Entrepreneurial Taxation, Occupational Choice and Credit Market Frictions

Florian Scheuer

MIT

May 2010

Motivation

How should business profits be taxed relative to other forms of income?

Motivation

How should business profits be taxed relative to other forms of income?

- Direct redistribution (tagging)
\rightarrow Entrepreneurs tend to be better off
\rightarrow Higher profit taxation

Motivation

How should business profits be taxed relative to other forms of income?

- Direct redistribution (tagging)
\rightarrow Entrepreneurs tend to be better off
\rightarrow Higher profit taxation
- Indirect redistribution (trickle down)
\rightarrow Reducing business taxes encourages entrepreneurship, labor demand
\rightarrow Wages rise, benefits low to medium income workers
\rightarrow Subsidize entrepreneurial effort?

Motivation

How should business profits be taxed relative to other forms of income?

- Direct redistribution (tagging)
\rightarrow Entrepreneurs tend to be better off
\rightarrow Higher profit taxation
- Indirect redistribution (trickle down)
\rightarrow Reducing business taxes encourages entrepreneurship, labor demand
\rightarrow Wages rise, benefits low to medium income workers
\rightarrow Subsidize entrepreneurial effort?
- Correct inefficiencies (entrepreneurs face credit market frictions)
\rightarrow Insufficient number of entrepreneurs?
\rightarrow Subsidize entry into entrepreneurship?

Motivation

How should business profits be taxed relative to other forms of income?

- Direct redistribution (tagging)
\rightarrow Entrepreneurs tend to be better off
\rightarrow Higher profit taxation
- Indirect redistribution (trickle down)
\rightarrow Reducing business taxes encourages entrepreneurship, labor demand
\rightarrow Wages rise, benefits low to medium income workers
\rightarrow Subsidize entrepreneurial effort?
- Correct inefficiencies (entrepreneurs face credit market frictions)
\rightarrow Insufficient number of entrepreneurs?
\rightarrow Subsidize entry into entrepreneurship?
Key ingredients to model these tradeoffs:
- Heterogeneity in skill and occupational preference
- Endogenous occupational choice
- Entrepreneurs hire workers, endogenous wages

Preview of Main Results

Baseline model without credit market frictions

- Uniform taxation, treating profits and labor income the same
\rightarrow Manipulate wages to achieve more redistribution (trickle down)
\rightarrow Production distortions

Preview of Main Results

Baseline model without credit market frictions

- Uniform taxation, treating profits and labor income the same
\rightarrow Manipulate wages to achieve more redistribution (trickle down)
\rightarrow Production distortions
- Differential taxation of profits and labor income
\rightarrow Direct redistribution (tagging), production efficiency
\rightarrow Compare optimal profit and income tax schedules

Preview of Main Results

Baseline model without credit market frictions

- Uniform taxation, treating profits and labor income the same
\rightarrow Manipulate wages to achieve more redistribution (trickle down)
\rightarrow Production distortions
- Differential taxation of profits and labor income
\rightarrow Direct redistribution (tagging), production efficiency
\rightarrow Compare optimal profit and income tax schedules
Add investment, borrowing and credit markets
- Adverse selection from private heterogeneity among entrepreneurs
- Credit market equilibrium affects entry into entrepreneurship

Preview of Main Results

Baseline model without credit market frictions

- Uniform taxation, treating profits and labor income the same
\rightarrow Manipulate wages to achieve more redistribution (trickle down)
\rightarrow Production distortions
- Differential taxation of profits and labor income
\rightarrow Direct redistribution (tagging), production efficiency
\rightarrow Compare optimal profit and income tax schedules
Add investment, borrowing and credit markets
- Adverse selection from private heterogeneity among entrepreneurs
- Credit market equilibrium affects entry into entrepreneurship
\rightarrow Cross-subsidization from high to low-quality borrowers
\rightarrow Excessive (insufficient) entry of low-skill (high-skill) entrepreneurs
\rightarrow Regressive entrepreneurial taxation restores efficient occupational choice

Related Literature

- Simulating tax reforms in quantitative models with entrepreneurs Meh (2005) (flat tax reform), Cagetti/DeNardi (2009) (estate tax), Kitao (2008), Panousi (2008) (capital tax)
- Optimal savings distortions with entrepreneurial investment Albanesi (2006), (2008), Chari et al. (2002)
- Credit market interventions with adverse selection Stiglitz/Weiss (1976), DeMeza/Webb (1987), Innes (1992), Parker (2003)
- Optimal taxation with endogenous wages Feldstein (1973), Zeckhauser (1977), Allen (1982), Boadway et al. (1991), Parker (1999), Stiglitz (1982), Moresi (1998), Naito (1999)
- Nonlinear taxation with multidimensional private information Kleven et al. (2009)

Baseline Model

Measure one of heterogeneous individuals with two-dimensional private type

$$
(\theta, \phi) \in[\underline{\theta}, \bar{\theta}] \times\left[0, \bar{\phi}_{\theta}\right], \quad \operatorname{cdf} F(\theta) \text { and } G_{\theta}(\phi)
$$

Baseline Model

Measure one of heterogeneous individuals with two-dimensional private type

$$
(\theta, \phi) \in[\underline{\theta}, \bar{\theta}] \times\left[0, \bar{\phi}_{\theta}\right], \quad \operatorname{cdf} F(\theta) \text { and } G_{\theta}(\phi)
$$

Individuals can choose between two occupations:

- Workers supply effective labor I at (endogenous) wage w Quasi-linear preferences

$$
U(c, I, \theta)=c-\psi(I / \theta), \quad \psi(.) \text { increasing, convex }
$$

Baseline Model

Measure one of heterogeneous individuals with two-dimensional private type

$$
(\theta, \phi) \in[\underline{\theta}, \bar{\theta}] \times\left[0, \bar{\phi}_{\theta}\right], \quad \operatorname{cdf} F(\theta) \text { and } G_{\theta}(\phi)
$$

Individuals can choose between two occupations:

- Workers supply effective labor I at (endogenous) wage w Quasi-linear preferences

$$
U(c, I, \theta)=c-\psi(I / \theta), \quad \psi(.) \text { increasing, convex }
$$

- Entrepreneurs hire effective labor L and provide effective effort E Profits

$$
\pi=Y(L, E)-w L, \quad Y(L, E) \text { is CRS, concave }
$$

Baseline Model

Measure one of heterogeneous individuals with two-dimensional private type

$$
(\theta, \phi) \in[\underline{\theta}, \bar{\theta}] \times\left[0, \bar{\phi}_{\theta}\right], \quad \operatorname{cdf} F(\theta) \text { and } G_{\theta}(\phi)
$$

Individuals can choose between two occupations:

- Workers supply effective labor I at (endogenous) wage w Quasi-linear preferences

$$
U(c, I, \theta)=c-\psi(I / \theta), \quad \psi(.) \text { increasing, convex }
$$

- Entrepreneurs hire effective labor L and provide effective effort E Profits

$$
\pi=Y(L, E)-w L, \quad Y(L, E) \text { is CRS, concave }
$$

Utility

$$
U(\pi, E, \theta)=\pi-\psi(E / \theta)-\phi
$$

where ϕ is a (heterogeneous) cost of becoming an entrepreneur

Equilibrium without Taxes I

Given w, conditional on becoming a worker, type θ solves max/ $w I-\psi(I / \theta)$ $\rightarrow I^{*}(\theta, w)$ and indirect utility $v_{w}(\theta, w)$

Equilibrium without Taxes I

Given w, conditional on becoming a worker, type θ solves max, $w I-\psi(I / \theta)$ $\rightarrow I^{*}(\theta, w)$ and indirect utility $v_{w}(\theta, w)$
If becoming an entrepreneur, type θ solves $\max _{L, E} Y(L, E)-w L-\psi(E / \theta)$ $\rightarrow L^{*}(\theta, w), E^{*}(\theta, w)$ and indirect utility $v_{E}(\theta, w)$

Equilibrium without Taxes I

Given w, conditional on becoming a worker, type θ solves max, $w I-\psi(I / \theta)$ $\rightarrow I^{*}(\theta, w)$ and indirect utility $v_{w}(\theta, w)$
If becoming an entrepreneur, type θ solves $\max _{L, E} Y(L, E)-w L-\psi(E / \theta)$ $\rightarrow L^{*}(\theta, w), E^{*}(\theta, w)$ and indirect utility $v_{E}(\theta, w)$

Critical cost value for occupational choice:

$$
\tilde{\phi}(\theta, w) \equiv v_{E}(\theta, w)-v_{w}(\theta, w)
$$

All (θ, ϕ) with $\phi \leq \tilde{\phi}(\theta, w)$ become entrepreneurs, the others workers

Equilibrium without Taxes I

Given w, conditional on becoming a worker, type θ solves max $w l-\psi(I / \theta)$ $\rightarrow I^{*}(\theta, w)$ and indirect utility $v_{w}(\theta, w)$
If becoming an entrepreneur, type θ solves $\max _{L, E} Y(L, E)-w L-\psi(E / \theta)$ $\rightarrow L^{*}(\theta, w), E^{*}(\theta, w)$ and indirect utility $v_{E}(\theta, w)$

Critical cost value for occupational choice:

$$
\tilde{\phi}(\theta, w) \equiv v_{E}(\theta, w)-v_{w}(\theta, w)
$$

All (θ, ϕ) with $\phi \leq \tilde{\phi}(\theta, w)$ become entrepreneurs, the others workers

Definition

An equilibrium without taxes is a wage w^{*} and an allocation $\left\{\iota^{*}\left(\theta, w^{*}\right)\right.$, $\left.L^{*}\left(\theta, w^{*}\right), E^{*}\left(\theta, w^{*}\right)\right\}$ such that the labor market clears:

$$
\int_{\Theta} G_{\theta}\left(\tilde{\phi}\left(\theta, w^{*}\right)\right) L^{*}\left(\theta, w^{*}\right) d F(\theta)=\int_{\Theta}\left(1-G_{\theta}\left(\tilde{\phi}\left(\theta, w^{*}\right)\right)\right) I^{*}\left(\theta, w^{*}\right) d F(\theta)
$$

Equilibrium without Taxes II

Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L \quad \Rightarrow \quad Y_{L}\left(L^{c}(E, w), E\right)=w
$$

With CRS,

$$
Y\left(L^{c}(E, w), E\right)=Y_{L}\left(L^{c}(E, w), E\right) L^{c}(E, w)+Y_{E}\left(L^{c}(E, w), E\right) E,
$$

and thus $\pi=Y_{E}\left(L^{c}(E, w), E\right) E$

Equilibrium without Taxes II

Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L \quad \Rightarrow \quad Y_{L}\left(L^{c}(E, w), E\right)=w
$$

With CRS,

$$
Y\left(L^{c}(E, w), E\right)=Y_{L}\left(L^{c}(E, w), E\right) L^{c}(E, w)+Y_{E}\left(L^{c}(E, w), E\right) E,
$$

and thus $\pi=Y_{E}\left(L^{c}(E, w), E\right) E$
\rightarrow Entrepreneurs can be thought of just receiving a different wage $\tilde{w}=Y_{E}$
\rightarrow One-to-one relationship $\tilde{w}(w)$, decreasing

Equilibrium without Taxes II

Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L \quad \Rightarrow \quad Y_{L}\left(L^{c}(E, w), E\right)=w
$$

With CRS,

$$
Y\left(L^{c}(E, w), E\right)=Y_{L}\left(L^{c}(E, w), E\right) L^{c}(E, w)+Y_{E}\left(L^{c}(E, w), E\right) E,
$$

and thus $\pi=Y_{E}\left(L^{c}(E, w), E\right) E$
\rightarrow Entrepreneurs can be thought of just receiving a different wage $\tilde{w}=Y_{E}$
\rightarrow One-to-one relationship $\tilde{w}(w)$, decreasing

Lemma

(i) Any no tax equilibrium involves $\tilde{w}\left(w^{*}\right)>w^{*}$ and $E^{*}\left(\theta, \tilde{w}^{*}\right)>I^{*}\left(\theta, w^{*}\right) \forall \theta$.
(ii) The critical cost value $\tilde{\phi}\left(\theta, w^{*}\right)$ is increasing in θ
(iii) The share of entrepreneurs $G\left(\tilde{\phi}\left(\theta, w^{*}\right)\right)$ is increasing in θ if, for instance, $G_{\theta^{\prime}}(\phi) \succeq_{\text {FOSD }} G_{\theta}(\phi)$ for $\theta^{\prime} \leq \theta$

Equilibrium without Taxes II

Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L \quad \Rightarrow \quad Y_{L}\left(L^{c}(E, w), E\right)=w
$$

With CRS,

$$
Y\left(L^{c}(E, w), E\right)=Y_{L}\left(L^{c}(E, w), E\right) L^{c}(E, w)+Y_{E}\left(L^{c}(E, w), E\right) E,
$$

and thus $\pi=Y_{E}\left(L^{c}(E, w), E\right) E$
\rightarrow Entrepreneurs can be thought of just receiving a different wage $\tilde{w}=Y_{E}$
\rightarrow One-to-one relationship $\tilde{w}(w)$, decreasing

Lemma

(i) Any no tax equilibrium involves $\tilde{w}\left(w^{*}\right)>w^{*}$ and $E^{*}\left(\theta, \tilde{w}^{*}\right)>I^{*}\left(\theta, w^{*}\right) \forall \theta$.
(ii) The critical cost value $\tilde{\phi}\left(\theta, w^{*}\right)$ is increasing in θ
(iii) The share of entrepreneurs $G\left(\tilde{\phi}\left(\theta, w^{*}\right)\right)$ is increasing in θ if, for instance,
$G_{\theta^{\prime}}(\phi) \succeq_{\text {FOSD }} G_{\theta}(\phi)$ for $\theta^{\prime} \leq \theta$
$G_{\theta}(\phi)$ can produce more general relationships between skill and entrepreneurship

Uniform Taxation

Non-linear income tax $T($.$) , treating labor income and firm profits equally$

Uniform Taxation

Non-linear income tax T (.), treating labor income and firm profits equally Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L-T(Y(L, E)-w L) \quad \Rightarrow \quad Y_{L}=w \quad \Rightarrow \quad Y_{E}=\tilde{w}
$$

Uniform Taxation

Non-linear income tax T (.), treating labor income and firm profits equally Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L-T(Y(L, E)-w L) \quad \Rightarrow \quad Y_{L}=w \Rightarrow Y_{E}=\tilde{w}
$$

Entrepreneur of type θ solves $\max _{E} \tilde{w} E-T(\tilde{w} E)-\psi(E / \theta)$
Worker of type θ solves max/ $w l-T(w /)-\psi(I / \theta)$

Uniform Taxation

Non-linear income tax T (.), treating labor income and firm profits equally Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L-T(Y(L, E)-w L) \quad \Rightarrow \quad Y_{L}=w \quad \Rightarrow \quad Y_{E}=\tilde{w}
$$

Entrepreneur of type θ solves $\max _{E} \tilde{w} E-T(\tilde{w} E)-\psi(E / \theta)$
Worker of type θ solves max/ $w l-T(w /)-\psi(I / \theta)$
\rightarrow Entrepreneur of type θ and worker of type θ^{\prime} s.t. $\tilde{w} \theta=w \theta^{\prime}$ choose

$$
\tilde{w} E(\theta)=w l\left(\frac{\tilde{w}}{w} \theta\right) \Rightarrow v_{E}(\theta)=v_{w}\left(\frac{\tilde{w}}{w} \theta\right)
$$

Uniform Taxation

Non-linear income tax T (.), treating labor income and firm profits equally Given E, w, entrepreneurs of all types θ solve

$$
\max _{L} Y(L, E)-w L-T(Y(L, E)-w L) \quad \Rightarrow \quad Y_{L}=w \quad \Rightarrow \quad Y_{E}=\tilde{w}
$$

Entrepreneur of type θ solves $\max _{E} \tilde{w} E-T(\tilde{w} E)-\psi(E / \theta)$
Worker of type θ solves max/ $w l-T(w /)-\psi(I / \theta)$
\rightarrow Entrepreneur of type θ and worker of type θ^{\prime} s.t. $\tilde{w} \theta=w \theta^{\prime}$ choose

$$
\tilde{w} E(\theta)=w l\left(\frac{\tilde{w}}{w} \theta\right) \Rightarrow v_{E}(\theta)=v_{w}\left(\frac{\tilde{w}}{w} \theta\right)
$$

\rightarrow Cannot discriminate entrepreneurs of skill θ and workers of skill $(\tilde{w} / w) \theta$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is
Uniform Taxation

$$
\max _{\substack{E(\theta),,(\theta), 1(\theta)) \\ v_{E}(\theta), v_{w}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta)
$$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is
Uniform Taxation

$$
\max _{\substack{E(\theta),(()), 1(\theta)) \\ v_{E}(\theta), v_{w}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta)
$$

s.t. $\tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is
Uniform Taxation

$$
\begin{gathered}
\max _{\substack{E(\theta), L^{(\theta), l(\theta))} \\
v_{E}(\theta), v_{W}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \quad \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta
\end{gathered}
$$

$v_{E}(\theta) \geq v_{E}\left(\theta^{\prime}\right)+\psi\left(E\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(E\left(\theta^{\prime}\right) / \theta\right), v_{W}(\theta) \geq v_{W}\left(\theta^{\prime}\right)+\psi\left(/\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(/\left(\theta^{\prime}\right) / \theta\right) \forall \theta, \theta^{\prime} \in \Theta$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is

Uniform Taxation

$$
\begin{gather*}
\max _{\substack{E(\theta), L_{0}(\theta),(\theta), \tilde{c} \\
v_{E}(\theta), v_{W}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta \\
v_{E}(\theta) \geq v_{E}\left(\theta^{\prime}\right)+\psi\left(E\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(E\left(\theta^{\prime}\right) / \theta\right), v_{W}(\theta) \geq v_{W}\left(\theta^{\prime}\right)+\psi\left(l\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(l\left(\theta^{\prime}\right) / \theta\right) \forall \theta, \theta^{\prime} \in \Theta \\
 \tag{IC}\\
\int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) L(\theta) d F(\theta) \leq \int_{\Theta}\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) /(\theta) d F(\theta)
\end{gather*}
$$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is

Uniform Taxation

$$
\begin{gather*}
\max _{\substack{E(\theta), L(\theta), l(\theta), v_{E}(\theta), v_{W}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \quad \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta \\
v_{E}(\theta) \geq v_{E}\left(\theta^{\prime}\right)+\psi\left(E\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(E\left(\theta^{\prime}\right) / \theta\right), v_{W}(\theta) \geq v_{W}\left(\theta^{\prime}\right)+\psi\left(I\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(I\left(\theta^{\prime}\right) / \theta\right) \forall \theta, \theta^{\prime} \in \Theta \\
\quad \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) L(\theta) d F(\theta) \leq \int_{\Theta}\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) /(\theta) d F(\theta) \tag{IC}\\
\int_{\Theta} G_{\theta}(\tilde{\phi}(\theta))\left[Y(L(\theta), E(\theta))-v_{E}(\theta)-\psi(E(\theta) / \theta)\right] d F(\theta) \\
-\int_{\Theta}(1-G(\tilde{\phi}(\theta)))\left[v_{w}(\theta)+\psi(I(\theta) / \theta)\right] d F(\theta) \geq \tag{RC}
\end{gather*}
$$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is

Uniform Taxation

$$
\begin{gather*}
\max _{\substack{E(\theta), L(\theta), I(\theta), v_{E}(\theta), v_{W}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \quad \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta \\
v_{E}(\theta) \geq v_{E}\left(\theta^{\prime}\right)+\psi\left(E\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(E\left(\theta^{\prime}\right) / \theta\right), v_{W}(\theta) \geq v_{W}\left(\theta^{\prime}\right)+\psi\left(I\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(I\left(\theta^{\prime}\right) / \theta\right) \forall \theta, \theta^{\prime} \in \Theta \\
\quad \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) L(\theta) d F(\theta) \leq \int_{\Theta}\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) I(\theta) d F(\theta) \tag{IC}\\
\int_{\Theta} G_{\theta}(\tilde{\phi}(\theta))\left[Y(L(\theta), E(\theta))-v_{E}(\theta)-\psi(E(\theta) / \theta)\right] d F(\theta) \\
\quad-\int_{\Theta}(1-G(\tilde{\phi}(\theta)))\left[v_{w}(\theta)+\psi(I(\theta) / \theta)\right] d F(\theta) \geq \quad \text { (LM) } \tag{RC}\\
v_{E}(\theta)=v_{W}((\tilde{w} / w) \theta), \quad E(\theta)=(w / \tilde{w}) I((\tilde{w} / w) \theta) \quad \forall \theta \in[\underline{\theta},(w / \tilde{w}) \bar{\theta}] \tag{ND}
\end{gather*}
$$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is

Uniform Taxation

$$
\begin{gather*}
\max _{\substack{E(\theta), L(\theta), l(\theta), v_{E}(\theta), v_{W}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \quad \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta \\
v_{E}(\theta) \geq v_{E}\left(\theta^{\prime}\right)+\psi\left(E\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(E\left(\theta^{\prime}\right) / \theta\right), v_{W}(\theta) \geq v_{W}\left(\theta^{\prime}\right)+\psi\left(I\left(\theta^{\prime}\right) / \theta^{\prime}\right)-\psi\left(I\left(\theta^{\prime}\right) / \theta\right) \forall \theta, \theta^{\prime} \in \Theta \\
\quad \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) L(\theta) d F(\theta) \leq \int_{\Theta}\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) I(\theta) d F(\theta) \tag{IC}\\
\int_{\Theta} G_{\theta}(\tilde{\phi}(\theta))\left[Y(L(\theta), E(\theta))-v_{E}(\theta)-\psi(E(\theta) / \theta)\right] d F(\theta) \\
-\int_{\Theta}(1-G(\tilde{\phi}(\theta)))\left[v_{w}(\theta)+\psi(I(\theta) / \theta)\right] d F(\theta) \geq \tag{RC}\\
v_{E}(\theta)=v_{W}((\tilde{w} / w) \theta), \quad E(\theta)=(w / \tilde{w}) I((\tilde{w} / w) \theta) \quad \forall \theta \in[\underline{\theta},(w / \tilde{w}) \bar{\theta}] \tag{ND}\\
w=Y_{L}(L(\theta), E(\theta)), \quad \tilde{w}=Y_{E}(L(\theta), E(\theta)) \forall \theta \in \Theta \tag{MP}
\end{gather*}
$$

Constrained Pareto Problem

With Pareto-weights $\tilde{F}(\theta), \tilde{G}_{\theta}(\phi)$, the constrained Pareto problem is

Uniform Taxation

$$
\begin{gather*}
\max _{\substack{E(\theta), L(\theta), I(\theta), v_{E}(\theta), v_{W}(\theta), w, \tilde{w}}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \quad \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta \\
v_{E}^{\prime}(\theta)=E(\theta) \psi^{\prime}(E(\theta) / \theta) / \theta^{2}, \quad v_{W}^{\prime}(\theta)=I(\theta) \psi^{\prime}(I(\theta) / \theta) / \theta^{2}, \quad E(\theta), I(\theta) \text { increasing } \forall \theta \in \Theta \\
\int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) L(\theta) d F(\theta) \leq \int_{\Theta}\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) I(\theta) d F(\theta) \tag{IC}\\
\quad \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta))\left[Y(L(\theta), E(\theta))-v_{E}(\theta)-\psi(E(\theta) / \theta)\right] d F(\theta) \\
-\int_{\Theta}(1-G(\tilde{\phi}(\theta)))\left[v_{w}(\theta)+\psi(I(\theta) / \theta)\right] d F(\theta) \geq \tag{RC}\\
v_{E}(\theta)=v_{W}((\tilde{w} / w) \theta), \quad E(\theta)=(w / \tilde{w}) I((\tilde{w} / w) \theta) \quad \forall \theta \in[\underline{\theta},(w / \tilde{w}) \bar{\theta}] \\
w=Y_{L}(L(\theta), E(\theta)), \quad \tilde{w}=Y_{E}(L(\theta), E(\theta)) \forall \theta \in \Theta \quad \text { (ND) } \tag{ND}
\end{gather*}
$$

Optimal Taxation Results

Pecuniary externality from prices w and \tilde{w} entering program through (ND)

Optimal Taxation Results

Pecuniary externality from prices w and \tilde{w} entering program through (ND)

Proposition

(i) In any constrained Pareto optimum, $\tilde{w}>w$ and $\tilde{w} E(\theta)>w /(\theta) \forall \theta \in \Theta$
(ii) $T^{\prime}(w /(\underline{\theta}))=T^{\prime}(\tilde{w} E(\bar{\theta}))=0$ if $Y(L, E)$ is linear
(iii) Otherwise, $T^{\prime}(w /(\underline{\theta}))$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))$ have opposite signs.
(iv) E.g. if $\tilde{G} \succeq_{\text {FOSD }} G$ and $\tilde{F}=F$, then $T^{\prime}(w /(\underline{\theta}))>0$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))<0$

Optimal Taxation Results

Pecuniary externality from prices w and \tilde{w} entering program through (ND)

Proposition

(i) In any constrained Pareto optimum, $\tilde{w}>w$ and $\tilde{w} E(\theta)>w /(\theta) \forall \theta \in \Theta$
(ii) $T^{\prime}(w l(\underline{\theta}))=T^{\prime}(\tilde{w} E(\bar{\theta}))=0$ if $Y(L, E)$ is linear
(iii) Otherwise, $T^{\prime}(w /(\underline{\theta}))$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))$ have opposite signs. (iv) E.g. if $\tilde{G} \succeq_{\text {FOSD }} G$ and $\tilde{F}=F$, then $T^{\prime}(w /(\underline{\theta}))>0$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))<0$

Affect wages to relax (ND) and achieve more redistribution (trickle down)

Optimal Taxation Results

Pecuniary externality from prices w and \tilde{w} entering program through (ND)

Proposition

(i) In any constrained Pareto optimum, $\tilde{w}>w$ and $\tilde{w} E(\theta)>w /(\theta) \forall \theta \in \Theta$
(ii) $T^{\prime}(w /(\underline{\theta}))=T^{\prime}(\tilde{w} E(\bar{\theta}))=0$ if $Y(L, E)$ is linear
(iii) Otherwise, $T^{\prime}(w /(\underline{\theta}))$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))$ have opposite signs.
(iv) E.g. if $\tilde{G} \succeq_{\text {FOSD }} G$ and $\tilde{F}=F$, then $T^{\prime}(w /(\underline{\theta}))>0$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))<0$

Affect wages to relax (ND) and achieve more redistribution (trickle down)

Proposition

If the gov't could distort $Y_{L}(L(\theta), E(\theta))$ across firms, then it would in general be optimal to do so whenever $Y(L, E)$ is not linear and (ND) binds for some θ

Optimal Taxation Results

Pecuniary externality from prices w and \tilde{w} entering program through (ND)

Proposition

(i) In any constrained Pareto optimum, $\tilde{w}>w$ and $\tilde{w} E(\theta)>w /(\theta) \forall \theta \in \Theta$
(ii) $T^{\prime}(w /(\underline{\theta}))=T^{\prime}(\tilde{w} E(\bar{\theta}))=0$ if $Y(L, E)$ is linear
(iii) Otherwise, $T^{\prime}(w /(\underline{\theta}))$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))$ have opposite signs.
(iv) E.g. if $\tilde{G} \succeq_{\text {FOSD }} G$ and $\tilde{F}=F$, then $T^{\prime}(w /(\underline{\theta}))>0$ and $T^{\prime}(\tilde{w} E(\bar{\theta}))<0$

Affect wages to relax (ND) and achieve more redistribution (trickle down)

Proposition

If the gov't could distort $Y_{L}(L(\theta), E(\theta))$ across firms, then it would in general be optimal to do so whenever $Y(L, E)$ is not linear and (ND) binds for some θ

Production distortions to relax (ND)
Production efficiency (Diamond/Mirrlees, 1971) not generally optimal

Differential Income and Profit Taxation

Allow different tax schedules $T_{y}($.$) for labor income y \equiv w /$ and $T_{\pi}($.$) for profits \pi$

Differential Income and Profit Taxation

Allow different tax schedules $T_{y}($.$) for labor income y \equiv w /$ and $T_{\pi}($.$) for profits \pi$ Relaxed constrained Pareto problem:

Differential Taxation

$$
\begin{gather*}
\max _{\substack{E(\theta), L(\theta), l(\theta), v_{E}(\theta), v_{W}(\theta)}} \int_{\Theta}\left[\tilde{G}_{\theta}(\tilde{\phi}(\theta)) v_{E}(\theta)+\left(1-\tilde{G}_{\theta}(\tilde{\phi}(\theta))\right) v_{w}(\theta)\right] d \tilde{F}(\theta)-\int_{\Theta} \int_{\underline{\phi}}^{\tilde{\phi}(\theta)} \phi d \tilde{G}_{\theta}(\phi) d \tilde{F}(\theta) \\
\text { s.t. } \quad \tilde{\phi}(\theta)=v_{E}(\theta)-v_{W}(\theta) \forall \theta \in \Theta \\
v_{E}^{\prime}(\theta)=E(\theta) \psi^{\prime}(E(\theta) / \theta) / \theta^{2}, \quad v_{W}^{\prime}(\theta)=I(\theta) \psi^{\prime}(I(\theta) / \theta) / \theta^{2}, E(\theta), I(\theta) \text { increasing } \forall \theta \in \Theta \tag{IC}\\
\quad \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) L(\theta) d F(\theta) \leq \int_{\Theta}\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) I(\theta) d F(\theta) \tag{LM}\\
\int_{\Theta} G_{\theta}(\tilde{\phi}(\theta))\left[Y(L(\theta), E(\theta))-v_{E}(\theta)-\psi(E(\theta) / \theta)\right] d F(\theta) \\
-\int_{\Theta}(1-G(\tilde{\phi}(\theta)))\left[v_{w}(\theta)+\psi(I(\theta) / \theta)\right] d F(\theta) \geq \quad 0 \quad \text { (RM) } \tag{RC}
\end{gather*}
$$

Same as with uniform taxation, but without constraints (ND) and (MP)

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy
$\frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta)} \int_{\underline{\theta}}^{\theta}[\quad \tilde{f}(\hat{\theta})-\quad f(\hat{\theta}) \quad] d \hat{\theta}$

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy
$\frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta) G_{\theta}(\tilde{\phi}(\theta))} \int_{\underline{\theta}}^{\theta}\left[\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \tilde{f}(\hat{\theta})-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})\right.$

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy
$\frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta) G_{\theta}(\tilde{\phi}(\theta))} \int_{\underline{\theta}}^{\theta}\left[\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \tilde{f}(\hat{\theta})-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})+g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta}$

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy

$$
\begin{aligned}
& \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta) G_{\theta}(\tilde{\phi}(\theta))} \int_{\underline{\theta}}^{\theta}\left[\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \tilde{f}(\hat{\theta})-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})+g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \left.\left.\frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon(y(\theta))}{\theta f(\theta)\left(1-G_{\theta}(\tilde{\phi}(\theta))\right)} \int_{\underline{\underline{\theta}}}^{\theta}\left[\left(1-\tilde{G}_{\hat{\theta}} \tilde{\phi}(\hat{\phi})\right)\right) \tilde{f}(\hat{\theta})-\left(1-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta}))\right) f(\hat{\theta})-g_{\hat{\theta}} \tilde{\phi}(\hat{\phi})\right) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \text { with } \Delta T(\theta) \equiv T_{\pi}(\pi(\theta))-T_{y}(y(\theta))
\end{aligned}
$$

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy

$$
\begin{aligned}
& \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta) G_{\theta}(\tilde{\phi}(\theta))} \int_{\underline{\theta}}^{\theta}\left[\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \tilde{f}(\hat{\theta})-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})+g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \left.\left.\frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon(y(\theta))}{\theta f(\theta)\left(1-G_{\theta}(\tilde{\phi}(\theta))\right)} \int_{\underline{\underline{\theta}}}^{\theta}\left[\left(1-\tilde{G}_{\hat{\theta}} \tilde{\phi}(\hat{\phi})\right)\right) \tilde{f}(\hat{\theta})-\left(1-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta}))\right) f(\hat{\theta})-g_{\hat{\theta}} \tilde{\phi}(\hat{\phi})\right) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \text { with } \Delta T(\theta) \equiv T_{\pi}(\pi(\theta))-T_{y}(y(\theta))
\end{aligned}
$$

Observations:

- Production efficiency always optimal

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy

$$
\begin{aligned}
& \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta) G_{\theta}(\tilde{\phi}(\theta))} \int_{\underline{\theta}}^{\theta}\left[\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \tilde{f}(\hat{\theta})-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})+g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \left.\frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon(y(y))}{\theta f(\theta)\left(1-G_{\theta}(\tilde{\phi}(\theta))\right)} \int_{\underline{\underline{\theta}}}^{\theta}\left[\left(1-\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta}))\right) \tilde{f}(\hat{\theta})-\left(1-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta}))\right) f(\hat{\theta})-g_{\hat{\theta}} \tilde{\phi}(\hat{\phi})\right) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \text { with } \Delta T(\theta) \equiv T_{\pi}(\pi(\theta))-T_{y}(y(\theta))
\end{aligned}
$$

Observations:

- Production efficiency always optimal
- Optimal tax formulas no longer depend on whether $Y(L, E)$ is linear or not

Optimal Taxation Results I

Differential taxation eliminates pecuniary externalities

Proposition

(i) At any optimum, $Y_{L}(L(\theta), E(\theta))$ is equalized across all $\theta \in \Theta$
(ii) If there is no bunching, $T_{\pi}^{\prime}(\pi(\theta))$ and $T_{y}^{\prime}(y(\theta))$ satisfy

$$
\begin{aligned}
& \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{1+1 / \varepsilon(\pi(\theta))}{\theta f(\theta) G_{\theta}(\tilde{\phi}(\theta))} \int_{\underline{\theta}}^{\theta}\left[\tilde{G}_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \tilde{f}(\hat{\theta})-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})+g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \left.\left.\frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon(y(\theta))}{\theta f(\theta)\left(1-G_{\theta}(\tilde{\phi}(\theta))\right)} \int_{\underline{\underline{\theta}}}^{\theta}\left[\left(1-\tilde{G}_{\hat{\theta}} \tilde{\phi}(\hat{\theta})\right)\right) \tilde{f}(\hat{\theta})-\left(1-G_{\hat{\theta}}(\tilde{\phi}(\hat{\theta}))\right) f(\hat{\theta})-g_{\hat{\theta}} \tilde{\phi}(\hat{\phi})\right) \Delta T(\hat{\theta}) f(\hat{\theta})\right] d \hat{\theta} \\
& \text { with } \Delta T(\theta) \equiv T_{\pi}(\pi(\theta))-T_{y}(y(\theta))
\end{aligned}
$$

Observations:

- Production efficiency always optimal
- Optimal tax formulas no longer depend on whether $Y(L, E)$ is linear or not
- In particular, $T_{\pi}^{\prime}(\pi(\underline{\theta}))=T_{\pi}^{\prime}(\pi(\bar{\theta}))=T_{y}^{\prime}(y(\underline{\theta}))=T_{y}^{\prime}(y(\bar{\theta}))=0$ in any case

Optimal Taxation Results II

Corollary

With a constant elasticity ε, the average marginal tax across occupations satisfies

$$
G_{\theta}(\tilde{\phi}(\theta)) \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+\left(1-G_{\theta}(\tilde{\phi})\right) \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon}{\theta f(\theta)}(\tilde{F}(\theta)-F(\theta))
$$

Average tax in closed form and determined by redistribution across skills only

Optimal Taxation Results II

Corollary

With a constant elasticity ε, the average marginal tax across occupations satisfies

$$
G_{\theta}(\tilde{\phi}(\theta)) \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+\left(1-G_{\theta}(\tilde{\phi})\right) \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon}{\theta f(\theta)}(\tilde{F}(\theta)-F(\theta))
$$

Average tax in closed form and determined by redistribution across skills only Reintepretation: testing for Pareto optimality of T_{π}, T_{y}

Corollary

The schedules T_{π}, T_{y} inducing an allocation $(\pi(\theta), y(\theta), \tilde{\phi}(\theta))$ are Pareto optimal iff

$$
\begin{aligned}
& \frac{\theta f_{E}(\theta)}{1+1 / \varepsilon} \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+F_{E}(\theta)-\int_{\underline{\theta}}^{\theta} \frac{g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})}{\bar{G}} \Delta T(\hat{\theta}) d \hat{\theta} \quad \text { and } \\
& \frac{\theta f_{W}(\theta)}{1+1 / \varepsilon} \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}+F_{W}(\theta)+\int_{\underline{\theta}}^{\theta} \frac{g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})}{1-\bar{G}} \Delta T(\hat{\theta}) d \hat{\theta}
\end{aligned}
$$

are increasing in θ, where $\bar{G} \equiv \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) d F(\theta)$ and
$f_{E}(\theta) \equiv G_{\theta}(\tilde{\phi}(\theta)) f(\theta) / \bar{G}, f_{W}(\theta) \equiv\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) f(\theta) /(1-\bar{G})$

Optimal Taxation Results II

Corollary

With a constant elasticity ε, the average marginal tax across occupations satisfies

$$
G_{\theta}(\tilde{\phi}(\theta)) \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+\left(1-G_{\theta}(\tilde{\phi})\right) \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon}{\theta f(\theta)}(\tilde{F}(\theta)-F(\theta))
$$

Average tax in closed form and determined by redistribution across skills only Reintepretation: testing for Pareto optimality of T_{π}, T_{y}

Corollary

The schedules T_{π}, T_{y} inducing an allocation $(\pi(\theta), y(\theta), \tilde{\phi}(\theta))$ are Pareto optimal iff

$$
\begin{aligned}
& \frac{\theta f_{E}(\theta)}{1+1 / \varepsilon} \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+F_{E}(\theta)-\int_{\underline{\theta}}^{\theta} \frac{g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})}{\bar{G}} \Delta T(\hat{\theta}) d \hat{\theta} \quad \text { and } \\
& \frac{\theta f_{W}(\theta)}{1+1 / \varepsilon} \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}+F_{W}(\theta)+\int_{\underline{\theta}}^{\theta} \frac{g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})}{1-\bar{G}} \Delta T(\hat{\theta}) d \hat{\theta}
\end{aligned}
$$

are increasing in θ, where $\bar{G} \equiv \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) d F(\theta)$ and
$f_{E}(\theta) \equiv G_{\theta}(\tilde{\phi}(\theta)) f(\theta) / \bar{G}, f_{W}(\theta) \equiv\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) f(\theta) /(1-\bar{G})$

Optimal Taxation Results II

Corollary

The schedules T_{π}, T_{y} inducing an allocation $(\pi(\theta), y(\theta), \tilde{\phi}(\theta))$ are Pareto optimal if

$$
\frac{\theta f(\theta)}{1+1 / \varepsilon}\left[G_{\theta}(\tilde{\phi}(\theta)) \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+\left(1-G_{\theta}(\tilde{\phi})\right) \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}\right]+F(\theta) \text { is increasing }
$$

Only identification of $F(\theta)$ required
Reintepretation: testing for Pareto optimality of T_{π}, T_{y}

Corollary

The schedules T_{π}, T_{y} inducing an allocation $(\pi(\theta), y(\theta), \tilde{\phi}(\theta))$ are Pareto optimal iff

$$
\begin{gathered}
\frac{\theta f_{E}(\theta)}{1+1 / \varepsilon} \frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}+F_{E}(\theta)-\int_{\underline{\theta}}^{\theta} \frac{g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})}{\bar{G}} \Delta T(\hat{\theta}) d \hat{\theta} \quad \text { and } \\
\frac{\theta f_{W}(\theta)}{1+1 / \varepsilon} \frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}+F_{W}(\theta)+\int_{\underline{\theta}}^{\theta} \frac{g_{\hat{\theta}}(\tilde{\phi}(\hat{\theta})) f(\hat{\theta})}{1-\bar{G}} \Delta T(\hat{\theta}) d \hat{\theta}
\end{gathered}
$$

are increasing in θ, where $\bar{G} \equiv \int_{\Theta} G_{\theta}(\tilde{\phi}(\theta)) d F(\theta)$ and
$f_{E}(\theta) \equiv G_{\theta}(\tilde{\phi}(\theta)) f(\theta) / \bar{G}, f_{W}(\theta) \equiv\left(1-G_{\theta}(\tilde{\phi}(\theta))\right) f(\theta) /(1-\bar{G})$

Comparing Profit and Income Taxes

Assumption 1

θ and ϕ are independent and $g(\phi)$ is non-increasing

Comparing Profit and Income Taxes

Assumption 1

θ and ϕ are independent and $g(\phi)$ is non-increasing
Redistribution across cost types

Proposition

Suppose $\tilde{F}(\theta)=F(\theta)$ and $\tilde{g}(\phi)<g(\phi)$ for all $\phi \leq \tilde{\phi}(\bar{\theta})$. Then (i) $T_{y}^{\prime}(y(\theta))<0, T_{\pi}^{\prime}(\pi(\theta))>0$ for all $\theta \in(\underline{\theta}, \bar{\theta})$

Comparing Profit and Income Taxes

Assumption 1

θ and ϕ are independent and $g(\phi)$ is non-increasing
Redistribution across cost types

Proposition

Suppose $\tilde{F}(\theta)=F(\theta)$ and $\tilde{g}(\phi)<g(\phi)$ for all $\phi \leq \tilde{\phi}(\bar{\theta})$. Then
(i) $T_{y}^{\prime}(y(\theta))<0, T_{\pi}^{\prime}(\pi(\theta))>0$ for all $\theta \in(\underline{\theta}, \bar{\theta})$
(ii) $\Delta T(\theta)>0$ and $\Delta T^{\prime}(\theta)>0$ for all $\theta \in \Theta$

Comparing Profit and Income Taxes

Assumption 1

θ and ϕ are independent and $g(\phi)$ is non-increasing
Redistribution across cost types

Proposition

Suppose $\tilde{F}(\theta)=F(\theta)$ and $\tilde{g}(\phi)<g(\phi)$ for all $\phi \leq \tilde{\phi}(\bar{\theta})$. Then
(i) $T_{y}^{\prime}(y(\theta))<0, T_{\pi}^{\prime}(\pi(\theta))>0$ for all $\theta \in(\underline{\theta}, \bar{\theta})$
(ii) $\Delta T(\theta)>0$ and $\Delta T^{\prime}(\theta)>0$ for all $\theta \in \Theta$
(iii) Compared with the no tax equilibrium, $w=Y_{L} \downarrow, \tilde{w}=Y_{E} \uparrow, \tilde{\phi}(\theta) \downarrow, L(\theta) \uparrow$

Comparing Profit and Income Taxes

Assumption 1

θ and ϕ are independent and $g(\phi)$ is non-increasing
Redistribution across cost types

Proposition

Suppose $\tilde{F}(\theta)=F(\theta)$ and $\tilde{g}(\phi)<g(\phi)$ for all $\phi \leq \tilde{\phi}(\bar{\theta})$. Then
(i) $T_{y}^{\prime}(y(\theta))<0, T_{\pi}^{\prime}(\pi(\theta))>0$ for all $\theta \in(\underline{\theta}, \bar{\theta})$
(ii) $\Delta T(\theta)>0$ and $\Delta T^{\prime}(\theta)>0$ for all $\theta \in \Theta$
(iii) Compared with the no tax equilibrium, $w=Y_{L} \downarrow, \tilde{w}=Y_{E} \uparrow, \tilde{\phi}(\theta) \downarrow, L(\theta) \uparrow$

Redistribution across skill types

Proposition

Suppose that $\tilde{G}(\phi)=G(\phi)$ but $\tilde{F}(\theta) \neq F(\theta)$. If occupations are fixed, then

$$
\frac{T_{\pi}^{\prime}(\pi(\theta))}{1-T_{\pi}^{\prime}(\pi(\theta))}=\frac{T_{y}^{\prime}(y(\theta))}{1-T_{y}^{\prime}(y(\theta))}=\frac{1+1 / \varepsilon}{\theta f(\theta)}(\tilde{F}(\theta)-F(\theta)) \text { for any } w, \tilde{w}
$$

Numerical Illustration: Calibration I

Data on profits, income and entrepreneurship from 2007 SCF

Numerical Illustration: Calibration I

Data on profits, income and entrepreneurship from 2007 SCF
Entrepreneur: (i) self-employed, (ii) own business, (iii) actively manage it, (iv) ≥ 2 employees

Numerical Illustration: Calibration I

Data on profits, income and entrepreneurship from 2007 SCF
Entrepreneur: (i) self-employed, (ii) own business, (iii) actively manage it, (iv) ≥ 2 employees

Descriptive Statistics

	Entrepreneurs		Workers	
	Mean	St. Dev.	Mean	St. Dev.
Age	48.4	10.2	42.1	11.6
Yearly Income (in 1000\$)	88.5	234.7	69.5	128.3
Hours per Week	48.3	14.1	43.4	10.5
Weeks per Year	50.2	6.0	50.4	5.7
Wage per Hour (in \$)	55.5	243.8	34.6	124.9

Numerical Illustration: Calibration II

Constant elasticity disutility of effort $\psi(e)=e^{1+1 / \varepsilon} /(1+1 / \varepsilon)$ with $\varepsilon=.25$ Cobb-Douglas technology $Y(L, E)=L^{\alpha} E^{1-\alpha}$ with $\alpha=.63$ (workers' share of income in SCF data)

Numerical Illustration: Calibration II

Constant elasticity disutility of effort $\psi(e)=e^{1+1 / \varepsilon} /(1+1 / \varepsilon)$ with $\varepsilon=.25$
Cobb-Douglas technology $Y(L, E)=L^{\alpha} E^{1-\alpha}$ with $\alpha=.63$ (workers' share of income in SCF data)

Identify $f(\theta)$ from empirical income distributions
\rightarrow Impute marginal tax using functional form (Gouveia/Strauss, 1994)

$$
\begin{equation*}
\frac{T(y)}{y}=b-b\left[s y^{p}+1\right]^{-1 / p} \tag{1}
\end{equation*}
$$

\rightarrow Cagetti/DeNardi (2009) estimate b, s, p using PSID data
\rightarrow Back out marginal tax rates T_{y}^{\prime} and T_{π}^{\prime} from (1),

Numerical Illustration: Calibration II

Constant elasticity disutility of effort $\psi(e)=e^{1+1 / \varepsilon} /(1+1 / \varepsilon)$ with $\varepsilon=.25$
Cobb-Douglas technology $Y(L, E)=L^{\alpha} E^{1-\alpha}$ with $\alpha=.63$ (workers' share of income in SCF data)

Identify $f(\theta)$ from empirical income distributions
\rightarrow Impute marginal tax using functional form (Gouveia/Strauss, 1994)

$$
\begin{equation*}
\frac{T(y)}{y}=b-b\left[s y^{p}+1\right]^{-1 / p} \tag{1}
\end{equation*}
$$

\rightarrow Cagetti/DeNardi (2009) estimate b, s, p using PSID data
\rightarrow Back out marginal tax rates T_{y}^{\prime} and T_{π}^{\prime} from (1),
$\rightarrow w \theta$ and $\tilde{w} \theta$ from

$$
1-T_{y}^{\prime}(y)=\left(\frac{y}{w \theta}\right)^{1 / \varepsilon} \text { and } 1-T_{\pi}^{\prime}(\pi)=\left(\frac{\pi}{\tilde{w} \theta}\right)^{1 / \varepsilon},
$$

$\rightarrow w$ and \tilde{w} such that \tilde{w} / w equals ratio of mean wages of entrepreneurs and workers, and $\tilde{w}=(1-\alpha)(\alpha / w)^{\frac{\alpha}{1-\alpha}}$

Numerical IIlustration: Calibration III

Kernel estimate of inferred skill density $f(\theta)$, truncated at 99 percentile

Numerical IIlustration: Calibration III

Kernel estimate of inferred skill density $f(\theta)$, truncated at 99 percentile Iso-elastic cost distribution $G_{\theta}(\phi)=\left(\phi / \bar{\phi}_{\theta}\right)^{\eta}$ with $\eta=.5$ Adjust $\bar{\phi}_{\theta}$ to generate the pattern of the share of entrepreneurs in the right panel

Numerical Illustration: Redistribution Across Cost Types

Pareto weights $\tilde{G}_{\theta}(\phi)=G_{\theta}(\phi)^{\rho_{\Phi}}, \rho_{\Phi}=2$
\rightarrow Redistribution from low to high cost agents (entrepreneurs to workers)
$\rightarrow w$ falls by 10% as a result of tax policy

Numerical Illustration: Redistribution Across Skill Types

Pareto weights $\tilde{F}(\theta)=F(\theta)^{1 / \rho_{\Theta}}, \rho_{\Theta}=2$
\rightarrow Redistribution from high to low skill agents
$\rightarrow w$ falls by 3% as a result of tax policy

Numerical Illustration: Redistribution Across θ and ϕ

Pareto weights $\rho_{\Theta}=2, \rho_{\Phi}=2$
\rightarrow Redistribution in both dimensions
$\rightarrow w$ falls by 12% as a result of tax policy

Numerical Illustration: Higher ε

Pareto weights $\rho_{\Theta}=2, \rho_{\Phi}=2$, increased elasticity $\varepsilon=.5$ rather than $\varepsilon=.25$ \rightarrow Lower optimal marginal tax rates

Introducing Credit Markets

Suppose each entrepreneur has to invest I to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market

Introducing Credit Markets

Suppose each entrepreneur has to invest $/$ to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market
\rightarrow Will the 'right' individuals become entrepreneurs in equilibrium?

Introducing Credit Markets

Suppose each entrepreneur has to invest $/$ to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market
\rightarrow Will the 'right' individuals become entrepreneurs in equilibrium?
\rightarrow Focus on occupational choice, fix effort

Introducing Credit Markets

Suppose each entrepreneur has to invest $/$ to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market
\rightarrow Will the 'right' individuals become entrepreneurs in equilibrium?
\rightarrow Focus on occupational choice, fix effort

- Workers supply fixed amount of labor $/$ and get utility $v_{w}=w /$

Introducing Credit Markets

Suppose each entrepreneur has to invest $/$ to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market
\rightarrow Will the 'right' individuals become entrepreneurs in equilibrium?
\rightarrow Focus on occupational choice, fix effort

- Workers supply fixed amount of labor $/$ and get utility $v_{w}=w /$
- Entrepreneurs hire labor and produce stochastic profits

$$
\begin{aligned}
& \quad \pi=Y(L)-w L+\epsilon, \quad \epsilon \sim H_{\epsilon}(\epsilon \mid \theta) \\
& H_{\epsilon}(\epsilon \mid \theta) \succeq M L R P H_{\epsilon}\left(\epsilon \mid \theta^{\prime}\right) \text { for } \theta>\theta^{\prime}
\end{aligned}
$$

Introducing Credit Markets

Suppose each entrepreneur has to invest $/$ to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market
\rightarrow Will the 'right' individuals become entrepreneurs in equilibrium?
\rightarrow Focus on occupational choice, fix effort

- Workers supply fixed amount of labor $/$ and get utility $v_{w}=w l$
- Entrepreneurs hire labor and produce stochastic profits

$$
\pi=Y(L)-w L+\epsilon, \quad \epsilon \sim H_{\epsilon}(\epsilon \mid \theta)
$$

$H_{\epsilon}(\epsilon \mid \theta) \succeq_{M L R P} H_{\epsilon}\left(\epsilon \mid \theta^{\prime}\right)$ for $\theta>\theta^{\prime}$

- Banks offer menus of credit contracts that supply funding I in return for repayment schedule $R_{\theta}(\pi)$

Introducing Credit Markets

Suppose each entrepreneur has to invest $/$ to set up a firm
Entrepreneurs have no wealth, need to borrow funds from banks in competitive credit market
\rightarrow Will the 'right' individuals become entrepreneurs in equilibrium?
\rightarrow Focus on occupational choice, fix effort

- Workers supply fixed amount of labor $/$ and get utility $v_{w}=w l$
- Entrepreneurs hire labor and produce stochastic profits

$$
\pi=Y(L)-w L+\epsilon, \quad \epsilon \sim H_{\epsilon}(\epsilon \mid \theta)
$$

$$
H_{\epsilon}(\epsilon \mid \theta) \succeq M L R P H_{\epsilon}\left(\epsilon \mid \theta^{\prime}\right) \text { for } \theta>\theta^{\prime}
$$

- Banks offer menus of credit contracts that supply funding I in return for repayment schedule $R_{\theta}(\pi)$
\Rightarrow Entrepreneurs' expected utility $\int\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta)-\phi$
\Rightarrow Given any $\left\{R_{\theta}(\pi)\right\}$, all entrepreneurs hire the same L s.t. $Y_{L}=w$
\Rightarrow Can work with $H(\pi \mid \theta)$ directly, with support Π

Credit Market Equilibrium I

Definition

A credit market equilibrium is a set of contracts $\left\{R_{\theta}(\pi)\right\}$ such that (i)

$$
\begin{equation*}
\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta) \geq \int_{\Pi}\left(\pi-R_{\theta^{\prime}}(\pi)\right) d H(\pi \mid \theta) \forall \theta, \theta^{\prime} \in \Theta, \tag{IC}
\end{equation*}
$$

Credit Market Equilibrium I

Definition

A credit market equilibrium is a set of contracts $\left\{R_{\theta}(\pi)\right\}$ such that (i)

$$
\begin{equation*}
\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta) \geq \int_{\Pi}\left(\pi-R_{\theta^{\prime}}(\pi)\right) d H(\pi \mid \theta) \forall \theta, \theta^{\prime} \in \Theta \tag{IC}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{\Theta} G(\tilde{\phi}(\theta))\left[\int_{\Pi} R_{\theta}(\pi) d H(\pi \mid \theta)-I\right] d F(\theta) \geq 0 \tag{NNP}
\end{equation*}
$$

with

$$
\tilde{\phi}(\theta)=\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta)-v w,
$$

Credit Market Equilibrium I

Definition

A credit market equilibrium is a set of contracts $\left\{R_{\theta}(\pi)\right\}$ such that (i)

$$
\begin{equation*}
\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta) \geq \int_{\Pi}\left(\pi-R_{\theta^{\prime}}(\pi)\right) d H(\pi \mid \theta) \forall \theta, \theta^{\prime} \in \Theta \tag{IC}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{\Theta} G(\tilde{\phi}(\theta))\left[\int_{\Pi} R_{\theta}(\pi) d H(\pi \mid \theta)-I\right] d F(\theta) \geq 0 \tag{NNP}
\end{equation*}
$$

with

$$
\tilde{\phi}(\theta)=\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta)-v w
$$

(iii) there is no other set $\left\{\tilde{R}_{\theta}(\pi)\right\}$ s.t., when offered in addition to $\left\{R_{\theta}(\pi)\right\}$, earns positive profits.

Credit Market Equilibrium I

Definition

A credit market equilibrium is a set of contracts $\left\{R_{\theta}(\pi)\right\}$ such that (i)

$$
\begin{equation*}
\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta) \geq \int_{\Pi}\left(\pi-R_{\theta^{\prime}}(\pi)\right) d H(\pi \mid \theta) \forall \theta, \theta^{\prime} \in \Theta \tag{IC}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{\Theta} G(\tilde{\phi}(\theta))\left[\int_{\Pi} R_{\theta}(\pi) d H(\pi \mid \theta)-I\right] d F(\theta) \geq 0 \tag{NNP}
\end{equation*}
$$

with

$$
\tilde{\phi}(\theta)=\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta)-v w
$$

(iii) there is no other set $\left\{\tilde{R}_{\theta}(\pi)\right\}$ s.t., when offered in addition to $\left\{R_{\theta}(\pi)\right\}$, earns positive profits.

Note: Allow for arbitrary sets of contracts, thus cross-subsidization not ruled out

Credit Market Equilibrium I

Definition

A credit market equilibrium is a set of contracts $\left\{R_{\theta}(\pi)\right\}$ such that

$$
\begin{equation*}
\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta) \geq \int_{\Pi}\left(\pi-R_{\theta^{\prime}}(\pi)\right) d H(\pi \mid \theta) \forall \theta, \theta^{\prime} \in \Theta \tag{i}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\int_{\Theta} G(\tilde{\phi}(\theta))\left[\int_{\Pi} R_{\theta}(\pi) d H(\pi \mid \theta)-I\right] d F(\theta) \geq 0 \tag{NNP}
\end{equation*}
$$

with

$$
\tilde{\phi}(\theta)=\int_{\Pi}\left(\pi-R_{\theta}(\pi)\right) d H(\pi \mid \theta)-v w
$$

(iii) there is no other set $\left\{\tilde{R}_{\theta}(\pi)\right\}$ s.t., when offered in addition to $\left\{R_{\theta}(\pi)\right\}$, earns positive profits.

Note: Allow for arbitrary sets of contracts, thus cross-subsidization not ruled out Restrict to contracts s.t. (i) $0 \leq R_{\theta}(\pi) \leq \pi$ (limited liability), and
(ii) $R_{\theta}(\pi)$ non-decreasing (monotonicity)

Credit Market Equilibrium II

Proposition

Under Assumption 1, the credit market equilibrium is such that only the single contract $R^{*}(\pi)=\min \left\{\pi, z^{*}\right\}$ is offered and z^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z^{*}}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

with

$$
\tilde{\phi}_{z^{*}}(\theta)=\int_{\Pi}\left(\pi-\min \left\{\pi, z^{*}\right\}\right) d H(\pi \mid \theta)-v_{w},
$$

Credit Market Equilibrium II

Proposition

Under Assumption 1, the credit market equilibrium is such that only the single contract $R^{*}(\pi)=\min \left\{\pi, z^{*}\right\}$ is offered and z^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z^{*}}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

with

$$
\tilde{\phi}_{z^{*}}(\theta)=\int_{\Pi}\left(\pi-\min \left\{\pi, z^{*}\right\}\right) d H(\pi \mid \theta)-v_{w},
$$

The equilibrium is a pooling equilibrium with a standard debt contract offered

Credit Market Equilibrium II

Proposition

Under Assumption 1, the credit market equilibrium is such that only the single contract $R^{*}(\pi)=\min \left\{\pi, z^{*}\right\}$ is offered and z^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z^{*}}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

with

$$
\tilde{\phi}_{z^{*}}(\theta)=\int_{\Pi}\left(\pi-\min \left\{\pi, z^{*}\right\}\right) d H(\pi \mid \theta)-v_{w},
$$

The equilibrium is a pooling equilibrium with a standard debt contract offered Intuition:

- By MLRP, low-skill borrowers have more probability weight in low-profit states
- Debt contracts put the maximal repayment in low-profit states

Credit Market Equilibrium II

Proposition

Under Assumption 1, the credit market equilibrium is such that only the single contract $R^{*}(\pi)=\min \left\{\pi, z^{*}\right\}$ is offered and z^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z^{*}}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

with

$$
\tilde{\phi}_{z^{*}}(\theta)=\int_{\Pi}\left(\pi-\min \left\{\pi, z^{*}\right\}\right) d H(\pi \mid \theta)-v w
$$

The equilibrium is a pooling equilibrium with a standard debt contract offered Intuition:

- By MLRP, low-skill borrowers have more probability weight in low-profit states
- Debt contracts put the maximal repayment in low-profit states
\rightarrow Debt contracts are least attractive to low-skill borrowers
\rightarrow Any deviation would attract a lower quality borrower pool and earn negative profits

Efficiency of Occupational Choice

Efficiency: type (θ, ϕ) should become entrepreneur if and only if

$$
\int_{\Pi} \pi d H(\pi \mid \theta)-I-\phi \geq v_{W}
$$

\Rightarrow Efficient critical cost value $\tilde{\phi}_{e}(\theta)=\int_{\Pi} \pi d H(\pi \mid \theta)-I-v_{W}$

Efficiency of Occupational Choice

Efficiency: type (θ, ϕ) should become entrepreneur if and only if

$$
\int_{\Pi} \pi d H(\pi \mid \theta)-I-\phi \geq v_{w}
$$

\Rightarrow Efficient critical cost value $\tilde{\phi}_{e}(\theta)=\int_{\Pi} \pi d H(\pi \mid \theta)-I-v_{W}$

Corollary

There exists a skill-type $\tilde{\theta}$ s.t. $\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \tilde{\theta})=I$ and

$$
\begin{aligned}
& \tilde{\phi}_{z^{*}}(\theta)>\tilde{\phi}_{e}(\theta) \forall \theta<\tilde{\theta} \\
& \tilde{\phi}_{z^{*}}(\theta)<\tilde{\phi}_{e}(\theta) \forall \theta>\tilde{\theta}
\end{aligned}
$$

Efficiency of Occupational Choice

Efficiency: type (θ, ϕ) should become entrepreneur if and only if

$$
\int_{\Pi} \pi d H(\pi \mid \theta)-I-\phi \geq v_{W}
$$

\Rightarrow Efficient critical cost value $\tilde{\phi}_{e}(\theta)=\int_{\Pi} \pi d H(\pi \mid \theta)-I-v_{W}$

Corollary

There exists a skill-type $\tilde{\theta}$ s.t. $\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \tilde{\theta})=I$ and

$$
\begin{aligned}
& \tilde{\phi}_{z^{*}}(\theta)>\tilde{\phi}_{e}(\theta) \quad \forall \theta<\tilde{\theta} \\
& \tilde{\phi}_{z^{*}}(\theta)<\tilde{\phi}_{e}(\theta) \quad \forall \theta>\tilde{\theta}
\end{aligned}
$$

Cross-subsidization in the credit market leads to occupational misallocation:

- Excessive entry of low-skilled types into entrepreneurship
- Insufficient entry of high-skilled types

Efficiency of Occupational Choice

Efficiency: type (θ, ϕ) should become entrepreneur if and only if

$$
\int_{\Pi} \pi d H(\pi \mid \theta)-I-\phi \geq v_{W}
$$

\Rightarrow Efficient critical cost value $\tilde{\phi}_{e}(\theta)=\int_{\Pi} \pi d H(\pi \mid \theta)-I-v_{W}$

Corollary

There exists a skill-type $\tilde{\theta}$ s.t. $\int_{\Pi} \min \left\{\pi, z^{*}\right\} d H(\pi \mid \tilde{\theta})=I$ and

$$
\begin{aligned}
& \tilde{\phi}_{z^{*}}(\theta)>\tilde{\phi}_{e}(\theta) \quad \forall \theta<\tilde{\theta} \\
& \tilde{\phi}_{z^{*}}(\theta)<\tilde{\phi}_{e}(\theta) \quad \forall \theta>\tilde{\theta}
\end{aligned}
$$

Cross-subsidization in the credit market leads to occupational misallocation:

- Excessive entry of low-skilled types into entrepreneurship
- Insufficient entry of high-skilled types
\Rightarrow Too many and too few entrepreneurs simultaneously

Corrective Tax Policy

Lemma

If the profit $\operatorname{tax} T(\pi)$ is such that after-tax profits $\hat{\pi} \equiv \pi-T(\pi)$ are increasing, then the credit market equilibrium given $T(\pi)$ is a single debt contract $R_{z_{T}^{*}}(\hat{\pi})=\min \left\{\hat{\pi}, z_{T}^{*}\right\}$, where z_{T}^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z_{T}^{*}, T}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi-T(\pi), z_{T}^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

and $\tilde{\phi}_{z_{T}^{*}, T}(\theta) \equiv \int_{\Pi}\left(\pi-T(\pi)-\min \left\{\pi-T(\pi), z_{T}^{*}\right\}\right) d H(\pi \mid \theta)-v_{W} \forall \theta \in \Theta$.

Corrective Tax Policy

Lemma

If the profit tax $T(\pi)$ is such that after-tax profits $\hat{\pi} \equiv \pi-T(\pi)$ are increasing, then the credit market equilibrium given $T(\pi)$ is a single debt contract $R_{z_{T}^{*}}(\hat{\pi})=\min \left\{\hat{\pi}, z_{T}^{*}\right\}$, where z_{T}^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z_{T}^{*}, T}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi-T(\pi), z_{T}^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

and $\tilde{\phi}_{z_{T}^{*}, T}(\theta) \equiv \int_{\Pi}\left(\pi-T(\pi)-\min \left\{\pi-T(\pi), z_{T}^{*}\right\}\right) d H(\pi \mid \theta)-v_{W} \forall \theta \in \Theta$.

Proposition

If the tax policy $T(\pi)$ is introduced such that $\pi-T(\pi)$ is increasing and, for all $\theta \in \Theta$,

$$
\int_{\Pi} T(\pi) d H(\pi \mid \theta)=-\left(\int_{\Pi} \min \left\{\pi-T(\pi), z_{T}^{*}\right\} d H(\pi \mid \theta)-I\right), \text { then }
$$

(i) the resulting credit market equilibrium is s.t. $\tilde{\phi}_{z_{T}^{*}, T}(\theta)=\tilde{\phi}_{e}(\theta)$ for all $\theta \in \Theta$, (ii) the gov't budget is balanced.

Corrective Tax Policy

Lemma

If the profit tax $T(\pi)$ is such that after-tax profits $\hat{\pi} \equiv \pi-T(\pi)$ are increasing, then the credit market equilibrium given $T(\pi)$ is a single debt contract $R_{z_{T}^{*}}(\hat{\pi})=\min \left\{\hat{\pi}, z_{T}^{*}\right\}$, where z_{T}^{*} solves

$$
\int_{\Theta} G\left(\tilde{\phi}_{z_{T}^{*}, T}(\theta)\right)\left[\int_{\Pi} \min \left\{\pi-T(\pi), z_{T}^{*}\right\} d H(\pi \mid \theta)-I\right] d F(\theta)=0
$$

and $\tilde{\phi}_{z_{T}^{*}, T}(\theta) \equiv \int_{\Pi}\left(\pi-T(\pi)-\min \left\{\pi-T(\pi), z_{T}^{*}\right\}\right) d H(\pi \mid \theta)-v_{W} \forall \theta \in \Theta$.

Proposition

If the tax policy $T(\pi)$ is introduced such that $\pi-T(\pi)$ is increasing and, for all $\theta \in \Theta$,

$$
\int_{\Pi} T(\pi) d H(\pi \mid \theta)=-\left(\int_{\Pi} \min \left\{\pi-T(\pi), z_{T}^{*}\right\} d H(\pi \mid \theta)-I\right), \text { then }
$$

(i) the resulting credit market equilibrium is s.t. $\tilde{\phi}_{z_{T}^{*}, T}(\theta)=\tilde{\phi}_{e}(\theta)$ for all $\theta \in \Theta$, (ii) the gov't budget is balanced.

Regressive profit tax counteracts cross-subsidization and restores efficiency

Conclusion

Uniform profit and income taxation...

- ... provides some justification for trickle down based arguments
- ... calls for additional tax distortions, e.g. on inputs

Role of differential profit and income taxation in ...

- ... removing pecuniary externalities from uniform taxation
- ... correcting inefficient sorting into occupations with credit market frictions

