When Optimists Need Credit: Asymmetric Filtering of Optimism and Implications for Asset Prices

Alp Simsek

MIT

May 25, 2010

Alp Simsek (MIT)

Asymmetric Filtering of Optimism

May 25, 2010 1 / 28

- Belief heterogeneity is a potential cause for increase in asset prices in the housing and complex security markets.
- Optimists need to **leverage** their investments by borrowing from moderate lenders using loans collateralized by the asset itself (e.g., mortgages, REPOs).
- Moderate lenders value the collateral (the asset) less, and thus they might be reluctant to lend.

Endogenous constraint on optimists' ability to leverage.

This research characterizes the **types of optimism** that are disciplined by this constraint.

Main result: optimism is asymmetrically filtered

Example: a single risky asset, three future states: G, N, B.

- Moderate lenders believe each state realized with equal probability.
- Optimists borrow using collateralized debt contracts.
- Baseline setting: debt contracts simple (non-contingent) and short selling not allowed.

Main result: optimism is asymmetrically filtered

Example: a single risky asset, three future states: G, N, B.

- Moderate lenders believe each state realized with equal probability.
- Optimists borrow using collateralized debt contracts.
- Baseline setting: debt contracts simple (non-contingent) and short selling not allowed.
- Two types of optimism:

Case (i): Optimists believe probability of *B* is less than 1/3. \implies Price closer to moderate valuation.

Case (ii): Optimists believe probability of *B* is 1/3. They believe probability of *G* is more than probability of *N*. \implies Price closer to optimistic valuation.

Optimism is asymmetrically filtered by financial constraints. What investors disagree about matters.

Asymmetric filtering is due to asymmetry of debt contract payoffs

- Debt contract payoffs are asymmetric: default and losses in bad states.
- Disagreement about bad states value debt contracts tighter constraints.

More specifically:

• Loans trade at an interest rate **spread** that compensates lenders for expected losses according to their **moderate beliefs**.

Case (i): Disagreement about *B*. Spread appears too high to optimists. Discouraged from leveraging. Low demand and low price.

Case (ii): Agreement about *B*. Spread appears normal to optimists. Enticed to leverage. High demand and high price.

Asymmetric filtering result is robust to allowing for contingent contracts and short selling

Extension with contingent contracts:

- Optimal contingent contract takes a threshold form. Zero payment in states above threshold.
 - \implies A version of asymmetric filtering applies.
- Price may exceed the valuation of the most optimistic investor.

Asymmetric filtering result is robust to allowing for contingent contracts and short selling

Extension with contingent contracts:

- Optimal contingent contract takes a threshold form. Zero payment in states above threshold.
 - \implies A version of asymmetric filtering applies.
- Price may exceed the valuation of the most optimistic investor.

Extension with short selling: Short selling reduces overvaluation in general, but less so when belief heterogeneity is about good states.

• Short selling is collateralized. Short contract payoffs are asymmetric: default and fixed payment in states above a threshold.

⇒ Asymmetric filtering of pessimism: Pessimism about good states reduces asset prices less than pessimism about bad states. Complements asymmetric filtering of optimism.

• Harrison and Kreps (1978): Belief heterogeneity and no short selling. Identity of optimists changes over time.

 \implies Price exceeds the pdv of the most optimistic investor: **Speculative bubble (Scheinkman and Xiong, 2003)**.

• This research introduces financial constraints.

Case (i): Speculative bubble filtered by constraints.

Case (ii): Speculative bubble survives constraints. A large bubble forms even if optimists have limited wealth.

Environments with uncertainty and disagreement about upside returns are conducive to bubbles financed by credit.

- Endogenous leverage with belief heterogeneity: Geanakoplos (2003, 2009), Fostel and Geanakoplos (2008)...
- **Overvaluation hypothesis:** Miller (1977), Chen, Hong and Stein (2002), Diether, Malloy and Scherbina (2002), Ofek and Richardson (2003)...
- **Speculative bubbles:** Harrison and Kreps (1978), Morris (1996), Scheinkman and Xiong (2002)...

Baseline static model:

- Characterization of collateral equilibrium and asset prices. **Optimism is asymmetrically filtered**.
- Comparative statics of type and level of belief heterogeneity. What investors disagree about matters for asset prices, to a greater extent than how much they disagree.

Extension with contingent contracts:

• Asymmetric filtering is robust to allowing for more general contracts.

- Simple asset pricing model: one consumption good, two periods.
- Risk neutral traders have endowments in first period but consume in second.
- Resources invested in two ways:
 - Bond B supplied elastically at normalized price 1. Each unit pays 1 + r in second period.
 - Asset A in fixed supply (of one unit), yields dividends in period two, trades at price p.
- Future state s ∈ S = [s^{min}, s^{max}]. Asset pays v (s) units of consumption good in state s.
- Two types of traders: **optimists** (subscript 1) and **moderates** (subscript 0), respectively with belief distributions F_1 and F_0 over S.

Heterogeneous priors: investors agree to disagree.

Optimism notion: The better the event, the greater the optimism

• Notion of optimism related to upper-threshold events [\bar{s}, s^{\max}].

Definition

Distribution \tilde{H} is more optimistic than H, denoted by $\tilde{H} \succ_O H$, iff $\frac{1-\tilde{H}(\bar{s})}{1-H(\bar{s})}$ is strictly increasing over $\bar{s} \in (s^{\min}, s^{\max})$, equivalently iff

$$\frac{\tilde{h}\left(\bar{s}\right)}{1-\tilde{H}\left(\bar{s}\right)} < \frac{h\left(\bar{s}\right)}{1-H\left(\bar{s}\right)} \text{ for } \bar{s} \in \left(s^{\min},s^{\max}\right).$$

• Assumption (O): $F_1 \succ_O F_0$. Implies: $E_1[v(s)] > E_0[v(s)]$.

• Assumption (S): Asset A cannot be short sold.

Asset price will satisfy

$$p \in \left[\frac{E_0\left[v\left(s\right)\right]}{1+r}, \frac{E_1\left[v\left(s\right)\right]}{1+r}\right].$$

Exact location depends on optimists' endowments and financial constraints.

- Endowments: (w_1, w_0) of the consumption good, $(\alpha_1, \alpha_0 = 1 \alpha_1)$ units of the asset.
- Financial constraints are microfounded through a collateralized loan market.

- Loans are collateralized: debt contract is [promise, collateral] pair.
- Loans are no recourse: Payment enforced by collateral.
- Loans are **non-contingent** in the baseline model: same promise in all future states.
 - Allow for different levels of promise per collateral (loan to value ratio is endogenous).

Collateralized loan market is analyzed with a competitive equilibrium notion

- A unit debt contract φ ∈ ℝ₊ is a promise of φ units by the borrower, collateralized by 1 unit of the asset.
- Contract φ defaults iff $v(s) < \varphi$. Thus, it pays

 $\min(v(s), \varphi).$

• Contract φ traded in an anonymous market at a competitive price $q(\varphi)$ (Geanakoplos and Zame 1997, 2009).

Detour, mapping debt contracts to loans:

- Contract $\varphi = v(\bar{s})$ for some $\bar{s} \in S$ is a **loan with riskiness** \bar{s} .
- Loan size: $q(v(\bar{s}))$. Interest rate on the loan: $\frac{v(\bar{s})-q(v(\bar{s}))}{q(v(\bar{s}))}$.
- A menu of loans with different size (and riskiness) are traded at competitive interest rates.

Definition of collateral equilibrium

Type *i* traders choose asset and bond holdings x_i = (x_i^A, x_i^B) ≥ 0 and debt positions (z_i (φ))_φ to maximize expected payoffs subject to:
 Budget constraint:

$$px_{i}^{A} + x_{i}^{B} + \int_{\mathbb{R}_{+}} q(\varphi) z_{i}(\varphi) d\varphi \leq w_{i} + p\alpha_{i}.$$

Collateral constraint:

$$\int_{\mathbb{R}_{+}}\max\left(0,-z_{i}\left(arphi
ight)
ight)darphi\leq x_{i}^{\mathcal{A}}.$$

Collateral Equilibrium is a collection of prices $(p, [q(\varphi)]_{\varphi \in \mathbb{R}_+})$ and allocations $(x_i^A, x_i^B, z_i(\cdot))_{i \in \{1,0\}}$ such that traders choose allocations optimally, and asset and debt markets clear, that is, $\sum_{i \in \{1,0\}} x_i^A = 1$ and $\sum_{i \in \{1,0\}} z_i(\varphi) = 0$ for each $\varphi \in \mathbb{R}_+$.

Equilibrium is characterized in three steps

- There exists an (essentially unique) equilibrium in which optimists borrow and moderates lend.
- Construct an equilibrium in three steps:
- Lender side: (as long as $p > \frac{E_0[v(s)]}{1+r}$) Consider contract prices

$$q\left(\varphi\right) = \frac{E_{0}\left[\min\left(v\left(s\right),\varphi\right)\right]}{1+r} \text{ for each } \varphi \in \mathbb{R}_{+}.$$

- Borrower side: (as long as p < \frac{E_1[v(s)]}{1+r}) optimists' collateral constraint binds. They invest all of their leveraged wealth in the asset.
 Next: Characterize optimists' optimal contract choice given p.
 - Solve for equilibrium price *p*.

Theorem (Asymmetric Filtering)

Suppose asset price is given by $p \in \left(\frac{E_0[v(s)]}{1+r}, \frac{E_1[v(s)]}{1+r}\right)$. (i) There exists $\bar{s} \in S$ such that optimists only sell the debt contract $\varphi = v(\bar{s})$, i.e., they borrow according to a single loan with riskiness \bar{s} . (ii) The riskiness \bar{s} of the optimal loan is the unique solution to:

$$\begin{array}{ll} p & = & p^{opt}\left(\bar{s}\right) \\ & \equiv & \frac{1}{1+r}\left(F_{0}\left(\bar{s}\right)E_{0}\left[v\left(s\right) \ | \ s<\bar{s}\right]+\left(1-F_{0}\left(\bar{s}\right)\right)E_{1}\left[v\left(s\right) \ | \ s\geq\bar{s}\right]\right). \end{array}$$

- $p^{opt}(\bar{s})$ is like an inverse demand function: decreasing in \bar{s} .
- Asymmetric filtering result: $p^{opt}(\bar{s})$ characterizes the asset price conditional on equilibrium loan riskiness \bar{s} .

Illustration of optimal loan and asymmetric filtering

Alp Simsek (MIT)

May 25, 2010 17 / 28

Optimists' trade-off is between more leverage and greater borrowing costs

• Optimists choose \overline{s} that maximizes the **leveraged investment** return:

$$\frac{E_1\left[v\left(s\right)\right] - E_1\left[\min\left(v\left(s\right), v\left(\bar{s}\right)\right)\right]}{p - \frac{1}{1+r}E_0\left[\min\left(v\left(s\right), v\left(\bar{s}\right)\right)\right]}$$

• The condition $p = p^{opt}(\bar{s})$ is the first order condition for this problem.

Optimists' trade-off features two forces:

() Greater \bar{s} allows to leverage the unleveraged return:

$$R^{U} \equiv \frac{E_{1}\left[v\left(s\right)\right]}{p} > 1 + r.$$

2 Greater \overline{s} comes at a greater cost. Optimists' **expected interest rate**

$$1 + r_1^{exp}\left(\overline{s}\right) \equiv \frac{E_1\left[\min\left(v\left(s\right), v\left(\overline{s}\right)\right)\right]}{\frac{1}{1+r}E_0\left[\min\left(v\left(s\right), v\left(\overline{s}\right)\right)\right]}$$

is greater than 1 + r and strictly increasing in \overline{s} .

Intuition for the asymmetric filtering result

Asymmetric Filtering of Optimism

May 25, 2010 19 / 28

Equilibrium price is determined by asset market clearing

- Suppose optimists borrow with a loan with riskiness \bar{s} . The **maximum first period consumption good** optimists can obtain is: $w_1^{\max}(\bar{s}) = w_1 + \frac{1}{1+r}E_0 [\min(v(s), v(\bar{s}))].$
- Market clearing price depends on comparison of $w_1^{\max}(\bar{s})$ and $\alpha_0 p$:

$$p = p^{mc}(\bar{s}) \equiv \begin{cases} \frac{E_1[v(s)]}{1+r} & \text{if } \frac{w_1^{\max}(\bar{s})}{2\alpha_0} > \frac{E_1[v(s)]}{1+r} \\ \frac{w_1^{\max}(\bar{s})}{\alpha_0} & \text{if } \frac{w_1^{\max}(\bar{s})}{\alpha_0} \in \left(\frac{E_0[v(s)]}{1+r}, \frac{E_1[v(s)]}{1+r}\right) \\ \frac{E_0[v(s)]}{1+r} & \text{if } \frac{w_1^{\max}(\bar{s})}{\alpha_0} \le \frac{E_0[v(s)]}{1+r} \end{cases}$$

Theorem (Existence and Essential Uniqueness)

There exists a collateral equilibrium with asset price p and loan riskiness \bar{s}^* characterized as the solution to

$$p=p^{mc}\left(\bar{s}\right)=p^{opt}\left(\bar{s}\right).$$

In any collateral equilibrium, asset price p is uniquely determined.

Illustration of collateral equilibrium

Skewness of optimism is formalized by single crossing of hazard rates

Consider the comparative statics of p, \bar{s}^* and the leverage ratio

$$L \equiv \frac{p}{p - \frac{1}{1 + r} E_0 \left[\min \left(v \left(s \right), v \left(\overline{s}^* \right) \right) \right]}$$

with respect to the type and the level of belief heterogeneity.

Definition

The optimism of \tilde{F}_1 is weakly more right-skewed than F_1 , denoted by $\tilde{F}_1 \succeq_R F_1$, if $E\left[v(s); \tilde{F}_1\right] = E\left[v(s); F_1\right]$ and there exists $s^R \in S$ such that:

$$rac{f_1(s)}{1- ilde{F}_1(s)} \geq rac{f_1(s)}{1-F_1(s)} ext{ if } s < s^R, \ rac{ ilde{f}(s)}{1- ilde{F}_1(s)} \leq rac{f_1(s)}{1-F_1(s)} ext{ if } s > s^R.$$

Theorem

If optimists' prior is changed to \tilde{F}_1 that satisfies $\tilde{F}_1 \succeq_R F_1$, then: the asset price p, the loan riskiness \bar{s}^* , and the leverage ratio L weakly increase.

May 25, 2010 23 / 28

Level of disagreement has ambiguous effects

Alp Simsek (MIT)

Asymmetric Filtering of Optimism

May 25, 2010 24 / 28

Ambiguity is resolved by controlling for the type of the additional disagreement

Theorem

Let \bar{s}^* denote the equilibrium loan riskiness. Suppose beliefs are changed to \tilde{F}_1 and \tilde{F}_0 that satisfy $\tilde{F}_1 \succeq_O F_1$ and $F_0 \succeq_O \tilde{F}_0$: (i) Suppose $\frac{\tilde{f}_i(\bar{s})}{1-\tilde{F}_i(\bar{s})} = \frac{f_i(\bar{s})}{1-F_i(\bar{s})}$ over $\bar{s} \in (s^{\min}, \bar{s}^*)$. Then the asset price p, the loan riskiness \bar{s}^* , and the leverage ratio L weakly increase. (ii) Suppose $\frac{\tilde{f}_i(\bar{s})}{1-\tilde{F}_i(\bar{s})} = \frac{f_i(\bar{s})}{1-F_i(\bar{s})}$ over $\bar{s} \in (\bar{s}^*, s^{\max})$. Then the asset price p weakly decreases.

What investors disagree about is a more robust predictor of the asset price than the level of the disagreement.

A version of asymmetric filtering applies with contingent loans

- A unit contingent debt contract, denoted by φ :S → ℝ₊, is a collection of promises (φ(s))_{s∈S}, collateralized by 1 unit of the asset.
- Equilibrium defined similarly. Characterized under:

Assumption (MLRP). $\frac{f_1(s)}{f_0(s)}$ is strictly increasing over S.

• Optimal contingent loan takes a threshold form:

$$\varphi_{\bar{s}}(s) \equiv \begin{cases} v(s) \text{ if } s < \bar{s} \\ 0 \text{ if } s \ge \bar{s}. \end{cases}$$

• For each $p \in \left(\frac{E_0[v(s)]}{1+r}, p^{\max}\right)$, the threshold \bar{s} is the solution to:

$$p = p^{opt,cont}\left(\bar{s}\right) \equiv \frac{1}{1+r} \left(\int_{s^{min}}^{\bar{s}} v\left(s\right) dF_0 + \frac{f_0\left(\bar{s}\right)}{f_1\left(\bar{s}\right)} \int_{\bar{s}}^{s^{max}} v\left(s\right) dF_1 \right)$$

• Optimism about relative likelihood of states above \bar{s} increases the price. Optimism about relative likelihood of states below \bar{s} does not.

Alp Simsek (MIT)

May 25, 2010 26 / 28

With contingent loans, the price can exceed the most optimistic valuation

Maximum price at which optimists demand the asset exceeds the optimistic valuation. It is given by $p^{\max} = \frac{1}{1+r} \int_{s^{\min}}^{s^{\max}} v(s) \max(f_0(s), f_1(s)) ds$.

- Theoretical analysis of effect of belief heterogeneity on asset prices.
- Endogenous constraint on lending due to belief heterogeneity.
- Focus: Types of belief heterogeneity that are disciplined by this constraint.
- Result: Asymmetric filtering of optimism.

Economic environments with considerable uncertainty about the upside returns are conducive to asset price increases (and bubbles) financed by credit.

- Infinite horizon OLG economy with single consumption good. Periods and generations n ∈ {0, 1, ...}.
- Generation *n* traders have endowments in period *n*, but consume in period n + 1.
- Resources invested in two ways: Bond B and Asset A, as before.
- Asset yields a_n in each period n.
- Log dividends follow a random walk:

$$a_{n+1}=a_ns_{n+1},$$

where s_{n+1} has distribution F_{true} over S, with $E_{true}[s_{n+1}] = 1$.

• **Optimists** and **moderates** in each generation n, respectively with belief distributions F_1 and F_0 about s_{n+1} .

Assumption (O_d). $F_0 = F_{true}$ and $F_1 \succ_O F_0$, with $E_1[s_{n+1}] = 1 + \varepsilon$. In addition, traders' beliefs for $\{s_{n+k}\}_{k=2}^{\infty}$ are identical and given by F_{true} .

• Present discounted valuations:

$$p_{0}^{pdv}\left(a_{n}
ight) \equivrac{a_{n}}{r} ext{ and }p_{1}^{pdv}\left(a_{n}
ight) \equivrac{a_{n}\left(1+arepsilon
ight) }{r}.$$

Without financial constraints, speculative bubbles form

- Lemma: Current dividend realization $a \equiv a_n$ is a sufficient statistic. Denote the next period shock with $s \equiv s_{n+1}$.
- Recursive equation:

$$p(a) = \frac{1}{1+r} \left(a(1+\varepsilon) + \int_{\mathcal{S}} p(as) dF_1 \right).$$

• Solution:

$$p(a) = rac{a(1+\varepsilon)}{r-\varepsilon} > p_1^{pdv}(a) = rac{a(1+\varepsilon)}{r}.$$

• Speculative bubble:

$$\lambda = \frac{p(a) - p_1^{pdv}(a)}{p(a)} = \frac{\varepsilon}{r}$$

Alp Simsek (MIT)

Financial constraints are as in the two period model

• Loan market in each period is same as in the static model given value function $v(a, \cdot)$ defined by:

$$v(a,s) \equiv as + p(as)$$
 for each s.

Dynamic Equilibrium: collection of prices $(p(a), [q(a, \varphi)]_{\varphi})_a$ and allocations $(\{x_i(a), [z_i(a, \varphi)]_{\varphi}\}_i)_a$ such that, for each *a*, traders' allocations are optimal and markets clear.

- Equilibrium characterized by a fixed point argument.
- Assume endowments are given by $w_i = \omega_i a$.

Theorem

There exists a dynamic equilibrium with $p(a) = p_d a$ and $\bar{s}^*(a) = \bar{s}_d^*$ for each $a \in \mathbb{R}_{++}$.

Speculative bubbles may form even if optimists have a small amount of wealth

Alp Simsek (MIT)

May 25, 2010 33 / 28

Speculative bubbles are also asymmetrically filtered

Theorem

If optimists' prior is changed to \tilde{F}_1 that satisfies $\tilde{F}_1 \succeq_R F_1$, then: the price to dividend ratio p_d , the loan riskiness \bar{s}_d^* , and the share of the speculative component λ_d weakly increase.

Alp Simsek (MIT)

Asymmetric Filtering of Optimism