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Abstract

We study mechanism design in a context where communicational constraints pre-
vent the use of revelation mechanisms, and agents behave strategically. We examine
a setting with multiple agents, each producing (or purchasing) a single dimensional
output with single-dimensional cost (or valuation) parameter satisfying a standard
single-crossing property. Necessary and sufficient conditions for Bayesian imple-
mentation in arbitrary dynamic communication protocols are obtained. Optimal
mechanisms are shown to maximize the Principals objective (with ‘virtual’ types
replacing true types) subject to communication feasibility alone. This implies del-
egating production (or purchase) decisions to agents strictly dominates centralized
decisions. Optimal communication protocols involve multiple rounds of communica-
tion in which agents simultaneously send binary messages, if communication costs
depend on total time delay. They involve sequential reports when communication
costs depend instead on the total number of information bits sent.
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1 Introduction

Most practical contexts of economic mechanisms such as auctions, regulation or internal
organization of firms involve dynamic, interactive communication. Participants exchange
bids, cost reports, or budgets through dynamic and time-consuming processes which feed
into ultimate decisions concerning production, exchange and financial transfers. These
are in sharp contrast with revelation mechanisms commonly studied in the theoretical
literature, in which agents make reports of everything they know in a simultaneous, static
process.

Part of the reason is that the dimensionality of private information is considerably richer
than what can be feasibly be communicated to others in real time. This observation
was made by Hayek (1945) in his famous critique of Lange-Lerner socialist resource allo-
cation mechanisms, in which he argued that communication constraints provided much
of the justification for a decentralized market economy coordinating decisions through
price signals. Hayek’s observation motivated a large literature on resource allocation
mechanisms that economize on communication costs. Examples are the message space
literature (Hurwicz (1960, 1972), Mount and Reiter (1974)) and the theory of teams
(Marschak and Radner (1972)).3 This early literature on mechanism design ignored in-
centive problems.4 The more recent literature on mechanism design on the other hand
focuses only on incentive problems, ignoring communication costs. As a result the space
of relevant mechanisms studied are revelation mechanisms, where agents communicate
reports of their entire private information in a single, instantaneous step.

A few recent papers have explored the implications of co-existence of communication
costs and incentive problems. Van Zandt (2007) and Fadel and Segal (2009) pose the
question of the extent to which incentive problems increase communicational complex-
ity of mechanisms that implement a desired allocation rule, in a general setting. Other
authors have sought to characterize optimal incentive mechanisms in settings with re-
stricted message spaces and the standard assumptions of single-dimensional outputs and
single-crossing preferences (Green and Laffont (1986, 1987), Melumad, Mookherjee and
Reichelstein (1992, 1997), Laffont and Martimort (1998), Blumrosen, Nisan and Segal
(2007), Blumrosen and Feldman (2006), Deneckere and Severinov (2004), Kos (20011a,
2011b)).5 For reasons of tractability, these authors have restricted the communication
protocols and range of mechanisms considered. With the exception of Kos (2011b), most
authors focus on mechanisms with a single round of communication (with restricted

3Segal (2006) surveys recent studies of informationally efficient allocation mechanisms.
4Reichelstein and Reiter (1988) examined implications of strategic behavior for communicational

requirements of mechanisms implementing efficient allocations.
5Battigali and Maggi (2002) study a model of symmetric but nonverifiable information where there

are costs of writing contingencies into contracts. This is in contrast to the models cited above which
involve asymmetric information with constraints on message spaces.
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message spaces).6 However it is well-known that informational efficiency necessitates
dynamic, interactive communication when agents’ opportunities to express themselves
are intrinsically limited.

The key analytical problem in incorporating dynamic communication protocols into mod-
els with strategic agents is in characterizing incentive constraints. From the standpoint
of informational efficiency, it is valuable to allow agents to learn about the messages sent
by other agents before they send some additional messages. This can create complica-
tions in the presence of incentive problems. Additional communication rounds where
agents send messages after hearing reports by other agents in previous rounds gener-
ates additional incentive constraints over and above those arising in the first round.
Moreover, dynamic mechanisms enlarge the range of possible deviations available to par-
ticipants. Apart from the possibility of mimicking equilibrium strategies of other types
of the same agent, additional deviations are possible in a dynamic communication pro-
cess. Van Zandt (2007) observes that this is not a problem when the solution concept is
ex post incentive compatibility (EPIC), where agents do not regret their strategies even
after observing all messages sent by other agents. When we use the less demanding con-
cept of a (perfect) Bayesian equilibrium, dynamic communication protocols may impose
additional incentive constraints. If so, a trade-off between informational efficiency and
incentive problems can arise.

This trade-off has been difficult to study, owing to absence of a precise characterization
of incentive constraints for dynamic protocols in existing literature. Fadel and Segal
(2009) consider a very general setting, and provide different sets of sufficient conditions
which are substantially stronger than necessary conditions. In this paper we restrict
attention to contexts with single dimensional outputs and single-crossing preferences for
each agent, which is nevertheless general enough to capture a wide range of applications
to auctions, regulation and internal organization contexts. In these contexts, we show
that the necessary conditions are sufficient for Bayesian implementation for arbitrary
dynamic communication protocols (Proposition 1).

This enables us to show (Proposition 2) that under standard regularity conditions (on the
hazard rate of distributions of types), the mechanism design problem reduces to selecting
an output allocation rule which maximizes a payoff function of the Principal (modified
to include the cost of incentive rents paid to agents in a standard way with ‘virtual’
types replacing actual types) subject to communication feasibility restrictions alone.
This extends the standard approach to solving for optimal mechanisms with unlimited
communication (following Myerson (1981)). It provides a convenient representation of
the respective costs imposed by incentive problems and communicational constraints.

6Kos (2011b) examines a dynamic process in which a seller of an indivisible object asks a sequence of
successive binary questions to two buyers concerning their valuations.
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A number of implications of this result are then derived. The first concerns the value of
delegating production decisions to agents.7 In contexts of unconstrained communication
where the Revelation Principle applies, it is well known that centralized decision-making
can always (trivially) replicate the outcome of any delegation mechanism.8 This is no
longer so when communication constraints prevent agents from reporting everything they
know to the Principal (as argued by Hayek). In the presence of incentive problems, how-
ever, delegation can generate costs owing to opportunistic behavior, as well as benefits
from enhanced informational efficiency. In our context, it turns out the benefits of im-
proved information always outweigh attendant incentive costs. Proposition 3 shows that
any centralized mechanism is strictly dominated by some mechanism with decentralized
production choices made by agents. This vindicates Hayek’s arguments in favor of decen-
tralized mechanisms in general. Practical implications include the superiority of taxes
over quantitative controls, and of firm organizations which delegate production decisions
to workers (Aoki (1990)).

A second set of implications concern the design of dynamic communication protocols.
Proposition 2 has strong implications for how communication processes ought to be
structured: to maximize the amount of information exchanged by agents. If the un-
derlying cost of communication is time delay (where messages take time to write or
send), an optimal protocol involves multiple rounds of communication in which agents
simultaneously send messages in each round, and send as little information possible (i.e.,
binary messages) in each round. But if the limitation is on the total number of binary
messages sent, optimal protocols necessitate sequential reporting, where every commu-
nication round involves a single agent sending messages.

The paper is organized as follows. Section 2 provides some examples to help explain
the informational benefit of dynamic communication protocols, and then the incentive
problems they give rise to. Section 3 introduces the general model. Section 4 is de-
voted to characterizing feasible allocations. Section 5 uses this to represent the design
problem as maximizing the Principal’s incentive-rent-modified welfare function subject
to communicational constraints alone. Section 6 uses this to compare centralized and
decentralized mechanisms, while Section 7 describes implications for design of optimal
communication protocols. Section 8 concludes.

7Earlier literature such as Melumad, Mookherjee and Reichelstein (1992, 1997) and Laffont and Mar-
timort (1998) have focused on a related but different question: the value of decentralized contracting (or
subcontracting) relative to centralized contracting. Here we assume that contracting is centralized, and
examine the value of decentralizing production decisions instead. We comment further on implications
of our analysis for decentralization of contracting in Section 8.

8For a formal statement and proof, see Myerson (1982).
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2 Examples and Related Literature

Example 1

We start by providing an example illustrating the informational value of dynamic, inter-
active communication protocols when there are limitations on the amount of information
that can be communicated by any agent in any given round, and incentive issues are ig-
nored.

Suppose two agents jointly produce a common output q for the Principal, which takes
three possible levels 0, 1, 2. The corresponding gross revenues V (q) earned by the Princi-
pal are 0, 38 and 50 respectively. Agent i incurs a unit cost θi of production. For Agent
1, this cost takes two possible values 0, 10 which are equally likely ex ante. On the other
hand θ2 can take three possible values 0, 30, 100 where the prior probability of costs 0
and 100 are 1

4 each and the probability of cost 30 is a half.

Suppose the Principal is concerned about the efficiency measured by the expected value of
V (q)− (θ1+θ2)q. The first best allocation (without any consideration of communication
or incentive constraints) is that q = 2 if θ1+θ2 < V (2)−V (1) = 12, q = 1 if V (2)−V (1) =
12 ≤ θ1 + θ2 ≤ 38 = V (1), q = 0 if V (1) = 38 < θ1 + θ2. The corresponding first-best
outputs qFB(θ1, θ2) are qFB(0, 100) = qFB(10, 100) = qFB(10, 30) = 0, qFB(0, 30) = 1
and qFB(0, 0) = qFB(0, 10) = 2. This first best allocation is shown in case (a) of Figure
1.

Now introduce a constraint on communication: each agent can send only a binary mes-
sagemi ∈ {0, 1} only once. Agent 2 who has three types then cannot report his true type.
Ignoring incentive issues, suppose agents follow instructions provided by the Principal
regarding what message to send in different contingencies. In what follows we focus on
threshold reporting strategies, in which the type space of each agent is partitioned into a
number of subintervals (which equals the number of feasible messages), and they report
the subinterval in which their type belongs. It is easy to check that this is without any
loss of generality, as long as there is a single round of communication for each agent.

Consider first a protocol where the two agents send a binary report simultaneously to the
Principal. There are two possible threshold reporting strategies possible, shown shown
in (b) and (c) of Figure 1. The Principal now does not have the information available to
implement the first-best efficient allocation, lacking information of Agent 2’s true type.
Conditional on the information available, the constrained efficient allocations are also
shown in (b) and (c) of this figure. In the case of simultaneous reporting, the Principal’s
information is represented by a ‘rectangular’ partition of the type space, where she knows
whether Agent 1’s cost is high (10) or low (0), and whether Agent 2’s cost is high or
low (the precise definition of which depends on the particular threshold strategy used by
Agent 2). The threshold for high cost of Agent 2 is 100 in case (b) and is 30 in case (c).
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Figure 1: Example 1

The latter turns out to generate a smaller loss of efficiency compared with the first-best
allocation.

Now consider a sequential protocol where Agent 1 sends a binary report first, to which
Agent 2 responds with a binary report. Agent 2 can now condition his threshold on
the report sent by Agent 1. Cases (d) and (e) show two different reporting strategies
used by Agent 2 where the threshold does vary with Agent 1’s report. Note also that
cases (b) and (c) continue to be available here, since Agent 2 can also use a strategy
in which the threshold does not vary with Agent 1’s message. It turns out the smallest
efficiency loss is incurred in case (d). Compared to the simultaneous reporting protocol, a
sequential protocol allows more information to be communicated to the Principal, within
the constraints allowed by the communication technology. Of course this requires Agent
2 be granted access to the reports filed by Agent 1. If there are no incentive problems
there is no loss associated with letting Agent 2 acquire information about Agent 1’s type,
while production assignments are chosen on the basis of better information.

If there were more rounds of communication, the agents would be able to report their
true types. But agents could have more types as well. In general, if the type space is
rich enough relative to the communication channels available, agents would not be able
to report everything they know. If there is also a constraint on the maximum number of
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rounds of binary communication which prevents agents from reporting everything they
know (say because of constraints on the total amount of time taken up in communication),
it is easy to see that the greatest amount of information could be communicated to the
Principal if the agents were to release information gradually to one other, which would
enable them to tailor their reporting strategies in later rounds on the messages exchanged
in previous rounds.

Providing more information to agents regarding messages sent by other agents in previous
rounds may of course generate incentive problems. This is the key problem that we
address in this paper. To illustrate the nature of the incentive problem in dynamic
communication protocols, we turn to the next example.

Example 2

We now present a different example which illustrates in the simplest possible way the
special problems that arise in analyzing incentives in dynamic protocols.

Suppose that Agent 1’s type θ1 takes three possible values: 0, 1 and 2 with equal proba-
bility, while Agent 2’s type θ2 is takes two possible values 0 and 1 with equal probability
where θi denotes unit cost of production for i ∈ {1, 2}. Consider a communication proto-
col, which is an extensive form of communication with three rounds of binary messages.
We abstract from Agent 2’s reporting incentives by assuming he reports truthfully, and
focus on Agent 1’s reporting incentives.

Round 1 Agent 1 sends a binary message m11 ∈ {0, 1} in the first round. If he sends 0,
the communication ends and the mechanism specifies allocation (t1(0), q1(0)) for
agent 1 where t1 is a transfer to Agent 1 and q1 is a quantity to be supplied by
Agent 1. If he chose m11 = 1, the game proceeds to Round 2.

Round 2 Agent 2 sends a binary message m22 ∈ {0, 1}, and the game proceeds to
Round 3.

Round 3 Agent 1 sends a binary message m13 ∈ {0, 1}. The mechanism then specifies a
transfer and quantity to be supplied by agent 1 as a function of messages exchanged
at rounds 2 and 3: (t1(1,m22,m13), q1(1,m22,m13)).

At the beginning of each round, each agent knows messages sent by the other agent until
the end of the previous round. Figure 2 describes the extensive form, which has five
terminal nodes h ∈ H ≡ {0, 100, 101, 110, 111}.
Consider the question of incentive compatibility of the following communication strate-
gies (c1(θ1), c2(θ2)), which specifies messages to be taken by agents for each node, rec-
ommended by the Principal:
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Figure 2: Example 2 (Extensive Form of Communication)

Round 1 Agent 1 sends m11 = 0 if θ1 = 0, and m11 = 1 if θ1 ∈ {1, 2}.

Round 2 Agent 2 sends m22 = 0 if θ2 = 0, and m22 = 1 if θ2 = 1

Round 3 Agent 1 sends m13 = 0 if θ1 = 1 and m13 = 1 if θ1 = 2, regardless of messages
in previous rounds.

Specifically, given a quantity allocation {q1(h) : h ∈ H}, the question is whether there
exist transfers {t(h) : h ∈ H} that ensure Agent 1’s incentives to follow these recom-
mendations, assuming Agent 2 follows them. Note that the message choices of type 0 of
agent 1 in Round 3 (if he happened to have chosen m11 = 1 in Round 1) have not been
specified. It will be necessary to consider possible choices that this type could make, in
order to determine whether the preceding strategies are incentive compatible for agent
1,. We discuss this below.

The recommended strategies determine the probability with which various terminal nodes
are achieved. Let P (h) denote the probability that terminal node h is reached. Figure 3
describes these probabilities for each type. Note that every terminal node is reached with
positive probability. In other words, all message options provided at various rounds are
used with positive probability. The protocol is parsimonious relative to communication
strategies (c1(θ1), c2(θ2)), using the terminology of Van Zandt (2007).

A necessary condition for incentive compatibility of these strategies for Agent 1 (for some
set of transfers) is that no type should want to deviate to the strategy prescribed for
another type. Had the Principal been able to use a one-shot revelation mechanism in
which each agent independently sends a type report, these conditions would also have

8



type 0

type 1

type 2

(P (0), P (100), P (101), P (110), P (111))

(1, 0, 0, 0, 0)

(0, 1/2, 0, 1/2, 0)

(0, 0, 1/2, 0, 1/2)

Figure 3: Example 2 (Parsimonious Protocol)

been sufficient to ensure incentive compatibility. The reason is that the size of the
message space is equal to the set of possible types, so the range of possible deviations
available to any type is precisely the range of strategies utilized by other types. Following
standard arguments, these conditions reduce to a single monotonicity condition on the
expected quantity produced by Agent 1 with respect to his type report (when using
Bayesian equilibrium as the solution concept):

q1(0) ≥ (1/2)q1(100) + (1/2)q1(110) ≥ (1/2)q1(101) + (1/2)q1(111). (1)

In the dynamic mechanism above, however, each type has a larger range of deviations
available. Agent 1 has eight possible communication strategies to choose from, corre-
sponding to various combinations of messages sent at Round 1, and those sent in Round
3 following the message sent by Agent 2 in Round 2. The question is whether the neces-
sary condition for incentive compatibility described above suffices to ensure that no type
of Agent 1 has a profitable deviation.

Van Zandt (2007) poses this question as the converse of the Revelation Principle: does
incentive compatibility in the static revelation mechanism ensure incentive compatibility
in the dynamic mechanism (after the latter has been pruned to eliminate unused mes-
sages, i.e., the dynamic mechanism is parsimonious)? He points out the answer is yes, if
the solution concept used is ex post incentive compatibility (EPIC). This concept imposes
the requirement that no type should regret his strategy choice at the end of the game,
after learning the messages sent by the other agent. In the static revelation mechanism,
in our example this requires type 0 to prefer h = 0 to both h = 100 and h = 101, nodes
that could have been reached upon mimicking type 1’s strategy. It also requires type 0 to
prefer h = 0 to h = 110 and h = 111, nodes that it could have reached upon mimicking
type 2’s strategy. Hence type 0 weakly prefers the node h = 0 to all the four other
terminal nodes. Similarly type 1 should not prefer either h = 0 or h = 101 to the node
reached h = 100 when agent 2 sends message m22 = 0 at round 2. Nor should he prefer
either h = 0 or h = 111 to the node h = 110 reached when agent 2 sent message m22 = 1
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instead. An analogous set of inequalities for type 2 completes the set of requirements for
incentive compatibility in the revelation mechanism.

It is obvious that these suffice to ensure incentive compatibility as well in the dynamic
protocol. Essentially, the condition of ‘no-regret after learning messages sent by other
types’ implies that letting agents learn about messages sent by other agents does not
disturb their incentive to follow the recommended strategies. Hence dynamic protocols
do not entail additional incentive constraints when the solution concept is EPIC. In our
context there is a simple necessary and sufficient condition for EPIC-incentivizability of
a given quantity allocation, involving monotonicity of the assigned quantity with respect
to the reported type of the agent, for every possible type reported by the other agent:

q1(0) ≥ q1(100) ≥ q1(101) (2)

and
q1(0) ≥ q1(110) ≥ q1(111). (3)

This argument does not extend to the case of Bayesian incentive compatibility. Here the
incentives of agents to follow the recommended strategies may depend on their lack of
knowledge of messages sent by other agents. In our example each type of agent 1 has
available deviations which do not constitute strategies chosen by any other type. This is
despite the fact that the protocol is parsimonious. For instance, type 0 could deviate to
selecting m11 = 1 in Round 1, followed by m13 = 0 if m22 = 0 and m13 = 1 if m22 = 1.
This is a strategy not selected by any type of Agent 1. The condition that type 0 does
not benefit by deviating to a strategy chosen by some other type, does not automatically
ensure that it would not benefit by deviating to some other strategy.

To see that the dynamic protocol imposes additional incentive compatibility constraints,
consider the question of characterizing quantity assignments {q1(h)} that are Bayesian-
incentivizable by some set of transfers. In a static revelation mechanism, incentivizability
requires only (1), whereas in the dynamic protocol, the following additional constraints
are required:

q1(100) ≥ q1(101) (4)

and
q1(110) ≥ q1(111) (5)

to ensure that in Round 3 types 1 and 2 do not want to imitate one another’s message,
having heard the message reported by Agent 2 in Round 2.

Hence the added flexibility of production assignments in a dynamic protocol may come
at the expense of increasing the number of incentive constraints. This is the key trade-
off involved in comparing dynamic with static protocols. In order to make progress
with studying design of optimal mechanisms with limited communication, we need to
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characterize the precise set of incentive constraints associated with any given dynamic
communication protocol.

Such a characterization is not available in existing literature. Fadel and Segal (2009) pro-
vide a set of sufficient conditions for Bayesian incentive compatibility in the dynamic pro-
tocol, which are stronger than the necessary conditions represented by the combination of
(1), (5) and (4). Their Proposition 6 observes that EPIC-incentivizability implies BIC-
incentivizability. Hence conditions (2) and (3) are sufficient for BIC-incentivizability.
But these are stronger than the combination of (1), (5) and (4). These happen to be
automatically satisfied in the informationally efficient allocation (incorporating only the
communicational constraints) in contexts involving a single round of communication in
many contexts (Melumad, Mookherjee and Reichelstein (1992, 1997), Blumrosen, Nisan
and Segal (2007), Blumrosen and Feldman (2006)), as well as in some dynamic com-
munication contexts (Kos (2011b)). In such contexts, thus, the informationally efficient
allocation ends up being incentivizable, so the incentive constraints do not impose any
additional cost. But this property is not true in general. For instance, it is not satisfied
in the constrained efficient allocation in case (d) of Example 1.

In this paper we show that conditions (1), (5) and (4) are collectively both necessary and
sufficient for Bayesian-incentivizability in the dynamic protocol. This property holds in
general. It is a key step that allows us to pose the mechanism design problem as selection
of a communication protocol and a contract (represented by quantities and transfers) to
maximize the Principal’s payoff subject to the constraints on the protocol and these
incentive compatibility constraints.

The idea for the sufficiency argument can be illustrated as follows. Given any quantity
allocation satisfying (1), (5) and (4), we construct incentivizing transfers {t̂1(h) | h ∈ H}
as follows.

(i) Choose q1(10d) and q1(11d) such that q1(10d) ≥ q1(100) ≥ q(101), q1(11d) ≥
q1(110) ≥ q1(111) and

q1(0) = (1/2)q1(10d) + (1/2)q1(11d).

(ii) Choose (t̂1(10d), t̂1(100), t̂1(101)) and (t̂1(11d), t̂1(110), t̂1(111)) such that

• Among {(t̂1(10d), q1(10d)), (t̂1(100), q1(100)), (t̂1(101), q1(101))}, type 0 prefers
(t̂1(10d), q1(10d)), type 1 prefers (t̂1(100), q1(100)) and type 2 prefers (t̂1(101), q1(101)).

• Among {(t̂1(11d), q1(11d)), (t̂1(110), q1(110)), (t̂1(111), q1(111))}, type 0 prefers
(t̂1(11d), q1(11d)), type 1 prefers (t̂1(110), q1(110)) and type 2 prefers (t̂1(111), q1(111)).

(iii) Choose t̂1(0) = (1/2)t̂1(10d) + (1/2)t̂1(11d).
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Figure 4: Example 2 (Augmented Communication Protocol)

Since q1(0) ≥ (1/2)q1(100) + (1/2)q1(110), it is easy to check existence of q1(10d) and
q1(11d) satisfying (i). The monotonicity conditions (q1(10d) ≥ q1(100) ≥ q(101) and
q1(11d) ≥ q1(110) ≥ q1(111)) guarantee the existence of (t̂1(10d), t̂1(100), t̂1(101)) and
(t̂1(11d), t̂1(110), t̂1(111)) satisfying (ii).

This can be interpreted as follows. Consider a hypothetical augmentation of the commu-
nication protocol, where agent 1 is provided with an additional choice d at each of the
two nodes in Round 3 (See Figure 4). This adds two new terminal nodes, with assigned
quantities and transfers that are designed to be selected by type 0 in Round 3 if that
type would have deviated at Round 1 by choosing m11 = 1 instead of 0. Condition (ii)
ensures that type 0 selects the newly added terminal nodes, while the other two types are
not motivated to deviate to these in Round 3. Condition (iii) then constructs a transfer
corresponding to terminal node h = 0 which provides the same expected payoff to type
0 at this node, as the expected payoff from deviating to m11 = 1 and then proceeding to
Round 3. The monotonicity conditions on the quantity allocation ensures that types 1
and 2 do not want to deviate to m11 = 0, while by construction type 0 does not have an
incentive to deviate to m11 = 1.

Finally, we go back to the original protocol where the two new nodes 10d and 11d are not
added, and we use the constructed transfers at all the remaining nodes. It is evident that
each type now has an incentive to follow the recommended communication strategies.

We show in the succeeding sections that this method works generally. Hence we are
able to obtain a set of conditions that are both necessary and sufficient for Bayesian-
incentivizability of a given quantity allocation combined with a set of supporting commu-
nication strategies. This enables us to extend standard methods (based on the Revenue
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Equivalence Theorem) of posing the mechanism design problem in terms of the quantity
allocation alone.

3 Model

There is a Principal (P ) and two agents 1 and 2. Agent i = 1, 2 produces a one-
dimensional nonnegative real valued input qi at cost θiqi, where θi is a real-valued pa-
rameter distributed over an interval Θi ≡ [θi, θ̄i] according to a positive-valued, continu-
ously differentiable density function fi and associated c.d.f. Fi. The distribution satisfies
the standard monotone hazard condition that Fi(θi)

fi(θi)
is nondecreasing, implying that the

‘virtual cost’ vi(θi) ≡ θi +
Fi(θi)
fi(θi)

is strictly increasing. θ1 and θ2 are independently dis-
tributed, and these distributions F1, F2 are common knowledge among the three players.

The inputs of the two agents combine to produce a gross return V (q1, q2) for P . In some
contexts there may be technological restrictions on the relation between the outputs of
the two agents. For instance the agents may work in a team that produce a joint output q,
in which case q1 = q2 = q. Or the Principal may organize a procurement auction between
two suppliers that produce perfect substitutes, to procure a given total quantity of the
common good. Normalizing this desired quantity to 1, we can set q2 = 1 − q1 ∈ [0, 1].
In this case of course the constraint q2 = 1 − q1 is not a technological restriction, and
the production function can be written as V = min{q1 + q2, 1}. To accommodate the
possibility of joint production, let Q ⊂ R+ ×R+ denote a set of technologically feasible
combination of input supplies (q1, q2).

The Principal makes transfer payments ti to i. The payoff of i is ti − θiqi. Both agents
are risk-neutral and have autarkic payoffs of 0. The Principal’s objective takes the form

V (q1, q2)− λ1(t1 + t2)− λ2(θ1q1 + θ2q2) (6)

where λ1 ≥ 0, λ2 ≥ 0 respectively represent welfare weights on the cost of transfers
incurred by the Principal and cost of production incurred by the agents. Applications
include:

Application 1: Internal organization/procurement

The Principal is the owner of a firm composed of two divisions whose respective out-
puts combine to form revenues V = V (q1, q2). If there is a single joint output, Q =
{(q1, q2)|q1 = q2}. If the two divisions produce different inputs independently, Q =
R+ ×R+, while the need to coordinate their activities arises if V is non-separable in q1
and q2. The principal seeks to maximize profit, hence λ1 = 1 and λ2 = 0. The same
applies when the two agents correspond to external input suppliers.
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Application 2: Environmental regulation

The Principal is an environmental regulator seeking to control abatements qi of two firms
i = 1, 2 withQ = R+×R+. V (q1+q2) is the gross social benefit from total abatement, and
θi is the firm i’s unit cost for abatement activity. Consumer welfare equals V − (1+λ)F
where F is the total tax revenue collected from consumers and λ is the deadweight loss
involved in raising these taxes. The revenue is used to reimburse transfers t1, t2 to the
firms. Social welfare equals the sum of consumer welfare and firm payoffs, which reduces
to (6) with λ1 = λ, λ2 = 1. The same approach can be used for regulation of public
utilities, where qi denotes the output supplied by utility company i, and ti is a payment
made to company i from revenues raised from consumers or taxpayers.

Application 3: Allocating private goods

The Principal seeks to allocate a fixed quantity q of a private good. In this environment,
θi is negative, with −θi representing agent i’s valuation of one unit of product, and −ti
the amount paid by agent i. Q = {(q1, q2) ∈ R+ × R+ | q1 + q2 ≤ q}. V (q1, q2) = 0,
λ1 = 1 and λ2 = 0 represents the case where the Principal is solely concerned about
revenue, while V (q1, q2) = 0, λ1 = 0 and λ2 = 1 represents the case where the Principal
is concerned about efficiency. The auction of a single item corresponds to the case of
Q = {(q1, q2) ∈ {0, 1} × {0, 1} | q1 + q2 ≤ 1}.

Application 4: Public good decisions

Here q = q1 = q2 represents the level of a public good, whose valuation by agent i
is −θi > 0. Here nonrivalry and nonexcludability implies Q = {(q1, q2) | q1 = q2}.
V (q, q) = −C(q) is interpreted as the cost of producing the public good. These costs
are covered by taxes raised from consumers, which involve a deadweight loss of λ. Social
welfare corresponds to (6) with λ1 = 0, λ2 =

1
1+λ .

4 Communication and Contracting

4.1 Timing

The mechanism is designed by the principal at an ex-ante stage (t = −1). It consists of
a communication protocol (explained further below) and a set of contracts to each agent.
There is enough time between t = −1 and t = 0 for all agents to read and understand
the offered contracts.
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At t = 0, each agent i privately observes the realization of θi, and independently decides
whether to participate or opt out of the mechanism. If either agent opts out the game
ends; otherwise they enter the planning or communication phase which lasts until t = T .9

At t = T , each agent i = 1, 2 or the principal selects production level qi, depending on
whose choice variable qi is (an issue discussed further below).

Finally, after production decisions have been made, payments are made according to
the contracts signed at the ex ante stage, and verification by the Principal of messages
exchanged by agents and outputs produced by them.

4.2 Communication Technology

Once both agents have agreed to participate, communication takes place in a number
of successive rounds t = 1, . . . , T . We consider the case where receiving (reading or
listening) a message does not entail any time delay and any cost, as in verbal exchanges
where speaking is time-consuming and the audience listens at the same time that the
speaker speaks. This is the implicit assumption in most existing literature on costly
communication.

Let mi denote a message sent by i. For simplicity, we assume that mi is received by agent
j. Later we argue that the optimal allocation is implemented with this communication
structure, i.e., it is not profitable to hide some messages from specific agents. Hence this
restriction is without loss of generality, and enables us to simplify the exposition.

Given that agents exchange messages directly with one another (as well as sending these
to the Principal), there is no rationale for the Principal to send any messages to the
agents.

The communication capacity of any agent i ∈ I ≡ {1, 2} is a message set Ri, which
contains all messages mi that i can feasibly send in any given round of communication.
Let l(mi) denote length of mi, which is an integer. This represents the time taken by
the sender to compose or send the message. If messages are binary-encoded, l(mi) is
the number of 0-1 bits needed to communicate mi. Communicating no message at all
may also convey some information. If this is costless, it can be possible for agents to
communicate some information costlessly. We exclude this possibility by assuming that
every message in the message set has positive length, unless the message set is empty.

The following assumption imposes the fundamental limitation on communication, stating
that the number of messages available to any agent not exceeding any given length is
finite:

9Alternatively, the decision to participate can be represented as the initial round (round 0) of the
communication phase.
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Assumption 1 For any k < ∞, there exists an integer n < ∞ such that #{mi ∈ Ri |
l(mi) < k} < n.

In addition, we impose either one of the following three communication constraints. Let
mit be message sent by i in round t.

Communication Constraint 1

For any i ∈ {1, 2}, there exists ki < ∞ such that a sequence of i’s messages (mi1,mi2, ....,miT )
is feasible if and only if it satisfies

ΣT
t=1l(mit) ≤ ki

and mit ∈ Ri for any i and any t. This is a constraint on the aggregate length of messages
sent by each agent.

Communication Constraint 2

There exists k < ∞ such that a sequence of messages {(mi1,mi2, ....,miT )}i∈{1,2} is
feasible if and only if it satisfies

Σi∈{1,2}Σ
T
t=1l(mit) ≤ k

and mit ∈ Ri for any i and any t. This represents a constraint on the aggregate length
of messages sent by all agents.

Communication Constraint 3

There exists D < ∞ such that a sequence of messages {(mi1,mi2, ....,miT )}i∈{1,2} is
feasible if and only if it satisfies

ΣT
t=1max{l(m1t), l(m2t)} ≤ D

and mit ∈ Ri for any i and any t. Here the delay in any round is the maximal length
of messages sent by any agent in that round. The total delay across different rounds is
constrained.

4.3 Communication Protocol

Given a communication technology represented by either of the above constraints, the
Principal can select a communication protocol, which is a rule defining T the number of
rounds of communication, and in any given round the message set for any agent, which
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may depend on the history of messages exchanged in previous rounds. If some agents
are not supposed to communicate anything in any round, their message sets are null in
those rounds. This allows us to include protocols where agents take turns in sending
messages in different rounds. Other protocols may involve simultaneous reporting by all
agents in each round.

Message histories and message sets are defined recursively as follows. Let mit denote
a message sent by i in round t. Given a history ht−1 of messages exchanged (sent and
received) by i until round (t − 1), it is updated at round t to include the messages
exchanged at round t: ht = (ht−1, {mit}i∈I). And for every i, h0 = ∅. The message set
for i at round t is then a subset of Ri which depends on ht, unless it is null.

Formally, the communication protocol specifies the number of rounds T , and for every
round t ∈ {1, . . . , T} and every agent i, a message set Mi(ht−1) ⊆ Ri or Mi(ht−1) = ∅
for every possible history ht−1 until the end of the previous round.10 It must satisfy the
relevant constraint on the communication technology: the relevant inequality must be
satisfied for any sequence of messages {(mi1,mi2, ...,miT )}i∈I satisfying mi1 ∈ Mi(h0)
and mit+1 ∈ Mi(ht−1, {mjt}j∈I) for any i and t. Let a protocol be denoted by p, and the
set of possible protocols given communication technology be denoted by P.

4.4 Communication Plans and Strategies

Given a protocol p ∈ P, a communication plan for agent i specifies for every round t
a message mit(ht−1) ∈ Mi(ht−1) for every possible history ht−1 that could arise for i
in protocol p until round t − 1. The set of communication plans for i in protocol p
is denoted Ci(p). For communication plan c = (c1, c2) ∈ C(p) ≡ C1(p) × C2(p), let
ht(c) denote the history of messages generated thereby until the end of round t. Let
Ht(p) ≡ {ht(c) | c ∈ C(p)} denote the set of possible message histories in this protocol
until round t. For a given protocol, let H ≡ HT (p) denote the set of possible histories at
the end of round T . It is evident from our assumption about communication technology
that the number of elements in Ci(p) has an upper bound.11

10We depart from Fadel and Segal (2009) and Van Zandt (2007) insofar as their definition of a protocol
combines the extensive form game of communication as well as the communication strategy of each agent.

11The proof that #Ci(p) has an upper bound is sketched as follows. When a sequence of messages
{(mi1, ...,miT )}i∈I satisfies communication constraint 1 and 3 in Section 4.2, it also satisfies 2. So it
suffices to prove that #Ci(p) has an upper bound for any p satisfying 2. Without loss of generality, we
can focus our attention to p such that #M1(ht)+

#M2(ht) ≥ 2 for any ht ∈ ∪T−1
τ=0Hτ , since we can delete

any round in which message sets for both agents are null. Then by our assumption that non-null message
set does not include null message, l(m1t) + l(m2t) ≥ 1 for any (m1t,m2t) ∈ M1(ht−1) × M2(ht−1) and
any ht−1 ∈ ∪T−1

τ=0Hτ . Constraint 2 implies T ≤ ΣT
t=1[l(m1t) + l(m2t)] ≤ k or T has an upper bound.

Assumption 1 implies that there exists A < ∞ such that #Mi(ht) < A for any ht ∈ ∪T−1
τ=0Hτ and any

i ∈ I, since otherwise, l(mit) does not have an upper bound for some mit ∈ Mi(ht) and constraint 2
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Given a protocol p ∈ P, a communication strategy for agent i is a mapping ci(θi) ∈ Ci(p)
from the set Θi ≡ [θi, θ̄i] of types of i to the set Ci(p) of possible communication plans
for i. In other words, a communication strategy describes the dynamic plan for sending
messages, for every possible type of the agent. The finiteness of the set of dynamic
communication plans implies that it is not possible for others in the organization to infer
the exact type of any agent from the messages exchanged. Perforce, non-negligible sets
of types will be forced to pool into the same communication plan.

4.5 Production Decisions and Contracts

Many authors in previous literature (Blumrosen, Nisan and Segal (2007), Blumrosen
and Feldman (2006) and Kos (2011a, 2011b)) have limited attention to mechanisms
where output assignments and transfers are specified as a function of the information
communicated by the agents. Decision-making authority is effectively retained by the
Principal in this case. This is natural in settings involving auctions or public goods.
We shall refer to such mechanisms as centralized. A contract in this setting specifies a
quantity allocation (q1(h), q2(h)) : H → Q, with corresponding transfers (t1(h), t2(h)) :
H → ℜ × ℜ. A centralized mechanism is then a communication protocol p ∈ P and an
associated contract (q(h), t(h)) : H → Q×ℜ×ℜ.
Some authors (Melumad, Mookherjee and Reichelstein (1992, 1997)) have explored mech-
anisms where the Principal delegates decision-making to one of the two agents, and com-
pared their performance with centralized mechanisms. This is a pertinent question in
procurement, internal organization or regulation contexts. They consider mechanisms
where both contracting with the second agent as well as production decisions are de-
centralized (while restricting attention to communication protocols involving a single
round of communication). Here we focus attention on mechanisms where the Princi-
pal retains control over the design of contracts with both agents, while decentralizing
decision-making authority to agents concerning their own productions. This is feasible
only if the production decisions of the two agents can be chosen independently, i.e., there
are no technical complementarities or jointness restrictions on their outputs. We refer to
such mechanisms as decentralized. The potential advantage of decentralizing production
decisions to agents is that these decisions can then be based on information possessed by
the agents which is richer than what they can communicate to the Principal. Transfers
can then be based on output decisions as well as messages exchanged.

Formally a decentralized mechanism is a communication protocol p, a feasible output
space Q = ℜ+ × ℜ+, and a pair of contracts for the two agents, where the contract for

is violated. Then #HT , which is the total number of terminal nodes, has an upper bound A2k. Since
#Ht ≤# HT for any t ≤ T − 1, Ht has an upper bound B < ∞ for any t ≤ T − 1. Then since
#Ci(p) = ΠT−1

t=0 Πht∈Ht [
#Mi(ht)] (with

#Mi(ht) ≡ 1 if Mi(ht) is null set),
#Ci(p) < ABk < ∞.
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agent i is a transfer rule ti(qi, h) : Θi × H → ℜ. Such a mechanism induces a quantity
allocation qi(θi, h) : Θi×H → ℜ+ which maximizes [ti(q, h)−θiq] with respect to choice of
q.12 To simplify exposition we specify the quantity allocation as part of the decentralized
mechanism itself.

A centralized mechanism can then be viewed as a special case of a decentralized mech-
anism in which qi(θi, h) is measurable with respect to h, i.e., does not depend on θi
conditional on h. It corresponds to a mechanism in which the Principal sets an output
target for each agent (based on the messages communicated) and then effectively forces
them to meet these targets with a corresponding incentive scheme. We can therefore
treat every mechanism as decentralized, in a formal sense.

In view of this, say that a mechanism is truly decentralized if it is not centralized. We
shall in due course evaluate the relative merits of centralized and truly decentralized
mechanisms.

4.6 Feasible Production Allocations

The standard way of analysing the mechanism design problem with unlimited communi-
cation is to first characterize production allocations that are feasible in combination with
some set of transfers, and then use the Revenue Equivalence Theorem to represent the
Principals objective in terms of the production allocation alone, while incorporating the
cost of the supporting transfers. To extend this method we seek to characterize feasible
production allocations.

A production allocation is a mapping q̃(θ) ≡ (q1(θ), q2(θ)) : Θ1×Θ2 → Q. Restrictions are
imposed on production allocations owing both to communication and incentive problems.

Consider first communication restrictions. A production allocation q̃(θ) is said to be
communication-feasible if: (a) the mechanism involves a communication protocol p sat-
isfying the specified constraints on communication, and (b) there exist communication
strategies c(θ) = (ci(θi), cj(θj)) ∈ C(p) and output decisions of agents qi(θi, h) : Θi×H →
ℜ+, such that q̃(θ) = (q1(θ1, h(c(θ))), q2(θ2, h(c(θ)))) for all θ ∈ Θ. Here h(c) denotes
the message histories generated by the communication strategies c in this protocol.

The other set of constraints pertain to incentives. A communication-feasible production
allocation q̃(θ) is said to be incentive-feasible in a mechanism if there exists a Perfect
Bayesian Equilibrium (PBE) of the game induced by the mechanism which implements
the production allocation. In other words, there must exist a set of communication

12Since i infers the other’s output qj (j ̸= i) only through h, we can restrict attention to contracts
where the payments to any agent depends only on his own output without loss of generality. Specifically,
if ti were to depend on qj , the expected value of the transfer to i can be expressed as a function of qi
and h, since agent i’s information about qj has to be conditioned on h.
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strategies and output decision strategies satisfying condition (b) above in the requirement
of communication-feasibility, which constitutes a PBE.

4.7 Characterization of Incentive Feasibility

We now seek to characterize incentive-feasible production allocations. Using the single-
dimensional output of each agent and the single crossing property of agent preferences,
we can obtain as a necessary condition a monotonicity property of expected outputs with
respect to types at each decision node. To describe this condition, we need the following
notation.

It is easily checked (see Lemma 1 in the Appendix) that given any strategy configuration
(c1(θi), c2(θ2)) and any history ht until the end of round t in a communication protocol,
the set of types (θ1, θ2) that could have generated the history ht can be expressed as the
Cartesian product of subsets Θ1(ht),Θ2(ht) such that

{(θ1, θ2) | ht(c(θ1, θ2)) = ht} = Θi(ht)×Θj(ht). (7)

A necessary condition for incentive-feasibility of a production allocation q(θ) which is
communication-feasible in a protocol p and supported by communication strategies c(θ)
is that for any t = 1, . . . , T , any ht ∈ Ht and any i = 1, 2:

E[qi(θi, θj) | θj ∈ Θj(ht)] is non-increasing in θi on Θi(ht), (8)

where Ht denotes the set of possible histories until round t generated with positive
probability in the protocol when c(θ) is played, and Θi(ht) denotes the set of types of i
who arrive at ht with positive probability under the communication strategies c(θ).

The necessity of this condition follows straightforwardly from the dynamic incentive
constraints which must be satisfied for any history ht on the equilibrium path. Upon
observing ht, i’s beliefs about θj are updated by conditioning on the event that θj ∈
Θj(ht). Any type of agent i in Θi(ht) will have chosen the same messages up to round
t. Hence any type θi ∈ Θi(ht) has the opportunity to pretend to be any other type in
Θi(ht) from round t + 1 onward, without this deviation being discovered by anyone. A
PBE requires that such a deviation cannot be profitable. The single-crossing property
then implies condition (8).

As noted earlier, the existing literature has provided sufficient conditions for incentive-
feasibility that are considerably stronger than (8). Fadel and Segal (2009) in a more
general framework (with abstract decision spaces and no restrictions on preferences)
provide two sets of sufficient conditions. One set (provided in their Proposition 6) of
conditions is based on the observation that the stronger solution concept of ex post
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incentive compatibility implies Bayesian incentive compatibility. In our current context
ex post incentive compatibility is assured by the condition that for each i = 1, 2:

qi(θi, θj) is globally non-increasing in θi for every θj ∈ Θj (9)

Another set of sufficient conditions (Proposition 3 in Fadel-Segal (2009)) imposes a no-
regret property with respect to possible deviations to communication strategies chosen
by other types following every possible message history arising with positive probability
under the recommended communication strategies. This is applied to every pair of types
for each agent at nodes where it is this agent’s turn to send a message. In the context
of centralized mechanism (which Fadel and Segal restrict attention to), this reduces to
the condition that for any any i = 1, 2 and any ht ∈ Ht, t = 1, . . . , T where it is i’s turn
to move (i.e., Mi(ht) ̸= ∅):13

E[qi(θi, θj)|θj ∈ Θj(ht)] is globally non-increasing in θi. (10)

Our first main result is that the necessary condition (8) is also sufficient for incentive
feasibility, provided the communication protocol prunes unused messages. Suppose that
p is a communication protocol in which communication strategies used are c(θ). Then p
is parsimonious relative to communication strategies c(θ) if every possible history h ∈ H
in this protocol is reached with positive probability under c(θ).

Proposition 1 Condition (8) is sufficient for incentive-feasibility of a production alloca-
tion q(θ) which is communication-feasible in a protocol p and supported by communication
strategies c(θ), provided the protocol is parsimonious with respect to c(θ).

Any protocol can be pruned by deleting unused messages under any given set of commu-
nication strategies, to yield a protocol which is parsimonious with respect to these strate-
gies. Hence it follows that condition (8) is both necessary and sufficient for incentive-
feasibility.

The proof of Proposition 1 is provided in the Appendix. The main complication arises for
the following reason. In a dynamic protocol with more than one round of communication,
no argument is available for showing that attention can be confined to communication
strategies with a threshold property. Hence the set of types Θ(ht) pooling into mes-
sage history ht need not constitute an interval. The monotonicity property for output
decisions in (8) holds only ‘within’ Θ(ht), which may span two distinct intervals. The
monotonicity property may therefore not hold for type ranges lying between the two

13As Fadel and Segal point out, it suffices to check the following condition at the last node of the
communication game at which it is agent i’s turn to move.
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intervals. This complicates the conventional argument for construction of transfers that
incentivize a given output allocation.

The proof is constructive. Given a production allocation satisfying (8) with respect to set
of communication strategies in a protocol, we first prune the protocol to eliminate unused
messages. Then incentivizing transfers are constructed as follows. We first construct a
set of functions representing expected outputs of each agent following any given history ht
at any stage t, as a function of the type of that agent. Condition (8) ensures the expected
output of any agent i is monotone over the set Θi(ht). These are the types of i that
actually arrive at ht with positive probability on the equilibrium path. The proof shows
it is possible to extend this function over all types of this agent (not just those that arrive
at ht on the equilibrium path) which is globally monotone, in a way that agrees with
the actual expected outputs on the set Θi(ht), and which maintains consistency across
histories reached at successive dates. This amounts to assigning outputs for types that
do not reach ht on the equilibrium path, which can be thought of as outputs they would
be assigned if they were to deviate somewhere in the game and arrive at ht. Since this
extended function is globally monotone, transfers can be constructed in the usual way to
incentivize this allocation of expected output. The construction also has the feature that
the messages sent by the agent after arriving at ht do not affect the expected outputs
that would thereafter be assigned to the agent, which assures that the agent does not
have an incentive to deviate from the recommended communication strategy.

Consider the following example which illustrates the construction of transfers that in-
centivize an allocation satisfying the necessary condition (8). Agent i’s cost is uniformly
distributed over [0, 1]. There are three rounds of communication. In round 1, agent 1
reports m11 ∈ {L,R}. In round 2, agent 2 reports m22 ∈ {U,D}. In round 3, agent 1
reports m13 ∈ {0, 1}. The mechanism is decentralized, with each agent choosing their
respective outputs at the end of round 3. The recommended communication strate-
gies (on the equilibrium path) are the following. In round 1, agent 1 reports m11 = L
if θ1 ∈ [0, 1/3] ∪ [2/3, 1], and R otherwise. In round 2, agent 2 reports m22 = U if
θ2 ∈ [1/2, 1] and D otherwise. In round 3, agent 1 has a null message set if he reported
R in round 1. If he reported L in round 1, in round 3 he reports m13 = 0 if θ1 ∈ [0, 1/3]
and m13 = 1 if θ1 ∈ [2/3, 1].

We focus on constructing transfers for agent 1 so as to induce this agent to follow the
recommended strategy, while assuming that agent 2 follows his. Hence we check only
the reporting incentives for agent 1 in rounds 1 and 3. These depend on outputs that
agent 1 is expected to select at the end of round 3, as a function of messages sent in the
first three rounds, besides the true type of agent 1. These outputs are represented by
functions l(θ1,m22) and r(θ,m22) corresponding to first round announcements of L and
R respectively, and are shown in Figure 5.
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Figure 5: Outputs for Agent 1
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Define first-round expected outputs m(θ1) as follows:

m(θ1) ≡ (1/2)l(θ1, D) + (1/2)l(θ1, U)

for θ1 ∈ [0, 1/3] ∪ [2/3, 1], and

m(θ1) ≡ (1/2)r(θ1, D) + (1/2)r(θ1, U)

for θ1 ∈ [1/3, 2/3]. This is also shown in Figure 5.

Then the necessary condition for incentive feasibility is that the following monotonicity
properties of first-round and third-round expected outputs of agent 1 are satisfied:

• m(θ1) is non-increasing in θ1 ∈ [0, 1]

• l(θ1, D) and l(θ1, U) are non-increasing in θ1 on [0, 1/3] ∪ [2/3, 1]

• r(θ1, D) and r(θ1, U) are non-increasing in θ1 on [1/3, 2/3]

As is evident from Figure 5, these are not globally monotone in θ1, given messages sent
by Agent 2.

As a first step in our construction, we extend the third round output functions l, r to l̃, r̃
to the entire type space [0, 1] as shown in Figures 6, 7 respectively. This can be done to
maintain the following two properties: (a) the extended functions are globally monotone
in θ1, and (b) their average equals m(θ1) for all θ1. These can be interpreted as outputs
corresponding to off-equilibrium messages.

Let q∗(θ1, h3) denote the round-3 output of agent 1 corresponding to type θ1 and message
vector h3 consisting of messages sent in the first three rounds, based on these extended
functions. The function q∗ is well-defined for all θ1 and all possible message histories
till round 3, both on and off the equilibrium path. Now define transfers to agent 1 as a
function of the round-3 expected output function as follows:

t(q∗(θ1, h3), h3) = θ1q
∗(θ1, h3) +

∫ 1

θ1

q∗(y, h3)dy (11)

This ensures that every type θ1 will optimally select expected output of q∗(θ1, h3) at
the end of the communication phase following any given history h3, both on and off the
equilibrium path. Moreover, by construction, after conditioning on the output q∗ that
agent 1 expects to choose at the end of round 3, its transfer does not depend on the
message m13 sent in that round. Hence no type of Agent 1 has an incentive to deviate
from the recommended communication strategy on the equilibrium path in round 3.

Now consider reporting incentives in round 1. At this stage Agent 1 does not yet know
the message to be sent by Agent 2 in round 2. By construction of the extended output
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Figure 6: Construction of l̃
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Figure 7: Construction of r̃
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functions, the expected output for an agent with true type θ1 is m(θ1), irrespective of
whether or not it deviates from the recommended reporting strategy in round 1. Its
expected transfer in round 1 therefore do not depend on the messages it sends in round
1, implying it has no incentive to deviate in round 1 either.

Note finally that taking expectations of (11) with respect to types of Agent 2 combined
with the equilibrium reporting strategies, the ex ante expected transfers paid by the
Principal to Agent 1 depends only on the first round expected output function m(θ1),
i.e., do not depend on the particular way in which the round 3 output functions were
extended.

5 Characterizing Optimal Mechanisms

Having characterized feasible allocations, we can now restate the mechanism design prob-
lem as follows.

Note to start with that the interim participation constraints imply that every type of
each agent must earn a non-negative expected payoff from participating. Agents that
do not participate do not produce anything or receive any transfers. Hence by the usual
logic it is without loss of generality that all types participate in the mechanism. The
single crossing property ensures that expected payoffs are nonincreasing in θi for each
agent i. Since λ1 ≥ 0 it is optimal to set transfers that incentivize any given output
allocation rule q(θ) satisfying (8) such that the expected payoff of the highest cost type
θ̄i equals zero for each i. The expected transfers to the agents then equal (using the
arguments in Myerson (1981) to establish the Revenue Equivalence Theorem):

Σ2
i=1E[vi(θi)qi(θi, θj)]

where vi(θi) ≡ θi +
Fi(θi)
fi(θi)

. Consequently the expected payoff of the Principal is

E[V (qi(θi, θj), qj(θi, θj))− wi(θi)qi(θi, θj)− wj(θj)qj(θi, θj)] (12)

where wi(θi) ≡ (λ1 + λ2)θi + λ1
Fi(θi)
fi(θi)

.

This enables us to state the problem in terms of selecting an output allocation in combi-
nation with communication protocol and communication strategies. Given the set P of
feasible communication protocols defined by the communication constraints, the problem
is to select a protocol p ∈ P, communication strategies c(θ) in p and output allocation
q(θ) to maximize (12), subject to the constraint that (i) there exists a set of output
decision strategies qi(θi, h), i = 1, 2 such that q(θ) = (q1(θ1, h(c(θ))), q2(θ2, h(c(θ)))) for
all θ ∈ Θ, and (ii) the output allocation satisfies condition (8).
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Condition (i) is essentially a constraint of communication-feasibility, which applies even in
the absence of incentive problems. Condition (ii) is the additional constraint represented
by incentive problems. Note that the above statement of the problem applies since
attention can be confined without loss of generality to protocols that are parsimonious
with respect to the assigned communication strategies. To elaborate, note that conditions
(i) and (ii) are both necessary for implementation. Conversely, given an output allocation,
a communication protocol, and communication strategies in the protocol that satisfy
conditions (i) and (ii), we can prune that protocol by deleting unused messages to obtain
a protocol that is parsimonious with respect to the given communication strategies.
Then Proposition 1 ensures that the output allocation can be implemented as a PBE
in the pruned protocol with suitably constructed transfers, which generate an expected
payoff (12) for the Principal while ensuring all types of both agents have an incentive to
participate.

Now observe that constraint (ii) is redundant in this statement of the problem. If we
consider the relaxed version of the problem stated above where (ii) is dropped, the
solution to that problem must automatically satisfy (ii), since the monotone hazard rate
property on the type distributions Fi ensure that wi(θi) is an increasing function for each
i. This generates our main result.

Proposition 2 The mechanism design problem can be reduced to the following. Given
the set P of feasible communication protocols defined by the communication constraints,
select a protocol p ∈ P, communication strategies c(θ) in p and output allocation q(θ)
to maximize (12), subject to the constraint of communication feasibility alone, i.e., there
exists a set of output decision strategies qi(θi, h), i = 1, 2 such that

q(θ) = (q1(θ1, h(c(θ))), q2(θ2, h(c(θ)))),∀θ ∈ Θ. (13)

In the case of unlimited communication, this reduces to the familiar property that an
optimal output allocation can be computed on the basis of unconstrained maximization
of expected payoffs (12) of the Principal which incorporate incentive rents earned by the
agents. With limited communication additional constraints pertaining to communication
feasibility have to be incorporated. In the absence of incentive problems, the same
constraint would apply: the only difference would be that the agents would not earn
incentive rents and the objective function of the Principal would be different (wi would
be replaced by w̃i = (λ1 + λ2)θi).

Proposition 2 neatly separates costs imposed by incentive considerations, from those im-
posed by communicational constraints. The former is represented by the replacement
of production costs of the agents by their incentive-rent-inclusive virtual costs in the
objective function of the Principal, in exactly the same way as in a world with costless,
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unlimited communication. The costs imposed by communicational constraints are rep-
resented by the restriction of the feasible set of output allocations, which must now vary
more coarsely with the type realizations of the agents. This can be viewed as the natural
extension of Marschak-Radner (1972) characterization of optimal team decision problems
to a setting with incentive problems. In particular, the same computational techniques
can be used to solve these problems both with and without incentive problems: only the
form of the objective function needs to be modified to replace actual production costs
by virtual costs. The ‘desired’ communicational strategies can be rendered incentive
compatible at zero additional cost.

Van Zandt (2007) and Fadel and Segal (2009) discuss the question of ‘communication
cost of selfishness’, which pertains to the related notion of separation between incentive
and communicational complexity issues. In their context they take an arbitrary social
choice function (allocation in our notation) and examine whether the communicational
complexity of implementing it is increased by the presence of incentive constraints. In
our context we fix communicational complexity and select an allocation to maximize the
Principal’s expected payoff (the exact representation of which depends on whether or not
incentive problems are present). Van Zandt shows that the separation property applies
quite generally when we use the solution concept of ex post incentive compatibility. This
also turned out to be true for Bayesian implementation for a class of problems involving
one round limited communication protocols, one dimensional outputs and single-crossing
preferences (Melumad, Mookherjee and Reichelstein (1992, 1997), Blumrosen and Feld-
man (2006), Blumrosen, Nisan and Segal (2007)). Proposition 2 shows this result ex-
tends to arbitrary dynamic communication protocols, provided we continue to operate
in a world with one dimensional outputs and single crossing preferences for every agent.

6 Implications for Decentralization versus Centralization
of Production Decisions

We now examine implications of Proposition 2 for the value of truly decentralized mecha-
nisms compared with centralized ones. Consider a setting where there is no technological
restriction on the relation between outputs of the two agents, i.e., Q = ℜ+×ℜ+, so their
outputs can be chosen independently. If production decisions are made by the Principal,
outputs are measurable with respect to the history of exchanged messages. If production
decisions are delegated to the agents, this is no longer true, since they can be decided
by the agents on the basis of information about their own true types, which is richer
than what they managed to communicate to the Principal. Unlike settings of unlim-
ited communication, centralized mechanisms can no longer replicate the outcomes of
decentralized ones. Contracts are endogenously incomplete, thus permitting a nontrivial
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comparison of centralized and decentralization decision rights.

The typical tradeoff associated with delegation of decision rights to better informed
agents compares the benefit of increased flexibility of decisions with respect to the true
state of the world, with the cost of possible use of discretion by the agent to increase
his own rents at the expense of the Principal. Proposition 2 however shows that once
the incentive rents that agents will inevitably earn have been factored in the Principal’s
objective, incentive considerations can be ignored. The added flexibility that delegation
allows then ensures that delegation is the superior arrangement. We show below that
delegation strictly outperforms centralization provided the gross benefit function of the
Principal is smooth, strictly concave and satisfies Inada conditions.

Proposition 3 Suppose that (i) outputs of the two agents can be chosen independently
(Q = ℜ+ × ℜ+); and (ii) V (q1, q2) is twice continuously differentiable, strictly concave
and satisfies the Inada condition ∂V

∂qi
→ ∞ as qi → 0. Then given any feasible centralized

mechanism there exists a corresponding truly decentralized mechanism which generates a
strictly higher payoff to the Principal.

The outline of the argument is as follows. The finiteness of the set of feasible com-
munication plans for every agent implies the existence of non-negligible type intervals
over which communication strategies and message histories are pooled. Consequently
if decisions are centralized, the production decision for i must be pooled in the same
way. Instead if production decisions are left to agent i, the production decision can be
based on the agent’s knowledge of its own true type. Under the assumptions of Proposi-
tion 3 which ensure that the optimal outputs are always interior, this added ‘flexibility’
will allow an increase in the Principal’s objective (12) while preserving communication
feasibility. The result then follows upon using Proposition 2.

7 Implications for Choice of Communication Protocol

Proposition 2 also has useful implications for the ranking of different communication
protocols. Given any set of communication strategies in a given protocol, in state (θi, θj)
agent i learns that θj lies in the set Θj(h(ci(θi), cj(θj))), which generates an information
partition for agent i over agent j’s type.

Say that a protocol p1 ∈ P is more informative than another p2 ∈ P if for any set of
communication strategies in the former, there exists a set of communication strategies
in the latter which yields (at round T ) an information partition to each agent over the
type of the other agent which is more informative in the Blackwell sense in (almost) all
states of the world.
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It then follows that a more informative communication protocol permits a wider choice
of communication feasible output allocations. Hence Proposition 2 implies that the
Principal prefers more informative protocols. She has no interest in blocking the flow of
communication among agents.

This is the reason we have assumed that all messages are addressed to everyone else in
the organization. If the transmission and processing of messages entail no resource or
time costs, this ensures maximal flow of information between agents. In contrast much
of the literature on informational efficiency of resource allocation mechanisms (in the
tradition of Hurwicz (1960, 1972) or Mount and Reiter (1974)) has focused exclusively
on centralized communication protocols where agents send messages to the Principal
rather than one another. Such protocols restrict the flow of information among agents,
presumably in order to economize on costs of transmitting communication or of process-
ing of information. Our approach is based instead on the notion that the main cost of
communication involves the writing of messages.

Maximizing the flow of information among agents has implications for the nature of opti-
mal protocols. These will depend on the precise nature of the communication constraint.
The following result describes implications of the three different kinds of constraints
described in Section 4. We assume that messages are sent in 0-1 bits.

Proposition 4 (i) Suppose either Communication Constraint 1 or 2 applies. Then an
optimal protocol has the feature that only one agent sends messages in any given
communication round.

(ii) Suppose Communication Constraint 3 applies, limiting the total delay of the com-
munication phase to the time taken by any single agent to send D bits. Then the
optimal protocol involves D rounds of communication with both agents simultane-
ously sending one bit of information in each round.

These results follow from the objective of maximizing the amount of information com-
municated within the allowed constraints. If the constraint is on the total number of
messages sent by either or both agents, an optimal protocol features message sending
by a single agent in any given round. Simultaneous reporting is not optimal, as it is
dominated by a sequential reporting protocol in which one of the agents waits to hear
messages sent by the other before sending his own. We have not able to establish any
general result concerning the number of communication rounds in this case.

When the constraint instead applies to the total delay of the communication phase, the
nature of optimal protocols is quite different. Now sequential reporting is not optimal.
Any agent who is silent in any given round could send some messages in that round
without adding to the total delay of the mechanism. Indeed, in any given round both
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agents must send the same number of messages. Moreover, it is optimal for them both
to send one bit of information in any round. Otherwise if they both send k bits of
information in a single round, they can instead send 1 bit each in k rounds, which will
increase the amount of information exchanged without adding to the total delay. Hence
an optimal protocol must involve exactly D rounds of information with one bit sent per
round by both agents.

8 Concluding Comments

Our theory can be extended in a number of directions.

One is to allow for a larger range of communication networks, where agents may selec-
tively send messages to others. While the costs of transmitting messages to multiple
receivers may be trivial with contemporary information technology, the costs of process-
ing information by receivers may be substantial. Our approach is based on the notion
that the costs of information only incorporate the costs of writing messages. Incorporat-
ing information processing limitations will be an important step in future research.

We also ignored the possibility of delegating the responsibility of contracting with other
agents to some key agents. A broader concern is that we ignored the communicational
requirements involved in contracting itself, by focusing only on communication in the
process of implementation of the contract, which takes place after parties have negotiated
and accepted a contract. Under the assumption that pre-contracting communication is
costless, and messages exchanged between agents are verifiable by the Principle, it can
be shown that delegation of contracting cannot dominate centralized contracting if both
are equally constrained in terms of communicational requirements. Subcontracting may
thus be potentially valuable in the presence of costs of pre-contract communication, or
if agents can directly communicate with one another in a richer way than how they
communicate with the Principal. Exploring such extensions is an interesting question
for future research.
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Appendix: Proofs

Lemma 1 Consider any communication protocol p ∈ P. For any ht ∈ Ht(p):

{c ∈ C(p) | ht(c) = ht}

is a rectangle set in the sense that if ht(ci, c−i) = ht(c
′
i, c

′
−i) = ht for (ci, c−i) ̸= (c

′
i, c

′
−i),

then
ht(c

′
i, c−i) = ht(ci, c

′
−i) = ht

Proof of Lemma 1: The proof is by induction. Note that h0(c) = ϕ for any c, so it is
true at t = 0. Suppose the result is true for all dates up to t− 1, we shall show it is true
at t.

Note that
ht(ci, c−i) = ht(c

′
i, c

′
−i) = ht (14)

implies
hτ (ci, c−i) = hτ (c

′
i, c

′
−i) = hτ (15)

for any τ ∈ {0, 1, .., t− 1}. Since the result is true until t− 1, we also have

hτ (c
′
i, c−i) = hτ (ci, c

′
−i) = hτ (16)

for all τ ≤ t − 1. So under any of the configurations of communication plans (ci, c−i),
(c

′
i, c

′
−i), (c

′
i, c−i) or (ci, c

′
−i), member i experiences the same message history ht−1 until

t − 1. Then i has the same message space at t, and (14) implies that i sends the same
messages to others at t, under either ci or c

′
i.

(15) and (16) also imply that under either c−i or c
′
−i, others send the same messages to

i at all dates until t− 1, following receipt on the (common) messages sent by i until t− 1
under these different configurations. The result now follows from the fact that messages
sent by others to i depend on the communication plan of i only via the messages they
receive from i. So i must also receive the same messages at t under any of these different
configurations of communication plans.

Proof of Proposition 1:

Let qi(θi, θj) be a production allocation satisfying (8), which is supported by a com-
munication strategy vector c̃(θ) in a protocol p̃ which is parsimonious with respect to
these strategies. In this protocol all histories are reached with positive probability on
the equilibrium path, hence beliefs of every agent with regard to the types of the other
agent are obtained by applying Bayes rule.
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Define q̂i(θi, ht) by
q̂i(θi, ht) ≡ E[qi(θi, θj) | θj ∈ Θj(ht)].

for any ht ∈ Ht and any t. Condition (8) requires q̂i(θi, ht) to be non-increasing in θi on
Θi(ht). Note that

q̂i(θi, h(c̃(θi, θj))) = Eθ̃j
[qi(θi, θ̃j) | θ̃j ∈ Θj(h(c̃(θi, θj)))] = qi(θi, θj),

since qi(θi, θ̃j) = qi(θi, θj) for any θ̃j ∈ Θj(h(c̃(θi, θj))).

Step 1: The relationship between q̂i(θi, ht) and q̂i(θi, ht+1)

Suppose that i observes ht at round t. Given selection of mi,t+1 ∈ M̃i(ht) where M̃i(ht) is
the message set for ht in protocol p̃, agent i’s history at round t+1 is subsequently deter-
mined by messages received by i in round t. Let the set of possible histories ht+1 at t+1
be denoted by Ht+1(ht,mi,t+1). Evidently for j ̸= i, {Θj(ht+1)|ht+1 ∈ Ht+1(ht,mi,t+1)}
constitutes a partition of Θj(ht):

∪ht+1∈Ht+1(ht,mi,t+1)Θj(ht+1) = Θj(ht)

and
Θj(ht+1) ∩Θj(h

′
t+1) ̸= ϕ

for ht+1, h
′
t+1 ∈ Ht+1(ht,mi,t+1) such that ht+1 ̸= h

′
t+1. The probability of ht+1 ∈

Ht+1(ht,mi,t+1) conditional on (ht,mi,t+1) is represented by

Pr(ht+1 | ht,mi,t+1) = Pr(Θj(ht+1))/Pr(Θj(ht)).

From the definition of q̂i(θi, ht) and q̂i(θi, ht+1), for any mi,t+1 ∈ M̃i(ht) and any θi ∈ Θi,

Σht+1∈Ht+1(ht,mi,t+1) Pr(ht+1 | ht,mi,t+1)q̂i(θi, ht+1) = q̂i(θi, ht).

Step 2: For any ht+1, h
′
t+1 ∈ Ht+1(ht,mit+1), Θi(ht+1) = Θi(h

′
t+1) ⊂ Θi(ht)

By definition
Θi(ht+1) = {θi | m̃i,t+1(θi, ht) = mi,t+1} ∩Θit(ht)

where m̃i,t+1(θi, ht) denotes i’s message choice corresponding to the strategy c̃i(θi). The
right hand side depends only on mi,t+1 and ht. It implies that the set Θi(ht+1) does not
vary across different ht+1 ∈ Ht+1(ht,mit+1). To simplify exposition, we denote this set
henceforth by Θi(ht,mit+1).

Step 3: Construction of q̃i(θi, ht)
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We construct q̃i(θi, ht) for any ht ∈ Ht based on the following Claim 1.

Claim 1:

For arbitrary qi(θi, θj) satisfying (8), there exists q̃i(θi, ht) for any ht ∈ Ht and any t so
that

(a) q̃i(θi, ht) = q̂i(θi, ht) for θi ∈ Θi(ht)

(b) q̃i(θi, ht) is non-increasing in θi on Θi

(c) Σht+1∈Ht+1(ht,mi,t+1) Pr(ht+1 | ht,mi,t+1)q̃i(θi, ht+1) = q̃i(θi, ht) for any θi ∈ Θi and

any mi,t+1 ∈ M̃i(ht) where M̃i(ht) is the message set for ht in protocol p̃.

Claim 1 states that there exists an ‘auxiliary’ output rule q̃i as a function of type θi
and message history which is globally non-increasing in type (property (b)) following
any history ht, and q̃i(θi, ht) equals the expected value of q̃i(θi, ht+1) conditional on
(ht,mit+1) for any mit+1 ∈ M̃i(ht) (property (c)).

In order to establish Claim 1, the following Lemma is needed.

Lemma 2 For any B ⊂ R+ which may not be connected, let A be an interval satisfying
B ⊂ A. Suppose that Fi(a) for i = 1, ..., N and G(a) are real-valued functions defined on
A, each of which has the following properties:

• Fi(a) is non-increasing in a on B for any i.

• ΣipiFi(a) = G(a) for any a ∈ B and for some pi so that pi > 0 and Σipi = 1.

• G(a) is non-increasing in a on A.

Then we can construct real-valued function F̄i(a) defined on A for any i so that

• F̄i(a) = Fi(a) on a ∈ B for any i.

• ΣipiF̄i(a) = G(a) for any a ∈ A and for the same pi

• F̄i(a) is non-increasing in a on A for any i.

This lemma says that we can construct functions F̄i(a) so that the properties of functions
Fi(a) on B are also maintained on the interval A which covers B.

Proof of Lemma 2:
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If this statement is true for N = 2, we can easily show that this also holds for any N ≥ 2.
Suppose that this is true for N = 2.

ΣN
i=1piFi(a) = p1F1(a) + (p2 + ...+ pN )F−1(a)

with
F−1(a) = Σi ̸=1

pi
p2 + ...+ pN

Fi(a).

Applying this statement for N = 2, we can construct F̄1(a) and F̄−1(a) which keeps the
same property on A as on B. Next using the constructed F̄−1(a) instead of G(a), we
can apply the statement for N = 2 again to construct desirable F̄2(a) and F̄−2(a) on A
based on F2(a) and F−2(a) which satisfy

p2
p2 + ...+ pN

F2(a) + [1− p2
p2 + ...+ pN

]F−2(a) = F−1(a).

on B. We can use this method recursively to construct F̄i(a) for all i.

Next let us show that the statement is true for N = 2. For a ∈ A\B, define a(a) and
ā(a), if they exist, so that

a(a) ≡ sup{a′ ∈ B | a′
< a}

and
ā(a) ≡ inf{a′ ∈ B | a′

> a}.

It is obvious that at least one of either a(a) or ā(a) exists for any a ∈ A\B.

Let’s specify F̄1(a) and F̄2(a) so that F̄1(a) = F1(a) and F̄2(a) = F2(a) for a ∈ B, and
for a ∈ A\B as follows.

(i) For a ∈ A\B so that only a(a) exists,

F̄1(a) = F1(a(a))

F̄2(a) =
G(a)− p1F1(a(a))

p2

(ii)For a ∈ A\B so that both a(a) and ā(a) exist,

F̄1(a) = min{F1(a(a)),
G(a)− p2F2(ā(a))

p1
}

F̄2(a) = max{F2(ā(a)),
G(a)− p1F1(a(a))

p2
}
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(iii)For a ∈ A\B so that only ā(a) exists,

F̄1(a) =
G(a)− p2F2(ā(a))

p1

F̄2(a) = F2(ā(a))

It is easy to check that F̄i(a) is non-increasing in a on A for i = 1, 2 and

p1F̄1(a) + p2F̄2(a) = G(a)

for a ∈ A. This completes the proof of the lemma.

Proof of Claim 1:

Choose arbitrary t ∈ {1, ..., T} and ht ∈ Ht. Suppose that q̃i(θi, ht) satisfies (a) and (b)
in Claim 1. Then for any mi,t+1 ∈ M̃i(ht), we can construct a function q̃i(θi, ht+1) for
any ht+1 ∈ Ht(ht,mit+1) so that (a), (b) and (c) are satisfied. This result is obtained
upon applying Lemma 2 with

B = Θi(ht,mi,t+1)

A = Θi

a = θi

G(θi) = q̂i(θi, ht)

Fht+1(θi) = q̂i(θi, ht+1)

pht+1 =
Pr(Θj(ht+1))

Pr(Θj(ht))

for any ht+1 ∈ Ht+1(ht,mi,t+1) where each element of the set Ht+1(ht,mi,t+1) corre-
sponds to an element of the set {1, ..., N} in Lemma 2. This means that for q̃i(θi, ht)
which satisfies (a) and (b) for any ht ∈ Ht, we can construct q̃i(θi, ht+1) which satisfies
(a)-(c) for any ht+1 ∈ Ht+1.

With h0 = ϕ, since q̃i(θi, h0) = q̂i(θi, h0) satisfies (a) and (b), q̃i(θi, h1) is constructed so
that (a)-(c) are satisfied for any h1 ∈ H1. Recursively q̃i(θi, ht) can be constructed for
any ht ∈ ∪T

τ=0Hτ so that (a)-(c) are satisfied.

Step 4
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We are now in a position to complete the proof of sufficiency. We focus initially on the
case where Q = ℜ+ ×ℜ+ and the mechanism is decentralized so agents select their own
outputs independently. Later we show how to extend the proof to other contexts.

Given q̃i(θi, h) (with h = hT ) constructed in Claim 1, construct transfer functions ti(qi, h)
as follows:

ti(qi, h) = θ̂i(qi, h)qi +

∫ θ̄i

θ̂i(qi,h)
q̃i(x, h)dx.

for qi ∈ Qi(h) ≡ {q̃i(θi, h) | θi ∈ Θi}, and ti(qi, h) = −∞ for qi /∈ Qi(h) where θ̂i(qi, h) is
defined as follows:

θ̂i(qi, h) ≡ sup{θi | q̃i(θi, h) ≥ qi}.

We show that the specified communication strategies (c̃(θ) and output choices (q̃i(θi, h), q̃j(θj , h))
constitute a PBE (combined with beliefs obtained by applying Bayes rule at every his-
tory). By construction, q̃i(θi, h) maximizes ti(qi, h)−θiqi for any h ∈ HT and any θi ∈ Θi,
where

ti(q̃i(θi, h), h)− θiq̃i(θi, h) =

∫ θ̄i

θi

q̃i(x, h)dx.

Now turn to the choice of messages. Start with round T . Choose arbitrary hT−1 ∈ HT−1

and arbitrary miT ∈ M̃i(hT−1). The expected payoff conditional on θj ∈ Θj(hT−1) (i.e.,

conditional on beliefs given by Pr(h | hT−1,miT ) =
Pr(Θj(h))

Pr(Θj(hT−1))
for h ∈ HT (hT−1,miT ))

is

Eh[ti(q̃i(θi, h), h)− θiq̃i(θi, h) | hT−1,miT ]

=

∫ θ̄i

θi

Eh[q̃i(x, h) | hT−1,miT ]dx

=

∫ θ̄i

θi

q̃i(x, hT−1)dx.

This does not depend on the choice of miT ∈ M̃i(hT−1). Therefore agent i does not have
an incentive to deviate from miT = m̃iT (θi, hT−1).

The same argument can recursively be applied for all previous rounds t, implying that
mi,t+1 = m̃i,t+1(θi, ht) is an optimal message choice for any ht ∈ Ht and any t. This estab-
lishes that the communication strategies c̃(θ) combined with output choices (q̃i(θi, h), q̃j(θj , h))
constitute a PBE.

The argument extends in an obvious way to the case of a centralized mechanism, since
this is a special case of the previous mechanism where the assigned outputs q̂i(θi, h) are
measurable with respect to h, i.e., are independent of θi conditional on h. Agent i can
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effectively be forced to choose output q̂i(h) following history h at the end of the commu-
nication phase. The same argument as above ensures that the assigned communication
strategies constitute a PBE.

A similar extension works for the decentralized mechanism where the feasible outputs
are constrained to lie in some set Q which is a subset of ℜ+×ℜ+. From the construction
of q̃i(θi, h) (with h = hT ) in Claim 1, (q̃i(θi, h), q̃j(θj , h)) ∈ Q holds for any (θi, θj) ∈
Θi(h)×Θj(h). On the other hand, it may not hold for (θi, θj) /∈ Θi(h)×Θj(h). Define
Q̃i(h) ≡ {q̃i(θi, h) | θi ∈ Θi(h)}, the set of possible outputs for i on the equilibrium
path, following h. Then Q̃i(h) × Q̃j(h) ⊂ Q, implying that as long as agent i chooses
an output in Q̃i(h) following message history h, the allocation constraint is not violated.
Now construct a new set of transfers t̂i(qi, h) as follows: t̂i(qi, h) = ti(qi, h) for qi ∈ Q̃i(h),
and t̂i(qi, h) = −∞ for qi /∈ Q̃i(h) where ti(qi, h) is the transfer function constructed in
the previous argument. In this new mechanism, the agent’s expected payoff is preserved
on the equilibrium path, while they are not increased off the equilibrium path. Hence
the postulated strategies constitute a PBE.

Proof of Proposition 2:

We show that the solution of the relaxed problem where (ii) is dropped satisfies (ii).
Suppose not. Let the solution of the relaxed problem be represented by a (parsimo-
nious) communication protocol p, communication strategies c(θ) and output allocation
(q1(θ1, θ2), q2(θ1, θ2)). Ht, Θi(ht) and Θj(ht) are well defined for (p, c(θ)). Then there
exists t, ht ∈ Ht and θi, θ

′
i ∈ Θi(ht) with θi > θ

′
i so that

Eθj [qi(θi, θj) | θj ∈ Θj(ht)] > Eθj [qi(θ
′
i, θj) | θj ∈ Θj(ht)].

This implies that at least either one of

E[V (qi(θ
′
i, θj), qj(θ

′
i, θj))− wi(θi)qi(θ

′
i, θj)− wj(θj)qj(θ

′
i, θj) | θj ∈ Θj(ht)]

> E[V (qi(θi, θj), qj(θi, θj))− wi(θi)qi(θi, θj)− wj(θj)qj(θi, θj) | θj ∈ Θj(ht)]

or

E[V (qi(θi, θj), qj(θi, θj))− wi(θ
′
i)qi(θi, θj)− wj(θj)qj(θi, θj) | θj ∈ Θj(ht)]

> E[V (qi(θ
′
i, θj), qj(θ

′
i, θj))− wi(θ

′
i)qi(θ

′
i, θj)− wj(θj)qj(θ

′
i, θj) | θj ∈ Θj(ht)]

holds. This means that if at least one type of either θi or θ
′
i takes other type of commu-

nication plan and output decision rule, P ’s payoff is improved. This is a contradiction.

Proof of Proposition 3:
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Consider any communication-feasible centralized mechanism with protocol p and commu-
nication strategies c(θ) that result in an output allocation q∗(θ) = q(h(c(θ))). Consider
any history h that arises from these communication strategies with positive probability,
and let the corresponding set of types be Θi(h)×Θj(h). Then q∗ must be constant over
Θi(h)×Θj(h).

For arbitrary qi, denote
E[V (qi, q

∗
j (θi, θj)) | θj ∈ Θj(h)]

by V̂ (qi, h). Consider the problem of choosing qi to maximize V̂ (qi, h) − wi(θi)qi for
any θi ∈ Θi(h). It is evident that the function V̂ (qi, hi) is strictly concave in qi, and
satisfies the Inada condition. Given the monotonicity of wi(θi), the optimal solution to
this problem, denoted by q̂i(θi, h), is strictly decreasing in θi on Θi(h). Hence

E[V (q̂i(θi, h), q
∗
j (θ))− wi(θi)q̂i(θi, h)− wj(θj)q

∗
j (θ) | (θi, θj) ∈ Θi(h)×Θj(h)]

> E[V (q∗(θ))− wi(θi)q
∗
i (θ)− wj(θj)q

∗
j (θ) | (θi, θj) ∈ Θi(h)×Θj(h)]

Now replace the output allocation ((q∗i (θ), q
∗
j (θ)) by (q̂i(θ), q

∗
j (θ)) over Θi(h) × Θj(h),

while leaving it unchanged everywhere else. This is a decentralized mechanism which is
communication-feasible, which attains a strictly higher expected payoff for the Principal
compared with the centralized mechanism.

Proof of Proposition 4:

We compare two communication protocols p and p̃. Let {(Θi(h, c),Θj(h, c)) | h ∈ HT (p)}
be an information partition on Θi ×Θj induced by communication protocol p and com-
munication strategies c(θ) in p. We say that p̃ is more informative than p, if for any
(p, c(θ)), there exists c̃(θ) in p̃ such that the partition induced by the latter is finer than
the one induced by the former. When this is true, it is evident that protocol p̃ dominates
p̃ in terms of the maximum value of the Principal’s payoff in the problem described in
Proposition 2.

For (i), suppose there exists t − 1 and ht−1 ∈ Ht−1 such that Mi(ht−1) and Mj(ht−1)
are both nonempty for some protocol p and c(θ). Then consider a new communication
protocol p̃ where round t (with history ht−1) is divided into two steps with sequential
communication: in the first step, i selects message mit from Mi(ht−1), and upon observ-
ing mit, j sends message mjt from Mj(ht−1) in the second step. All other components
of the protocol are preserved. Evidently this modification does not violate either com-
munication constraint 1 or 2. In this protocol p̃, j can send messages which can depend
on mit, something that is not possible in p. Hence p̃ is more informative than p.

For (ii), for any (p, c(θ)), suppose that eitherMi(ht−1) orMj(ht−1) includes message with
l(m) ≥ 2 for some ht−1 ∈ Ht−1. Suppose that Mi(ht−1) (or Mj(ht−1)) includes ni (or nj)
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bits of messages with ni ≥ max{2, nj}. Now construct a new communication protocol p̃
where round t (with history ht−1) is divided into ni steps where message space for Step
h is M̃ih = M̃jh = {0, 1} for h ≤ nj and M̃ih = {0, 1} and M̃jh = ∅ for nj < h ≤ ni.
All other components of the communication protocol are preserved. In p̃, both agents
can send the same messages as in c(θ), and can also send messages which are contingent
on those observed in previous steps. Therefore we can find c̃(θ) which generates a finer
partition than c(θ) did in the original protocol. It implies that it is optimal that either
one or both agents send no more than one binary message per round. Moreover any
agent who is silent in any given round could send some messages in that round without
adding to the total delay of the mechanism, increasing amount of information exchanged
between agents. Hence it is optimal for both agents to simultaneously send one binary
message in each round.

41



References

Aoki, M. (1990), “Toward an Economic Model of the Japanese Firm,” Journal of Eco-
nomic Literature, 28(1), 1-27.

Battigalli, P. and G. Maggi (2002), “Rigidity, Discretion, and the Costs of Writing
Contracts,” The American Economic Review, 92(4),798-817.

Blumrosen, L. and M. Feldman (2006), “Implementation With a Bounded Action
Space,” Department of Economics, The Hebrew University.

Blumrosen, L., N. Nisan and I. Segal (2007), “Auctions with Severely Bounded Com-
munication,” Journal of Artificial Intelligence Research, 28, 233-266.

Deneckere, R. and S. Severinov (2004), “Mechanism Design and Communication Costs,”
mimeo, Department of Economics, University of Wisconsin and Fuqua School of
Business, Duke University.

Green, J. and J. Laffont (1986), “Incentive Theory with Data Compression,” in W.
Heller, R. Starr and D. Starrett (Ed.), Uncertainty, Information and Communi-
cation: Essays in Honor of Kenneth Arrow, Cambridge: Cambridge University
Press.

————— (1987), “Limited Communication and Incentive Compatibility”, Informa-
tion, Incentives, and Economic Mechanisms: Essays in honor of Leonid Hurwicz,
T. Groves, Radner, R. and Reiter, S. (ed.), Minneapolis: University of Minnesota
Press

Fadel R. and I. Segal (2009), “The Communication Cost of Selfishness,” Journal of
Economic Theory 144, 1895-1920.

Hayek, F.A. (1945), “The Use of Knowledge in Society”, American Economic Review,
35(4), 519-530.

Hurwicz L. (1960), “Optimality and Informational Efficiency in Resource Allocation
Processes,” in K. Arrow, S. Karlin and P. Suppes (ed.) Mathematical Methods in
the Social Sciences, Stanford University Press, Stanford, California.

——– (1972), “On the Dimensional Requirements of Informationally Decentralized
Pareto-Satisfactory Processes,” presented at Decentralization Conference, North-
western University. Later published in Studies in Resource Allocation Processes ed.
K. Arrow and L. Hurwicz. Cambridge: Cambridge University Press 1977.

42



Kos, N. (2011a), “Communication and Efficiency in Auctions,” Games and Economic
Behavior, Forthcoming.

——– (2011b), “Asking Questions,” Department of Economics, Bocconi University.

Laffont, J. and D. Martimort (1998), “Collusion and Delegation,” Rand Journal of
Economics 29(2), 280-305.

Marschak, J. and R. Radner (1972), Economic Theory of Teams, New Haven: Yale
University Press.

Melumad, N., D. Mookherjee and S. Reichelstein (1992), “A Theory of Responsibility
Centers,” Journal of Accounting and Economics, 15, 445-484.

————— (1997), “Contract Complexity, Incentives and the Value of Delegation,”
Journal of Economics and Management Strategy, 6(2), 257-289.

Mount, K. and S. Reiter (1974), “The Informational Size of Message Spaces,” Journal
of Economic Theory, 8, 161–191.

Myerson, R. (1981), “Optimal Auction Design”, Mathematics of Operations Research
6, 58–73.

———- (1982), “Optimal Coordination Mechanisms in Generalized Principal-Agent
Problems,” Journal of Mathematical Economics, 10(1), 67-81.

Reichelstein, S. and S. Reiter (1988), “Game Forms with Minimal Message Spaces,”
Econometrica, 56(3), 661-692.

Segal I. (2006), “Communication in Economic Mechanisms,”in Advances in Economics
and Econometrics: Theory and Application, Ninth World Congress (Econometric
Society Monographs), ed. by Richard Blundell, Whitney K. Newey, and Torsten
Persson, Cambridge University Press.

Van Zandt, T. (2007), “Communication Complexity and Mechanism Design,” Journal
of the European Economic Association, 5,543-553.

43


