X′) is the shadow value of projects tomorrow



Risk / liquidity premium

Prop.: Rp,j > Rf ,j

Proof: Higher A′ means
I Lower Wk(k′,A′,X′)
I Lower consumption⇒ higher marginal utility

⇒ shadow value of projects negatively correlated with u′(c)

I Under symmetric information and no aggregate risk, shadow
value of projects is always p⇒ premium disappears

I Kiyotaki & Moore (2008) have similar result assuming
exogenous “resaleability constraints”



Conclusions so far

I Amplification
I As in Kiyotaki & Moore (1997,2008), mediated through asset

prices

I Endogenous magnitude of the friction
I In Kiyotaki & Moore (2008), this is a parameter

I Prediction about external financing across the cycle
I Opposite to Bernanke & Gertler (1989)
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Why introduce signals and learning?

I Pure informational asymmetry is a limiting case

I Asymmetry can be a matter of degree

I Study how that degree is determined



Information structure

I Financial statements, analyst reports, etc.

Nonlemon

Lemon

λ

1− λ

1− µ

µ

Blue

Green

Blue

Green

1− µ

µ

Outcome Signals

1

I µ close to 1
2 ⇒ signals uninformative

I µ close to 0 or 1⇒ signals informative



Information structure

I Financial statements, analyst reports, etc.

Nonlemon

Lemon

λ

1− λ

1− µl

µl

l,Blue

l,Green

l,Blue

l,Green

1− µl

µl

Outcome SignalsIndex

l

1

I µ close to 1
2 ⇒ signals uninformative

I µ close to 0 or 1⇒ signals informative



Uncertainty about how to interpret signals

I µl ∈ {µ̄, 1− µ̄}

I For each l, µl follows independent Markov process with
switching probability σ

I At any point in time, agents do not know µl

I Beliefs Bl(µl), with mean µ̂l, derived from learning

I Next:
1. Equilibrium given beliefs
2. How beliefs are formed



Equilibrium given beliefs Bl(µl)

I A different submarket for each value of l, s

I In each submarket, infer λ̂l,s ≡ Pr[Lemon|signal]

λ̂l,Blue =
λµ̂l

λµ̂l + (1− λ) (1− µ̂l)

λ̂l,Green =
λ (1− µ̂l)

λ (1− µ̂l) + (1− λ) µ̂l

I because of binary structure µ̂l is a sufficient statistic for beliefs
Bl(µl)

I Returns AM
l,s(pl,s) =

γ(1−λM
l,s(pl,s))

pl,s
equated across submarkets⇒

I pl,s decreasing in λ̂l,s
I Submarkets with high λ̂l,s shut down



Learning µ

I Could learn from prices (but ∃ nonrevealing equilibrium)

I Between t and t + 1, observe sample of size Nl of t-dated
signal-outcome pairs from index l

I Bernoulli trial: “success” (with probability µl) is Blue,Lemon or
Green,Nonlemon

I Bayesian updating about µl

I Filtering problem, since µl is not constant



Sample size

I Nl ∼ Poisson(ωl)

ωl = [flωS + (1− fl)ωK ]

fl: fraction of l-projects sold
ωS > ωK

I More activity in financial markets→ more signals observed

I Let bl,t ≡ Pr[µl,t = µ̄]. Then by Bayesian updating

bl,t+1 =
(1− σ) µ̄nl (1− µ̄)Nl−nl ωl (µ̄)Nl e−ωl(µ̄)bl,t + σ (1− µ̄)nl µ̄Nl−nlωl (1− µ̄)Nl e−ωl(1−µ̄) (

1− bl,t
)

µ̄nl (1− µ̄)Nl−nl ωl (µ̄)Nl e−ωl(µ̄)bl,t + (1− µ̄)nl µ̄Nl−nlωl (1− µ̄)Nl e−ωl(1−µ̄) (
1− bl,t

)

I ωl → 0 ⇒ µ̂ moves towards 1
2 (knowledge “depreciates”)

I ωl →∞ ⇒ µ̂→ (1− σ)µ̄ or (1− σ)(1− µ̄)



There is a nonrevealing equilibrium

I Supply of projects in each submarket depends on true µ

I Expected returns AM
l,s(pl,s) (and therefore demand) depend on

beliefs µ̂

I Will market prices reveal the true µ?

I Assume that

I Entrepreneurs do not learn from own portfolio

I Entrepreneurs do not observe quantities

I When Buyers are indifferent between buying from different
submarkets, demand adjusts to meet supply

⇒ ∃ equilibrium where prices do not depend on true µ. Prices and
aggregate quantities are the same as if µ̂ were the true µ



Computation procedure

I Add a state variable: H(µ̂) - distribution function of means of
beliefs about µl

I Solve period-by-period as though µ̂ were the true µ

I Compute the evolution of H and capital



Persistence

I Mechanism:
I Negative shock
⇒ Fewer transactions in financial market (possibly complete

shutdown)
⇒ Observe fewer signals
⇒ Beliefs H(µ̂) shift towards 1

2⇒ More informational asymmetry in future periods
⇒ Fewer transactions in future periods
⇒ Lower capital accumulation

I If
I In the no-signals steady state, the market shuts down
I ωS is sufficiently high
I ωK is sufficiently low

then temporary productivity shocks can lead the economy to the
autarky level of output for arbitrarily long periods of time



Simulations

Parameter Value
β 0.92
γ 1.78
λ 0.5
σ 0.2
µ̄ 0.9
F (A) Gamma distribution with E (A) = 1 and std (A) = 2
Y Z [(1− λ) K]α L1−α with α = 0.3
L 1
Z 1
ωS 400
ωK 0.07



Simulation: productivity shock
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Simulation: productivity shock
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Simulation: “paradigm shift” (σ = 1
2 for one period)

10 20 30
−1

−0.5

0

0.5

1
1. TFP

t

%
 d

ev
 fr

om
 s

s

 

 

Learning
Fixed H

10 20 30
−0.06

−0.04

−0.02

0

0.02
2. Y

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.03

−0.02

−0.01

0

0.01
3. Net K growth

t

%

10 20 30
−0.3

−0.2

−0.1

0

0.1
4. I

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.1

−0.05

0

0.05

0.1
5. Average A

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.2

−0.1

0

0.1

0.2
6. A*

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.03

−0.02

−0.01

0

0.01
7. Measured Solow

t

%
 d

ev
 fr

om
 s

s

10 20 30
0

0.01

0.02

0.03
9. % of projects sold

t

%

10 20 30
1

1.5

2

2.5

3
x 10

−3 8. sd(i/k)

t

%

1



Simulation: “paradigm shift”
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Evidence from Cerra & Saxena (2008)

1



Simulation: stabilization (permanent decrease in σ)

10 20 30
0

0.02

0.04

0.06
1. TFP

t

%
 d

ev
 fr

om
 s

s

 

 

Learning
Fixed H

10 20 30
−0.05

0

0.05

0.1

0.15
2. Y

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.05

0

0.05

0.1
3. Net K growth

t

%

10 20 30
0

0.1

0.2

0.3

0.4
4. I

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.1

0

0.1

0.2
5. Average A

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.2

0

0.2

0.4
6. A*

t

%
 d

ev
 fr

om
 s

s

10 20 30
−0.02

0

0.02

0.04

0.06
7. Measured Solow

t

%
 d

ev
 fr

om
 s

s

10 20 30
0

0.02

0.04

0.06
9. % of projects sold

t

%

10 20 30
2

4

6

8
x 10

−3 8. sd(i/k)

t

%

1



Simulation: stabilization
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* Uses ωS = 3 and ωK = 1
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Final remarks

I Tractable framework to incorporate asymmetric information,
lemons and macro shocks

I Severity of adverse selection problem responds endogenously

I Amplification of asset-price and investment effects of
productivity shocks

I Persistent effect when learning is endogenous

I Learning by doing externality from financial market activity

I Liquidity = Experience

I Room for policy?


	Introduction
	The economy
	Equilibrium under asymmetric information
	Properties of the asymmetric information economy
	Informative signals and learning
	Conclusion

