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Abstract

In this paper we examine the competitive equilibria of a dynamic stochastic econ-

omy with complete markets and collateral constraints. We show that, provided both

the set of asset payoffs and of collateral levels are sufficiently rich, the equilibrium

allocations with sequential trades and collateral constraints are equivalent to those ob-

tained in Arrow-Debreu markets subject to a series of appropriate limited pledgeability

constraints.

We provide necessary and sufficient conditions for equilibria to be Pareto efficient

and show that when collateral is scarce equilibria are not only Pareto inefficient but also

often constrained inefficient, in the sense that imposing tighter borrowing restrictions

can make everybody in the economy better off.

We derive sufficient conditions for the existence of Markov equilibria and show that

they typically have finite support when there are two agents. The model is then tractable

and its equilibria can be computed with arbitrary accuracy. We carry out on this basis

a quantitative assessment of the risk sharing and efficiency properties of equilibria.
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1 Introduction

We examine the competitive equilibria of an infinite-horizon exchange economy where the

only limit to risk sharing comes from the presence of a collateral constraint. Consumers face

a borrowing limit, determined by the fact that all loans must be collateralized, as for example

in Kiyotaki and Moore (1997) or Geanakoplos (1997), but otherwise financial markets are

complete. Only part of the consumers’ future endowment can be pledged as collateral,

hence the borrowing constraint may be binding and limit the risk sharing possibilities in

the economy. More specifically, we consider an environment where consumers are unable

to commit to repay their debt obligations and the seizure of the collateral by lenders is the

only loss an agent faces for his default (as in Geanakoplos and Zame (2002)). There is no

additional punishment, for instance in the form of exclusion from trade in financial markets

as in the model considered by Kehoe and Levine (1993), Alvarez and Jermann (2000).

However, like in that model, and in contrast to Bewley (1977) and the literature which

followed it1, the level of the borrowing (collateral) constraint is endogenously determined

in equilibrium by the agents’ limited commitment problem.

The analysis is carried out in the set-up of a Lucas (1978) style economy with a single

perishable consumption good. The part of a consumer’s endowment that can be pledged

as collateral can be naturally interpreted as the agent’s initial share of the Lucas tree – a

long-lived asset in positive supply that pays dividends at each date-event. This asset can

be used, both directly and indirectly, as collateral for any short position of the consumer.

The way in which collateral requirements are modeled aims to capture ’standard practices’

in financial markets (as described, for instance, in Brunnermeier and Pedersen (2008)).

We show in this paper that this is a tractable model of dynamic economies under un-

certainty, establish the existence of Markov and of finite support equilibria, analyze the

welfare properties of competitive equilibria and the risk sharing pattern that is attained.

More specifically, we show the equivalence between the competitive equilibria when trade

occurs in a complete set of contingent commodity markets at the initial date, as in Ar-

row Debreu, subject to a series of appropriate limited pledgeability constraints, and the

equilibria when trade is sequential, in a sufficiently rich set of financial markets, and short

positions must be backed by collateral constraints. This allows to clearly identify market

structures, and in particular the specification of asset payoffs and of the associated collateral

requirements, such that the only financial friction is the collateral constraint. Second, we

derive sufficient conditions for the existence of a Markov equilibrium in this model when

there is a finite number of agents’ types and show that Markov equilibria often have ’fi-

nite support’ in the sense that individuals’ consumption only takes finitely many values.

Markov equilibria exist whenever all agents’ coefficient of relative risk aversion is bounded

above by one. Under the same assumption or when all agents have identical, constant rel-

ative risk aversion utility functions, equilibria have finite support when there are only two

1See Heathcote, Storesletten and Violante (2009) for a survey.
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types of agents. Third, we provide some necessary and sufficient conditions for competitive

equilibria to be fully Pareto efficient, that is for the amount of available collateral to be

sufficiently large that the collateral constraint never binds. We show then that, whenever

the constraint binds, competitive equilibria in this model are not only Pareto inefficient but

are also often constrained suboptimal, in the sense that introducing tighter restrictions on

borrowing from some date t > 0 (with respect to the restrictions imposed by the collateral

constraints) makes all agents better off. Finally, we carry out a quantitative assessment of

the efficiency properties and the risk sharing pattern of competitive equilibria for ’realistic’

specifications of the economy and of the existing amount of collateral.

Several papers (from the quoted work of Kiyotaki, Moore (1997) and Geanakoplos (1997)

to various others as, e.g., Aiyagari and Gertler (1999)) have formalized the idea that bor-

rowing on collateral might give rise to cyclical fluctuations in the real activity and enhance

volatility of prices. They typically assume that financial markets are incomplete, and/or

that the collateral requirements are exogenously specified, so that it is not clear if the source

of the inefficiency are the missing markets or the limited ability of the agents to use the

existing collateral for their borrowing needs. Furthermore, dynamic models with collateral

constraints and incomplete markets turn out to be very difficult to analyze (see Kubler

and Schmedders (2003) for a discussion), no conditions are known that ensure existence of

recursive equilibria and there are therefore few quantitative results about the welfare losses

due to collateral.

We show here that considering an environment where financial markets are complete and

there are no restrictions to how the existing collateral can be used to back short positions,

while not immediate to formalize, allows to simplify matters considerably. In our model

equilibria can often be characterized as the solution of a finite system of equation. We

show that a numerical approximation of equilibria is fairly simple and a rigorous error

analysis is possible. Moreover we can use the implicit function theorem to conduct local

comparative statics and perform a serious quantitative analysis of the potential welfare

gains from government intervention.

As mentioned above, there is also a large literature that assumes that agents can trade

in complete financial markets, default is punished with the permanent exclusion from future

trades and loans are not collateralized. We refer for convenience in what follows to these

models as ’limited enforcement models’. As shown in Kehoe and Levine (1993), (2001),

Ligon et al. (2002) and Alvarez and Jermann (2000), these models are extremely tractable

since competitive equilibria can be written as the solution to a planner’s problem subject

to appropriate constraints. Even though this is not true in the environment considered here

- the limited commitment constraint has a different nature and we show that competitive

equilibria may be constrained inefficient - tractability still obtains.

Chien and Lustig (2011) (also Lustig (2000) in an earlier, similar work) examine a version

of the model in this paper with a continuum of agents and growth. The main focus of their
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analysis is on a quantitative assessment of the asset pricing implications of the model and

their similarities with Alvarez and Jermann (2000). Their notion of recursive equilibrium

also uses individuals’ multipliers (Chien and Lustig call them ”stochastic Pareto-Negishi

weights”) as an endogenous state variable and is essentially identical to ours. However,

our results on the existence of such recursive equilibria and of finite support equilibria are

rather different, as explained more in detail in the next sections. Also, they do not examine

how the allocation can be decentralized in asset markets with collateral constraints nor they

discuss the constrained inefficiency of competitive equilibria.

Some related sufficient conditions for competitive equilibria with collateral constraints

to be Pareto efficient are derived by Cordoba (2008) in an environment with production,

no aggregate uncertainty and a continuum of ex ante identical agents. For this case it can

be verified that our conditions become equivalent to his.

Lorenzoni (2008) as well as Kilenthong and Townsend (2011) also obtain an analogous

constrained inefficiency result to ours but in a production economy. As they point out,

given the previous literature on suboptimality the result is not entirely surprising.2 Their

analysis is different as in that environment capital accumulation link different periods and

the reallocation is induced by a change in the level of investment that modifies available

resources. In our pure exchange set-up resources are fixed, only their distribution can vary

and the reallocation is induced by tightening the borrowing constraints with respect to their

level endogenously determined in equilibrium.

Geanakoplos and Zame (2002, and, in a later version, 2009) are the first to formally

introduce collateral constraints and default into general equilibrium models. They consider

a two period model with incomplete markets where a durable good needs to be used as

collateral. They are the first to point out that, even if markets are complete and the amount

of collateral in the economy is large, the Pareto efficient Arrow Debreu outcome may not

be obtained unless one allows for collateralized financial securities to be used as collateral

in addition to the durable good (they refer to this as pyramiding). Our equivalence result

in Section 2 below makes crucial use of this insight.

The remainder of the paper is organized as follows. In Section 2 we introduce the

economic model and the equivalence of equilibrium allocations in three different market

environments, with complete contingent markets at the initial date and with sequential trade

in financial markets. In Section 3 we present a simple example to illustrate the properties of

competitive equilibria. In Section 4 we study the existence of Markov equilibria and derive

conditions under which they can be described by a finite system of equations. In Section 5

we analyze the welfare properties of equilibria and carry out a quantitative assessment of

the welfare losses and risk sharing pattern induced by the collateral constraints.

2The main contribution of Kilenthong and Townsend is to show how constrained optimality can be

restored using market-based, segregated exchanges in securities.
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2 The model

We consider a standard dynamic model of an exchange economy with collateral constraints

where a Lucas tree in unit net supply can be used as collateral for short positions in financial

assets. As opposed to most papers in the literature on models with collateral constraints,

that assume incomplete financial markets and fixed collateral constraints (see e.g. Aiyagari

and Gertler (1999) or Kubler and Schmedders (2003)), we analyze here an environment

with a rich asset structure.

We examine an infinite horizon stochastic model of an exchange economy with a single

perishable consumption good available at each date. We represent the resolution of uncer-

tainty by an event tree – at each period t = 0, 1, . . . one of S possible exogenous shocks

s ∈ S = {1, . . . , S} occurs and each node of the tree is characterized by a history of shocks

σ = st = (s0 · · · st). The exogenous shocks follow a Markov process with transition matrix

π, where π(s, s′) denotes the probability of shock s′ given s. We assume that π(s, s′) > 0 for

all s, s′ ∈ S. With a slight abuse of notation we also write π(st) to denote the unconditional

probability of node st. We collect all nodes of the infinite tree in a set Σ and we write

σ′ � σ if node σ′ is either the same as node σ or a (not necessarily immediate) successor.

We write σ′ � σ if σ′ is a successor of (i.e. not the same as) σ.

There are H infinitely lived agents which we collect in a set H. Agent h ∈ H maximizes

a time-separable expected utility function

Uh(c) = E

{ ∞∑
t=0

βtuh(ct, st)

}
,

where expectations are taken with respect to the Markov transition matrix π, and the

discount factor β ∈ (0, 1). We assume that the possibly state dependent Bernoulli function

uh(·, s) : R++ → R is strictly monotone, C2, strictly concave, and satisfies the Inada-

condition u′h(x, s) → ∞ as x → 0, for all s ∈ S. In the following discussion we will

suppress the dependence of uh on s whenever there is no possibility of confusion.

Each agent h’s endowment over his lifetime consists of two parts. The first part is given

by an amount of the consumption good which the agent receives at any date event, i.e.

eh(st) = eh(st) where eh : S → R++ is a time-invariant function of the shock. In addition,

the agent is endowed at period 0 with a share θh(s−1) ≥ 0 of a Lucas tree, which pays strictly

positive dividends d : S → R++ that depend solely on the current shock realization s ∈ S.

The tree is an infinitely lived, aggregate physical asset (can be interpreted as machines,

land or houses), which exists in unit net supply,
∑

h∈H θ
h(s−1) = 1, and its shares can

be traded at any node σ for a unit price q(σ). The total endowment of the consumer is

therefore ωh(st) = eh(st) + θh(s−1)d(st), where eh(st) can be viewed as the nonpledgeable

component, which cannot be sold in advance in order to finance consumption or savings at

any date before the endowment is received.

Agent h can hold any amount θh(σ) ≥ 0 of shares of the tree at any node σ. In addition

to this physical asset, there are J financial assets (in zero net supply) which we collect in a
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set J . These assets are one-period securities; asset j traded at node st promises a payoff

bj(s
t+1) = bj(st+1) ≥ 0 at the S successor nodes (st+1). We denote agent h’s portfolio in

financial assets by φh, and write pj(σ) for the price of asset j at node σ.

Differently from the physical asset, consumers can short any of the financial securities.

They can default then at no cost on the prescribed payments. To ensure that some payments

are made, each short position in a security is backed by an appropriate amount of the tree

which is held (either directly or indirectly as we show below) as collateral. At each node

σ, we associate with each financial security j ∈ J a collateral requirement described by

the vector kj(σ) ∈ RJ+1
+ . For each unit of security j sold by a consumer, she is required

to hold kjJ+1 units of the tree as well as kji units of each security i ∈ J as collateral.

This requirement captures the asset specific margins often imposed in financial markets on

traders who sell assets short3. In the next period the agent can default on her promise to

deliver bj(st+1) per unit sold and will actually find it optimal to do so whenever bj(st+1) is

lower than the value of the collateral. In this case the buyer of the financial security gets the

collateral associated with the promise. Hence the actual payoff of any security j ∈ J at any

node st+1 is endogenously determined by the agents’ incentives to default and the collateral

requirements, as in Geanakoplos and Zame (2002) and Kubler and Schmedders (2003), and

is given by the set of values fj(s
t+1) satisfying the following system of equations, for all

j ∈ J :4

fj(s
t+1) = min

{
bj(st+1),

J∑
i=1

kji (s
t)fi(s

t+1) + kjJ+1(st)(q(st+1) + d(st+1))

}
. (1)

Without further restrictions on collateral requirements, the above expression might not

be well defined or have several solutions for fj(σ), j ∈ J , σ ∈ Σ. Many possible restrictions

can be imposed to solve this problem: we assume here that there is a ’seniority structure’

of obligations, i.e. that if a security can be used as collateral for a second security and this

can in turn be used as collateral for a third security and so on, then none of these can be

used as collateral for the first security. In this way, the collateral of the first security is also

used to back, indirectly, the claims of the other securities along the chain. Formally we say

that a security j is senior to another security j′ if it can be used, directly or indirectly, as

collateral for the second one: that is, if there exist a series of securities j1, ..., jn with j1 = j

3See Appendix A in Brunnermeier and Pedersen (2008) for some details on trading practices regarding

short sales of assets.
4Evidently, when the collateral requirements are set at a sufficiently high level that

min
st+1

{
J∑
i=1

kji (s
t)bi(s

t+1) + kjJ+1(st)(q(st+1) + d(st+1)) − bj(st+1)

}
≥ 0,

as in Kiyotaki and Moore (1997), consumers never choose to default and the payoff of all securities equal

their nominal value. It will become clear in the next section that in our framework with complete markets

it is irrelevant whether collateral requirements are set according to this rule or whether they allow for the

value of collateral to fall below the promise in certain states.
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and jn = j′ and with kjiji−1
> 0 for all i = 2, . . . , n. We assume that seniority is irreflexive,

i.e. if j is senior to j′ then j′ cannot be senior to j.

Since agents can default on their debt obligations, at the only cost of losing the posted

collateral, it is clear that the tree is ultimately backing all financial claims, directly or

indirectly. Still, the assumption that not only the tree but also financial securities can be

used as collateral allows to economize on the use of the tree as collateral, as we will see

later. Geanakoplos and Zame (2002) refer to this assumption as ’pyramiding’.

A collateral constrained financial markets equilibrium is defined as in Kubler

and Schmedders (2003) as a collection of choices (ch(σ), θh(σ), φh(σ))σ∈Σ for all agents

h ∈ H, prices, (p(σ), q(σ))σ∈Σ and payoffs (f(σ))σ∈Σ satisfying (1) and the following other

conditions:

(CC1) Market clearing: ∑
h∈H

θh(σ) = 1 and
∑
h∈H

φh(σ) = 0 for all σ ∈ Σ.

(CC2) Individual optimization: for each agent h

(θh(σ), φh(σ), ch(σ))σ∈Σ ∈ arg max
θ≥0,φ,c≥0

Uh(c) s.t.

c(st) = eh(st) + φ(st−1) · f(st) + θ(st−1)(q(st) + d(st))− θ(st)q(st)− φ(st) · p(st), ∀st

θ(st) +
∑
j∈J

kjJ+1(st) min[0, φj(s
t)] ≥ 0, ∀st

max
{
φj(s

t), 0
}

+
∑
i∈J

kij(s
t) min[0, φi(s

t)] ≥ 0, ∀st, ∀i ∈ J .

where the second and the third constraints are the collateral constraints for the tree’s

and securities’ holdings.

It is important to point out that no information over the overall trades carried out by

an agent is needed to enforce the collateral constraints as specified above: it suffices to post

the required collateral for each short position. We can then say the contracts traded in the

markets are non exclusive. This is in contrast with other limited commitment models, as

Kehoe and Levine (1993, 2001), Alvarez and Jermann (2000).

Existence of a collateral constrained financial markets equilibrium is proven in Kubler

and Schmedders (2003). They also show that tree prices in equilibrium are bounded.

2.1 Complete Markets

In this paper we want to analyze economies with collateral constraints where markets are

complete in the sense that agents are able to trade securities with any payoff and any

specification of the collateral requirement. Hence the only impediment to risk sharing is

the limit on borrowing imposed by the available amount of collateral.
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In order to formalize the notion of complete markets we consider the case where con-

sumers can trade at t = 0 in a complete set of contingent commodity markets, but are

subject to the constraint imposed by the non pledgeability of part of the endowment. More

precisely, we define an Arrow Debreu equilibrium with limited pledgeability as a

collection of prices (ρ(σ))σ∈Σ and a consumption allocation (ch(σ))h∈Hσ∈Σ such that∑
h∈H

(ch(σ)− ωh(σ)) = 0, σ ∈ Σ (2)

and for all agents h

(ch(σ))σ∈Σ ∈ arg max
c≥0
∈ arg maxUh(c) s.t. (3)∑

σ∈Σ

ρ(σ)ch(σ) ≤
∑
σ∈Σ

ρ(σ)ωh(σ) <∞ (4)∑
σ�st

ρ(σ)ch(σ) ≥
∑
σ�st

ρ(σ)eh(σ) for all st. (5)

The definition is the same as that of an Arrow Debreu competitive equilibrium except

for the additional constraints (5). These constraints express precisely the condition that

eh(σ) is unalienable, i.e. this component of the endowment can only be used to finance

consumption in the node σ in which it is received or in any successor node. Assuming

strictly monotonic preferences the specification of the constraint follows. Note that these

additional constraints are likely to be binding whenever the eh-part of the endowments is

large relative to the tree’s dividends, that is when there is only a small amount of future

endowments that can be traded at earlier nodes of the event-tree.5

We will show that any Arrow Debreu equilibrium allocation with limited pledgeability

can also be attained at an equilibrium with sequential trading in a model with collateral

constraints with a sufficiently rich asset structure. To show the result, it is convenient

to introduce an alternative equilibrium notion with sequential trading, where each period

intermediaries purchase the tree from consumers and issue on that basis, at no cost, a

complete set of one period, shock-contingent claims (options) on the tree, which are bought

by consumers and are the only assets they can trade. This specification turns out to be

very useful to analyze the properties of collateral constrained equilibria when markets are

complete.

More precisely, at each node st intermediaries purchase the tree and issue J = S assets,

where asset j promises the delivery of one unit of the tree the subsequent period if and only

if shock s = j realizes. Households in the economy can only take long positions in these

assets at every node. The intermediaries’ holdings of the tree ensure that all due payments

5Kehoe and Levine (1993) also consider an environment with complete contingent market where only

part of the agents’ endowment can be seized in the event of default, but with the additional punishment of

permanent exclusion: hence the additional constraint does not have the form of a budget constraint, as (5)

above, but of a constraint on the continuation utility level.
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can be made. At any node st an agent purchases a portfolio of tree-options θ(st; s) ≥ 0, s =

1, . . . , S, at the prices q(st; s) > 0, s = 1, ..., S. The condition q(st) =
∑S

s=1 q(s
t; s) ensures

that intermediaries make zero profit in equilibrium, since the intermediation technology,

with zero costs, exhibit constant returns to scale.

An equilibrium with intermediaries is defined as a collection of individual consump-

tions (ch(σ))h∈Hσ∈Σ , portfolios (θh(σ))h∈Hσ∈Σ , as well as prices (q(σ))σ∈Σ, such that markets clear

and agents maximize their utility, i.e.

(IE1) At all nodes st, ∑
h∈H

θh(st; s) = 1 for all s ∈ S.

(IE2) For all agents h ∈ H

(ch, θh) ∈ arg max
θ,c≥0

Uh(c) s.t.

c(st) = eh(st) + θ(st−1; st)

(
S∑

s′=1

q(st; s′) + d(st)

)
−

S∑
s′=1

θ(st; s′)q(st; s′)

θ(st; s) ≥ 0, ∀st, s

It is relatively easy to show that any Arrow Debreu equilibrium allocation with limited

pledgeability can also be attained as an equilibrium with intermediaries. In order to show

that it can also be attained as an equilibrium with collateral constraints, one needs to

construct a rich enough asset structure that ensures that the payoffs achieved with the tree

options can be replicated by trading in the asset markets. We have so the following result,

proved in the Appendix.

Theorem 1 For any Arrow Debreu equilibrium with limited pledgeability there exists an equi-

librium with intermediaries with the same consumption allocation. Moreover, there exists a

sufficiently rich asset structure J such that a collateral constrained financial markets equilib-

rium exists with the same consumption allocation.

The reverse implication can also be shown to hold for equilibria without bubbles in the

tree price, thus establishing the equivalence between the three equilibrium notions presented

(as long as the possibility of equilibria with bubbles is ignored).6 Given this equivalence,

in most of the paper we will focus our attention on the notion which turns out to be more

convenient, depending on the issue the one of equilibria with intermediaries or that of

equilibria with limited pledgeability.7

6We conjecture in addition, also on the basis of Theorems 3.1, 3.3 in Santos and Woodford (1997), that

in the case of strictly positive dividends in every state the tree’s price can never include a bubble in an

equilibrium with intermediaries. It is less obvious if the result of Santos and Woodford (1997) can also be

applied to the equilibrium notion with collateral constraints.
7Since the existence proof in Kubler and Schmedders (2003) shows that there exist collateral constrained

financial markets equilibria without bubbles, Theorem 1 implies the existence also of Arrow Debreu equilibria

with limited pledgeability.
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Remark Our equilibrium notion with intermediaries is very similar to Chien and Lustig

(2010). They analyze a model with collateral requirements where, in addition to the

tree, a complete set of S Arrow securities is available for trade at each node and the

tree must be used as collateral for short positions in these Arrow securities. A crucial

difference between their set-up and the one described above is that they assume that

the tree can be used to secure short positions in several Arrow securities at the same

time, i.e. the collateral constraint only has to hold ex post, for each realization of

the payoff of the security. These ’portfolio-margins’ clearly allow to economize on

the use of the tree as collateral but they also require a stronger enforcement and

coordination ability among lenders, or the full observability of agents’ trades, not

needed in the environment considered here, and it seems then more difficult to justify.

The specification adopted here, based on asset specific margins, is closer as we said

to trading practices more often used in financial markets. In any case, we prove that

equilibrium allocations are the same for the two specifications.

3 An example

To illustrate the analysis, we consider the simplest possible example, with two agents, two

states and no aggregate uncertainty. The shocks are i.i.d. with two possible realizations,

with probabilities π1 and π2. For simplicity, assume that the tree has a deterministic

dividend d and that endowments of agent 1 are e1(1) = h, e1(2) = l, the endowments of

agent 2 are e2(1) = l, e2(2) = h, where 0 < l < h.

We derive in what follows the competitive equilibria for different values of the parameters

d, l and h, and the initial conditions. We show for which values competitive equilibria are

Pareto-efficient and, when they are inefficient, we characterize their properties. Given the

equivalence established in Theorem 1, we find it convenient to carry out the analysis here

in terms of the notion of equilibrium with intermediaries.

3.1 Efficient equilibria

In the environment considered in this example there is no aggregate uncertainty and hence at

a Pareto efficient equilibrium agents’ consumption is constant, i.e. we must have c1(st) =

c̄1 for all st. This is also an equilibrium with intermediaries if the agents’ portfolios of

tree options which support the efficient equilibrium allocation satisfy the non-negativity

constraints in (IE2).

The constant value of consumption implies that the supporting price of the tree is also

constant and equal to

q̄ =
βd

1− β
,

while the prices of the state-contingent tree-options are q(s; s′) = πs′β(q̄ + d), invariant

with respect to the past history as well as of the current shock realization s (since shocks
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are i.i.d.) and such that q(s; s′) = πs′ q̄ for all s. The supporting portfolios of tree options

for agent 1 are obtained by substituting the above values of prices and consumption into

the expressions of the budget constraint of this consumer when the shock realization is,

respectively, 1 and 2:

c̄1 = h + θ1(q̄ + d)− q̄(π1θ1 + π2θ2) (6)

= l + θ2(q̄ + d)− q̄(π1θ1 + π2θ2),

where θ2 is the amount held of the tree-option that pays in shock 2 and θ1 the amount held

of the tree-option paying in shock 1. Subtracting the second equation from the first one

and substituting the value of q̄ obtained above yields

θ2 − θ1 =
(h− l)(1− β)

d
.

By the market clearing conditions in the securities’ market, the holdings of tree options

of type 2 consumers are then (1 − θ1), (1 − θ2). The portfolio constraints, that is the non

negativity of the securities’ holdings for both types of consumers, require that θ1, θ2 ∈ [0, 1],

which means that θ1 ≥ 0 and θ1 + (h − l)(1 − β)/d ≤ 1. Thus there exists a value of θ1

satisfying these conditions if only if

(h− l)(1− β)

d
≤ 1. (7)

If (7) holds, an efficient competitive equilibrium with intermediaries exists for some

appropriate initial endowment of the tree, equal to the equilibrium portfolio of tree options,

for the type 1 consumers, θ1(s−1) = θ1 ≥ 0 when s0 = 1 and θ1(s−1) = θ2 = (h−l)(1−β)
d +θ1 =

(h−l)+θ1(q̄+d)
q̄+d ≤ 1 when s0 = 2. The equilibrium consumption level of type 1 consumers is

then obtained by substituting these values into the budget constraints (6).

3.2 Steady state equilibria

If condition (7) is not satisfied, a Pareto efficient competitive equilibrium with intermedi-

aries does not exist, so that the only possible equilibrium is an inefficient one, where the

constraints on agents’ portfolios bind (at least in some state). Assume that l > 0. We show

that in the environment of this simple example a steady state8 equilibrium exists even in

this case, supported by the following steady state portfolios9

θ1 = (0, 1), θ2 = (1, 0).

Letting q(s; 1) and q(s; 2) denote, as in the previous section, the equilibrium prices in

state s of the tree options, the consumption values of agent 1 supported by the above

8We use the term steady state to refer to situations where the equilibrium variables depend at most on

the current realization of the shock.
9Note that these are the portfolios supporting an efficient equilibrium if h− l = d/(1 − β).
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portfolios readily obtain from the budget constraints:

c1
1 = h− q(1; 2),

c1
2 = l + (d + q(2; 1) + q(2; 2))− q(2; 2) = l + d + q(2; 1)

The values of the equilibrium prices must satisfy the first order conditions of agent 1 for

the security paying in state 2 (since agent 1 is always unconstrained in his holdings of this

asset)

q(1; 2)u′1(c1
1) = βπ2(q(2; 1) + q(2; 2) + d)u′1(c1

2)

q(2; 2)u′1(c1
2) = βπ2(q(2; 1) + q(2; 2) + d)u′1(c1

2)

and, by the same argument, the corresponding conditions of agent 2 for the security paying

in state 1

q(1; 1)u′2(c2
1) = βπ1(q(1; 1) + q(1; 2) + d)u′2(c2

1)

q(2; 1)u′2(c2
2) = βπ1(q(1; 1) + q(1; 2) + d)u′2(c2

1)

From the second and the third conditions above we obtain that the following relationship

must hold

q(1; 1) =
βπ1

1− βπ1
(q(1; 2) + d)

q(2; 2) =
βπ2

1− βπ2
(q(2; 1) + d)

To complete the proof that a steady state equilibrium exists with the portfolio-holdings

stated above we establish the following:

Lemma 1 The remaining first order conditions

q(1; 2)u′1(h− q(1; 2)) =
βπ2

1− βπ2
(q(2; 1) + d)u′1(l + d + q(2; 1)) (8)

q(2; 1)u′2(h− q(2; 1)) =
βπ1

1− βπ1
(q(1; 2) + d)u′2(l + d + q(1; 2))

have a solution for a positive level of the prices q(1; 2), q(2; 1) satisfying h− q(1; 2) ≥ l + d +

q(2; 1).10

3.3 Transition to a steady state

Note that the efficiency of competitive equilibria also depends on the initial conditions.

Suppose the efficiency condition (7) holds but the initial conditions are s0 = 1 and θ− :=

10This condition ensures that c11 ≥ c12 and hence that the no borrowing constraint for security 1 is binding

for agent 1 at the specified consumption levels.
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θ1(s−) > 1 − h−l
q̄+d , so that the initial endowment of the tree does not coincide with the

portfolio holdings at an efficient steady state.

Collect all histories (nodes) which consist only of shock 1 in a set

Σ1 = {sT = (s0, ..., sT ) : st = 1 for all t = 0, ..., T}.

We conjecture and then verify that the following are the portfolios of type 1 consumers at

an equilibrium with intermediaries:

θ1(st) = (θ−, 1), c1(st) = c̃1
1 if st ∈ Σ1

and

θ1(st) = (1− h− l

q̄ + d
, 1), c1(st) = c̄1 if st /∈ Σ1,

where the consumption values c̃1
1 and c̄1 are determined below. Hence for all st /∈ Σ1 we

are at an efficient steady state, where prices are q(st) = q̄ = d β
1−β , q(st; s′) = πs′d

β
1−β and

consumption levels

c̄1 = c1(st = 1) = c1(st = 2) = h + (1− h− l

q̄ + d
)d− h− l

q̄ + d
π2q̄.

At nodes st ∈ Σ1 (i.e. nodes for which only shock 1 occurred up to and including date t),

equilibrium values are also independent of history and given by

q(1; 2) =
u′1(c̄1)

u′1(c̃1
1)
βπ2(q̄ + d) (9)

and

q(1; 1) = βπ1(q(1; 1) + q(1; 2) + d). (10)

and the associated level of consumption of the type 1 consumer is obtained from his budget

constraint, given the above specification of the agent’s portfolio:

c̃1
1 = h + (d + q(1; 1) + q(1; 2)) θ− − q(1; 1)θ− − q(1; 2) = h + dθ− − (1− θ−)q(1; 2).

Substituting this expression for c̃1
1 into (9) yields one non-linear equation in the unknown

q(1; 2). By a standard argument (intermediate value theorem) this has a positive solution

associated with positive consumption.

It remains to verify that the consumers’ optimality conditions are satisfied. At the nodes

st /∈ Σ1 the efficient steady state obtains, for which we already verified these conditions hold

at the above prices and allocations. For nodes st ∈ Σ1, for agent 1 this follows from (9) and

(10) above. For agent 2, the first order condition with respect to asset 1 holds since the

agent is unconstrained (the condition is in fact still given by (10)). It remains to be shown

that the first order condition with respect to asset 2 holds for the type 2 consumers, who

are constrained (their holdings of asset 2 equals zero):

q(1; 2) >
u′2(c̄2)

u′2(c̃2
1)
βπ2(q̄ + d)⇔ u′1(c̄1)

u′1(c̃1
1)
>
u′2(c̄2)

u′2(c̃2
1)
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where c̃2
1 = h + l + d − c̃1

1, c̄2 = h + l + d − c̄1. Since there is no aggregate uncertainty the

above inequality is equivalent to the condition c̃1
1 > c̄1, hence the consumption of a type 1

consumer must be decreasing when going from state 1 to state 2.

We prove by contradiction that this must be the case. Suppose that c̃1
1 ≤ c̄1. This

inequality, together with (9) and the corresponding first order condition at the efficient

steady state, π2q̄ = βπ2(q̄+ d), imply that q(1; 2) ≤ π2q̄. But by the budget constraints the

inequality c̃1
1 ≤ c̄1 is equivalent to

h + (1− h− l

q̄ + d
)d− h− l

q̄ + d
π2q̄ ≥ h + dθ− − (1− θ−)q(1; 2)⇔

(1− h− l

q̄ + d
− θ−) (d+q(1; 2)) ≥ h− l

q̄ + d
(π2q̄ − q(1; 2))

Since in the case under consideration θ− > (1 − h−l
q̄+d), the left hand side of the above

inequality is always negative. If q(1; 2) ≤ π2q̄ the right hand side is non-negative and we

obtain so a contradiction. Hence we must have c̃1
1 > c̄1 and the candidate equilibrium

satisfies all the consumers’ optimality conditions, in addition to market clearing.

It is easy to verify that even the transition to an inefficient steady state (when (7)

does not hold and initial portfolio holdings differ from (0, 1), (1, 0)) displays essentially the

same properties. In both cases, the steady state is then reached once all shock realizations

occur along an equilibrium path. Note the similarity with the properties of the equilibrium

transition to the steady state found by Kehoe and Levine (2001) in a similar environment

but in the presence of limited enforcement constraints.

4 Stationary equilibria

The example demonstrates that in this model there might exist steady state equilibria where

consumption and prices only depend on the exogenous shock. In general one would expect

current prices and consumption to also depend on an endogenous state, typically the current

distribution of assets across agents. The question is then whether along the equilibrium path

this endogenous state takes finitely many or infinitely many values. If it takes finitely many

values, the equilibrium can be characterized by a finite system of equations, it can typically

be computed easily and one can conduct local comparative statics using the implicit function

theorem. In this case, we say that there exists a finite-support equilibrium (the stochastic

process of the exogenous and endogenous state has finite support). While the example

above obviously is one case of a finite support equilibrium, it turns out that in our model

these equilibria exist for much more general specifications of preferences and endowments.

In this section we give sufficient conditions for there to exist Markov equilibria and for these

Markov equilibria to be finite-support equilibria.

As we show below, competitive equilibrium in our model may be constrained inefficient:

the additional constraints, as (5) in the Arrow Debreu notion, depend in fact on prices.

It is therefore not possible to derive equilibrium allocations as the solution to a planner’s
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problem (as done in limited enforcement models, see Kehoe and Levine (1993, 2001) and

Ligon et al. (2002)). In this respect our model is closer to models with incomplete financial

markets where existence of Markov equilibria is an open problem.

4.1 Markov equilibria

While the ’natural’ endogenous state space consists of beginning-of-period financial wealth

across all agents, it turns out that the analysis is simplified if one does not take the dis-

tribution of wealth as the endogenous state variable but instead works with the agents’

instantaneous Negishi weights, i.e. the weighted share of current consumption. Formally,

we take the endogenous state at some node st to be λ(st) ∈ RH++ where

(c1(st), . . . , cH(st)) ∈ arg max
∑
h∈H

λh(st)uh(ch) s.t.
∑
h∈H

(ch − ωh(st)) = 0.

Strictly speaking, since these weights are endogenous they cannot be state variables, but

the discussion in Kubler and Schmedders (2003) on the choice of state-variables in models

with incomplete markets also applies here. Any collection of endogenous variables could

serve as co-state variables as long as there is a mapping between the equilibrium values of

these and the equilibrium values of all other endogenous variables at a given date-event.

Negishi’s (1960) approach to proving existence of a competitive equilibrium of course

shows that instead of solving for consumption values that clear markets, one can solve for

weights that enforce budget balance, see also Dana (1993). Judd et al. (2003) show how

to use this approach to compute equilibria in Lucas style models with complete markets

(and without collateral constraints). Cuoco and He (2001) formulate recursive equilibria in

models with incomplete markets with this choice of an endogenous state variable. Finally,

as already mentioned in the Introduction, Chien and Lustig (2010) (see also Chien et

al. (2011)) consider a Markov equilibrium notion that features individual multipliers -

interpretable as the inverse of our consumption weights - as endogenous state variable in a

model with collateral constraints analogous to ours, though for a different economy. They

then numerically approximate equilibria with a continuum of agents by finite histories of

shocks.

Obviously we can normalize these weights to sum up to one and can take as the endoge-

nous state space the H − 1 dimensional simplex in RH which we denote by ∆H−1. Given

the state space S ×∆H−1 a Markov equilibrium is a competitive equilibrium that can be

described by a policy function, C : S×∆H−1 → RH+ , that maps the current state to current

consumption for all agents and a transition function, L : S ×∆H−1 → ∆H−1 that maps the

current endogenous state and next period’s shock to next period’s endogenous state.

By definition of the endogenous state, the policy function is obviously given by

C(s, λ) = arg max
c∈RH+

∑
h∈H

λhuh(ch) s.t.
∑
h∈H

(ch − ωh(s)) = 0. (11)
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It is then useful to define (in a slight abuse of notation)

u′h(s, λ) = u′h

(
Ch(s, λ), s

)
The following theorem characterizes the transition function.

Theorem 2 A policy function C : S ×∆H−1 → RH+ together with a transition function

L : S ×∆H−1 → ∆H−1 describe a Markov equilibrium if there are excess expenditure functions

V h : S ×∆H−1 → R for all agents h ∈ H that satisfy

V h(s, λ) = u′h(s, λ))
(
Ch(s, λ)− eh(s)

)
+ β

∑
s′

π(s, s′)V h(s′, L(s′, λ))

as well as

L(s′, λ) =
1∑

h∈H λh + γh
(λ+ γ)

for γ ∈ RH+ , depending on s′ and λ, with γhV
h(s′, L(s′, λ)) = 0, such that V h(s′, L(s′, λ)) ≥ 0

for all s′ ∈ S.

Proof. Given functions (C, V, L) and any λ0 ∈ ∆H−1
++ , we need to verify that there exist

initial conditions and a competitive equilibrium (and here it is convenient to consider the

notion of Arrow Debreu equilibrium with limited pledgeability) with ch(st) = Ch(st, λ(st))

and λ(st) = L(st, λ(st−1)). Define ρ(s0) = 1 and

ρ(st) = ρ(st−1)βπ(st−1, st) max
h∈H

u′h(st, λ(st))

u′h(st−1, λ(st−1))
.

Agent h’s first order conditions for optimal consumption at some node st can be written as

follows:

βtπ(st)u′h(ch(st), st)− ηhρ(st) +
∑
σ:st�σ

µh(σ)ρ(st) = 0

µh(st)
∑
σ�st

ρ(σ)(ch(σ)− eh(σ)) = 0,

for multipliers ηh ≥ 0 (associated with the intertemporal budget constraint (4)) and µh(σ) ≥
0 (associated with the collateral constraint (5) at node σ). It is standard to show that for

summable and positive prices these conditions, together with the budget inequalities (4)

and (5) are necessary and sufficient for a maximum (see e.g. Dechert (1982)). But then at

each st and for all agents h = 2, ...,H we have

u′1(c1(st), st)

u′h(ch(st), st)
=
η1 −

∑
σ:st�σ µ

1(σ)

ηh −
∑

σ:st�σ µ
h(σ)

which is equivalent to the first order conditions of (11) if 1/λh(σ) = ηh−
∑

σ:st�σ µ
h(σ) for

all h, σ. It remains to be shown that the budget inequalities (5) as well as the market clearing
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conditions are satisfied. The latter is obvious, given (11). Regarding the budget inequalities

we need to show that V h(st, λ(st)) = 0 if and only if
∑

σ�st ρ(σ)(ch(σ)− eh(σ)) = 0. Since

for any agent h ∈ H, ρ(st+1)
ρ(st) =

u′h(st+1,λ(st+1))

u′h(st,λ(st))
whenever V h(st+1, λ(st+1)) 6= 0, this follows

from the definition of V h. �

Note that if there is a competitive equilibrium with λ(st) = λ∗ for all st, this must be

an unconstrained Arrow Debreu equilibrium. The fact that λ(st) does not change over time

implies that the additional constraint (5) is never binding in equilibrium. The equilibrium

allocation is identical to the unconstrained Arrow-Debreu equilibrium allocation and is

Pareto-optimal. Therefore, if for a given Markov equilibrium there exists a vector of weights

λ∗ with V h(s, λ∗) ≥ 0 for all s ∈ S and all h ∈ H, then there exist initial conditions

(corresponding to the weights λ∗) for which the Markov equilibrium is identical to an

unconstrained Arrow-Debreu equilibrium. In this Markov equilibrium we simply have that

L(s, λ∗) = λ∗ for all s.

It is well known that in models where the equilibrium may be constrained inefficient

Markov equilibria might not always exist. Examples of non-existence are known for mod-

els with incomplete markets (see e.g. Kubler and Schmedders (2002)). These examples

typically consider the ’natural’ endogenous state space, i.e. beginning-of-period portfolio

holdings. However, from the structure of the examples it is clear that non-existence re-

mains a problem if one considers the instantaneous Negishi weights as the state variable.

For the model with collateral constraints, when financial markets are incomplete no suffi-

cient conditions are known that ensure the existence of a Markov equilibrium (see Kubler

and Schmedders (2003)). In contrast, in the environment considered here, with complete

markets, the assumption that all agents’ preferences satisfy the gross substitute property11

implies that Markov equilibria always exist. As pointed out by Dana (1993), in our context

the assumption of gross substitutes is equivalent to assuming that for all agents h and all

shocks s, the term c u′h(c, s) is increasing in c; or equivalently, that the coefficient of relative

risk aversion −cu
′′
h(c,s)

u′h(c,s)
is always less than or equal to one. While in applied work it is often

assumed that relative risk aversion is significantly above one it is also sometimes argued

(see e.g. Boldrin and Levine (2001)) that a value below one might be the empirically more

relevant case.

We have then the following result.

Theorem 3 Suppose that for all agents h and all shocks s, c u′h(c, s) is increasing in c for all

c > 0. Then a Markov equilibrium exists.

The proof is somewhat lengthy and is relegated to the Appendix. The main idea of the

proof is to use Dana’s (1993) insight to show that gross substitutability implies uniqueness

of a zero of the excess expenditure map as a function of the Negishi consumption weights,

11See Dana (1993) for an application of this assumption to an infinite horizon model.
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hence the uniqueness of competitive equilibria. This a fortiori ensures the uniqueness of the

continuation equilibrium for any λ.

In the next section, we derive some sufficient conditions that ensure not only the exis-

tence of Markov equilibria but of finite support equilibria.

4.2 Markov equilibria with finite support

The main difficulty in determining if there exist Markov equilibria with finite support lies

in specifying the support. We show that for the case of two agents’ types, H = 2, there is

a natural characterization of the support. We will then extend the analysis to the case of

arbitrarily many agents’ types.

4.2.1 Finite support Markov equilibria in economies with two types of agents

In this section we focus on the case where there are only two types of agents. This allows

us to denote by λ = λ1 the value of the consumption weight for agent 1 and take this as a

state variable. In a slight abuse of notation, we write then Ch(s, λ) = Ch(s, (λ, 1− λ)).

It turns out that for the two types’ case the existence of a Markov equilibrium implies

the existence of a finite support equilibrium. This will be made precise below. For now

we conjecture that there are Markov equilibria where at most 2S points in the endogenous

state space are visited. We denote them by (λ∗s, λ
∗
s)s∈S .

For any λ ∈ [ε, 1−ε]S and λ ∈ [ε, 1−ε]S and all s we can define a function L : S×[0, 1]→
[0, 1] by

L(λ,λ)(s, λ) =


λ if λs ≤ λ ≤ λs
λs if λ < λs
λs if λ > λs.

For each h = 1, 2, define 2S2 numbers V h(s, λs̃) and V h(s, λs̃) for s, s̃ ∈ S to be the solution

to the following linear system of 2S2 equations.

V h(s, λs̃) = u′h(s, λs̃)
(
Ch(s, λs̃)− eh(s)

)
+ β

∑
s′

π(s, s′)V h(s′, L(λ,λ)(s
′, λs̃)), (12)

V h(s, λs̃) = u′h(s, λs̃)
(
Ch(s, λs̃)− eh(s)

)
+ β

∑
s′

π(s, s′)V h(s′, L(λ,λ)(s
′, λs̃)). (13)

Clearly, the solution to this system depends non-linearly on the choice of (λs, λs)s∈S ,

which determine the transition function L(λ,λ) and the value of the terms u′h(s, λs̃)
(
Ch(s, λs̃)− eh(s)

)
.

For fixed (λs, λs)s∈S ∈ [0, 1]2S , there exist 2S numbers V 1(s, λs), V
2(s, λs) for all s ∈ S

which solve (12) and (13). We want to show that there exist S pairs (λ∗s, λ
∗
s) such that these

solutions satisfy

V 1(s, λ∗s) = V 2(s, λ
∗
s) = 0 for all s ∈ S. (14)
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We will then show below how to construct a Markov equilibrium whose support is a subset

of these values (λ∗s, λ
∗
s)s∈S . These pairs λ∗s, λ

∗
s determine the boundaries of the intervals

where V 1(s, λ) ≥ 0 and V 2(s, λ) ≥ 0.

To show the existence of a solution of (12)-(14), we can substitute out all V 1(s, λs̃)

and V 2(s, λs̃) as well as all V 1(s, λs̃) and V 2(s, λs̃) for s 6= s̃. We obtain a function f :

[ε, 1− ε]2S → R2S , where each fi, i = 1, ..., S is the weighted sum of terms of the form

u′1(s, λs̃)
(
C1(s, λs̃)− e1(s)

)
and u′1(s, λs̃)

(
C1(s, λs̃)− e1(s)

)
, (15)

where the weights on the terms involving λs are positive (bounded away from zero) if and

only if there is an s′ with λs′ > λs (recall that π(s, s′) > 0 for all s, s′). Similarly each fi

with i = S + 1, ..., 2S is a weighted sum of terms

u′2(s, λs̃)
(
C2(s, λs̃)− e2(s)

)
and u′2(s, λs̃)

(
C2(s, λs̃)− e2(s)

)
, (16)

where the weights on the terms involving λs are positive if and only if there is an s′ with

λs′ < λs. We obtain that f(λ1, λ1, . . . , λS , λS) = 0 precisely when there exists a solution to

(12) and (13) with

V 1(s, λs) = V 2(s, λs) = 0 for all s ∈ S.

We have the following result (proved in the Appendix):

Lemma 2 There exist x ∈ [ε, 1− ε]2S with f(x) = 0.

Note that given a solution to the system (12)-(14) we can define functions V h : S ×
(0, 1)→ R as follows.

V 1(s, λ) = u′1(s, λ)(C1(s, λ)− e1(s)) + β
∑
s′

π(s, s′)V 1(s, L(λ∗,λ
∗
)(s, λ))

V 2(s, λ) = u′2(s, λ)(C2(s, λ)− e2(s)) + β
∑
s′

π(s, s′)V 2(s, L(λ∗,λ
∗
)(s, λ))

It is easy to verify that these functions together with the transition function L(λ∗,λ
∗
)(s, .)

satisfy the conditions of Theorem 2 above and therefore describe a Markov equilibrium if

the transition function satisfies for all s, s′

L(λ∗,λ
∗
)(s
′, λ∗s) = λ∗s ⇒ V h(s′, λ∗s) ≥ 0 for h = 1, 2 (17)

L(λ∗,λ
∗
)(s
′, λ
∗
s) = λ

∗
s ⇒ V h(s′, λ

∗
s) ≥ 0 for h = 1, 2 (18)

If this is the case, by construction, L(λ∗,λ
∗
)(.) describes a transition function that ensures

that V h(s, L(s, λ)) ≥ 0 for all λ ∈ {λ1, . . . , λS}.
A sufficient condition for (17) and (18) to hold is of course that each V h(s, .) has a

unique zero. In this case, it must be that for both h = 1, 2, V h(s, λ) is non-negative for all

λ ∈ [λ∗, λ
∗
] since V 1(s, λ) > 0 for all λ > λs and V 2(s, λ) > 0 for all λ < λs. To guarantee

this we make the following strong assumption on preferences:
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Assumption 1 The preferences of all agents satisfy one of the following properties:

1. The coefficient of relative risk aversion −cu′′h(c, s)/u′h(c, s) ≤ 1 for all c, s, h.

2. All agents have identical, constant relative risk aversion (CRRA) Bernoulli utility functions.

3. uh(c, s) is state independent for all h and there is no aggregate uncertainty.

If all agents’ relative risk aversion is below or equal to 1, the utility satisfies the gross

substitute property and the result follows from the proof of Theorem 3. We show there that

the functions V h(s, .) are monotone - hence they have at most one zero.

In order to prove the sufficiency of 2. and 3., it is useful to define the following functions

Ṽ h(s, λ) = 1
u′h(s,λ)

V h(s, λ) for h = 1, 2. Clearly V h(s, .) has a unique zero if and only if

Ṽ h(s, .) does. We have

Ṽ 1(s, λ) = C1(s, λ)− e1(s) + β
∑

s′:λ∈[λ∗
s′ ,λ
∗
s′ ]

π(s, s′)
u′1(s′, λ)

u′1(s, λ)
Ṽ 1(s′, λ)

+β
∑

s′:λ<λ∗
s′

π(s, s′)
u′1(s′, λ∗s′)

u′1(s, λ)
Ṽ 1(s′, λ∗s′)

Ṽ 2(s, λ) = C2(s, λ)− e2(s) + β
∑

s′:λ∈[λ∗
s′ ,λ
∗
s′ ]

π(s, s′)
u′2(s′, λ)

u′2(s, λ)
Ṽ 2(s′, λ)

+β
∑

s′:λ>λ
∗
s′

π(s, s′)
u′2(s′, λ

∗
s′)

u′2(s, λ)
Ṽ 2(s′, λ

∗
s′)

for all s with λ ∈ [λ∗s, λ
∗
s].

Assume that agents have identical CRRA preferences. Then the term u′h(s′, λ)/u′h(s, λ)

is independent of λ. Therefore λ only enters through the term C1(s, λ), which is clearly

increasing in λ, and through the term π(s, s′)
u′1(s′,λs′ )
u′1(s,λ)

V 1(s′, λs′), which is also increasing

in λ since u′1(s, λ) is decreasing in λ. Therefore the function Ṽ 1 must be monotonically

increasing and has a unique zero.

Finally, if there is no aggregate uncertainty, the term u′h(s′, λ)/u′h(s, λ) is simply equal

to 1 and the same argument as for identical CRRA preferences shows the monotonicity of

Ṽ h(s, .).

By the previous arguments we have then shown that Assumption 1 guarantees the

existence of a Markov equilibrium with finite support. We have so the following result:12

Theorem 4 Under any one of the conditions of Assumption 1 a finite support Markov equi-

librium exists in economies with two types of agents.

12In an earlier working paper version of their published paper, Chien and Lustig also characterize equilibria

with finite support for the case of two shocks and two agents with identical CRRA utility. Our result holds

for any number of shocks under more general conditions.
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Note that in this construction the intervals ([λ∗s, λ
∗
s])s∈S uniquely define the values

(V h(s, λs̃), V
h(s, λs̃))

h∈H
s,s̃∈S). Therefore, in the case of two agents, if Markov equilibria exist,

they can be described by 2S numbers which determine the boundaries of the intervals in the

consumption weights’ space which are feasible in equilibrium. Moreover, the equilibrium

dynamics of these simple equilibria is straightforward. If one starts at an initial condition

which corresponds to a welfare weight on the boundary of the interval for the initial state,

only finitely many different welfare weights are visited along the equilibrium. Since (17) and

(18) constitute a finite number of inequalities, it is possible to verify numerically whether a

Markov equilibrium exists – this is an important advantage of finite support equilibria. If

equilibria have infinite support it is often extremely difficult to conduct error analysis given

a computed approximate Markov equilibrium.

Ligon et al. (2002) establish an analogous result for two agent economies with limited

enforcement, where equilibria are solutions of a constrained planner’s problem. In that

model, because the planner’s problem can be formulated as a stationary programming

problem, Markov equilibria always exist and to establish the stationarity result it suffices to

ensure the monotonicity of the agents’ indirect utility function. In our model the existence

of a Markov equilibrium is not guaranteed and even if Markov equilibria exist we need to

ensure the monotonicity of the expenditure function. Hence the conditions in Ligon et al.

(2002) are significantly weaker than the ones stated in Assumption 1.

4.2.2 The example again

To illustrate the construction of Theorem 4 it is useful to reconsider the example of Section

3. In that example a Pareto-efficient steady state exists, for some parameter values, but,

depending on the initial conditions, it might take arbitrarily long to reach it. This can be

easily explained in this framework. Suppose for simplicity that h− l = d
1−β , u1(c) = u2(c) =

log(c) and π = 1/2. Denote aggregate endowments by ω = h + l + d.

For this specification we have C1(s, λ) = λω for both s = 1, 2. Also, by the argument

in Section 3.1, there exists a unique efficient steady state where each agents’ consumption

is given by ω
2 . At this steady state, we have therefore λ = 1

2 .

As pointed out after the proof of Theorem 2, a Pareto efficient Markov equilibrium exists

(for some initial conditions) if, for some λ∗, we have V h(s, λ∗) ≥ 0 for all h and all s. In

the environment considered here, since agent 1 has a high endowment in shock 1, we must

have λ1 > λ2 and, for an efficient equilibrium to exist, we must also have λ1 ≤ λ2. In fact,

we will show that an efficient Markov equilibrium exists with λ1 = λ2 = 1
2 . For this, one

needs to verify that, with this value of λ1, the solution to the following system (obtained

from (12), (13), with L(s, λ1) = λ1 for s = 1, 2)

V 1(1, λ1) = 1− h

λ1ω
+
β

2

(
V 1(1, λ1) + V 1(2, λ1)

)
V 1(2, λ1) = 1− l

λ1ω
+
β

2

(
V 1(1, λ1) + V 1(2, λ1)

)
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satisfies V 1(1, λ1) = 0 and V 1(2, λ1) > 0. It is easy to see that if V 1(1, λ1) = 0 a solution

of the second equation above, when λ1 = 1
2 , is given by V 1(2, λ1) = 1

1−β/2(1 − l
0.5ω ). The

first equation is then also satisfied if

V 1(1, λ1) = 1− h

0.5ω
+
β

2
V 1(2, λ1) =

l + d− h

ω
+
β(h + d− l)

(2− β)ω
= 0,

which holds whenever (2 − β)(l + d − h) + β(h + d − l) = 0, equivalent to our assumption

that h− l = d
1−β .

By symmetry, λ2 = 1
2 solves the corresponding system for V 2(s, λ2), s = 1, 2. We can

also solve for λ2 the system for V 1(s, λ2), s = 1, 2, where L(1, λ2) = λ1. Using the fact that

V 1(1, λ1) = 0 we get

V 1(2, λ2) = 0 = 1− l

λ2ω
,

thus λ2 = l
ω < 1/2. By symmetry, we have that λ1 = 1− λ2.

As pointed out at the end of the previous section, the values λs, λs, s = 1, 2 completely

characterize the Markov equilibrium for this example. The analysis of the transition to the

steady state is then greatly simplified with respect to the one in Section 3.3. If the initial

conditions are such that the initial consumption weight λ0 = 1/2, the Markov equilibrium

coincides with the efficient steady state. On the other hand if, for example, λ0 = λ2,

the state variable remains unchanged at the value λ0 as long as only shock 2 occurs, since

V h(2, λ2) ≥ 0 for both h = 1, 2. Agent 1 will consume then an amount less than 1/2 . When

shock 1 occurs, we have V 1(1, λ2) < 0 since λ2 < λ1 and V 1(1, .) is monotone. Therefore λ

must ’jump’ to λ1 where it will stay from there on. Hence the steady state will be reached

after each shock has realized at least once.

The same argument can also be used to analyze the case where the steady state is

inefficient. It is easy to see that when h − l > d
1−β we have λ1 > λ2. There is then no

efficient steady state and along the equilibrium path the instantaneous consumption weight

λ oscillates between the two values {λ2, λ1}.
Note that this argument extends to the case where there is any number S of possible

realizations of the uncertainty as well as where there is aggregate uncertainty.

4.2.3 Existence and non-existence of finite support equilibria when H > 2

Unfortunately, for the general case with more than two agents’ types we do not know of

general conditions which ensure the existence of finite support Markov equilibria. The

problem is that the dynamics of the Negishi weights, which as we saw has a simple pattern

when H = 2, can be much more complex when H > 2. In fact, even for limited enforcement

models no existence results of finite support equilibria are available when H > 2.

However, it is easy to construct examples for which finite support equilibria exist. Sup-

pose there are 3 types of agents and three equiprobable i.i.d. shocks. Assume again

the agents have identical log-utility functions, uh(c) = log(c) for all h, endowments are
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e1 = (0, h, h), e2 = (h, 0, h) and e3 = (h, h, 0) for some h > 0, while the tree pays constant

dividends d > 0. The aggregate endowment is then deterministic and equal to ω = 2h + d.

Similarly to the previous example, we have Ch(s, λ) = λhω for all h and s. We assume that

initial conditions are s0 = 1 and θ1(s−1) = 1.

Using symmetry, we show in what follows that under the condition

h >
d

1− β

there exists a steady state where agents 2 and 3 are constrained in state 1, agents 1 and

3 in state 2 and agents 1 and 2 in state 3. Denoting by λ(s, h) the value of the Negishi

weights in state s where only type h is unconstrained, we need then to find the values

of the vectors λ(1, 1), λ(2, 2) and λ(3, 3) constituting the support of the equilibrium. By

symmetry, the weights of all agents when constrained are identical, across all states, i.e.

λ1(2, 2) = λ1(3, 3) = λ2(1, 1) = λ2(3, 3) = λ3(1, 1) = λ3(2, 2) = λh for some λh. Similarly,

λ1(1, 1) = λ2(2, 2) = λ3(3, 3) = λl = 1− 2λh. In this situation, the transition function must

then satisfy the following property

L(s, λ) = λ(s, s) whenever λ ∈ {λ(1, 1), λ(2, 2), λ(3, 3)}.

Given this property of the transition function and the above specification of the states

where each agent is constrained, proceeding analogously to the previous section we obtain

V 1(1, λ(1, 1)) = 1 +
β

3
V 1(1, λ(1, 1)) =

1

1− β
3

V 1(s, λ(s, s)) = 0 = 1− h

λ1(s, s)ω
+
β

3
V 1(1, λ(1, 1)), s = 2, 3

where the equality V 1(s, λ(s, s)) = 0 holds in the states where agent 1 is constrained. Hence

we must have

1− h

λhω
+

β

3− β
= 0,

or

λh =
(3− β)h

3(d + 2h)
,

and 1 > λh ≥ 1/3 ≥ λl given the assumption h ≥ d
1−β . Given the initial condition, we must

have λ(s0) = λ(1, 1) and we have verified the one constructed is a Markov equilibrium with

finite support.

To generalize the example to any number of states and agents we again construct a finite

set of possible weights on which a transition function is defined and verify that we can find

associated values of the excess expenditure functions V h(s, .), also defined on this finite set.

To make the construction clear, we suppose first that there exists a Markov equilibrium

with excess expenditure functions V h(s, .) and then validate ex post this supposition was

correct. We conjecture that in the Markov equilibrium the endogenous state variable (λ)
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only takes values in the finite set of values of λ for which excess expenditure is zero for all

but one agent (the only one who is unconstrained)

C∗ = {λ∗(1, 1), . . . , λ∗(1, H)), λ∗(2, 1), . . . , λ∗(S,H)},

where each λ∗(s, h̃) is a solution of the system V h(s, λ∗(s, h̃)) = 0, h 6= h̃ whenever it exists.

Since these are H − 1 equations in H − 1 unknowns, for any s, h there are typically finitely

many solutions λ∗(s, h) of this system. Under the assumptions of Theorem 3 the solution,

if it exists, is unique for all s, h. When, as in the above example, eh(s) = 0 for some h, s, a

solution λ∗(s, h) will not exist and is therefore not included in the set C∗.
Next, we define, for λ ∈ C∗

L(s, λ) =

{
λ∗(s, h̄) if ∃γ ≥ 0, γh̄ = 0 : λ∗(s, h̄) = λ+γ∑

i(λi+γi)

λ otherwise.
(19)

assuming that L(s, λ) is uniquely defined. The following theorem gives a sufficient condition

that ensures the existence of a Markov equilibrium with finite support.

Theorem 5 Suppose the functions L(s, λ) are well defined by (19) and that, for all s 6= s′ and

all h ∈ H, the following holds.

L(s′, λ∗(s, h)) = λ∗(s, h)⇒ V h̃(s′, λ∗(s, h)) ≥ 0 for all h̃ ∈ H, (20)

If the initial conditions are such that θh(s−1) = 1 for some agent h, then there exists a finite

support Markov equilibrium with

λ(st) = L(st, λ(st−1)) for all st.

The proof of the theorem follows directly from our recursive characterization in Theorem

2 above. When L(s′, λ∗(s, h)) = λ∗(s′, h′) for some h′, the definition of λ∗(s′, h′) ensures

that V h(s′, λ∗(s′, h′)) ≥ 0 for all h. In contrast, when L(s, λ) = λ for some λ 6= λ∗(s, h) for

all h, the construction of L(s, .) in (19) does not ensure the same property holds. Condition

(20) in the theorem ensures that for any λ ∈ C∗ it is always the case that V h(s, L(s, λ)) ≥ 0,

implying that the conditions for a Markov equilibrium are satisfied. Finally, the condition

that θh(s−1) = 1 for some agent h ensures that the initial λ also lies in the finite set C∗.
Obviously, Theorem 5 imposes a condition on the properties of a Markov equilibrium.

This does not translate into a condition on fundamentals. To illustrate why it is difficult to

find general conditions that ensure the existence of a finite support equilibrium, consider the

following small modification of the example above. Instead of assuming that each agents’

individual endowments are high in two out of the three states, suppose they are high only

in one out of the three states. That is e1 = (h, 0, 0), e2 = (0, h, 0) and e3 = (0, 0, h) for

some h > 0. Under the maintained assumption of logarithmic utility, Theorem 3 ensures

the existence of a Markov equilibrium. However, we will show that under the condition

h > d
2(1−β) there exists no finite support equilibrium of the form postulated in Theorem 5.
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It is clear from the specification of the agents’ endowments that in equilibrium two

out of the three agents’s types will always be unconstrained while the construction above

postulates that two out of the three types of agents are constrained. Consider the case

where the current state of the economy is (s, λ′) for s 6= 1, and we move next period to

shock 1 and weight λ, where agent 1 is constrained (V 1(1, λ) = 0). Hence agents 2 and

3 will be unconstrained and the ratio λ2/λ3 will be equal to λ′2/λ
′
3, and depend so on the

previous period’s state.

In fact, λ must satisfy the following system of equations, for some function L(s, .),

V 1(1, λ) = 0 = 1− h

λ1ω
+
β

3

3∑
s′=2

V 1(s′, L(s′, λ))

V 1(s, λ) = 1 +
β

3

3∑
s′=2

V 1(s′, L(s′, λ)), s = 2, 3.

Since for s = 2, 3 we obtain that V 1(s, λ) = 1

1− 2β
3

, λ1 = λh is determined as solution of the

following equation.

1− h

λhω
+

2β

3− 2β
= 0⇔ λh =

h

ω

3− 2β

3
.

Under the assumption that 2h > d
1−β we have 1 > λh >

1
3 .

By symmetry we conjecture that the same expression obtains for agent 2 in state 2 and

agent 3 in state 3. We therefore postulate the following transition function that is defined

on the set of all λ ∈ ∆2 with λj = λh for some j = 1, 2, 3.

L(s, λ) =

{(
λ′j
)H
j=1

:
λ′j = λh if j = s

λ′j = λj
1−λh∑
h 6=s λh

otherwise.

If we take as initial conditions s0 = 1 and θ2(s−1) = θ3(s−1) = 1/2, a Markov equilibrium

exists with transition function L(s, .). The initial value of the welfare weights is given by

λ(s0) = (λh,
1−λh

2 ,
1−λh

2 ). Since V h(s, λ) > 0 whenever s 6= h and, by construction, for all

λ(st) along the equilibrium path V h(h, λ(st)) = 0, the one specified is a Markov equilibrium.

It is easy to check that this equilibrium generally does not have finite support. To see this,

consider for instance a sequence of shocks for t = 1, 2, ... with st = 1 if t is odd and st = 2

if t is even. It is easy to see that we must have λ3(st+1) = λ3(st)
1−λh

λh+λ3(st) and hence

1

λ3(st+1)
=

1

1− λh
+

λh
1− λh

1

λ3(st)
,

which converges to 1
1−2λh

if λh <
1
2 or diverges otherwise. In the process it takes infinitely

many values.

5 Welfare Properties

In this section we investigate the welfare properties of competitive equilibria with collateral

constraints. We have seen in the example considered in Section 3, that equilibria are Pareto
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efficient whenever d/(1−β) > h−l. Here we generalize this result and derive some necessary

and sufficient conditions for the existence of Pareto efficient equilibria in general economies

with no aggregate uncertainty as well as with aggregate uncertainty when consumers have

identical CRRA preferences. These conditions require the amount of available collateral to

be sufficiently large relative to the variability of agents’ endowments.

Next, we will turn our attention to the welfare properties of equilibria when the collateral

constraint binds so that competitive equilibria are Pareto inefficient. We compute the

(wealth-equivalent) welfare losses for a class of general and realistic economies. In addition,

we show that when competitive equilibria are not Pareto efficient, they are also constrained

inefficient. That is, even by taking the limited pledgeability constraints into account, a

welfare improvement can still be obtained with respect to the competitive equilibrium.

5.1 Pareto Efficient equilibria

It is well known that in the stationary economy considered in this paper Pareto efficient

allocations are always stationary, i.e. consumption only depends on the current shock (see

e.g. Judd et al. (2003)). As in Section 3.2 we define a steady state to be an equilibrium

where individual consumption and prices are time invariant functions of the shock alone.

Therefore a competitive equilibrium can only be Pareto efficient if it is a steady state

equilibrium.

As shown in the example of Section 3, even when an efficient steady state exists, for

some initial conditions it may not be reached immediately and in that case the equilibrium is

still inefficient. With a slight abuse of notation, we then say that Pareto efficient equilibria

exist if there are initial conditions for which the competitive equilibrium is efficient (and

therefore is a steady state equilibrium that is immediately reached).

Consider then a Pareto-efficient allocation
{
ch(s)

}h∈H
s∈S . For this allocation to be sup-

ported as an Arrow-Debreu equilibrium with limited pledgeability the supporting prices,

given by ρ(st) = u′h(ch(st), st)β
tπ(st) for all st and any h, must be such that the limited

pledgeability constraints are satisfied for all agents h ∈ H and all shocks s ∈ S:

u′h(ch(s), s)(ch(s)− eh(s)) + Es

∞∑
t=1

βtu′h(ch(st), st)(c
h(st)− eh(st)) ≥ 0 (21)

and the intertemporal budget constraint (4) also holds given the initial endowment distri-

bution. For general utility functions and endowments, this is a difficult problem. However,

we identify below environments, namely economies with constant aggregate endowments

and economies where all agents have identical CRRA utility functions, where the problem

reduces to a simple condition that is easy to verify.

5.1.1 No aggregate uncertainty

When there is no aggregate uncertainty, i.e.
∑

h∈H ω
h(s) is equal to a constant ω for all

shock realizations s ∈ S, and agents’ Bernoulli functions are state independent, Pareto-
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efficient allocations are such that consumption is also constant, ch(s) = ch for all s, h.

Hence condition (21) can be rewritten as

max
s∈S

eh(s) + Es

∞∑
t=1

βteh(st) ≤ ch

1− β
for all h ∈ H. (22)

Using the feasibility of the allocation we obtain the following13:

Theorem 6 A necessary and sufficient condition for the existence of a Pareto-efficient equi-

librium with no aggregate uncertainty is

(1− β)
∑
h∈H

(
max
s∈S

eh(s) + Es

∞∑
t=1

βteh(st)

)
≤ ω. (23)

Recalling that ω −
∑

h∈H e
h(s) = d(s) this condition requires the amount of collateral

in every state, measured by d(s), to be sufficiently large relative to the variability of the

present discounted value of the agents’ non pledgeable endowment, as captured bu the term

on the left hand side of (23).

It is useful to consider how the above condition simplifies if in addition shocks are i.i.d.

In this case Es
∑∞

t=1 β
teh(st) is independent of s and hence (23) can be rewritten as∑

h∈H
max
s∈S

eh(s) ≤ ω − βe
1− β

=
d

1− β
+ e,

where e =
∑

h∈H e
h(s) for any s.14

5.1.2 Identical CRRA preferences

Consider next the case where all agents have identical CRRA preferences with coefficient

of relative risk aversion r. All Pareto-efficient allocations satisfy then the property that, for

all h, s, ch(s) = λhω(s) for some λh ≥ 0 and
∑

h∈H λ
h = 1, where ω(s) =

∑
h∈H ω

h(s). We

can therefore write condition (21) as

λh

ω(s)r−1
+ Es

∞∑
t=1

βt
λh

ω(st)r−1
≥ eh(s)

ω(s)r
+ Es

∞∑
t=1

βt
eh(st)

ω(st)r
for all s ∈ S, h ∈ H.

As in the previous section, feasibility allows us to obtain from the above inequality the

following necessary and sufficient condition for the existence of an efficient equilibrium:

1 ≥
∑
h∈H

max
s∈S

eh(s)
ω(s)r + Es

∑∞
t=1 β

t e
h(st)
ω(st)r

1
ω(s)r−1 + Es

∑∞
t=1 β

t 1
ω(st)r−1

(24)

13Necessity is obvious given (22). Sufficiency then follows from the observation that under (23) it is always

possible to find a Pareto efficient allocation (ch)h∈H that satisfies (22).
14It is easy to verify that in the setting of the example of Section 3, this condition is equivalent to

h− l ≤ d

1 − β
.
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When all agents have log-utility, i.e. r = 1, condition (24) greatly simplifies and reduces to

1

1− β
≥
∑
h∈H

max
s∈S

eh(s)

ω(s)
+ Es

∞∑
t=1

βt
eh(st)

ω(st)
,

analogous to (23).

5.2 Quantitative Assessment of possible Welfare Losses

The findings of the previous section have important implications for the properties of equi-

librium allocations as well as potentially important policy implications. We carry out here

a quantitative assessment of the efficiency properties of competitive equilibria for more gen-

eral and realistic economies where shocks are persistent, there may be aggregate as well

as idiosyncratic uncertainty and levels of collateral are somewhat realistic. We want to

investigate when the collateral constraints bind and hence equilibria are inefficient, and in

those cases find how large potential welfare losses from the collateral constraints are as well

as what is the pattern if risk sharing that obtains in equilibrium.

We consider a set of economies with two types of agents, where there are both aggregate

shocks and persistent idiosyncratic shocks and we allow for different possible levels of the

idiosyncratic shocks and different possible degrees of their persistence. For such economies

equilibria can be easily computed numerically by solving a non-linear system of equations.

We provide a quantitative assessment of the values of parameters for which competitive

equilibria are Pareto efficient and, when the equilibrium is inefficient, we determine the

size of the welfare loss (with respect to the fist best level of welfare). We also illustrate the

properties of the pattern of agents’ consumption over time and across states when equilibria

are inefficient.

More precisely, we examine an environment where there are four shocks, S = {1, .., 4} .
Aggregate endowments are ω(1) = ω(2) = (1 + ζ), ω(3) = ω(4) = (1 − ζ). The tree pays

dividends equal to a fraction δ of aggregate endowments: d(s) = δω(s) for each s ∈ S and

individual non pledgeable endowments are

e1(1) = e1(3) = η (1− δ)ω(s), e1(2) = e1(4) = (1− η) (1− δ)ω(s)

The aggregate shock is i.i.d. and each of its two realizations has the same probability. In

contrast, the idiosyncratic shock is persistent, with persistence measured by γ = 2π(1, 1).

Agents have identical CRRA utility with β = 0.95 and a coefficient of relative risk aversion

of 3.

Regarding the size of the fraction of the economy’s resources that are pledgeable, given

by δ, it is sometimes argued (see e.g. McGrattan and Prescott (2005)) that the share

of output which can be attributed to tangible capital in the US economy is close to 30

percent. This is capital that in principle could be used as collateral and this number would

imply for our model a value δ = 0.3. In stark contrast, Chien and Lustig (2011) use NIPA
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(National Income and Product Accounts) to estimate tradeable or collateralizable income to

be 10.2 percent of total income. In this, they include rental income, dividends, and interest

payments. As they point out, this is a narrow measure, because it treats proprietary income

as non collateralizable. When proprietary income is included as well, the ratio rises to 19.5

percent. In what follows we will consider these three (10, 20 and 30 percent) possible values

for the share of income that is collateralizable, that is δ ∈ {0.1, 0.2, 0.3}.
As far as the degree of persistence of the idiosyncratic shocks is concerned, we consider

the following possible values for γ ∈ {0.9, 0.95, 0.99}. For the magnitude of these shocks, as

measured by the fraction of aggregate endowment obtained in the good individual state, we

consider the values η ∈ {0.75, 0.85, 0.95}.
For the magnitude of the aggregate shocks we consider the case ζ = 0.1, i.e. of substan-

tial aggregate uncertainty. It turns out that the features of the equilibrium values reported

in what follows are almost identical when there is no aggregate uncertainty, i.e. when ζ = 0.

The presence of aggregate shocks turns out then not to play a quantitatively important role.

We report in the following table the welfare losses at a competitive equilibrium with

collateral constraints with respect to the Arrow-Debreu benchmark (i.e. relative to the

equilibria without collateral constraints). Welfare losses are measured in percent, in wealth

equivalent terms, i.e. we report what fraction of his consumption level at an Arrow-Debreu

equilibrium an agent should give up (uniformly across all nodes) in order to attain the same

level of welfare as at the competitive equilibrium with collateral constraints. The initial

conditions are such that at the beginning of period 0 each agent holds half of the tree and

initially, coming into period 0, all 4 shocks are equally likely.15

δ γ η = 0.75 η = 0.85 η = 0.95

0.1 0.9 0 0. 0.01

0.1 0.95 0.19 0.48 0.70

0.1 0.99 4.47 7.13 8.53

0.2 0.9 0 0 0

0.2 0.95 0 0 0.07

0.2 0.99 0.57 2.54 4.25

0.3 0.95 0 0 0

0.3 0.99 0 0.10 1.16

Table 1: welfare losses at an equilibrium

The findings in the table above provide a useful complement to our theoretical anal-

ysis in the previous section. We see from the results in the table that the persistence of

the idiosyncratic shocks plays a crucial role for the risk sharing properties of equilibrium

allocations in this economy. When idiosyncratic shocks are very persistent (and the level

15This is slightly different from the specification adopted in the previous sections, where time runs from

date 0 after s0 has realized, and allows results here not to depend on the initial condition.
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of existing collateral is relatively low) potential welfare losses are quite large. This is in

accord with what one finds in a model with incomplete markets and exogenous borrowing

constraints, where equilibria are always inefficient but welfare losses are quantitatively very

small unless shocks are very persistent (see e.g. Kubler and Schmedders (2001)). In the en-

vironment considered here, welfare losses are zero when the level of collateral is sufficiently

high (δ = 0.3) or when idiosyncratic shocks are not very persistent (γ = 0.9).

It is then useful to examine also the degree of risk sharing at a competitive equilibrium

when Pareto efficiency is not attained. Since we are considering the case where there are

two types of agents with identical CRRA utility, Theorem 4 applies and the equilibrium can

be described by S pairs of numbers (λs, λs)s∈S . For instance, take the case where η = 0.75,

δ = 0.1 and γ = 0.99. As we see from Table 1, the resulting equilibrium is inefficient and

the pattern of consumption in the long run (at a steady state) is described by the following

values:

State 1 2 3 4

λs 0.2250 0.5743 0.2250 0.5889

λs 0.4260 0.7752 0.4114 0.7752

Table 2: risk sharing pattern

Recall that shocks 1, 3 and 2, 4 represent different realizations of the idiosyncratic shock,

while 1, 2 versus 3, 4 represent different aggregate shocks. We see then from the values in

Table 2 that in the long run consumption will change, and significantly, whenever there is

a change in the realization of the idiosyncratic shock, while there will be no change, or at

most a much smaller change, in consumption when only the realization of the aggregate

shock changes.

It is obviously beyond the scope of this paper to take a stand on which values should

be considered as ’realistic’ for the level of persistence and the size of the idiosyncratic

shocks as well as for the amount of available collateral. It might be interesting, however,

to consider an example of a calibrated economy from the applied literature. Heaton and

Lucas (1996) calibrate a Lucas style economy with two types of agents to match key facts in

the US economy. They take the ’dividend-share’ to be earnings to stock-market capital and

estimate this number to be around 15 percent of total income. They assume that aggregate

growth rates follow an 8-state Markov chain and calibrate their model using the PSID (Panel

Study of Income Dynamics) and NIPA (National Income and Product Accounts). Let us

consider their calibration for the ‘Cyclical Distribution Case’ but detrend the economy to

ensure we remain in our stationary environment. We find that for their specification of

the economy the competitive equilibrium is Pareto efficient in the long run. In fact, the

persistence of the shocks is so small that even with only a 5 (instead of 15) percent level

of collateralizable income, efficiency would still obtain. This shows that, if one considers

the specification of idiosyncratic risks in Heaton and Lucas (1996) to be somewhat realistic,

Pareto inefficiency does not obtain in the long run for all realistic levels of collateral.
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5.3 Constrained inefficiency

If the collateral in the economy is too little to support a Pareto efficient allocation, it could

still be the case that the equilibrium allocation is constrained Pareto efficient in the sense

that no reallocation of the resources that is feasible and satisfies the collateral constraints

can make everybody better off. We show here that this is not true, by presenting a robust

example for which a welfare improvement can indeed be found subject to these constraints.

We consider in particular a reallocation obtained by imposing tighter short-sale con-

straints on the trades of some tree options and considering the associated equilibrium where

agents optimize subject to such constraints and markets clear. Such reallocation clearly re-

spects the collateral constraints. At the same time, since the tighter constraints will change

trades and hence securities’ prices, the allocation obtained may not be budget feasible at

the original prices and looser short-sale constraints, and hence might yield a higher welfare.

We show the result in the simple environment described in Section 4.2.2, where shocks

are equiprobable, π1 = π2 = 1/2, consumers have the same preferences, uh(c, s) = u(c) for

h = 1, 2, and their endowment in the low state is zero: l = 0. In addition, h(1 − β) > d,

so that (7) is violated and there is no Pareto efficient equilibrium, but an inefficient steady

state equilibrium exists.

Suppose the economy is at this inefficient steady state, where θ1 = (0, 1), θ2 = (1, 0),

and consider the welfare effect of tightening the portfolio restriction to θhs (st) ≥ ε, for ε > 0

and all s ∈ S. The restriction is assumed to be introduced at t = 1 and to hold for all t ≥ 1.

The intervention is announced at t = 0 after all trades have taken place. Agents’ utility is

then evaluated ex ante, from date 0.

We show that this intervention is Pareto improving, for an open set of the parameter

values describing the economy. Thus the inefficient steady state equilibrium is also con-

strained inefficient: making the collateral constraint tighter in some date events improves

welfare.

Given the nature of the intervention and the fact that the economy is initially in a steady

state, there is a transition phase of one period before the economy settles to a new steady

state16: prices and allocations are then going to depend now on time (whether it is t = 1 or

t > 1) as well as the realization of the current shock. It is useful to use the notation qt(s; s
′)

to indicate the price at time t and state s of the tree option that pays in state s′. As before,

the price of the tree is then qt(s) = qt(s; 1)) + qt(s; 2). The new equilibrium portfolios are,

at all dates t ≥ 1, θ1 = (ε, 1 − ε), θ2 = (1 − ε, ε), that is the short-sale constraint always

16Note that this is different from what we found in Sections 3 and 4.2.2, where we showed that the

transition to a steady state may take a very long time, until all shocks occurred. The reason is that the

original steady state is no longer feasible when the restriction θhs (st) ≥ ε is introduced, and hence it is no

longer possible for the allocation to stay the same until the shock stays the same, as before.
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binds. At the date of the intervention, t = 1, we have then

c1(s1 = 1) = h− q1(1; 1)ε− q1(1; 2)(1− ε)

c1(s1 = 2) = d + q1(2; 1) + q1(2; 2)− q1(2; 1)ε− q1(2; 2)(1− ε)

= d + q1(2; 1)(1− ε) + q1(2; 2)ε

At all subsequent dates, t > 1,

c1(st = 1) = h + ε (q(1; 1) + q(1; 2) + d)− q(1; 1)ε− q(1; 2)(1− ε)

= h + εd− q(1; 2)(1− 2ε)

c1(st = 2) = (d + q(2; 1) + q(2; 2)) (1− ε)− q(2; 1)ε− q(2; 2)(1− ε)

= d(1− ε) + q(2; 1)(1− 2ε)

That is, we settle at the new steady state where qt(s; s
′) = q(s; s′) for all t > 1, s, s′.

We have then eight new equilibrium prices to determine. By symmetry (of consumers’

preferences, endowments and shocks) however these reduce to four, since q1(1; 1) = q1(2; 2),

q1(1; 2) = q1(2; 1), as well as q(1; 1) = q(2; 2) and q(1; 2) = q(2; 1) for all t = 2, ....

Using the above expressions of the budget constraints, the equilibrium prices can be

obtained from the first order conditions for the consumers’ optimal choices. After some

substitutions, we obtain17 the following equation that can be solved for q(1; 2) = q(2; 1):

q(2; 1)u′(h + εd− q(2; 1)(1− 2ε))− β(q(2; 1) + d)

2− β
u′(d(1− ε) + q(2; 1)(1− 2ε)) = 0. (25)

It is useful to denote by q0(2; 1) the solution of this equation when ε = 0 (that is, at the

initial steady state).

Differentiating (25) with respect to ε, and evaluating it at ε = 0 yields the following

expression:

dq(2; 1)

dε

∣∣∣∣
ε=0

=
−
[
β d+q0(2;1)

2−β u′′(d) + q0(2; 1)u′′(h)
]

(d + 2q0(2; 1))

u′(h)− β
2−βu

′(d)− β d+q0(2;1)
2−β u′′(d)− q0(2; 1)u′′(h)

(26)

where u′(h) = u′(h − q0(2; 1)) and u′(d) = u′(d + q0(2; 1)) with u′′(h) and u′′(d) defined

analogously. In the above expression the numerator is clearly positive, and so is the denom-

inator, since equation (25) evaluated at ε = 0 yields u′(h) = d+q0(2;1)
q0(2;1)

β
2−βu

′(d) > β
2−βu

′(d).

From the above expressions of the budget constraints and the symmetry of equilibrium

prices we find that the effect on equilibrium consumption in the new steady state is

dc1(st = 1)

dε

∣∣∣∣
ε=0

= − dc1(st = 2)

dε

∣∣∣∣
ε=0

= 2q0(2; 1) + d− dq(2; 1)

dε

∣∣∣∣
ε=0

. (27)

From (26) we immediately see that

0 <
dq(2; 1)

dε

∣∣∣∣
ε=0

< d + 2q0(2; 1),

17The details for this as well as the similar derivation of (30) below are in the Appendix.
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so that dc1(st=1)
dε

∣∣∣
ε=0

> 0. Hence the new steady state equilibrium price of the tree options

unambiguously increases, as a result of the intervention, since their effective supply (the

amount which can be traded in the market) decreases, from 1 to 1− 2ε. The variability in

consumption across states increases too.

We can similarly proceed to determine the effect on consumption at the transition date

t = 1 :

dc1(s1 = 1)

dε

∣∣∣∣
ε=0

= − dc1(s1 = 2)

dε

∣∣∣∣
ε=0

= q0(2; 1)− β(q0(2; 1) + d)

2− β
− dq1(1, 2)

dε

∣∣∣∣
ε=0

,

where we used the fact that q1(1 1), evaluated at ε = 0, equals q(1; 1) and both terms are

at the steady state value before the intervention, β(q0(2;1)+d)
2−β .

The effect on the discounted expected utility of consumer 1 of an infinitesimal tightening

of the portfolio restriction, that is from ε = 0 to dε > 0 is then

dU

dε

∣∣∣∣
ε=0

=
1

2

(
u′(h)− u′(d)

) dc1(s1 = 1)

dε

∣∣∣∣
ε=0

+
β

2(1− β)

(
u′(h)− u′(d)

) dc1(st = 1)

dε

∣∣∣∣
ε=0

.

(28)

By symmetry, the expression for the change in consumer 2’s expected utility has the same

value. Hence the welfare effect of the intervention considered is determined by the sign of

the expression in (28).

Since u′(h) < u′(d), our finding on the sign of (27) implies that the effect of the in-

tervention considered on agents’ steady state welfare, given by the second term in (28),

is always negative. For the intervention to be welfare improving we need then to have a

welfare improvement in the initial period that is sufficiently large to compensate for the

negative effect after that period. More precisely, from (28) it follows that dU
dε

∣∣
ε=0

> 0 if,

and only if,
dc1(s1 = 1)

dε

∣∣∣∣
ε=0

< − β

1− β
dc1(st = 1)

dε

∣∣∣∣
ε=0

,

or equivalently, substituting the expressions obtained above for the consumption changes

and rearranging terms,

dq1(1; 2)

dε

∣∣∣∣
ε=0

>
2q0(2; 1) + dβ

(2− β) (1− β)
− β

1− β
dq(1; 2)

dε

∣∣∣∣
ε=0

(29)

That is, for an improvement to obtain the price change in the first period, dq1(1;2)
dε

∣∣∣
ε=0

, has to

be sufficiently large so that c1(s1 = 1) decreases, increasing risk sharing in this intermediate

period, and by a sufficiently large amount. Again by differentiating the consumers’ first

order conditions with respect to ε we obtain the following expression for the price effect at

the intermediate date:

dq1(1;2)
dε

∣∣∣
ε=0

=

q0(2;1)

(
β(q0(2;1)+d)

2−β −q0(2;1)

)
u′′(h)−β(q

0(2;1)+d)
2−β u′′(d)

(
d+2q0(2;1)− dq(2;1)

dε

∣∣∣
ε=0

)
+ β

2−β u
′(d)

dq(2;1)
dε

∣∣∣
ε=0

u′(h)−q0(2;1)u′′(h)

(30)
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Substituting this expression into the sufficient condition for suboptimality we obtained

above, (29), we find that this, after rearranging terms, is equivalent to the following:

q0(2; 1) (1− β)
[
βd− 2 (1− β) q0(2; 1)

]
u′′(h)− (1− β)β(q0(2; 1) + d)u′′(d)

(
d+2q0(2; 1)

)
−
(
2q0(2; 1) + dβ

) (
u′(h)−q0(2; 1)u′′(h)

)
+
[
β (2− β)

(
u′(h)−q0(2; 1)u′′(h)

)
+ β (1− β)u′(d) + (1− β)β(q0(2; 1) + d)u′′(d)

] dq(2;1)
dε

∣∣∣
ε=0

> 0

(31)

This condition is stated in terms of endogenous variables which obviously raises the

question if there are economies for which the equilibrium values satisfy it. We establish

then the following result.

Theorem 7 There are specifications of economies in the environment under consideration that

are robust with respect to perturbations in (h, d, β) as well as perturbations of preferences for

which Condition (31) holds and hence the competitive equilibrium is constrained suboptimal.

To prove the theorem, we show (in the Appendix) that for sufficiently small β Condition

(31) is satisfied if

1 + d
u′′(d)

u′(d)
+
u′(h)

u′(d)
< 0. (32)

As shown in Section 3, when h (1− β) > d an inefficient steady state equilibrium exists

with u′(h)
u′(d) < 1. It then follows that the inequality −du

′′(d)
u′(d) > 1 + u′(h)

u′(d) is satisfied when the

absolute risk-aversion is sufficiently high. Therefore Condition (31) holds and the steady

state equilibrium is constrained inefficient whenever the agents’ absolute risk aversion is

uniformly above 2/d and β is sufficiently small. It is clear that this is true for an open set

of parameters and utility functions.

5.3.1 Logarithmic preferences

While Theorem 7 above is all one can say in general, it is useful to illustrate for a given

specification of the agents’ utility function how large the set of parameter values is for which

one obtains constrained inefficient equilibria. We consider here the case where u(c) = log(c).

It can be verified that in this case an explicit solution of (25) for the equilibrium price can

be found, given by 18

q0(2; 1) = β
h

2
.

Since utility is homothetic it is without loss of generality to normalize d = 1. Direct

computations then show that

dq1(1; 2)

dε

∣∣∣∣
ε=0

=
β(1 + h)(1 + βh)

2 + βh

18While it may seem surprising that the dividend level d does not appear in this expression of the equilib-

rium price, we should bear in mind that the one considered is an inefficient equilibrium. When an efficient

steady state exists we have in fact q(1; 2) = β
2

d
(1−β) .
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and
dq(2; 1)

dε

∣∣∣∣
ε=0

=
β(−4h + β2h(2 + 3h) + 2β(1 + h− 2h2)

2(β − 2)(2 + βh)
.

According to Equation (29) an improvement is possible if

β
dqt(1, 2)

dε

∣∣∣∣
ε=0

+ (1− β)
dq1(1, 2)

dε

∣∣∣∣
ε=0

− 2q(1, 2) + dβ

(2− β)
> 0

Substituting these expressions into (29) we find that, in the case of logarithmic prefer-

ences the intervention considered is welfare improving if, and only if

2− β(h− 2)h + β2h2 < 0.

Figure 1 then shows, in the space h, β, the region of values of these parameters for which

competitive equilibria are constrained inefficient as well as the region where equilibria are

Pareto efficient. We see that the region where constrained inefficiency holds is quite large,

while the region where full Pareto efficiency cannot be attained but still the intervention

considered is not welfare improving is very small.

[FIGURE 1 ABOUT HERE]

6 Conclusion

In this paper we have considered an infinite horizon economy with complete markets and

collateral constraints where the only financial friction is the limit to borrowing imposed by

the existing amount of collateral. We have shown that this is a tractable dynamic stochastic

model, whose equilibria can be computed fairly easily and hence the efficiency and risk

sharing properties of equilibria quantitatively assessed. This is true even though they can

be constrained suboptimal, in the sense that imposing tighter borrowing constraints at

certain nodes of the event tree than the limits imposed by the collateral constraints can

make everybody better off.

7 Appendix: Proofs

7.1 Proof of Theorem 1

We first show that each Arrow Debreu equilibrium allocation with limited pledgeabil-

ity is also an equilibrium allocation in an equilibrium with intermediaries. Given the

equilibrium Arrow Debreu prices (ρ(σ))σ∈Σ, set the prices of the tree equal to q(st) =
1

ρ(st)

∑
σ�st ρ(σ)d(σ) and the prices of the tree-options as

q(st; st+1) =
1

ρ(st)
ρ(st+1)

(
q(st+1) + d(st+1)

)
(33)
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for every st, st+1. It is then easy to see that the set of budget feasible consumption levels

are the same for the budget set in (IE2) and for the budget set defined by (4) and (5).

Given a consumption sequence (c(σ))σ∈Σ that satisfies (IE2), using (33) we get

ρ(st)θ(st−1; st)(q(s
t)+d(st)) = ρ(st)(c(st)−eh(st))+ρ(st)

∑
st+1∈S

θ(st; st+1)
ρ(st+1)

ρ(st)
(q(st+1)+d(st+1))

for each st with t ≥ 1. Substituting then recursively for the second term on the right hand

side we obtain

ρ(st)θ(st−1; st)(q(s
t) + d(st)) =

∑
σ�st

ρ(σ)(c(σ)− eh(σ)) ≥ 0,

that is (5) holds. At the root node s0 we have

θh(s−)(q(s0) + d(s0)) =
∑
σ�st

ρ(σ)(c(σ)− eh(σ))

equivalent to (4). The reverse implication can be similarly shown.

We show next that when the set of assets J is large and includes all possible kinds of

securities, subject to all possible kinds of collateral constraints specified in Section 2, Arrow

Debreu equilibria with limited pledgeability can be decentralized as collateral constrained

financial market equilibria. For this it suffices to show that this is possible for some collection

of assets J̄ ⊂ J .

One possible specification (although certainly not the only one) of the set of assets

that allows to establish the decentralization result is as follows. For each security j ∈ J̄
we have bj(s) ∈ {0, 1} for each s ∈ S. The set of securities is then partitioned into the

subsets J S−1,J S−2...J 1 and we assume that for each s̄ ∈ {1, ..., S − 1} all securities in J s̄

promise the payment of one unit for each realization of the shock s = 1, ..., s̄. Within J s̄

the securities only distinguish themselves by their collateral requirements. The set of the

promised payoffs of the securities in J̄ plus the tree (which has a strictly positive payoff in

all states) has then a triangular structure.

We specify next the set of assets which can be used as collateral for these securities. This

set has to be sufficiently rich to allow us to establish the completeness of the market. More

specifically, there is only one security in J S−1 and only the tree can be used as collateral

for short positions in this security. There are then two securities in J S−2, one collateralized

by the tree, the second one by long positions in the security in J S−1 (in turn collateralized

by the tree). We have four securities in J S−3, one collateralized by the tree, the second

one by the security in J S−1, the third one by the first security in J S−2 and the fourth one

by the second security in J S−2. Note that in this specification a security can only serve

as collateral for another security if the set of states where the first one promises a nonzero

payment contains the set of states where the second one promises a payment. This and the

triangular structure of the payoffs generate a natural seniority structure of the securities,

as their promised payoff determines their ability to serve as collateral for other securities.
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More formally, a security is identified by a pair (C, s̄) ∈ {0, 1}S−1 × S, specifying that

the security promises the payment of one unit in the shock realizations s = 1, ..., s̄ and is

collateralized - either directly or indirectly - by the securities identified by an element of

the set {0, 1}S−1, where the first element refers to the tree - which can be identified, with

some abuse of notation, with J S - and the other elements to the securities in, respectively,

J S−1,J S−2...J 2. The convention is that Cs = 0 if no security in J s is used either directly

or indirectly as collateral of the security under consideration. So C = (1, 0, ..., 0) means that

only the tree is used as collateral, C = (1, 0, 1, 0, ....) implies that the collateral is given by

the security in J S−2 which in turn is collateralized by the tree. At the other extreme we have

the case C = (1, ...., 1) ∈ {0, 1}S−1 indicating that the security is collateralized by a security

in J 2 which is collateralized by a security in J 3 and so on. Given the seniority structure

described above, for any security (C, s̄), C must be such that its elements s̄, s̄ − 1, .., 1 are

all zero.

The two securities (C, s̄) and (C ′, s̄) are then identical in terms of promised payoffs but

differs for their collateral requirements. The collateral requirements induce an additional,

lexicographic ordering among the securities with the same promised payoff: i.e. C ≺l C ′ if

CS > C ′S or if CS−i = C ′S−i for all i = 1, ..., n− 1 and CS−n > C ′S−n (that is, the securities

serving, either directly or indirectly, as collateral are more senior, in a lexicographic sense,

in C than in C ′). It is also convenient to denote by j = κ(C, s̄) the security that needs to

be used directly as collateral for (C, s̄). We assume that, as already implicit in the above

construction, exactly one security must be used as collateral, this security must belong to

one of the sets J s̄+1, . . . ,J S . Conversely, for each (C, s̄) and each s < s̄, there is exactly

one asset in J s that uses (C, s̄) directly as collateral, and we denote this by κ−1((C, s̄), s).

We complete the description of the collateral requirements of the various securities by

specifying the level of (direct) collateral requirement for each security (C, s̄) in any given

state st. If a security is directly collateralized by the tree, i.e. if κ(C, s̄) ∈ J S , then

kC,s̄κ(C,s̄)(s
t) = k̄(st) ≡ min

st+1�st
1

q(st+1) + d(st+1)

The direct collateral requirement in terms of all other financial assets is simply one. In

other words

kC,s̄κ(C,s̄)(s
t) = 1 if κ(C, s̄) /∈ J S .

Note that this specification implies that in any given state the actual payoff of a security is

either zero or an amount proportional to the value of the tree plus its dividends,

f(C,s̄)(s
t) ∈ {0, k̄(st−1)

(
q(st) + d(st)

)
}. (34)

More precisely, it is zero for all s > s̄ and nonzero (proportional to the payoff of the tree)

in all other states, and is then independent of C.

Given the equivalence result shown in the first part of the proof, it suffices to show that

any equilibrium allocation with intermediaries, with prices q̄(st, s) and portfolios θ̄h(st, s)
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of the tree options, for all h, s, st is also an equilibrium allocation with collateral constraints

and asset structure J̄ . We show in what follows that we can construct prices for the tree

q(st) and all the securities in J̄ , p(st), as well as portfolios θh(st, s), φh(st, s) that support the

same consumption allocation at a financial markets equilibrium with collateral constraints.

Note first that, as shown in (34), the payoff of each security is proportional to the payoff of

a tree option. Set then the price of the tree equal to q(st) =
∑

s∈S q̄(s
t, s) and the security

prices at

p(C,s̄)(s
t) =

s̄∑
s=1

k̄(st)q(st, s).

For each node st portfolio holdings are constructed as follows. Set the tree holdings for

each agent h at the level θh(st) = θ̄h(st, S). We denote the holdings of financial security

(C, s̄) by φh(C,s̄)(s
t). For all agents h ∈ H let

φh((1,0,...,0),S−1)(s
t) =

θ̄h(st, S − 1)− θh(st)

k̄(st)
.

With this construction, the portfolio pays the same as the tree options in the shock real-

izations st+1 = S and S − 1 next period. In order to guarantee the same payoffs also in the

other shock realizations st+1 = 1, ..., S − 2 while satisfying at the same time the collateral

requirements, define recursively for each s̄ = S − 2, S − 3, . . . , 1, for each h = 1, ...,H

γh(s̄) =
θ̄h(st, s̄)− θh(st)

k̄(st)
−
∑
C

S−1∑
i=s̄+1

φh(C,i)(s
t),

with the convention that φh(C,i)(s
t) = 0 if the security (C, i) does not exist. With this

definition γh(s̄) denotes the total amount of securities promising a nonzero payoff in the

shock realizations s = 1, ..., s̄ which needs to be purchased to ensure that the payoffs of the

portfolio in shock s̄ replicates the payoff of the tree option contingent on s̄.

To allocate this amount among the different securities that have the same promised pay-

off but different collateral requirements, we need to consider two cases. First, if γh(s̄) < 0,

that is the total position is a short one, one needs to ensure that the collateral requirements

are satisfied. For each asset j that could be used as collateral, that is with higher seniority

than s̄, we define Rj(st, s̄) the amount of that asset that is still ’available’ in node st as

possible collateral for j, given the collateral requirements of the holdings of assets promising

to pay in shocks s > s̄. That is, for the tree, let

RS(st, s̄) = θh(st) + k̄(st)

(
S−1∑
i=s̄+1

min[0, φh((1,0,...,0),i)(s
t)]

)
,

and set φh((1,0,...,0),s̄)(s
t) = max[γh(s̄),−RS(st,s̄)

k̄(st)
] for each s̄. Note that this recursive speci-

fication of φh((1,0,...,0),i) and RS(st, i) for all i > s̄ ensures that RS(st, s̄) ≥ 0. Similarly, for
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each security (C, ŝ), ŝ = s̄+ 1, .., S − 1, we have

R(C,ŝ)(st, s̄) = max
{
φh(C,ŝ)(s

t), 0
}

+

ŝ∑
i=s̄+1

min[0, φhκ−1((C,ŝ),i)(s
t)].

and we set, proceeding recursively now also for C = (1, 1, 0, . . . , 0), (1, 0, 1, 0, . . . , 0)...

φh(C,s̄)(s
t) = max[γh(s̄)−

∑
C′:C�lC′

φh(C′,s̄)(s
t),−Rκ(C,s̄)(st, s̄)].

The first term in the above expression is the amount of the total position γh(s̄) that needs

to be allocated to securities with collateral C or below according to the ordering ≺l. The

second term indicates the (opposite of the) amount of collateral that is available for asset

(C, s̄). implied set so that the collateral. When Rκ(C,s̄)(st, s̄) is small, φh(C,s̄)(s
t) is set so

that the collateral constraint holds with equality. It is clear that with this construction the

collateral requirements will be satisfied and eventually
∑

C φ
h
(C,s̄)(s

t) = γh(s̄).

Secondly, we need to consider the case γh(s̄) > 0. Although an agent is indifferent

between a long position in security (C, s̄) and a long position in another security (C ′, s̄)

the assignment cannot be arbitrary because we need to ensure market clearing, that is we

need to ensure
∑

h φ
h
(C,s̄)(s

t) = 0 for all (C, s̄) in addition to
∑

C φ
h
(C,s̄)(s

t) = γh(s̄). But

the validity of the market clearing condition in the tree options ensures that an assignment

satisfying market clearing always exists.

We have thus verified that the consumption allocation at an equilibrium with inter-

mediaries is budget feasible in the presence of collateral constraints with asset structure

J̄ . Moreover, the set of budget feasible consumption plans is the same and so will be the

consumers’ choice.

7.2 Proof of Lemma 1

Note first that if there is a positive solution to system (8), it must satisfy h − q(1; 2) ≥
l + d + q(2; 1). Suppose this inequality were not satisfied; since we are considering the case

where h− l > d
1−β , we would then have q(1; 2) + q(2; 1) > d

1−β − d = βd
1−β . Furthermore,

u′1(l + d + q(2; 1))

u′1(h− q(1; 2))
< 1 and

u′2(l + d + q(1; 2))

u′2(h− q(2; 1))
< 1.

Substituting these inequalities in (8) yields

q(1; 2) <
βπ2

1− βπ2
(q(2; 1) + d) <

βπ2

1− βπ2

(
βπ1

1− βπ1
(q(1; 2) + d) + d

)
Equivalently, by collecting the terms with q(1; 2) on the left hand side and simplifying we

obtain

q(1; 2)(1− β) < βπ2d.
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Symmetrically, we can perform the same operation for q(2; 1) to obtain

q(2; 1)(1− β) < βπ1d.

Adding up these two inequalities yields a contradiction to the inequality q(1; 2) + q(2; 1) >
βd

1−β above. Therefore a solution to (8) must always satisfy h− q(1, 2) ≥ l + d + q(2, 1).

To show that a positive solution to (8) exists, recall the following lemma that follows

directly from Brouwer’s fixed point theorem (see e.g. Zeidler (1985), Proposition 2.8).

Lemma 3 Let f : Rn → Rn be a continuous function such that

inf
‖x‖=r

n∑
i=1

xifi(x) ≥ 0, for some r > 0.

Then f has at least one zero, i.e. there is a x with ‖x‖ ≤ r and f(x) = 0.

For sufficiently small ε > 0, define g : [−d, h− ε]2 → R2 by

g(x, y) =

{
1−βπ2
βπ2

xu′1(h− x)− (y + d)u′1(l + d + y)
1−βπ1
βπ1

yu′2(h− y)− (x+ d)u′2(l + d + x)

Define f : R2 → R2 by

f(x, y) = g (max [−d,min[h− ε, x]] ,max [−d,min[h− ε, y]]) .

We can apply Lemma 3 for r = h, using the sup-norm and obtain the existence of a zero

point for f and then verify that this must also be a solution to g(x, y) = 0. For x = −r we

obtain

xf1(x, y) + yf2(x, y) ≥ r(y + d)u′1(l + d + y) ≥ 0.

For x = r we obtain that xf1(x, y) can be made arbitrarily large by choosing ε appropriately

small while yf2(x, y) is obviously bounded below since we assume l > 0. By symmetry, the

same is true for y ∈ {−r, r} and there must be (x∗, y∗) with f(x∗, y∗) = 0. It is easy to see

that (x∗, y∗) ∈ (0, h)2 and therefore also solve g(x, y) = 0.

7.3 Proof of Lemma 2

The result follows directly by applying Lemma 3 to a slight modification of the function

f(.). For this let, for x ∈ [ε, 1 − ε]2S , gi(x) = fi(x) for i = 1, ..., S and gi(x) = −fi(x)

for i = S + 1, ..., 2S. Extend then the function g to the whole domain R2S by setting it

continuous and constant outside of [ε, 1 − ε]2S . All one needs to prove is the appropriate

boundary behavior. Clearly as some λs is sufficiently large or some λs is sufficiently small,

we have that
∑

i xigi(x) < 0 since each fi(x) is bounded above. The key is to show that if

λs is sufficiently small, or if λs is sufficiently large, we also have that some |gi(x)| becomes

arbitrarily large. To show this note that in (16) the terms involving λs have positive (and
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bounded away from zero) weight whenever there is a s′ with λs′ < λs. If this is the case

clearly some fi(x), i = 1, ..., S can be made arbitrarily small; if it is not the case, some

λs′ becomes arbitrarily close to 1 and we are in the case above. The argument for λs is

analogous.

7.4 Proof of Theorem 3

We prove the existence of a Markov equilibrium by showing that finite horizon truncations

converge monotonically to policy and transition functions when the horizon becomes large.

Throughout the proof we will crucially use the fact that our assumption on preferences

guarantees the so-called gross-substitute property. The following definition and two lemmas

make this precise.

Definition 1 A function f : Rn+ → Rn satisfies the strict gross substitute property if for all

y ∈ Rn+ and all x ∈ Rn+ with xi = 0 for some i = 1, ..., n it holds fi(y) < fi(y + x).

The following lemma makes clear why this property is crucial for establishing existence.

It is a slight variation of a result by Dana (1993).

Lemma 4 Suppose f : Rn+ → Rn satisfies the strict gross substitute property and is homoge-

neous of degree zero. Given any x ∈ Rn++ suppose there exist γ, γ′ ∈ Rn+ such that f(x+γ) ≥ 0,

f(x + γ′) ≥ 0 and γifi(x + γ) = 0, γ′ifi(x + γ′) = 0, for all i = 1, ..., n. If both γ and γ′ are

not strictly positive, i.e. γ, γ′ /∈ RN++ then γ = γ′.

Proof. Suppose to the contrary that γ 6= γ′. Without loss of generality we can take

γ > 0. Then there must be a j with γj > 0 as well as a ξ > 0 such that (xj+γj) = ξ(xj+γ′j)

and ξ(x+ γ′) > x+ γ. The latter inequality holds strict because γ 6= γ′ and because both

are not strictly positive. But since f(.) is homogeneous of degree zero we must have that

fj (ξ(x+ γ′)) = fj(x+ γ′) ≥ 0 . On the other hand, by the strict gross substitute property

and since γj > 0 we must have

fj
(
ξ(x+ γ′)

)
< fj(x+ γ) = 0,

which is a contradiction. �

We also need the following result.

Lemma 5 Suppose f : Rn+ → Rn satisfies the strict gross substitute property and is homoge-

neous of degree zero. For any x ∈ Rn++ and y > x suppose there exist γx, γy ∈ Rn+ such that

f(x+ γx) ≥ 0, f(y + γy) ≥ 0 and γxi fi(x+ γx) = 0 and γyi fi(y + γy) = 0 for all i = 1, ..., n.

If xj = yj for some j = 1, .., n then it must hold that

fj(x+ γx) ≥ fj(y + γy).
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Proof. If γyj > 0 or if γx = 0 then the results holds by construction.

If γyj = 0 and γx > 0 then we must have x + γx ≤ y + γy. If this were not the case,

there must exist an i with γxi > 0 and a ξ > 0 such that (xi + γxi ) = ξ(yi + γyi ) and

ξ(y + γy) > (x+ γx).

As in the previous proof this is a contradiction since fi (ξ(y + γy)) = fi(y + γy) ≥ 0

while fi (ξ(y + γy)) < fi(x+ γx) = 0. �

Proof of the Theorem. Define the functions

V h
0 (s, λ) = u′h(s, λ)(Ch(s, λ)− eh(s)).

For a given V h
n , h ∈ H define Λn(s) = {λ ∈ RH++ : V h

n (s, λ) ≥ 0 for all h ∈ H} and

Ln : S × RH++ → RH++ by

Ln(s, λ) =

{
λ if λ ∈ Λn(s)

λ+ γ̄ otherwise,

where

γ̄ ∈ {γ ≥ 0 : λ+ γ ∈ Λn(s), γhV
h
n (λ+ γ, s) = 0, ∀h}. (35)

Note that Ln is only well defined whenever there exists a unique γ̄ that satisfies (35). By

Lemma 4 and the fact that γ̄ cannot be strictly positive, there exists at most one solution

whenever Vn satisfies the strict gross substitute property.

If this is the case, we can define recursively

V h
n (s, λ) = u′h(s, λ)(C1(s, λ)− e1(s)) + β

∑
s′

π(s, s′)V h
n−1(s′, Ln−1(s′, λ)). (36)

It is easy to see that V 0(s, .) satisfies the gross substitute property for all s, i.e. that

V h
0 (s, λ + γ) < V h

0 (s, λ) for all γ > 0 with γh = 0. It follows from Lemma 5 that each Vn

then satisfies the strict gross substitute property.

It is a standard argument to show that equilibrium exist for each finitely truncated

economy and that therefore Ln(s, λ) is always well defined.

The crucial step of the proof consist of showing, by induction, that Vn ≥ Vn−1 for all n.

Clearly V h
1 (s, .) ≥ V h

0 (s, .) for all h and all s. To prove that Vn+1(s, .) ≥ Vn(s, .) whenever

Vn(s, .) ≥ Vn−1(s, .) for all s, it suffices to show that

Vn(s, Ln(s, λ)) ≥ Vn−1(s, Ln−1(s, λ)) for all s and all λ ∈ RH++. (37)

We can focus on the case where Ln(s, λ) 6= Ln−1(s, λ) and we can write Ln(s, λ) = λ+ γ̄ for

some γ̄ ≥ 0 with γ̄i = 0 for some i. Note that if Vn(s, .) ≥ Vn−1(s, .) then Λn−1(s) ⊂ Λn(s)

and therefore Ln−1(s, λ+ γ̄) > λ+ γ̄. By the same argument as in the proof of Lemma 5 we

must have that Ln−1(s, λ + γ̄) = Ln−1(s, λ): If x = Ln−1(s, λ + γ̄) 6= Ln−1(s, λ) = y there

must be an i and a ξ with ξyi = xi and ξy > x. It is easy to verify that V i
n−1(s, x) = 0 and

by the gross substitute property this implies that V i
n−1(s, ξy) < 0 which is a contradiction.
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Finally observe that for each h ∈ H and each s ∈ S the function V h
n (s, .) are uniformly

bounded above and therefore converge pointwise as n→∞ to some function V h
∗ (s, .). It is

straightforward to verify that this function describes a collateral constrained Arrow-Debreu

equilibrium. �

7.5 Further details on the argument for constrained inefficiency

Derivation of Equation (25). At t = 1 in state 1 the price q1(1; 2) of the tree option

paying in state 2 is determined by agent 1’s first order condition, since agent 2 is constrained

in that state in his holdings of that asset. We have so

q1(1; 2)u′(h−q1(1; 1)ε−q1(1; 2)(1−ε)) =
β

2
(q(2; 1)+q(2; 2)+d)u′(d(1−ε)+q(2; 1)(1−2ε)).

(38)

For t ≥ 2 agent 1’s first order conditions with respect to the tree option paying in state

2 still determine its price in state 1 since agent 2 is constrained in that state. On the other

hand, in state 2 the consumption of both agents is the same as in the subsequent date in

state 2, hence both agents are not constrained in their holdings of the tree options paying

in state 2 and its price is determined by the first order conditions of any of them (say again

agent 1).

q(1; 2)u′(h + εd− q(1; 2)(1− 2ε)) =
β

2
(q(2; 1) + q(2; 2) + d)u′(d(1− ε) + q(2; 1)(1− 2ε))(39)

q(2; 2)u′ (d(1− ε) + q(2; 1)(1− 2ε)) =
β

2
(q(2; 1) + q(2; 2) + d)u′(d(1− ε) + q(2; 1)(1− 2ε))(40)

From (40) we obtain for t > 1 that

q(1; 1) = q(2; 2) =
β(q(2; 1) + d)

2− β
(41)

and therefore

q(2; 1) + q(2; 2) + d =
2(q(2; 1) + d)

2− β
.

Substituting this expression into equation (39) we obtain (25).

Derivation of Equation (30). The expression for the price change in (30) is obtained

by differentiating (38) with respect to ε, evaluated at ε = 0, when q1(1; 2), q(2; 1) and

q1(1; 1), q(2; 2) are at their steady state values before the intervention, given respectively by

q0(2; 1) for the first two and by β(q0(2;1)+d)
2−β for the last two. Noting that dq1(1;1)

dε ε
∣∣∣
ε=0

= 0,

since the price q1(1; 1) also changes with ε but the expression is evaluated at ε = 0, we get

(30).
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Derivation of Condition (32). From equation (25) we find that q0(2, 1) can be written

in term of u′(d) and u′(h),

q0(2; 1) =

βd
2−βu

′(d)

u′(h)− β
2−βu

′(d)
. (42)

Defining ũ′(h) := u′(h)
u′(d) , ũ′′(h) := u′′(h)

u′(d) , and ũ′′(d) := u′′(d)
u′(d) we obtain that Condition (31) is

equivalent to the condition A
B > 0 where

A =
4ũ′(h) [1 + dũ′′(d) + ũ′(h)]− 2β

[
2 + (4 + 3dũ′′(d))ũ′(h) + 2ũ′(h)2 + dũ′′(h)

]
+

β2
[

1
ũ′(h) + (3 + 2dũ′′(d))ũ′(h) + ũ′(h)2 + d ũ

′′(h)
ũ′(h)2

+ (3 + dũ′′(h))
]

and

B =

[
−2ũ′(h)2 + β

(
ũ′(h) + ũ′(h)2 + dũ′′(h)

)]
[4ũ′(h)2 + β2(1 + (2 + dũ′′(d))ũ′(h) + ũ′(h)2 + dũ′′(h))

−2β((2 + dũ′′(d))ũ′(h) + 2ũ′(h)2 + dũ′′(h))]

It can then be easily seen that, since all marginal utilities are evaluated at positive numbers,

that remain bounded away from zero as β → 0, for sufficiently small β we have A
B > 0 if

1 + dũ′′(d) + ũ′(h) < 0, or equivalently

1 + d
u′′(d)

u′(d)
+
u′(h)

u′(d)
< 0.
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Figure 1: Constrained inefficient region
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