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2 REPUTATIONAL BARGAINING

Introduction

Rubinstein (1982) delighted economists by establishing uniqueness of perfect equi-
librium in an infinite horizon bargaining model. Once the surprise wore off, attention
moved to another intriguing feature of the model: in the unique equilibrium, agreement
is reached immediately. While this did not square well with some real-world phenomena
(protracted haggling over prices, strikes in labor negotiations and so on), it was expected
that introducing asymmetric information into the model would easily produce delay to
agreement. If the purpose of holding out for a better deal is to signal the strength of one’s
bargaining position, then the existence of asymmetric information (without which there
would be nothing to signal) might naturally be expected to go hand in hand with delay to
agreement.

The asymmetric information bargaining literature did not unfold exactly as hoped.
The early papers revealed a vast multiplicity of perfect Bayesian equilibria, even for one-
sided asymmetric information (Rubinstein (1985)) or for only two periods in the case of
bilateral informational asymmetry (Fudenberg and Tirole (1983)). More specific results
relied on severely limited strategy spaces (Chatterjee and Samuelson (1987)), appeals to
“reasonable” selections from the equilibrium correspondences (Sobel and Takahashi (1983),
Cramton (1984), Chatterjee and Samuelson (1988)) or axiomatic restrictions of equilib-
rium (Rubinstein (1985) and Gul and Sonnenschein (1988)). The latter two papers study
one-sided asymmetric information and produce solutions with a “Coasean” flavor:1 the
uninformed player, facing an opponent drawn from a distribution of payoff types, does as
badly as she would if she instead faced, with certainty, the strongest possible opponent
from that distribution. Moreover, there is virtually no delay to agreement. (Both these
results apply to situations where offers can be made frequently.)

This paper investigates the effects of introducing behavioral perturbations2 into a
bargaining model with one-sided asymmetric information. Will this achieve equilibrium
selection, as in Fudenberg and Levine (1989), Abreu and Gul (2000) and Abreu and Pearce
(2007)? And if so, will the predictions agree with the axiomatic treatment of Rubinstein
(1985)? The model we perturb is the leading example of the class covered by Rubinstein
(1985). Player A is of known preferences, but she is unsure which of two discount rates
player B uses to discount his payoff stream.

1Coase (1971) conjectured that when a durable goods monopolist faces buyers with a distribution
of valuations, most sales will occur almost immediately, at a price near the infimum of that valuation
distribution. Coase assumed that the monopolist was free to adjust prices frequently. In the 1980’s a

series of papers verified the conjecture with increasing conclusiveness and generality. See especially Stokey
(1981), Bulow (1982), Fudenberg, Levine and Tirole (1985) and Gul, Sonnenschein and Wilson (1986),
and for a critique of some of the axioms imposed, Ausubel and Deneckere (1989).

2A trio of papers (Kreps and Wilson (1982), Kreps, Milgrom, Roberts and Wilson (1982) and
Milgrom and Roberts (1982)) opened the reputational literature by demonstrating the power that even
small reputational perturbations could have in games with long or infinite horizons. Fudenberg and Levine
(1989) show the success a patient long-run player can have against short-run opponents by choosing which

of many reputational types to imitate. Much of the ensuing literature is surveyed authoritatively by
Mailath and Samuelson (2006).



ABREU, PEARCE AND STACCHETTI 3

We begin in Section 2 by considering stationary behavioral types, who never waver
from the demands they make at the beginning of the game. This is the class of types used
by Myerson (1991) and Abreu and Gul (2000). We show that equilibrium is essentially
unique: with high probability, play ends almost immediately, and the uninformed player’s
expected payoff is virtually what she would have received in a full information Rubinstein
(1982) solution if her opponent were known to be the stronger (more patient) of the
two possible rational types. This is in agreement with Rubinstein (1985), and reinforces
the message of Inderst (2005), who showed that in a durable goods monopoly problem,
endowing the monopolist with an ex ante reputation for (possibly) being a behavioral type,
does not overturn Coase’s predictions unless that ex ante probability is substantial. See
Kim (2009) for extensions of that work.

Abreu and Pearce (2007) established that the stationary behavioral types are a
“sufficiently rich” class3 of perturbations to consider in stationary bargaining games (or
more generally, in repeated games with contracts). There are reasons to doubt that this
is true with asymmetric information. Cramton (1984) emphasizes the importance for an
informed player of delaying his first offer, to signal strength (his Introduction opens with
a dramatic illustration from military history). Accordingly, in Section 3 we expand the set
of behavioral types for the informed player so that player B can use the tactic of delaying
making an offer, without losing his reputation for being behavioral. This innovation turns
out to be crucial. While equilibrium is still unique, it takes an entirely different form
from Section 2. A hybrid equilibrium results from the patient player B trying to use
delay to separate himself from the impatient version of B. For many parameter values, the
uninformed player A does better than in the Coasean solution, and there is considerable
expected delay to agreement.

Notably, the payoffs of the unique solution of Section 3 are continuous in the prior
probability (call it α2) that the informed player B is the more patient of his two rational
types. Contrast this to Rubinstein (1985), where players’ payoffs are discontinuous at α2 =
0 (the uninformed player’s payoff is given by the full information Rubinstein solution with
impatient player B when α2 = 0, whereas it is given roughly by the full information solution
with the patient player B whenever α2 is positive). The same troubling discontinuity is
familiar from the durable goods monopoly problem, where only the lower support of the
price distribution matters to the seller.

Atemporal Types

Two players bargain over the division of a surplus. Player A opens the game by
demanding a share a ∈ [0, 1] of the surplus. Having observed this demand, B can accept
it or make a counteroffer b ∈ (1 − a, 1] (interpreted as the share of the surplus that B
demands). It is convenient to adopt a continuous/discrete time model in which a player
can change his demand at any time in {1, 2, 3, . . . }, but can concede to an outstanding
demand at any t ∈ [0,∞). This modeling device, introduce by Abreu and Pearce (2007),

3More precisely, there is no advantage to being able to imitate any type outside this class, even if
your opponent can.
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allows us to do war of attrition calculations in continuous time, while avoiding the usual
pathologies that arise in continuous time games. If at any time t ∈ {1, 2, 3, . . . } the players
make (simultaneously) compatible demands (a, b) (that is, a + b ≤ 1), one of the two
divisions of surplus (a, 1 − a) or (1 − b, b) is implemented with probability 1/2 each, and
the game ends.

The players can be “rational” or “behavioral” independently. Rational player A’s
discount rate is rA > 0 and rational player B’s discount rate is either rB1 or rB2 , where
rB1 > rB2 > 0 and αk = P[rBk | B is rational], k = 1, 2. Each player’s type (whether
he is rational or behavioral and the value of his discount rate) is private information.
Rational players are assumed to maximize the expected discounted value of their shares.
If agreement is never reached, they both receive 0 payoffs. Behavioral types for A and
B are represented by two finite sets A,B ⊂ (0, 1). A behavioral player A of type a ∈ A
makes the initial demand a, never changes her initial demand, and accepts (immediately)
a counteroffer b if and only if 1− b ≥ a. Behavioral types B are similarly defined. Player
i ∈ {A,B} is behavioral with probability zi and for each a ∈ A and b ∈ B,

πA(a) = P[a | A is behavioral] and πB(b) = P[b | B is behavioral].

We will denote this incomplete information game by Γ(r, α, zA, zB), where r = (rA, rB1 , rB2 )
and α = (α1, α2). The parameters A, B, πA and πB are held fixed throughout.

Let ā = max A and b̄ = max B. We assume that [min A] + b̄ > 1, ā+ [min B] > 1,
and that πA(a) > 0 and πB(b) > 0 for all a ∈ A and b ∈ B.

Hereafter, we find it convenient to call A the rational player A and Bk the rational
player B with discount rate rBk , k = 1, 2. We will require that A’s initial demand belongs
to A, and similarly that Bk’s initial demand belongs to B. There is no restriction on
either player’s subsequent demands.4 In equilibrium, A chooses an initial posture a ∈ A
with probability φA(a), and after observing a, Bk chooses an initial posture b ∈ B with
probability φB

k (b|a). A pair of choices (a, b) ∈ A× B with a+ b > 1 leads to the subgame
Γ(r, α̂1(a, b), α̂2(a, b), ẑ

A(a), ẑB(a, b), a, b), where

ẑA(a) =
zAπA(a)

zAπA(a) + (1− zA)φA(a)

ẑB(a, b) =
zBπB(b)

zBπB(b) + (1− zB)[α1φB
1 (b|a) + α2φB

2 (b|a)]

α̂k(a, b) =
(1− zB)αkφ

B
k (b|a)

zBπB(b) + (1− zB)[α1φB
1 (b|a) + α2φB

2 (b|a)]
k = 1, 2.

are the posterior probabilities that player A is behavioral, and that player B is behavioral
or Bk, respectively. For simplicity, we will often omit the arguments (a, b) and simply
write, for example, ẑA and ẑB instead of ẑA(a) and ẑB(a, b).

4This is without loss of generality. The choice of ā ∈ A for A weakly dominates any a /∈ A, and
when A demands a ∈ A, a counteroffer b /∈ B yields a unique equilibrium in which Bk concedes to a right

away with probability 1, k = 1, 2. This is another expression of Coasean dynamics (see Section 8.8 of
Myerson (1991), Proposition 4 of Abreu and Gul (2000) and Lemma 1 of Abreu and Pearce (2007)).
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For any (a, b) ∈ A×B with a+ b > 1, the subgame Γ(r, α̂1, α̂2, ẑ
A, ẑB , a, b) is played

as a war of attrition (WOA) and has a unique equilibrium, similar to the equilibrium
obtained by Abreu and Gul (2000). After adopting the initial postures (a, b), each rational
player randomly chooses a time to accept the opponent’s demand (if the opponent has not
accepted already). A rational player has the option of changing his initial demand at any
t ∈ {1, 2, . . . }. But doing so would reveal that he is rational and in the unique equilibrium
of the continuation game he should concede to the opponent’s demand immediately.5 Let
µi = (1 − ẑi) × (probability that i concedes at time 0) be the (total) probability that
i ∈ {A,B} concedes at time 0. Then µA · µB = 0 since when µB > 0, for example, A
strictly prefers to wait at time 0. If 0 < µB ≤ α̂1, then only B1 concedes immediately with
positive probability, but if µB > α̂1, then B1 concedes immediately with probability 1 and
B2 concedes immediately with positive probability. Thus, if the players do not concede
immediately, the relevant posteriors become

ẑi(0) =
ẑi

1− µi
i = A,B, α̂2(0) = min

{
α̂2

1− µB
, 1− ẑB(0)

}
,

and α̂1(0) = 1− ẑB(0)− α̂2(0). After time 0, the WOA is divided into two intervals (0, τ1]
and (τ1, τ2]. In (0, τ1], A concedes at a constant Poisson rate λA

1 , and in (τ1, τ2], A concedes
at constant Poisson rate λA

2 , while B concedes at constant Poisson rate λB in the whole
interval (0, τ2], where

λA
k (a, b) =

rBk (1− a)

a+ b− 1
k = 1, 2, λB(a, b) =

rA(1− b)

a+ b− 1
.

(Again, we will often omit the arguments (a, b) for λB and λA
k , k = 1, 2, when the relevant

(a, b) are clear from context.) If α̂1(0) = 0 then τ1 = 0, and if α̂2 = 0 then τ2 = τ1.
If α̂1(0) = 0 or α̂2(0) = 0, the WOA is exactly that studied by Abreu and Gul (2000).
When α̂1 > 0, λA

1 keeps B1 indifferent between conceding and waiting, but at τ1 A becomes
convinced that she is not dealing with B1, and switches to the concession rate λA

2 that keeps
B2 indifferent between conceding and waiting. The concession rate λB keeps A indifferent
in (0, τ2]. The players’ reputations (that is, the posteriors that they are behavioral) grow
exponentially over time:

ẑB(τ) = ẑB(0)eλ
Bτ and ẑA(τ) =

{
ẑA(0)eλ

A
1 τ τ ∈ (0, τ1]

ẑA(τ1)e
λA
2 τ τ ∈ (τ1, τ2].

At time τ2 both players’ reputations reach 1 simultaneously. Given µA and µB, τ1 and τ2
are defined by

[ẑB(0) + α̂2(0)]e
λBτ1 = 1 and ẑB(0)eλ

Bτ2 = 1.

5The argument is as in Footnote 4. This argument presumes that when a player reveals rationality,
his opponent does not do so at the same time. It is easy to show that in equilibrium both players cannot

reveal rationality with positive probability at the same time. See Lemma 5 for an explicit treatment in
the (novel) context of the temporal model.
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If at least one player is rational, the subgame ends in agreement randomly in the interval
[0, τ2] with probability 1; if both players are behavioral, the subgame never ends.

The next four lemmas analyze the game by backward induction. Lemma 1 sum-
marizes the solution of the subgame we have been discussing, taking the offers made and
the updated beliefs as parameters. The expression L in the lemma captures the relative
“strengths” of the two players’ positions: unless the situation is perfectly balanced, where
L = 1, one of the players is “weak”, and needs to concede with positive probability at time
zero. Player A’s position is weakened by any of the following changes: an increase in her
demand or a decrease in B’s demand, an increase in her rate of interest or a decrease in
either rB1 or rB2 , or a decrease in her reputation ẑA or an increase in ẑB .

In Lemma 1 below recall the definitions of µA, µB, λA
k , k = 1, 2, and λB from above.

Lemma 1. Γ(r, α̂1, α̂2, ẑ
A, ẑB , a, b) with (a, b) ∈ A × B and a + b > 1 has a unique equi-

librium. Let

L =
[ẑA]λ

B

[ẑB + α̂2]λ
A
1 −λA

2 [ẑB ]λ
A
2

.

When L ≤ 1, µB = 0 and

µA = 1− L1/λB

= 1− ẑA

[ẑB + α̂2](λ
A
1 −λA

2 )/λB
[ẑB]λ

A
2 /λB

.

When L ≥ 1, µA = 0 and

µB =

{
1− ẑB/[ẑA]λ

B/λA
2 if 1− ẑB/[ẑA]λ

B/λA
2 ≥ α̂1

1− 1/L1/λA
1 otherwise.

At time τ2, ẑ
A(τ2) = ẑB(τ2) = 1.

Remark: Note that when α̂2 = 0 or α̂1 = 0, the WOA reduces to that studied by
Abreu and Gul (2000) where there is only one type of rational player B. In this case,

L =
[ẑA]λ

B

[ẑB ]λ
A
1

if α̂2 = 0, and L =
[ẑA]λ

B

[ẑB]λ
A
2

if α̂1 = 0.

Proof. Most of the results follow directly from the analysis in Abreu and Gul (2000). Thus,
here we only deduce the value of µB when L > 1. When µB ≥ α̂1, B1 concedes immediately
with probability 1 (and B2 concedes immediately with nonnegative probability). Thus, if
B does not concede immediately, A concludes that she is dealing with B2 or a behavioral
type. Consequently, τ1 = 0 and A concedes to b at a constant Poisson rate λA

2 in the
interval (0, τ2]. Thus

ẑB

1− µB
eλ

Bτ2 = 1 and ẑAeλ
A
2 τ2 = 1.
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These equations imply that

1− µB = ẑB/[ẑA]λ
B/λA

2 .

When µB < α̂1, B1 concedes immediately with probability less than 1, and τ1 > 0.
In this case,[

α̂2 + ẑB

1− µB

]
eλ

Bτ1 = 1,
ẑB

1− µB
eλ

Bτ2 = 1 and ẑAeλ
A
1 τ1+λA

2 (τ2−τ1) = 1.

These equations imply that

1− µB =

[
1

L

]1/λA
1

□

Lemma 2 concerns the limiting properties of equilibrium after offers have been made,
as the initial reputations approach zero (in any manner not violating an arbitrarily loose
bound). The striking result here is that player B’s strength or weakness is affected neither
by the interest rate rB1 of his more impatient rational type, nor by the probability α̂1 of
that type. Only rB2 and α̂2 contribute to his strength (along with the impatience of player
A). This is explained by the fact that for ẑA and ẑB very small, almost 100% of the war
of attrition will be spent in the second phase (see the paragraphs preceding Lemma 1
above), in which A faces the more patient type of B (if B is rational). To understand why,
consider the following example. Fix α̂1, the probability that B is the impatient rational
type, at .9; the residual probability is divided between the probability (bounded above by
.1) that B is the patient rational type, and ẑB , the probability B is behavioral. Absent
any concessions at time 0, it takes a fixed amount of time τ1 (dependent on α̂1, which we
will not change) to finish the first stage of the war of attrition (given the rate λB at which
B needs to concede to A, Bayes’ Rule determines the time τ1 at which nine tenths of the B
population, that is, all the impatient ones, will have conceded). Now let ẑB approach zero.
The length of the entire war of attrition grows without bound, but the first stage is not
increasing in length. Even though the impatient type was more abundant than the patient
type at time zero, A spends almost 100% of the war of attrition fighting the patient type,
when ẑB is negligible. For this reason, λA

2 appears in the statement of Lemma 2, whereas
λA
1 does not.

For any R > 1 and z̄ > 0, define the cone and truncated cone

K(R) = {(zA, zB) | zA > 0, zB > 0 and max {zA/zB , zB/zA} ≤ R},
K(R, z̄) = {(zA, zB) ∈ K(R) | zA ≤ z̄ and zB ≤ z̄}.

Lemma 2. Let R > 1 and {zℓ} ⊂ K(R) be a sequence such that zℓ = (zAℓ, zBℓ) ↓ (0, 0).
For each ℓ, let φℓ be a PBE of Γ(r, α, zℓ). Assume that φℓ → φ∞ in RM × RN×M . For a
given (a, b) ∈ A× B with a+ b > 1, consider the corresponding subgames Γ(r, α̂ℓ, ẑℓ, a, b).
Let (ẑB∞, α̂∞

1 , α̂∞
2 ) be the limit of {(ẑBℓ, α̂ℓ

1, α̂
ℓ
2)}.
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(i) If φB∞
1 (b|a) + φB∞

2 (b|a) > 0 and λA
2 > λB, then µBℓ → 1.

(ii) If φA∞(a) > 0 and ẑB∞ > 0, then µAℓ → 1.

(iii) If φA∞(a) > 0, α̂B∞
2 > 0 and λB > λA

2 , then µAℓ → 1.

Proof. See Appendix.

For each a ∈ (0, 1) and k = 1, 2, let

b∗k(a) = max

{
1− a, 1− rBk

rA
(1− a)

}
.

Assume A offers a ∈ (0, 1). When b∗k(a) > 1− a, b∗k(a) is the “balanced counter-demand”
that equalizes the Poisson rates of concessions when A only faces Bk (and behavioral types):

λA
k (a, b

∗
k(a)) =

rBk (1− a)

a+ b∗k(a)− 1
=

rA(1− b∗k(a))

a+ b∗k(a)− 1
= λB(a, b∗k(a)).

When the demand a is too modest, any counter-demand b > 1 − a is excessive, that is,
yields λA

k > λB . In this case we define b∗k(a) = 1− a. For k = 1, 2, we assume that

b∗k(a) /∈ B and min B < b∗k(a) for all a ∈ A.

Let

⌊b∗k(a)⌋ = max
{
1− a,max {b ∈ B | b < b∗k(a)}

}
and ã∗ ∈ argmina∈A⌊b∗2(a)⌋.

For simplicity,6 we assume that the argmin is a singleton. Observe that when ⌊b∗k(a)⌋ > 1−
a, it is the largest behavioral demand b ∈ B such that λB(a, b) > λA

k (a, b). Furthermore, if
rB1 > rB2 (as assumed), there clearly exists ∆ > 0 such that λA

1 (a, b
∗
2(a)−∆) > λB(a, b∗2(a)−

∆) for all ∆ ≤ ∆ and a ∈ A. We will assume throughout that the grid of types B is fine
enough that ⌊b∗2(a)⌋ > b∗2(a)−∆ for all a ∈ A.

Suppose that the reputational perturbations zA and zB are very slight. Once A has
made an equilibrium demand a ∈ A, with high probability player B responds by demanding
the highest amount b ∈ B such that b is less greedy than the balanced demand b∗2(a). Any
demand higher than this, if offered with noticeable probability in equilibrium, would leave
B in a weak position, from which he would need to concede with probability near 1. Lemma
3 establishes the payoff consequences for each player.

6Our results can be rephrased throughout – at the cost of some clumsiness in the statements and
proofs – for the general case.
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Lemma 3. For any R > 1 and ϵ > 0, there exists z̄ > 0 such that for all z ∈ K(R, z̄),
for any Perfect Bayesian equilibrium (φA, φB) of Γ(r, α, z), and for any a ∈ A, the corre-
sponding expected payoff for A satisfies

vA(a, z) ≥ 1− ⌊b∗2(a)⌋ − ϵ.

Moreover, if φA(a) ≥ ϵ, then

vBk (a, z) ≥ ⌊b∗2(a)⌋ − ϵ k = 1, 2.

Proof. Step 1: To simplify notation, let b̂2 = ⌊b∗2(a)⌋. For the first part, assume by
way of contradiction that there exist a sequence {zℓ}, zℓ = (zAℓ, zBℓ) → 0, a ∈ A and a

corresponding sequence of PBE {φℓ} such that vAℓ(a, zℓ) < 1 − b̂2 − ϵ for all ℓ. Without
loss of generality, we can also assume that φℓ → φ∞ in RM × RN×M . For each ℓ and
b ∈ B, consider the corresponding subgame Γ(r, α̂ℓ(a, b), ẑAℓ(a), ẑBℓ(a, b), a, b). Clearly A
is guaranteed a payoff of at least 1− b in this subgame (since A can always concede to b).

Therefore, A’s payoff is at least 1 − b̂2 whenever b ≤ b̂2. Suppose now that b ∈ B is such

that b > b̂2 and φB∞
k (b|a) > 0 for k = 1 or k = 2. Since b > b̂2, λ

A
2 (a, b) > λB(a, b). Then,

Lemma 2 (i) implies that lim µBℓ(a, b) = 1 and A’s total expected payoff in the subgame
after the demands (a, b) are made is bounded below by (1 − zBℓ)a + zBℓ(1 − b) − ϵ/4 ≥
1 − b̂2 − ϵ/2 for all ℓ sufficiently large since a ≥ 1 − b̂2. Finally, if b ∈ B is such that

b > b̂2 and φB∞
k (b|a) = 0 for k = 1, 2, then A’s expected payoff is only bounded below by

0, but the probability of reaching the subgame with offers (a, b) is zBℓπB(b). Thus, A’s

total expected payoff after making the demand a is bounded below by 1− b̂2 − ϵ for all ℓ
sufficiently large, a contradiction.

Step 2: For the second part, assume again by contradiction that there exist a
sequence {zℓ}, zℓ = (zAℓ, zBℓ) → 0, a ∈ A and a corresponding sequence of PBE {φℓ}
such that φAℓ(a) ≥ ϵ and for either k = 1 or k = 2, vBk (a, zℓ) < b̂2 − ϵ for all ℓ. Without
loss of generality, assume that φℓ → φ∞.

For each b ∈ B consider the corresponding subgame Γ(r, α̂ℓ(a, b), ẑℓ(a, b), a, b). As-
sume that φB∞

2 (b|a) > 0. Then α̂ℓ
2(a, b) → α2φ

B∞
2 (b|a)/[α1φ

B∞
1 (b|a) + α2φ

B∞
2 (b|a)] > 0.

Furthermore, if b = b̂2, then λB(a, b) > λA
2 (a, b). Then, Lemma 2 (iii) implies that

µA∞(a, b) = 1 and consequently vB2 (a, zℓ) → ⌊b∗2(a)⌋. As B1 could also choose to coun-

teroffer b̂2 (possibly out of equilibrium), lim vB1 (a, zℓ) ≥ b̂2 . But, since B2’s payoff must

weakly exceed B1’s, v
B
1 (a, zℓ) ≤ vB2 (a, zℓ) for all ℓ, and it follows that vB1 (a, zℓ) → b̂2 as

well. To complete the proof, we establish that φB∞
2 (b|a) = 0 for all b ̸= b̂2.

Step 3: Consider any b ∈ B with b < b̂2 and suppose that φB∞
2 (b|a) > 0. For

the corresponding subgames Γ(r, α̂ℓ(a, b), ẑℓ(a, b), a, b), without loss of generality, assume
that (ẑBℓ(a, b), α̂ℓ

1(a, b), α̂
ℓ
2(a, b)) → (ẑB∞(a, b), α̂∞

1 (a, b), α̂∞
2 (a, b)). Then α̂∞

2 (a, b) > 0.
Furthermore, λB(a, b) > λA

2 (a, b). Then, by Lemma 2(iii), µA∞(a, b) = 1 and vB2 (a, zℓ) →
b. As in Step 2, we may also conclude that vB1 (a, zℓ) → b. Now consider b̂2. If ẑ

B∞(a, b̂2) >
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0, then by Lemma 2(ii), µA∞(a, b̂2) = 1, which contradicts vB2 (a, ẑℓ) → b < b̂2. Hence

ẑB∞(a, b̂2) = 0. If φB∞
1 (b̂2|a) = 0 then α̂∞

2 (a, b̂2) = 1. Note that ẑB∞(a, b̂2)+ α̂∞
1 (a, b̂2)+

α̂∞
2 (a, b̂2) = 1. Then, By Lemma 2 (ii), µA∞(a, b̂2) = 1, which yields a contradiction as

before. Hence φB∞
1 (b̂2|a) > 0 and φBℓ

1 (b̂2|a) > 0 for large ℓ. Therefore

µAℓ(a, b̂2)b̂2 + (1− µAℓ(a, b̂2))(1− a) ≈ b,

which implies that µA∞(a, b̂2) < 1. Let τ ℓ1 be the time until which A concedes at rate

λA
1 (a, b̂2) in equilibrium φℓ (see Lemma 1 for a definition), and let Eℓ(ρ) = e−(ρ+λA

1 (a,b̂2))τ
ℓ
1 .

Then ∫ τℓ
1

0

e−ρsλA
1 (a, b̂2)e

−λA
1 (a,b̂2)sds =

λA
1 (a, b̂2)

ρ+ λA
1 (a, b̂2)

(1− Eℓ(ρ)).

If B2 mimics b̂2, he obtains a payoff of

ṽBℓ
2 = µAℓ(a, b̂2)b̂2 + (1− µAℓ(a, b̂2))

[
λA
1 (a, b̂2)

rB2 + λA
1 (a, b̂2)

(1− Eℓ(rB2 ))b̂2 + Eℓ(rB2 )(1− a)

]
Recall that [α̂Bℓ

2 + ẑBℓ]eλ
Bτℓ

1 = 1, so Eℓ(ρ) = [α̂Bℓ
2 + ẑBℓ](ρ+λA

1 (a,b̂2))/λ
B(a,b̂2). Then,

φB∞
1 (b̂2|a) > 0 implies that lim Eℓ(rB2 ) < 1. Since

λA
1 (a, b̂2)

rB1 + λA
1 (a, b̂2)

b̂2 = 1− a

and λA
1 /(r

B
1 + λA

1 ) < λA
1 /(r

B
2 + λA

1 ), we have that ṽB∞
2 > b, a contradiction.

Step 4: Finally, consider any b ∈ B with b > b̂2, and suppose that φB∞
2 (b|a) > 0.

Now λA
2 (a, b) > λA(a, b) and by Lemma 2(i), µB∞(a, b) = 1. Thus, vB2 (a, ẑℓ) → 1 − a,

and hence vB1 (a, ẑℓ) → 1 − a also. Now consider b̂2. As in Step 3 we conclude that

φB∞
1 (b̂2|a) > 0. Now consider B2’s payoff from mimicking b̂2. If ẑ

B∞(a, b̂2)+α̂∞
2 (a, b̂2) > 0,

then by Lemma 2 (ii) or (iii), µA∞(a, b̂2) = 1, which contradicts vB2 (a, ẑℓ) → 1− a. Hence

α̂∞
1 (a, b̂2) = 1. Furthermore, µA∞(a, b̂2) = 0. Now we can simply repeat the end of Step

3 (which merely uses µA∞(a, b̂2) < 1) to conclude that ṽB∞
2 > 1 − a = lim vB2 (a, ẑℓ), a

contradiction. □
Recall that ã∗ = argmax ⌊b∗2(a)⌋.

Corollary. For any R ∈ (0,∞) and ϵ > 0, there exists z̄ > 0 such that for all z ∈ K(R, z̄),
and for any Perfect Bayesian equilibrium (φA, φB) of Γ(r, α, z), φA(a) < ϵ for all a ̸= ã∗.

Theorem 1. For any R ∈ (0,∞) and ϵ > 0, there exists z̄ > 0 such that for all z ∈
K(R, z̄), and for any Perfect Bayesian equilibrium (φA, φB) of Γ(r, α, z),

vA(z) ≥ 1− ⌊b∗2(ã∗)⌋ − ϵ and vBk (z) ≥ ⌊b∗2(ã∗)⌋ − ϵ, k = 1, 2.

Let a∗ be such that rAa∗ = rB2 (1 − a∗). The demand a∗ is such that its balanced
counter-demand proposes the same partition: b∗2(a

∗) = 1 − a∗. Note that if the grids
of types A and B are fine then ã∗ ≈ a∗ and ⌊b∗2(ã∗)⌋ ≈ 1 − a∗, and more generally,
⌊b∗2(a)⌋ ≈ b∗2(a) for all a ∈ A.
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Temporal Types

In the model of Section 2, there was no scope for a rational player B to signal his
patience: delaying making a demand would reveal his rationality, giving A the decisive
reputational advantage. Here, we remedy the situation in the simplest possible way, al-
lowing for reputational types of the informed player that wait a variety of lengths of time
before making a demand. It turns out that in equilibrium, B can now signal that he is
either behavioral, or the patient rational type. This can have dramatic implications for
the payoffs achieved by the two players, showing that in this asymmetric information en-
vironment, simple atemporal types are not canonical in the sense of Footnote 3 (whereas
they are in the symmetric information settings of Abreu and Pearce (2007)).

The temporal model differs from the atemporal model in that player B is now allowed
to make his initial counteroffer with delay. Once player A makes her initial demand a,
player B can accept it or wait until some time t ∈ [0,∞) to make a counter-demand
b ∈ (1 − a, 1]. Similarly to the previous model, once the counter-demand b is made, the
players can change their (counter)demands only at times {t+1, t+2, . . . }, but can concede
to an outstanding demand at any time τ ∈ [t,∞). Rational players A and Bk, k = 1, 2,
have discount rates rA and rBk , k = 1, 2, respectively, where rB1 > rB2 . Behavioral players
A are represented by A as before (with the same interpretation), but behavioral types for
B are now represented by the set B × [0, T̄ ], where T̄ is a sufficiently long time (as we
discuss later). A behavioral player B of type (b, t) makes his initial counter-demand b at
time t, never changes his demand, and concedes (immediately) to a demand a if and only
if 1− a ≥ b. We also assume that behavioral types for B are “reactive” in the sense that if
player A puts herself in a vulnerable position by changing her initial demand before player
B has made a counter-demand, then a behavioral type (b, t) becomes more aggressive and
immediately demands b̄ (and only accepts a demand a ≤ 1− b̄).

Let zi be the probability that player i ∈ {A,B} is behavioral, πA(a) be the condi-
tional probability that A is type a ∈ A given that she is behavioral, and πB(b, t) be the
conditional probability density that B is type (b, t) ∈ B× [0, T̄ ] given that he is behavioral.
We assume that πB(b, t) is continuous in t for each b ∈ B, and that there exists π > 0 such
that

πA(a) ≥ π and πB(b, t) ≥ π for all a ∈ A and (b, t) ∈ B× [0, T̄ ].

We denote this game by Γ(r, α, z).
As before, we assume that [min A] + b̄ > 1 and conversely. Furthermore, we assume

that
b̄e−rB2 T̄ < 1− ā,

so that the more patient player B2 (and therefore B1 as well) would prefer to accept the
demand ā immediately to waiting until after T̄ to make the counterdemand b̄, even if b̄
were then immediately accepted by A. This is what we meant earlier by T̄ being sufficiently
long.

As in the previous section and for the same reasons, we assume that the initial
demands of rational players are compatible with them being behavioral. In equilibrium, A
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chooses a ∈ A with probability φA(a). For each demand a ∈ A, player Bk either chooses
to accept a immediately or to mimic a behavioral type (b, t) ∈ B× [0, T̄ ] with probability
density φB

k (b, t|a), k = 1, 2. Consequently, after the demand a ∈ A is made, A is behavioral
with posterior probability

ẑA(a) =
zAπA(a)

zAπA(a) + (1− zA)φA(a)
, (1)

and after the counter-demand (b, t) ∈ B × [0, T̄ ], B is behavioral or Bk, k = 1, 2, with
posterior probabilities

ẑB(a, b, t) =
zBπB(b, t)

zBπB(b, t) + (1− zB)[α1φB
1 (b, t|a) + α2φB

2 (b, t|a)]
and (2)

α̂k(a, b, t) =
(1− zB)αkφ

B
k (b, t|a)

zBπB(b, t) + (1− zB)[α1φB
1 (b, t|a) + α2φB

2 (b, t|a)]
k = 1, 2, (3)

The analysis in the preceding Section leads one to suspect, correctly, that each
side will eventually imitate a behavioral type, and a war of attrition (or an immediate
probabilistic concession) ensues. Lemma 5 establishes the payoff consequences of being
the first to reveal rationality. Lemma 4 points out that before player B has spoken, A
is in a particularly delicate situation: if she reveals rationality, she expects B to act like
the most aggressive behavioral type (because he is in a winning position no matter what
types he imitates). The only exception to this expectation is if matters are even worse
for A, because the equilibrium expectation if B responds to As revealing rationality by
revealing rationality himself, gives A less than 1− b̄ (that is, the equilibrium expectation
is a particularly adverse selection for A from the set of equilibria of the full information
subgame.7)

Lemma 4. If player A (who chooses a ∈ A at t = 0) reveals rationality before B makes a
counterdemand, then A’s continuation payoff is at most 1− b̄.

Lemma 5. Suppose A demands a ∈ A at time t = 0 and B counterdemands (b, t) ∈
B × [0, T̄ ] where a + b > 1. Suppose neither player has revealed rationality prior to time
s ≥ t and that revealing rationality at s is in the support of A’s equilibrium strategy. Then,
if A reveals rationality at s and B has not, A’s resulting equilibrium continuation payoff
is at most 1 − b and B’s is at least b. An analogous conclusion holds when B is the first
to reveal rationality at s. Moreover, in equilibrium, if A reveals rationality with positive
probability at s, then B does not, and conversely.

Consider a particular equilibrium of the game, and the subgame after A has made
some demand a ∈ A. In the subgame, there are expected discounted equilibrium payoffs

7Notice that offers in that subgame are simultaneous, so the uniqueness result of Rubinstein (1982)
does not apply.
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v1 and v2 for the impatient and patient rational types of B, respectively, discounted to
time zero. Because B2 could adopt B1’s equilibrium strategy if he wanted to, v2 ≥ v1. If
Bk waits until some positive time t to make a demand b ∈ B in response to a, he must
expect, if (b, t) is in the support of his equilibrium strategy in this subgame, to receive a

payoff of vke
rBk t (discounted to t) by doing so. Figure 1 shows the “indifference curves” for

the respective types of player B, and some particular demand b ∈ B they might consider
making. Note that if neither rational type of B ever demands b at time t, then if A observes
(b, t), she concludes that she faces a behavioral type and concedes immediately. In this
situation, the payoff Bk would receive if he deviated to making the demand (b, t), would
be

bz = (1− ẑA)b+ ẑA(1− a)

(because if he is not conceded to, he waits an instant and concedes himself). Figure 1 also
shows bz.

Figure 1

In Figure 1, t∗ labels the time at which B1’s indifference curve cuts bz, and t2 the
time at which the two indifference curves intersect. (Eventually we shall introduce a time
t1 < t2.) Consider times such as t′ after t∗ but before B2’s indifference curve cuts bz.
B1 will never demand b at time t′ (even immediate acceptance by rational A would be
insufficient to give him his equilibrium payoff). But (b, t′) must be in the support of B2’s
equilibrium strategy: if it were not, deviating to it would yield B2 a payoff of bz since it
would be taken by A as evidence that B was behavioral.

We see that to the right of t∗, the equilibrium must provide a payoff ramp that
keeps B2 on his level set. How is this accomplished? When B2 asks for b at t′, there may
be a concession by one side, followed by a WOA constructed so that each side is indifferent
about conceding at any time. If B2’s payoff is ramping up to the right of t∗, it must be
that A is conceding to B with increasing probability as B waits longer before speaking.
Given the single-crossing nature of the level sets, a natural question is: Is there a fully
separating equilibrium in the subgame, in which to the left of t2, instantaneous concession
probabilities by A rise at the rate that keeps type B1 indifferent, and to the right, at the
rate that keeps type B2 indifferent? Unfortunately, things are not that simple. B2 would
have a profitable deviation: ask for b at t′′ slightly to the left of t2, and get not only the
concession payoff that B1 would receive there, but also the advantage of playing a WOA in
which A’s concession rate is calculated to keep the less patient B1 indifferent (B2 therefore
receives surplus by playing this WOA, and this is a bonus to B2 beyond the payoff that B1

gets). Here we say that B2 is “sneaking in” and playing the WOA (against an unsuspecting
player A). We remark that B1 has no incentive to sneak in to the right of t2: the slow
WOA that A fights with B2 does not interest him.

Notice that (b, t′′) must be in the equilibrium support of both types. (If it were in
the support of B2 only, then B2 would get no bonus from the WOA, and his entire payoff
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would come from the concession A gives him, which type B1 could collect just as well as B2;
then B1 and B2 would have the same payoffs at t′′, a contradiction. We have already seen
why it cannot be in the support of B1 only.) If A, upon hearing the demand b at t′′, thinks
it much more likely to have been said by B1 than type B2, then in the event that a WOA
ensues (rather than a concession by A), it will have a long initial phase in which A concedes
at a rate that would keep B1 indifferent; this is a major bonus for B2, and leaves him above
his equilibrium indifference curve. On the other hand, if A thinks (b, t′′) is sufficiently more
likely to have been said by B2, the WOA will have a very brief first stage, which gives B2

such a small bonus that his expected payoff is below his equilibrium indifference curve.
We show in the Densities section of the Appendix that there exist unique densities for B1

and B2 such that each type’s payoff lies on the respective indifference curve.
Return for a moment to the fiction that player A believes, upon hearing the demand

b any time before t∗, that there is no chance it was made by B2. We can plot the curve
showing the expected utility B2 would get if he were to sneak in under this circumstance;
we call this the sneaking-in curve. Denote the sneaking-in value at t by v2(t). (We do not
make explicit the dependence of the sneaking in function on b; the relevant b will be clear
from context.) Lemma 6 establishes that it is steeper than B2’s equilibrium indifference
curve; Figures 4 and 5 illustrate the two possible cases (in case 1, the sneaking-in curve
intersects B2’s indifference curve to the right of the vertical axis, at the time we shall call
t1; in case 2, the sneaking-in curve cuts the vertical axis above v2, in which case we say
t1 = 0).

Lemma 6. (i) v1e
rB1 t < v2(t) for t < t∗ and v1e

rB1 t∗ = v2(t
∗); and (ii) v2(t) is steeper

than v2e
rB2 t for all t such that v2e

rB2 t ≤ v2(t).

Proof. See Appendix.

The analysis thus far has focused on the “horizontal” aspects of behavior in (t, b)
space, that is, for a given demand b, at what times will each type of player B be active?
Much more detailed distributional analysis will follow. But we turn at the moment to
the complementary “vertical” question: which demands b will be used by B1 and B2,
respectively? As z approaches 0, strong results emerge here.

Recall that in the previous Section with atemporal types, both B1 and B2 put almost
all their weight (asymptotically) on ⌊b∗2(a)⌋, which would be “slightly generous” in response
to a in a game where there was no impatient type (that is, α1 = 0). “Slightly generous”
means “the least generous response that is more generous than balanced”. This remains
true for B2 in the temporal setting. But even asymptotically, B1 may put substantial
weight on both ⌊b∗2(a)⌋ and ⌊b∗1(a)⌋. The latter occurs only very near t = 0. All of this
is established in Lemma 8. Lemma 7 prepares the ground by proving that if b ≤ ⌊b∗k(a)⌋,
and if Bk has positive density on b over some interval and Bj , j ̸= k, does not, then that
interval has to be very short. The idea is that if Bk is making a more-reasonable-than-
balanced demand, and if he were getting a payoff ramp over a long interval, A’s conditional
concession probability to him could not be close to 1 for most of that interval. If Bk is
being generous, why isn’t he getting conceded to almost for sure? It can only be because
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he is present there with extremely high density. But that can’t occur over more than a
brief interval (vanishing with z) or else the density would integrate to more than 1.

Lemma 7. For any R > 1 and ϵ > 0, there exists z̄ > 0 such that for all z ∈ K(R, z̄),
for any Perfect Bayesian Equilibrium (φA, φB) of Γ(r, α, z), and for any a ∈ A with
φA(a|z) ≥ ϵ, if for a given k and for j ̸= k, φB

j (⌊b∗k(a)⌋, s|a, z) = 0 for all s ∈ [s0, s0 + ϵ],

then vke
rBk s0 ≥ ⌊b∗k(a)⌋ − ϵ.

Proof. As in the proof of Lemma 3, suppose by way of contradiction that the Lemma is
false. Then there exists a sequence {zℓ} ⊂ K(R) such that zℓ = (zAℓ, zBℓ) ↓ (0, 0), a
corresponding sequence of PBE {φℓ}, and a ∈ A such that φB

j (⌊b∗k(a)⌋, s|a, zℓ) = 0 for all

s ∈ [s0, s0 + ϵ] and vke
rBk s0 < ⌊b∗k(a)⌋ − ϵ. Moreover, for some tℓ ∈ [s0, s0 + ϵ] it must

be the case that φBℓ
k (⌊b∗k(a)⌋, tℓ|a, zℓ) ≤ 1/ϵ (since

∫
φBℓ
k ≤ 1). The argument for k = 2

is virtually identical to Lemma 2 (ii). We present instead the very similar argument for
k = 1. Now,

ẑBℓ ≥ zBℓπB(b, tℓ)

zBℓπB(b, tℓ) + (1− zBℓ)α1/ϵ

since φBℓ
1 (⌊b∗1(a)⌋, tℓ|a, zℓ) ≤ 1/ϵ (and φBℓ

2 (⌊b∗1(a)⌋, tℓ|a, zℓ) = 0 by assumption). Further-

more, since α̂ℓ
2 = 0, Lℓ = [ẑAℓ]λ

B

/[ẑBℓ]λ
A
1 , and

Lℓ ≤
[

zAℓπA(a)

zBℓπB(b, tℓ)
× zBℓπB(b, tℓ) + (1− zBℓ)α1/ϵ

zAℓπA(a) + (1− zAℓ)φAℓ(a)

]λA
1

[ẑAℓ]λ
B−λA

1 .

Since πB(b, tℓ) ≥ π,

lim
ℓ→∞

Lℓ ≤
[
R

πA(a)

π

α1/ϵ

φA∞(a)

]λA
1

× lim
ℓ→∞

[ẑAℓ]λ
B−λA

1 .

Now, λB > λA
1 and

ẑAℓ ≤ zAℓπA(a)

zAℓπA(a) + (1− zAℓ)ϵ

since φAℓ(a) ≥ ϵ. It follows that lim [ẑAℓ]λ
B−λA

1 = 0. Consequently, by Lemma 1, µAℓ → 1.

But µAℓ → 1 implies vℓ1e
rB1 (s0+ϵ) ≥ vℓ1e

rB1 tℓ → ⌊b∗1(a)⌋, a contradiction □
We seek to characterize equilibrium payoffs in the reduced game when z = (zA, zB) ↓

0. Sometimes we’ll write φA(a|z) and φB
k (b, t|a, z) to make explicit the dependence on z.

Lemma 8. For any R > 1 and ϵ > 0, there exists z̄ > 0 such that for all z ∈ K(R, z̄),
for any Perfect Bayesian Equilibrium (φA, φB) of Γ(r, α, z), and for any a ∈ A with
φA(a|z) ≥ ϵ,

(i) if b > ⌊b∗2(a)⌋ then φB
k (b, t|a, z) ≤ ϵ for all t ∈ (0, T̄ ] and k = 1, 2.

(ii) if b < ⌊b∗k(a)⌋ then φB
k (b, t|a, z) = 0 for all t ∈ (0, T̄ ], k = 1, 2.
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(iii) if ⌊b∗1(a)⌋ < b < ⌊b∗2(a)⌋ then φB
1 (b, t|a, z) ≤ ϵ for all t ∈ (0, T̄ ].

(iv) φB
1 (⌊b∗1(a)⌋, t|a, z) = 0 for all t ∈ [ϵ, T̄ ].

Proof. (i) As in the proof of Lemma 3, suppose by way of contradiction that (i) is false.
Then there exist a ∈ A, b ∈ B with b > ⌊b∗2(a)⌋, a sequence {zℓ} ⊂ K(R) such that
zℓ = (zAℓ, zBℓ) ↓ (0, 0), a sequence {tℓ} ⊂ (0, T̄ ], and a corresponding sequence of PBE
{φℓ} such that φBℓ

1 (b, tℓ|a) + φBℓ
2 (b, tℓ|a) ≥ ϵ for all ℓ. Without loss of generality (taking

a subsequence if necessary), we can assume that tℓ → t and φAℓ(a) → φA∞(a) ≥ ϵ. For
each k = 1, 2, if {φBℓ

k (b, tℓ|a, zℓ)} contains a bounded subsequence, we define φB∞
k (b, t|a)

to be the limit of that subsequence, otherwise we define φB∞
k (b, t|a) = ∞. But now the

analysis of Lemma 2 (i) applies exactly and we conclude that for large enough ℓ (along a
subsequence), B concedes with strictly positive probability µBℓ at the start of the WOA
in the subgame Γ(r, α̂ℓ, ẑAℓ, ẑBℓ, a, b) at time tℓ. Indeed µBℓ → 1.

On the other hand, equilibrium payoffs for B1 and B2 in the subgame are bounded
below by 1− a and hence must be strictly greater than 1− a after delay t > 0. It follows
that in the above subgame, A must concede to B with strictly positive probability at the
start of the WOA. This yields a contradiction since by Lemma 1, µAℓµBℓ = 0. Notice that
the proof of (i) does not require φA∞(a) > 0.

Figure 2

(ii) This builds on the derivation of the sneaking in function v2 of Lemma 6. Con-
sider b < ⌊b∗2(a)⌋. We first argue that φB

2 (b, t|a, z) = 0 for all t ∈ [0, T̄ ]. Suppose not. Then
there exist sequences as before with φBℓ

2 (b, tℓ|a, zℓ) > 0. Since B2 can concede to a at time
zero, it must be that b > 1−a. Since the payoff from mimicking b at tℓ is strictly less than

bℓz = ẑAℓ(1 − a) + (1 − ẑAℓ)b, it must be that vℓ2e
rB2 tℓ < bℓz. Let t∗ℓ satisfy vℓ1e

rB1 t∗ℓ = bℓz.

We wish to first argue that vℓ2e
rB2 s = bℓz for some s > t∗ℓ. If tℓ ≥ t∗ℓ this is obvious (since

vℓ2e
rB2 tℓ < bℓz). Now suppose that tℓ < t∗ℓ.

If φBℓ
1 (b, tℓ|a, zℓ) = 0, then vℓ1e

rB1 tℓ ≥ vℓ2e
rB2 tℓ , since B1 always has the option of
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first counterdemanding b at tℓ. On the other hand, if φBℓ
1 (b, tℓ|a, zℓ) > 0, then vℓ2e

rB2 tℓ ≤
v2(t

ℓ). In either case, vℓ2e
rB2 tℓ ≤ v2(t

ℓ). Since vℓ2e
rB2 s is flatter than vℓ1e

rB1 s and v2(s) (see

Lemma 6), vℓ2e
rB2 s = b for some s > t∗ℓ. For all t′ ≥ t∗ℓ, v1e

rB1 t′ ≥ bz, and consequently
φBℓ
1 (⌊b∗2(a)⌋, t′|a, zℓ) = 0. But this contradicts Lemma 7, as depicted in Figure 2 above,

where ϵ1 = [⌊b∗2(a)⌋ − b]/2, ϵ2 is defined by ber
B
2 ϵ2 = ⌊b∗2(a)⌋ − ϵ1, and ϵ = min {ϵ1, ϵ2}.

Now consider b < b∗1(a). We wish to argue that φB
1 (b, t|a, z) = 0. Suppose not. Then,

there exist sequences (analogous to the earlier sequences) such that φBℓ
1 (b, tℓ|a, zℓ) > 0

for all ℓ. But this implies vℓ1 ≤ b. Consequently, there exists an interval [0, s1] such that,

b∗1(a)−vℓ1e
rB1 s > 2ϵ > 0 for all s ∈ [0, s1]. Since b < b∗2(a) (because b

∗
1(a) < b∗2(a)), for ℓ large

enough φBℓ
2 (b, tℓ|a, zℓ) = 0 by our earlier conclusion. Let ϵ1 and ϵ2 be defined analogously

to the above. Again we have contradicted Lemma 7 for s0 = 0 and ϵ = min {ϵ1, ϵ2}.

(iii) We know from (ii) that φB
2 (b, t|a, z) = 0. If the result is not true there exist

sequences as in (i) such that φB∞
1 (b, t|a) > 0 and φBℓ

2 (b, tℓ|a, zℓ) = 0 = α̂ℓ
2 along the

sequence. Observe that λA
1 > λB. Now an argument almost identical to the proof of

Lemma 2 (i) [replace ẑℓ2 + α̂ℓ
2 by ẑℓ2 and subsequently λA

2 by λA
1 ] implies µBℓ → 1. As in

(i) above this yields a contradiction with the requirement that µBℓ > 0.

(iv) Let z̄0 be chosen to satisfy (i)-(iii) for the given ϵ. If for all equilibria v1e
rB1 ϵ ≥

b̄∗1(a) then the result is clearly true. Let ϵ1 and ϵ2 satisfy

⌊b∗1(a)⌋ − 2ϵ1 = ⌊b∗1(a)⌋e−rB1 ϵ

(⌊b∗1(a)⌋ − 2ϵ1)e
rB1 ϵ2 = ⌊b∗1(a)⌋ − ϵ1

and define ϵ3 = min {ϵ1, ϵ2}. Applying Lemma 7 to the interval s0 = 0 and ϵ3 yields an
upper bound z̄1. Choosing z̄ = min{z̄0, z̄1} gives us our desired conclusion. □

Corollary. Under the conditions of the previous lemma, for any a ∈ A, if b̂2 ≡ ⌊b∗2(a)⌋ >
1− a then ∫ T̄

0

φB
2 (b̂2, t|a, z)dt ≥ 1− T̄ |B|ϵ.

Corollary. Under the conditions of the previous lemma, for any a ∈ A such that ⌊b∗2(a)⌋ =
1− a,

|vA(a|z)− a| ≤ ϵ and |vBk (a|z)− (1− a)| ≤ ϵ k = 1, 2.

The fact that almost all of B2’s weight is devoted to ⌊b∗2(a)⌋, and that any of B1’s
that is not devoted to ⌊b∗2(a)⌋ almost always goes on ⌊b∗1(a)⌋ near the origin, suggests that
we can work with a reduced game where both players have severely restricted strategy
spaces, in the vertical dimension. We define and study that game now. We will show that
as z approaches 0, equilibria in the reduced game and the true game are essentially unique,
and coincide.
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The Reduced Game.

Denote by Γ̃(r, α, z) the “reduced game” in which after A makes an initial demand
a ∈ A, she cannot move until B makes a demand, and the set of B’s behavioral types
(depends on the choice a and) is {(⌊b∗2(a)⌋, t) | t ∈ [0, T̄ ]}. As part of the specification
of the reduced game, if ⌊b∗2(a)⌋ = 1 − a, then the game ends with B accepting the de-
mand a immediately. When ⌊b∗2(a)⌋ > 1 − a, the prior probability of type (⌊b∗2(a)⌋, t) is

zBπB(⌊b∗2(a)⌋, t). Finally, if B counterdemands b̂1 ≡ ⌊b∗1(a)⌋ at time 0, this demand is
accepted with probability 1 immediately by A.

We proceed to analyze Γ̃(r, α, z). The first step is to analyze the subgame Γ̃(r, z, a)
which arises after A chooses some a ∈ A with probability φA(a) > 0 (in equilibrium). By
definition, when ⌊b∗2(a)⌋ = 1 − a, we have immediate agreement. Hereafter we assume
⌊b∗2(a)⌋ > 1− a.

Fix an equilibrium of this subgame and suppose Bk’s payoff in the subgame is vk. As

Bk is limited in the reduced game (for t > 0) to the counterdemand b̂2 = ⌊b∗2(a)⌋, he only
chooses the time at which he makes the counterdemand. Accordingly, we will simply write

φB
k (t) instead of φB

k (b̂2, t|a). Since rB1 > rB2 , it follows immediately that v2 ≥ v1 ≥ b̂1.
Since Bk must be indifferent among all times t for which φk(t) > 0, his continuation value
at any such t (discounted to t) must be vke

rkt.
If B’s counterdemand is accepted immediately by A with probability 1, then B’s

expected value is bz, and strictly less otherwise. Let t∗ solve v1e
rB1 t = bz, t2 be the time

when the two payoff curves v1e
rB1 t and v2e

rB2 t intersect, and t3 solve v2e
rB2 t = bz. By

assumption, t∗ < T̄ and t3 < T̄ . Furthermore, φB
1 (t) = 0 for t ≥ t∗ and φB

2 (t) = 0 for

t ≥ t3. Also, if φB
1 (t) = φB

2 (t) = 0 for some t ∈ [0, T̄ ], Bk’s payoff from counteroffering b̂2
at time t (out of equilibrium) is bz.

Fact 1: In any equilibrium, we must have

ΦB
k =

∫ T̄

0

φB
k (t)dt = 1 k = 1, 2,

unless vk = b̂1, in which case we may have ΦB
k < 1 combined with Bk making the demand

b̂1 at time t = 0 with probability 1− ΦB
k .

Fact 2: Assume vie
rBi t < vje

rBj t and vie
rBi t < bz for {i, j} = {1, 2}. Then φB

i (t) > 0.
Moreover, if i = 2, then φB

1 (t) = 0.

When v1 = v2 we obtained the configuration depicted in Figure 3 below. In this

case, by Fact 2 φB
1 (t) = 0 for all t ∈ (0, t∗). Hence, ΦB

1 = 0, so B1 makes the demand b̂1
at time 0 with probability 1, and this offer is accepted by A immediately (as per the rules

of the reduced game). Hence v1 = v2 = b̂1.
Hereafter we assume that v2 > v1. Clearly v2 < bz, for if v2 = bz, then v1 = bz also.

(Since v2 = bz is only possible if the counterdemand b̂2 at t = 0 is accepted immediately by
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A with probability 1.) But then we are in the case dealt with above where we concluded

that v1 = v2 = b̂1 < bz, a contradiction.

t3t*

bz

v1=v2

v1 er1
B t

v2 er2
B t

Figure 3: v1 = v2.

Fact 3: If φB
k (t) > 0 for k = 1, 2, then v1e

rB1 t < v2e
rB2 t < v2(t).

Proof of Fact 3: Consider t such that in equilibrium φB
k (t) > 0 k = 1, 2. Then,

in the WOA following B’s counteroffer at t, A will concede at t with probability µ1(t) as
defined above, and thereafter at a rate of concession λA

1 in (t, t + τ1] and at rate λA
2 in

(t+ τ1, t+ τ2). Player B concedes at rate λB . The times τ1 and τ2 satisfy:

(ẑB + α̂2)e
λBτ1 = 1, ẑBeλ

Bτ2 = 1 and
ẑA

1− µ1(t)
eλ

A
1 τ1eλ

A
2 (τ2−τ1) = 1.

Recall that
ẑA

1− µ1(t)
eλ

A
1 τS

1 = 1.

Clearly, τ2 > τ1, so τS1 > τ1. Note that B2’s payoff (in equilibrium) is given by v2(t) =

µ1b̂2+(1−µ1)C, where we simply replace τS1 by τ1 in E. It follows that v1e
rB1 t < v2e

rB2 t <
v2(t). □

Fact 4: t2 < t∗ < t3.

Proof of Fact 4: Since v1 < v2, v2 > b̂1. Hence, by Fact 1, ΦB
2 = 1 and φB

2 (t) > 0 for

some t > 0; at such a t, v2e
rB2 t < bz. If t ≥ t∗ then v2e

rB2 t < bz ≤ v1e
rB1 t. Since v2 > v1,

all this implies that t2 < t∗. If t < t∗ and v1e
rB1 t > v2e

rB2 t, we may similarly conclude that

t2 < t∗. If t < t∗ and v1e
rB1 t ≤ v2e

rB2 t, then by Fact 3 v1e
rB1 t ≤ v2e

rB2 t ≤ v2(t). Since B2’s
indifference curve cannot intersect v2(·) from below (Lemma 6)

v2e
rB2 s − v1e

rB1 s ≤ v2(s)− v1e
rB1 s for all s ∈ [t, t∗],
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and since v2(t
∗) = v1e

rB1 t∗ , we must have that v1e
rB1 t2 = v2e

rB2 t2 for some t2 < t∗. Finally,
t2 < t∗ implies that t∗ < t3 since B2’s indifference curve is flatter than B1’s. □

By Lemma 6, v2e
rB2 t can only intersect v2(t) from above, and consequently at most

once. Hence we can only have one of the two configurations below. In the first configuration

v2e
rB2 t intersects v2(t) at some t1 ∈ (0, t2). The second configuration corresponds to the

case when v2 < v2(0) and v2e
rB2 t does not intersect v2(t) in (0, t2). In this case we define

t1 = 0. In both configurations v2 > b̂1, and Fact 1 then implies that ΦB
2 = 1.

t3t2t1 t*

v2

v1

bz

v1 er1
B t

v2 er2
B t

v2HtL

t3t2 t*

v2

v1

bz

v1 er1
B t

v2 er2
B t

v2HtL

Figure 4: v1 < v2 and v2 > v2(0). Figure 5: v1 < v2 and v2 ≤ v2(0).

Lemma 9. φB
1 (t) > 0 and φB

2 (t) = 0 for t ∈ (0, t1), φB
1 (t) > 0 and φB

2 (t) > 0 for
t ∈ (t1, t2), and φB

1 (t) = 0 and φB
2 (t) > 0 for t ∈ (t2, t3).

Proof. If B1 counteroffers b̂2 at any t > t∗, then his payoff (discounted to 0) is less than
bze

−r1t < v1. Hence φ1(t) = 0 for all t > t∗. For the same reason, φ2(t) = 0 for all t > t3
Let t < t2, so v1e

r1t < v2e
r2t ≤ bz It follows that either φ1(t) > 0 or φ2(t) > 0. Assume

that φ1(t) = 0 and φ2(t) > 0. After making the counteroffer b̂2 at time t, B2 can get

his expected value v2e
r2t in the ensuing WOA by waiting to see if A concedes to b̂2 right

away, and conceding to a immediately if A does not. But B1 can obtain the same expected

payoff by mimicking B2: counter-offering b̂2 at time t and following the same strategy after
that. This is a contradiction. Hence, φ1(t) > 0 for all t ∈ (0, t2). Finally suppose that
t ∈ (t2, t3). Again, either φ1(t) > 0 or φ2(t) > 0. Assume now that φ1(t) > 0. B1 can
get his expected value v1e

r1t in the ensuing WOA by waiting until some time t+ τ > t to
concede if A does not concede first. But, if B2 mimicks B1, he expects a strictly higher
payoff as r1 > r2, which is a contradiction since by assumption v1e

r1t > v2e
r2t. Hence

φ1(t) = 0 and φ2(t) > 0 for all t ∈ (t2, t3). □
For a given z, suppose that A chooses a with some probability φA(a|z) > 0, and

let ẑA be defined as in (1). Then, for any (v1, v2) in the relevant range, not necessarily
corresponding to equilibrium values in the subgame following the offer a, we may compute
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the densities with which (b̂2, t) is chosen by B1 and B2 respectively so that the continuation

values vke
rkt, k = 1, 2 are achieved in the subgame following the offer of b̂2 at time t.

These densities are denoted φA
k (t|ẑA, zB , a, b̂2, v1, v2) and the corresponding integrals by

ΦB
k (ẑ

A, zB, a, b̂2, v1, v2).
8

Lemma 10. For all a ∈ A and ϵ > 0, there exists δ > 0 such that for any v1 ∈ [1− a, bz)

and v2 with v2e
rB2 t∗ ∈ [bz − δ, bz), |ti − t∗| ≤ ϵ for i = 1, 2, 3. Furthermore, if v2 ≤ v2(0)

then v1 ≥ bz − ϵ.

The function θ introduced in Lemma 11 is key and is central to our characterization
results.

Lemma 11. There exists a function θ : A → R+ such that for all a ∈ A and ϵ > 0,

there exists δ > 0 such that for all v1 ∈ [1 − a, bz) and v2 with v2e
rB2 t∗ ∈ [bz − δ, bz) and

v2 ≥ v2(0), ∣∣∣∣∣
∫ t2
t1

φB
1 (t|ẑA, zB , a, b̂2, v1, v2)dt

ΦB
2 (ẑ

A, zB , a, b̂2, v1, v2)
− α2

α1
θ(a)

∣∣∣∣∣ < ϵ.

Lemma 12. Assume a ∈ A and α2θ(a)/α1 < 1. Then, there exists δ > 0 such that for

all v1 ∈ [1− a, bz) and v2 with v2e
rB2 t∗ ∈ [bz − δ, bz) and v2 < v2(0),

ΦB
1 (ẑ

A, zB , a, b̂2, v1, v2)

ΦB
2 (ẑ

A, zB , a, b̂2, v1, v2)
< 1.

Lemma 13. For any a ∈ A, R > 1 and ϵ > 0, there exists z̄ > 0 such that if z ∈ K(R, z̄),

and φA(a|z) ≥ ϵ, then for all v1 ∈ [b̂1, bz) and v2 ∈ [v1, bz),∫ t1

0

φB
1 (t|ẑA, zB , a, b̂2, v1, v2)dt < ϵ.

Furthermore, if ΦB
2 (ẑ

A, zB, a, b̂2, v1, v2) = 1, then v2e
rB2 t∗ ≥ bz − ϵ.

The overall equilibrium involves the strategic choice of a by A and in this analysis

it is convenient to make explicit the dependence of variables such as b̂2 on a. As noted
earlier, we focus on the case of a small z. Recall the conditions of Lemma 8. We will
argue that when φA(a|z) ≥ ϵ, then equilibrium in the subgame is “essentially” unique
and consequently falls in one of the two cases described above. Furthermore, in case (i),

v1 = ⌊b∗1(a)⌋, v2er
B
2 t∗ ≈ ⌊b∗2(a)⌋ and B1 counteroffers ⌊b∗1(a)⌋ at time 0 with probability

close to 1 − α2θ(a)/α1, where α2θ(a)/α1 is the limit value of ΦB
1 (ẑ

A, zB , a, b̂2, v1, v2) as

8In the reduced game the set of behavioral types in the subgame following the offer a is constrained.

But, in the full game any counteroffer b ∈ B with a + b > 1 is possible, so in general, the densities will
depend both on a and b.
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z ↓ 0. In case (ii) v1 ≈ v2 ≈ ⌊b∗2(a)⌋ and A concedes to ⌊b∗2(a)⌋ with probability close to 1.

Let D = [⌊b∗1(a)⌋/⌊b∗2(a)⌋]r
A/rB1 . Player A’s asymptotic payoff is

vA(a) =

{
(α1 − α2θ(a))(1− ⌊b∗1(a)⌋) + α2(1 + θ(a))D(1− ⌊b∗2(a)⌋) if (i)

1− ⌊b∗2(a)⌋ if (ii)

Let â ∈ A maximize vA(a) and suppose for simplicity that â is unique, then for
small z, A mimics â with probability close to 1 and the analysis of the subgame following
the choice of â is as outlined above. We state these results more formally below.

The payoff from efficient IC separation is α1(1−⌊b∗1(a)⌋)+α2D(1−⌊b∗2(a)⌋). When
α2θ(a)/α1 < 1, the difference between this payoff and vA(a) is

1− α1

α1
θ(a)[(1− ⌊b∗1(a)⌋)−D(1− ⌊b∗2(a)⌋)].

This difference is small when α1 is close to 1 and/or θ(a) is small.
In Theorem 2 below we revert to the true game Γ(r, α, z). The main differences

between Γ(r, α, z) and Γ̃(r, α, z) are that in Γ(r, α, z) many types (b, t) with b ̸= b̂2 will
also be mimicked with positive density, but by Lemma 5 these densities will go to zero

with z. Furthermore, b̂1 will only be mimicked (if at all) in a small initial interval. In
particular:

(1) ΦB
2 (ẑ

A, zB , a, b̂2, v1, v2) ≥ 1− ϵ (and does not exactly equal 1),

(2) if α2θ(a)/α1 < 1 then |ΦB
1 (ẑ

A, zB, a, b̂2, v1, v2)− α2θ(a)/α1| ≤ ϵ.

(3) if α2θ(a)/α1 > 1 then ΦB
1 (ẑ

A, zB , a, b̂2, v1, v2) ≥ 1− ϵ,

where ϵ ↓ 0 as z → (0, 0). It is clear that the formulae for density functions do not depend

upon whether we are in Γ(r, α, z) or Γ̃(r, α, z) and neither do the results regarding the
ratios [ΦB

1 /Φ
B
2 ].

Theorem 2. Fix any R > 1 and ϵ > 0. Consider any sequence {zℓ} ⊂ K(R) such that
zℓ → (0, 0), and a corresponding sequence of equilibria {φℓ} for Γ(r, α, zℓ). For a given
a ∈ A, assume φAℓ(a) ≥ ϵ for all ℓ.

(i) If α2θ(a)/α1 < 1, then |⌊b∗1(a)⌋ − vℓ1| < ϵ for large ℓ, ΦBℓ
1 (ẑA, zB , a, ⌊b∗2⌋, v1, v2) →

α2θ(a)/α1, and B1 counteroffers ⌊b∗1(a)⌋ with probability (close to) 1 − α2θ(a)/α1.

Furthermore, if ⌊b∗1(a)⌋er
B
1 t∗ = ⌊b∗2(a)⌋, then vℓ2 → v̄∗2 , where v̄∗2e

rB2 t∗ = ⌊b∗2(a)⌋.
(ii) If α2θ(a)/α1 > 1, then vℓ1, v

ℓ
2 → ⌊b∗2(a)⌋, and A concedes to ⌊b∗2(a)⌋ with probability

(close to) 1 by time converging to 0.
(iii) Finally, if φAℓ(a) ≥ ϵ for all ℓ, then a maximizes vA(·).

Proof. (i) As usual, let b̂k = ⌊b∗k(a)⌋, k = 1, 2. By Lemma 5, ΦBℓ
2 (ẑA, zB, a, b̂2, v

ℓ
1, v

ℓ
2) ≥

1 − ϵ for large ℓ. By Lemma 9, ΦBℓ
1 (ẑA, zB , a, b̂2, v

ℓ
1, v

ℓ
2) ≤ α2θ(a)/α1 + ϵ for large ℓ.

If vℓ2 ≤ v2(0), then by Lemma 8 (which applies to Γ) vℓ1, v
ℓ
2 ≈ b̂2; hence vℓ1 > b̂1 and
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ΦBℓ
1 (ẑA, zB , a, b̂1, v

ℓ
1, v

ℓ
2) = 0, and by Lemma 5, ΦBℓ

1 (ẑA, zB , a, b̂2, v
ℓ
1, v

ℓ
2) ≈ 1. Consequently

if α2θ(a)/α1 < 1, vℓ2 ≤ v2(0) yields a contradiction. Hence vℓ2 > v2(0). It follows that

ΦBℓ
1 (ẑA, zB , a, b̂2, v

ℓ
1, v

ℓ
2) ≈ α2θ(a)/α1 < 1. Parts (i) – (iii) of Lemma 5 then imply that∫ ϵ

0

φBℓ
1 (t|ẑAℓ, zBℓ, a, b̂1, v

ℓ
1, v

ℓ
2) ≈ 1− α2

α1
θ(a) > 0.

Consequently vℓ1 ≈ b̂1. Together with Lemma 8 (ii), this completes the proof of (i).

(ii) If α2θ(a)/α1 > 1 then by the above discussion, for large ℓ, we must have
vℓ2 < vℓ2(0) and the rest of the characterization follows.

(iii) The preceding discussion clarifies that if φAℓ(a) ≥ ϵ for large ℓ the payoffs to A

in the corresponding subgame of Γ and Γ̃ converge. The conclusion follows directly. □

Existence

The proof of existence may be useful in other related environments; it uses a novel
mix of constructive and non-constructive elements.

Let Σ be the unit simplex in R|A|. That is,

Σ = {φA | φA ≥ 0 and
∑
a∈A

φA(a) = 1}

For each a ∈ A, let

V (a) = {(va1, va2) | 1− a ≤ va1 ≤ va2 ≤ b̄} and V = Πa∈AV (a).

V is a compact and convex subset of R2|A|.
To prove existence, we construct an upper hemicontinuous correspondence Ψ : Σ×

V → Σ× V such that each of its fixed points agrees with an equilibrium of Γ(r, α, z).
For each φA ∈ Σ and a ∈ A, let the posterior ẑA(a) be computed as in (1), and for

each b ∈ B, let bz(a) = (1− ẑA(a))b+ ẑA(a)(1− a).
Fix (ẑA(a), a, v) ∈ (0, 1) × A × V . Recall the definition of the intersection times

(t∗, t1, t2, t3) in Figures 3–5. These figures implicitly assumed that a ≤ va1 ≤ va2, that

va1 < bz(a), and that va2e
rB2 t∗ < bz(a), where va1e

rB1 t∗ = bz(a). We now define the
densities φB(t|ẑA(a), zB , a, b, va) for all (b, t) ∈ B × [0, T̄ ] using Equations (4)–(5) and
(10)–(11) as follows:

φB(t|ẑA(a), zB, a, b, va) =



((4), 0) if va1e
rB1 t < bz(a), va2e

rB2 t ≥ v2(t|ẑA(a), va1)
((10), (11)) if va1e

rB1 t < bz(a) and

va1e
rB1 t < va2e

rB2 t < v2(t|ẑA(a), va1)
(0, (5)) if va2e

rB2 t ≤ min {bz(a), va1er
B
1 t}

(0, 0) if vake
rBk t ≥ bz(a), k = 1, 2.
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Then, for k = 1, 2, define

ΦB
k (ẑ

A(a), zB , a, b, va) =

∫ T̄

0

φB
k (t|ẑA(a), zB , a, b, va)dt

Φ̄B
k (φ

A(a), va, a) =
∑
b∈B

ΦB
k (ẑ

A(a), zB, a, b, va).

Let Γ(r, α, ẑA(a), zB , a) be the subgame where player A has demanded a ∈ A
and player B believes that A is behavioral with probability ẑA(a). An equilibrium for
Γ(r, α, ẑA(a), zB , a) is a vector va ∈ V (a) such that Φ̄B

k (φ
A(a), va, a) ≤ 1 and [1 −

Φ̄B
k (φ

A(a), va, a)][vak − (1− a)] = 0 for k = 1, 2.
Define Ψ(φA,a) : V (a) → V (a) by

Ψ(φA,a)(va) = PV (a)(va1Φ̄
B
1 (φ

A(a), va, a), va2Φ̄
B
2 (φ

A(a), va, a)),

where PV (a)(w) denotes the projection of w ∈ R2 into V (a). Ψ(φA,a)(va) is continuous in

(φA, va).

Theorem 3. For each z ∈ (0, 1)2, the game Γ(r, α, z) has an equilibrium.

Proof. We first show that va ∈ V (a) is an equilibrium of Γ(r, α, ẑA(a), zB) if and only if
va is a fixed point of Ψ(φA,a).

A vector va in the interior of V (a) is a fixed point of Ψ(φA,a) if and only if

Φ̄B
1 (φ

A(a), va, a) = Φ̄B
2 (φ

A(a), va, a) = 1. In this case, va is clearly an equilibrium of
Γ(r, α, ẑA(a), zB). The boundary of V (a) is made up of three line segments. We now
argue that Ψ(φA,a) has no fixed point in the upper or lower boundary of V (a), and that
a fixed point in the left boundary would correspond to an equilibrium where B1 con-
cedes immediately to a with nonnegative probability. The left boundary is defined by
va1 = 1 − a and 1 − a ≤ va2 < b̄ (we include here one of the endpoints that is at the
intersection of the left boundary and the lower boundary, but not the other). A vector
va in the left boundary is a fixed point of Ψ(φA,a) if and only if Φ̄B

k (φ
A(a), va, a) ≤ 1for

k = 1, 2, with equality for k = 2 unless va2 = 1 − a. But then, since va1 = 1 − a,
[1 − Φ̄B

k (φ
A(a), va, a)][vak − (1 − a)] = 0 for k = 1, 2, and va is an equilibrium. Now, ob-

serve that when va = (b̄, b̄), vake
rBk t ≥ b for all (b, t) ∈ B×[0, T̄ ] so Φ̄B(φA(a), va, a) = (0, 0).

In this case, Ψ(φA,a)(va) = PV (a)(0) = (1− a, 1− a) ̸= va, so va is not a fixed point. The
upper boundary (excluding end points) is defined by va2 = 1− b and a < va1 < 1− b, and
the lower boundary is defined by a < va1 = va2 < 1− b. Assume va is in the upper bound-

ary. Then for all (b, t) ∈ B × [0, T̄ ], va2e
rB2 t > bz(a), and Φ̄B

2 (φ
A(a), va, a) = 0. Hence,

w = (va1Φ̄
B
1 (φ

A(a), va, a), va2Φ̄
B
2 (φ

A(a), va, a)) = (w1, 0), where w1 ≥ 0, so PV (a)(w) lies
in the lower boundary of V (a) and va ̸= PV (a)(w). Finally, assume va is in the lower

boundary of V (a). Then, for each t ≥ 0, va2e
rB2 t ≤ va1e

rB1 t and Φ̄B
1 (φ

A(a), va, a) = 0.
Hence, w = (v1Φ̄

B
1 (φ

A(a), va, a), v2Φ̄
B
2 (φ

A(a), va, a)) = (0, w2), where w2 ≥ 0, so PV (a)(w)
lies in the left boundary of V (a) and va ̸= PV (a)(w). This establishes our claim.
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For a given (φA, v) ∈ Σ× V , we define A’s payoff functions as follows

vAW (a, b|φA, v) = (1− b)

2∑
k=1

αk

∫ T̄

0

φB
k (t|ẑA(a), zB , a, b, va)e−rAtdt

vA(a|φA, v) = a
2∑

k=1

αk[1− Φ̄B
k (φ

A(a), va, a)]
+ +

∑
b∈B

vAW (a, b|φA, v),

where [ξ]+ is ξ if ξ > 0 and 0 otherwise. Let

Σ∗(φA, v) = {ϕ ∈ Σ | ϕ(a) = 0 for all a /∈ argmax vA(·|φA, v)}.

The correspondence Ψ : Σ× V → Σ× V is then defined by

Ψ(φA, v) = (Σ∗(φA, v), (Ψ(φA,a)(va) : a ∈ A)).

We now argue that (φA, v) is a fixed point of Ψ if and only if it corresponds to
an equilibrium of Γ(r, α, z). Suppose that (φA, v) is a fixed point of Ψ. Then va is
an equilibrium of Γ(r, α, ẑA(a), zB , a) for each a ∈ A. Also, by definition, φA(a) > 0
implies that a is an optimal offer for A given that Bk counteroffers (b, t) with density
φB
k (t|ẑA(a), zB , a, b, va) and accepts a immediately with probability 1− Φ̄B

k (φ
A(a), va, a).

Thus, (φA, φB) is an equilibrium for Γ(r, α, z). The converse is analogous.
Finally, since Ψ is upper hemicontinuous and convex-valued, by Kakutani’s fixed

point theorem, Ψ has a fixed point. □
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Appendix

Atemporal Model.

Proof of Lemma 2

(i) We show that under the assumed conditions (and using the notation of Lemma 1),

Lℓ → ∞ and
ẑBℓ

[ẑAℓ]λ
B/λA

2

→ 0.

The conclusion then follows from Lemma 1. Note that

ẑAℓ ≥ zAℓπA(a)

zAℓπA(a) + 1− zAℓ
,

where the lower bound is attained when φAℓ(a) = 1. Therefore

ẑAℓ

ẑBℓ
≥ zAℓ

zBℓ

πA(a)

πB(b)

zBℓπB(b) + (1− zBℓ)[α1φ
Bℓ
1 (b) + α2φ

Bℓ
2 (b)]

zAℓπA(a) + 1− zAℓ
,

and

lim inf
ℓ→∞

ẑAℓ

ẑBℓ
≥ 1

R

πA(a)

πB(b)
[α1φ

B∞
1 (b) + α2φ

B∞
2 (b)] ≡ c > 0.

Note that φB∞
1 (b) + φB∞

2 (b) > 0 also implies that ẑB∞ = 0. Now,

Lℓ =

[
ẑAℓ

ẑBℓ

]λB

1

[ẑBℓ]λ
A
2 −λB

1

[ẑBℓ + α̂ℓ
2]

λA
1 −λA

2

Since λA
1 > λA

2 > λB , lim Lℓ = ∞. Furthermore,

lim
ℓ→∞

ẑBℓ

[ẑAℓ]λ
B/λA

2

≤ 1

c
lim
ℓ→∞

[ẑAℓ]1−λB/λA
2 = 0.

(ii) As remarked above, ẑB∞ > 0 implies that φB∞
1 (b) = φB∞

2 (b) = 0. Since φA∞(a) >
0 and ẑB∞ > 0,

lim
ℓ→∞

ẑAℓ = lim
ℓ→∞

zAℓπA(a)

zAℓπA(a) + (1− zAℓ)φAℓ(a)
= 0

lim
ℓ→∞

Lℓ = lim
ℓ→∞

[ẑAℓ]λ
B

[ẑBℓ + α̂ℓ
2]

λA
1 −λA

2 [ẑBℓ]λ
A
2

= 0.

Consequently, lim Lℓ = 0 and by Lemma 1, µAℓ → 1.
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(iii) As in (ii), ẑAℓ → 0. Also

ẑBℓ ≥ zBℓπB(b)

zBℓπB(b) + 1− zBℓ

and ẑBℓ + α̂ℓ
2 ≤ 1 for each ℓ. Hence

Lℓ =

[
ẑAℓ

ẑBℓ

]λA
2 [ẑAℓ]λ

B−λA
2

[ẑBℓ + α̂ℓ
2]

λA
1 −λA

2

≤
[
zAℓ

zBℓ

πA(a)

πB(b)

zBℓπB(b) + 1− zBℓ

zAℓπA(a) + (1− zAℓ)φAℓ(a)

]λA
2

[ẑAℓ]λ
B−λA

2 ,

and

lim
ℓ→∞

Lℓ ≤
[
R

πA(a)

πB(b)

1

φA∞(a)

]λA
2

× lim
ℓ→∞

[ẑAℓ]λ
B−λA

2 = 0

since λB > λA
2 . Consequently, by Lemma 1, µAℓ → 1. □

Temporal Model.

Proof of Lemma 6
Let µ1(t) and τS1 be defined by

v1e
rB1 t = µ1(t)b+ (1− µ1(t))(1− a) and

ẑA

1− µ1(t)
eλ

A
1 τS

1 = 1.

That is, µ1(t) is the immediate probability of concession by A that delivers the appropriate
continuation value for B1 and τS1 is the length of the corresponding WOA between A and
B1 (alone). Note that when φ1(b, t|a) > 0, whether φ2(b, t|a) > 0 or φ2(b, t|a) = 0, µ1(t)
is always uniquely defined by the first equation above, a fact we will use later. Let

E = e−(λA
1 +rB2 )τS

1 =

[
ẑA

1− µ1(t)

](λA
1 +rB2 )/λA

1

.

For t < t∗, (1− µ1(t)) > ẑA so τS1 > 0 and E < 1. Then

v2(t) = µ1(t)b+ (1− µ1(t))C where

C = b

∫ τS
1

0

e−rB2 sλA
1 e

−λA
1 sds+ (1− a) e−(λA

1 +rB2 )τS
1

= b
λA
1

λA
1 + rB2

(1− E) + (1− a)E.
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As in Step 3 of Lemma 3

C = (1−a)+b(1−E)

[
λA
1

λA
1 + rB2

− λA
1

λA
1 + rB1

]
= (1−a)+(1−a)(1−E)

rB1 − rB2
λA
1 + rB2

> (1−a).

It follows that v2(t) > v1e
rB1 t. However, at t∗, 1− µ1(t

∗) = ẑA so τS1 = 0, and in this case

C = 1− a and v2(t
∗) = v1e

rB1 t∗ , as required. This establishes (i).

We now establish (ii). Let

Ω = −rB2 v2(t) + v′2(t) = −rB2 [µ1(t)(b− C) + C] + µ′
1(t)(b− C) + (1− µ1(t))

dC

dt
.

We first show that Ω > 0. Since

µ1(t) =
v1e

rB1 t − (1− a)

a+ b− 1
=⇒ µ′

1(t) = rB1 µ1(t) + λA
1 ,

dE

dt
=

E

1− µ1(t)

[
λA
1 + rB2
λA
1

]
µ′
1(t) and

dC

dt
= −(1− a)

[
rB1 − rB2
λA
1 + rB2

]
dE

dt
,

we obtain that

Ω = (rB1 − rB2 )

[
µ1(t)(b− C)− (1− a)E

λA
1

(rB1 µ1(t) + λA
1 )

]
+ λA

1 (b− C)− rB2 C.

Using the expression for C we deduced above, one can check that λA
1 (b − C) − rB2 C =

(1− a)(rB1 − rB2 )E. Thus

Ω = (rB1 − rB2 )

[
µ1(t)(b− C)− (1− a)E

λA
1

rB1 µ1(t)

]
= (rB1 − rB2 )

µ1(t)(1− a)

λA
1

[
rB1 −

(
λA
1

λA
1 + rB2

(rB1 − rB2 )(1− E) + rB1 E

)]
> 0

since [λA
1 /(λ

A
1 + rB2 )](rB1 − rB2 )(1 − E) + rB1 E < (rB1 − rB2 )(1 − E) + rB1 E < rB1 . Assume

that v2e
rB2 t ≤ v2(t). Then

v′2(t) > rB2 v2(t) ≥ rB2

[
v2e

rB2 t
]
=

d

dt

[
v2e

rB2 t
]
. □
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Densities.

Assume that A has demanded a ∈ A, and that in equilibrium φA(a) > 0, so the
posterior ẑA that A is behavioral is given by (1). For any b ∈ B with a + b > 1, we now
derive the densities with which Bk’s choose b at various times.

By Lemma 1 of the atemporal types model, the WOA Γ(r, α̂, ẑA, ẑB , a, b) has a
unique equilibrium and hence a unique equilibrium value vBk for each Bk with α̂k > 0,
k = 1, 2. Hereafter, fix (ẑA, zB , a, b) once and for all, where a + b > 1 (possibly, b =

b̂2 = ⌊b∗2(a)⌋). Consider the WOA that arises after the counteroffer b at time t, when
A believes that Bk counteroffers (b, t) with probability φB

k (t), k = 1, 2.9 By (2)–(3),
(ẑB(t), α̂1(t), α̂2(t)) are functions of (φB

1 (t), φ
B
2 (t)),

10 and thus (φB
1 (t), φ

B
2 (t)) leads to a

unique equilibrium value vBk (t) for each Bk with φB
k (t) > 0, k = 1, 2, in the corresponding

WOA. In any equilibrium, it must be the case that vBk (t) = vke
rkt for some fixed vk,

k = 1, 2. Given (v1, v2), the equilibrium value functions can be inverted to construct the
functions (φB

1 (t), φ
B
2 (t)) so that for each t, the corresponding WOA delivers the equilibrium

value vke
rkt for each k = 1, 2 with φB

k (t) > 0.
Fix (v1, v2) so that 1− a ≤ v1 ≤ v2 < bz.

11 We now solve for (φB
1 (t), φ

B
2 (t)) in each

one of the separating and pooling intervals. Consider the WOA after the counteroffer (b, t)
with t > 0. Let µk(t) be such that

vke
rkt = µk(t)b+ (1− µk(t))(1− a), k = 1, 2.

When φB
1 (t) > 0, µ1(t) is the required probability of immediate concession by A to deliver

B1 his corresponding expected payoff. Similarly, when φB
1 (t) = 0 and φB

2 (t) > 0, µ2(t)
is the required probability of immediate concession by A to deliver B2 his corresponding
expected payoff. When φB

k (t) > 0 it must be that 1− a < vke
rkt < b, hence

µk(t) =
vke

rkt − (1− a)

a+ b− 1
∈ (0, 1), k = 1, 2.

It is also useful to define the function µ̄k(t) = 1−µk(t), k = 1, 2. Since vke
rBk t ∈ (1− a, b),

µ̄k(t) is the distance from vke
rBk t to b relative to the total distance from 1− a to b.

Recall the various pooling and separating intervals from Lemma 9.

Separating Interval for B1: Let t be such that φB
1 (t) > 0 and φB

2 (t) = 0. Then, By Lemma
1, the length of the WOA τ1 must be such that

1 =
ẑA

µ̄1(t)
eλ

A
1 τ1 =

zBπB(b, t)

zBπB(b, t) + (1− zB)α1φB
1 (t)

eλ
Bτ1 .

9To simplify notation here, since we fix b and focus only on the time dimension, we we write φB
k (t)

instead of φB
k (t|ẑA, zB , a, b, v1, v2).

10They are also functions of (a, b), but since these variables have been fixed, we omit them here.
11In equilibrium, v1 ≥ 1−a always. If v1 ≥ bz , then φB

k (t) ≡ 0 for k = 1, 2. If 1−a ≤ v1 < bz ≤ v2,

then φB
2 (t) ≡ 0 and only equation (4) below is relevant.
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Let Z(zB , b, t) = zBπB(b, t)/(1− zB). It follows that

φB
1 (t) =

Z(zB , b, t)

α1

[[
µ̄1(t)

ẑA

]λB/λA
1

− 1

]
. (4)

Separating Interval for B2: Let t be such that φB
1 (t) = 0 and φB

2 (t) > 0. By a similar
argument, we now obtain that

φB
2 (t) =

Z(zB , b, t)

α2

[[
µ̄2(t)

ẑA

]λB/λA
2

− 1

]
. (5)

Pooling Interval: Let t be such that φB
1 (t) > 0 and φB

2 (t) > 0. Here again, µ1(t) must be
the probability that A concedes immediately. By Lemma 1, there exist 0 < τ1 < τ2 such
that

[ẑB(t) + α̂2(t)]e
λBτ1 = 1, ẑB(t)eλ

Bτ2 = 1, and
ẑA

µ̄1(t)
eλ

A
1 τ1+λA

2 (τ2−τ1) = 1.

Therefore

µ̄1(t) = ẑA
[

1

ẑB(t) + α̂2(t)

]λA
1 /λB [

ẑB(t) + α̂2(t)

ẑB(t)

]λA
2 /λB

. (6)

The WOA should also deliver B2 his expected value v2e
rB2 t. An optimal strategy

for B2 is to concede at t+ τ1 if A has not conceded yet. Therefore, B2’s expected value in
the WOA is

v2e
rB2 t = µ2(t)b+ (1− µ2(t))(1− a),

=

[
µ1(t) + (1− µ1(t))

λA
1

λA
1 + rB2

(1− E)

]
b+ (1− µ1(t))E(1− a)

where

E = e−(λA
1 +rB2 )τ1 so

∫ τ1

0

e−rB1 τλA
1 e

−λA
1 τdτ =

λA
1

λA
1 + rB2

(1− E).

Subtracting b from sides in the previous equation, we obtain

µ̄2(t)(a+ b− 1) = µ̄1(t)

[[
1− λA

1

λA
1 + rB2

(1− E)

]
b− E(1− a)

]
. (7)

Let D = zBπB(b, t)+ (1− zB)[αB
1 φ1(t)+α2φ

B
2 (t)] and U = zBπB(b, t)+ (1− zB)α2φ

B
2 (t)

so that ẑB(t)+α̂2(t) = U/D. Substituting the expressions for the corresponding posteriors
in (6) we obtain

µ̄1(t) =
ẑADλA

1 /λB

U (λA
1 −λA

2 )/λB
[zBπB(b, t)]λ

A
2 /λB

. (8)
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Solving for E from (7), we conclude that B2’s expected value is attained when

E =
(λA

1 + rB2 )(a+ b− 1)µ̄2(t)− rB2 bµ̄1(t)

[λA
1 b− (λA

1 + rB2 )(1− a)]µ̄1(t)

= e−(λA
1 +rB2 )τ1 = [ẑB(t) + α̂2(t)]

[λA
1 +rB2 ]/λB

=

[
U

D

]λA
1

+rB
2

λB

(9)

Let c = (λA
1 + rB2 )(a + b − 1) and d = rB2 b. Note that c > d since λA

1 > λA
2 . Also let

γk = λA
k /λ

B, k = 1, 2, and ρ = rB2 /λB . Then (8) and (9) imply

[
Dγ1

Uγ1−γ2

] γ1+ρ
γ1−γ2

[
U

D

]γ1+ρ

= D
γ2(γ1+ρ)
γ1−γ2 =

[
µ̄1[z

BπB(b, t)]γ2

ẑA

] γ1+ρ
γ1−γ2

[
cµ̄2 − dµ̄1

(c− d)µ̄1

]
[

Dγ1

Uγ1−γ2

] γ1+ρ
γ1

[
U

D

]γ1+ρ

= U (γ1+ρ)(γ1+γ2)/γ1 =

[
µ̄1[z

BπB(b, t)]γ2

ẑA

] γ1+ρ
γ1

[
cµ̄2 − dµ̄1

(c− d)µ̄1

]
which can be solved for D and U to get

D =

[
µ̄1[z

BπB(b, t)]γ2

ẑA

]1/γ2 [cµ̄2 − dµ̄1

(c− d)µ̄1

] γ1−γ2
γ2(γ1+ρ)

U =

[
µ̄1[z

BπB(b, t)]γ2

ẑA

]1/γ2 [cµ̄2 − dµ̄1

(c− d)µ̄1

] γ1
γ2(γ1+ρ)

Finally (1− zB)α1φ
B
1 (b, t|a; v) = D − U and (1− zB)α2φ

B
2 (b, t|a; v) = U − zBπB(b, t). It

follows that

φB
1 (t) =

Z(zB , b, t)

α1
[g(t)− h(t)] and (10)

φB
2 (t) =

Z(zB , b, t)

α2
[h(t)− 1], where (11)

N =
λB

λA
2

, m1 = N
λA
1 − λA

2

λA
1 + rB2

, m2 = N
λA
1

λA
1 + rB2

,

g(t) =

[
µ̄1(t)

ẑA

]N [
cµ̄2(t)− dµ̄1(t)

(c− d)µ̄1(t)

]m1

and (12)

h(t) =

[
µ̄1(t)

ẑA

]N [
cµ̄2(t)− dµ̄1(t)

(c− d)µ̄1(t)

]m2

(13)

It is clear that φB
k (t), k = 1, 2, (formulas (4)–(5) and (10)–(11)) depend on the equilib-

rium values (v1, v2). They also depend on the offers (a, b) (assumed fixed early on) and
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the reputations (ẑA, zB). We may find it convenient to make this dependence explicit
sometimes and write instead φk(t|ẑA, zB , a, b, v1, v2) (or φk(t|v1, v2) if we only want to
highlight the dependence on (v1, v2)). The function φk(t|ẑA, zB, a, b, v1, v2) is continuous
in (t, ẑA, zB , a, b, v1, v2).

By definition, µ̄2(t3) = ẑA, so φB
2 (t3) = 0. Since µ̄2(t) is a decreasing function

of t, (5) implies that φB
2 (t)/π

B(b, t) is decreasing in t ∈ (t2, t3). Tedious but simple
computations also show that h′(t) > 0, so by (11), φB

2 (t)/π
B(b, t) is strictly increasing

in t ∈ (t1, t2). Hence, φB
2 (t)/π

B(b, t) is single-peaked at t = t2. Also, h(t1) = 1, so
φB
2 (t1) = 0, as required.

For completeness, let us also include here a simple expression for the sneaking-in
value function that we developed in Lemma 6 above:

v2(t) = (1− b̂2)−
µ̄1(t)

λA
1 + rB2

[
d+ (c− d)

[
ẑA

µ̄1(t)

]1+rB2 /λA
1

]
. (14)

Linearization.

In this section we develop approximations for φB
k (t), k = 1, 2, and their integrals.

As in the previous subsection, we maintain fixed a ∈ A and b ∈ B, where a + b > 1 and
φA(a) > 0. As always, let bz = (1 − ẑA)b + ẑA(1 − a). The values of φB

1 (t) and φB
2 (t)

depend on (v1, v2) nonlinearly, through µ̄k(t), k = 1, 2. Fix v1 ∈ [1 − a, bz) and let t∗ be

such that v1e
rB1 t∗ = bz. We now develop linear approximations for µ̄1(t) and µ̄2(t) near

t∗. When the times tj , j = 1, 2, 3, are close to t∗, the linear approximations produce good
approximations for φB

1 (t) and φB
2 (t).

Here we restrict to the case where v2 > v1 and v2e
rB2 t∗ = bz −∆ for some ∆ > 0. In

this case, t1, t2) and (t2, t3) are nonempty intervals. Note that adjusting v2 is equivalent
to adjusting ∆. Hereafter we assume that ∆ is small,. It follows that |t1 − t∗| and |t3 − t∗|
are order O(∆). Therefore, by Taylor series expansion around t∗, er

B
k t = er

B
k t∗ [1 + rBk (t−

t∗)] +O(|t− t∗|2) for all t ∈ (t1, t3). Let s = t− t∗. Hence

v1e
rB1 t = bz(1 + rB1 s) +O(s2) =⇒ µ̄1(t) = − rB1 bzs

a+ b− 1
+O(s2)

v2e
rB2 t = (bz −∆)(1 + rB2 s) +O(s2) =⇒ µ̄2(t) =

∆− rB2 bzs

a+ b− 1
+O(s2).

Let si = ti − t∗, i = 1, 2, 3. The equation µ̄1(t2) = µ̄2(t2) implies that −rB1 bzs2 =
∆− rB2 bzs2 +O(s22), or

s2 = s̃2 +O(∆2) where s̃2 =
−∆

bz(rB1 − rB2 )
. (15)

Similarly, v2e
rB2 t3 = bz leads to (b−∆)(1 + rB2 s3) +O(s23) = bz, or

s3 = s̃3 +O(∆2) where s̃3 =
∆

rB2 bz
. (16)
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If v2 ≥ v2(0) the equation v2(t1) = v2e
rB2 t1 leads to the approximation

rB1 bzs1
(λA

1 + rB2 )(a+ b− 1)
[d+ (c− d)W ] = −∆+ bzr

B
2 s1 +O(s21)

where W =

[
ẑA(a+ b− 1)

−rB1 bzs1

]1+rB2 /λA
1

.

This is a nonlinear equation in s1. If we view W as an exogenous parameter, the solution
s1 of this equation increases with W . When we make W = 0, we obtain the approximation

s̃1 =
(λA

1 + rB2 )

rB2
s̃2, (17)

and hence s̃1 + O(∆2) ≤ s1 ≤ s2. Though this does not establish a tight estimate for s1,
it does establish that |s1| = |t1 − t∗| = O(∆), as claimed earlier. If v2 > v2(0), then t1 = 0
(by definition) and consequently we define s̃1 = max {(λA

1 + rB2 )s̃2/r
B
2 ,−t∗} in general.

Obviously, when −t∗ > (λA
1 + rB2 )s̃2/r

B
2 , we still have that s̃1 = O(∆). We discuss s̃1 later

in more detail, after we obtain an approximation for φB
2 (t).

Let

X =
λA
1 + rB2

(rB1 − rB2 )λA
1 bz

, Y =
rB2
λA
1

, and nj = N −mj , j = 1, 2.

If ξ(x, y) = xnym, then by Taylor approximation,

ξ(x+ ϵ1, y + ϵ2) = ξ(x, y)

[
1 +

nϵ1
x

+
mϵ2
y

]
.

We use this approximation when x = −s, y = X∆+ Y s, ϵ1 = O(s2) = ϵ2, and s ∈ [s1, s2].
Since s1 < s2 < 0 and s2 = O(∆), ξ(−s+O(s2), X∆+Y s+O(s2)) = ξ(−s,X∆+Y s)(1+
O(∆). Therefore, for each function γ ∈ {g, h, φB

1 , φ
B
2 }

γ(t∗ + s) = γ̃(s)(1 +O(∆)) for all s ∈ [s̃1, s̃3],

where the corresponding functions γ̃ are defined as follows

g̃(s) =

[
rB1 bz

ẑA(a+ b− 1)

]N
[−s]n1 [X∆+ Y s]m1 (18)

h̃(s) =

[
rB1 hz

ẑA(a+ b− 1)

]N
[−s]n2 [X∆+ Y s]m2 (19)

φ̃B
1 (s) =

Z(zB , b, t∗ + s)

α1
[g̃(s)− h̃(s)] s ∈ [s̃1, s̃2] (20)

φ̃B
2 (s) =


Z(zB , b, t∗ + s)

α2
h̃(s) s ∈ [s̃1, s̃2]

Z(zB , b, t∗ + s)

α2

[
∆− rB2 bzs

ẑA(a+ b− 1)

]N
s ∈ [s̃2, s̃3],

(21)
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and φ̃B
1 (s) = 0 for s ∈ [s1, s3]\[s̃1, s̃2] and φ̃B

2 (s) = 0 for s ∈ [s1, s3]\[s̃1, s̃3].
We now discuss the precision of the approximation s̃1 when v2 ≥ v2(0). Then, the

point t1 is also the left limit of the pooling region. Hence, φB
2 (t1) = 0. Since φ̃B

2 (s) is a
good approximation for φB

2 (t
∗+ s), an approximation for s1 is obtained when we solve the

equation φ̃B
2 (s) = 0. The approximation s̃1 we obtained earlier is precisely the solution

of this last equation. When ẑA/∆ = O(∆2), [ẑA]1+rB2 /λA
1 /|s|rB2 /λA

1 = o(∆2) for all s < s2
(note that s1 < s2 < 0). In this case W = o(∆2) and s1 = s̃1 +O(∆2). The case in which

b = b̂2 = ⌊b∗2(a)⌋ is particularly important for our analysis. Here, a minimum requirement
for equilibrium is that ΦB

2 (ẑ
A, zB , a, b, v1, v2) ≤ 1. If φA(a) > 0 and (zA, zB) ∈ K(R, z̄)

for z̄ small, this inequality is satisfied only if ∆N+1/[ẑA]N−1 = O(1) (see equation (23)

below). Since N > 1 when b = b̂2, ∆ is small when ẑA is small. Moreover, if the grid B is

sufficiently fine so that N = rA(1− b̂2)/[r
B
2 (1− a)] ≤ 2, this implies that ẑA/∆ is of order

less than O(∆2).
We would also like to obtain good approximations for the integrals of φB

k , k = 1, 2.
We do so by integrating φ̃B

k , k = 1, 2. For the rest of this section, we assume that v2 ≥ v2(0)
and hence assume that s̃1 = (λA

1 + rB2 )s̃2/r
B
2 . We consider the case v2 < v2(0) in Lemma

11, and there we only obtain a bound for the relevant integrals.
Both g̃ and h̃ are functions of the form f(s) = (−s)n(X∆+Y s)m for some constants

n > 0 and m > 0. We have that∫ s̃2

s̃1

f(s)ds = [X∆]m
∫ s̃2

s̃1

(−s)n
[
1 +

Y

X∆
s

]m
ds =

[X∆]n+m+1

Y n+1

∫ 1+ Y
X∆ s̃2

1+ Y
X∆ s̃1

(1− t)n tmdt,

with the change of variables t = 1 + Y s/[X∆]. Now∫
(1− t)n tmdt =

tm+1

m+ 1
H(t,m, n), 1 +

Y

X∆
s̃1 = 0 and 1 +

Y

X∆
s̃2 =

λA
1

λA
1 + rB2

,

where H(t,m, n) is the hypergeometric function (usually denoted by 2F1(m+ 1,−n,m+
2, t)) defined by the series expansion:

H(t,m, n) = 1 +
∞∑
k=1

hkt
k where hk =

m+ 1

m+ k + 1

(−n)(1− n) · · · (k − 1− n)

k!
.

Since H(0) = 1,∫ s̃2

s̃1

f(s)ds =
[X∆]n+m+1

(m+ 1)Y n+1

[
tm+1H(t,m, n)

]
t=λA

1 /(λA
1 +rB2 )

.

Since ∆− rB2 bz s̃3 = 0, it follows that∫ s̃3

s̃2

[∆− rB2 bzs]
Nds =

[∆− rB2 bz s̃2]
N+1

[N + 1]rB2 bz

=
1

rB2 bz

λA
2

λA
2 + λB

[
rB1 ∆

rB1 − rB2

]N+1

.
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We assumed that πB(b, t) ≥ π is continuous in t ∈ [0, T ] for each b. Thus, Z(zB , b, t)
is absolutely continuous in t. Note that s̃1 = −ω1∆ and s̃3 = ω2∆ for some positive
constants ω1 and ω2. Thus, for each δ > 0 there exists ∆ ∈ (0, δ) such that Z(zB , b, t+s) =
Z(zB , b, t)(1 +O(δ)) for all s ∈ [s̃1, s̃3] and all t ∈ [−s̃1, T − s̃3]. Therefore∫ s2

s1

φB
1 (t

∗ + s)ds =

∫ s̃2

s̃1

Z(zB, b, t∗ + s)

α1
[g̃(s)− h̃(s)](1 +O(∆))ds

=
Z(zB, b, t∗)

α1
(1 +O(ϵ))

∫ s̃2

s̃1

[g̃(s)− h̃(s)]ds.

Thus, for any δ > 0, there exists ∆ ∈ (0, δ) such that∫ s2

s1

φB
1 (t

∗ + s)ds =
Z(zB , b, t∗)

α1[ẑA]N
∆N+1θ1(1 +O(δ)) (22)∫ s3

s1

φB
2 (t

∗ + s)ds =
Z(zB , b, t∗)

α2[ẑA]N
∆N+1θ2(1 +O(δ)) where (23)

x =
λA
1

λA
1 + rB2

, ρ(m,n) =
xm+1H(x,m, n)

(m+ 1)Y n+1
, J =

λA
1

(rB1 − rB2 )(1− a)

θ1 = X

[
λA
1 + rB2

(rB1 − rB2 )(1− a)

]N
[ρ(m1, n1)− ρ(m2, n2)]

θ2 = X

[
λA
1 + rB2

(rB1 − rB2 )(1− a)

]N
ρ(m2, n2) +

[J ]NλA
1

(λA
2 + λB)(rB1 − rB2 )bz

.

Define

θ(a, b) =
θ1
θ2

(a, b) ∈ A× B with a+ b > 1.

The functions θ1 and θ2 depend on a and b, and are independent of (v1, v2). Furthermore,
they also depend on ẑA but only through bz (note that X depends on bz). Since bz cancels
out when we take the ratio, θ(a, b) is indeed a function of (a, b) alone.

Temporal Model.

Proof of Lemma 10

Let b = b̂2 and ∆ = bz − v2e
rB2 t∗ . By assumption, 0 < ∆ < δ. In the previous

linearization section we defined si = ti − t∗ and show that si = O(∆) for i = 1, 2, 3 (see
equations (15)–(17)). Therefore, we can choose δ > 0 sufficiently small so that |si| < ϵ
for i = 1, 2, 3. Now, if v2 ≤ v2(0), then t1 = 0 (by definition) and t∗ = t∗ − t1. Hence,

t∗ = O(∆) and v1 = e−rB1 t∗bz ≥ bz(1 − O(∆)). Again, we can choose δ > 0 sufficiently
small so that v1 ≥ bz − ϵ. □
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Proof of Lemma 11
Choose δ > 0 as required by Lemma 10 so that |ti − t∗| < ϵ, i = 1, 2, 3. Since

b2 = b̂2 = ⌊b∗2(a)⌋, theta(a) ≡ θ(a, b̂2) is only a function of a. By assumption, v2 ≥ v2(0),
so s̃1 < −t∗ and the equations (22)–(23) are valid. Thus,∫ t2

t1
φB
1 (t|ẑA, zB , a, b̂2, v1, v2)dt

ΦB
2 (ẑ

A, zB , a, b̂2, v1, v2)
=

α2

α1
θ(a) +O(δ),

and we can choose δ > 0 small enough so that |O(δ)| < ϵ. □

Proof of Lemma 12

Assume that v2 < v2(0), so that v2e
rB2 t and v2(t) do not intersect in [0, t∗). In this

case t1 = 0 and s1 = −t∗ is not the left limit of integration assumed in equations (22)–(23),
and (0, t1) = ∅. When s1 = −t∗, the pooling region is “truncated” in the left at t = 0.

For s > 0, let (ṽ1, ṽ2) be such that ṽke
rBk s = vk for k = 1, 2. Then ṽke

rBk (s+t) = vke
rBk t

for t ≥ 0, k = 1, 2. Thus, adjusting (ṽ1, ṽ2) this way corresponds to “moving the vertical
axes” and extending the original diagram to the left. Corresponding to (ṽ1, ṽ2) there is
a new sneaking-in function that also satisfies v2(s + t|ṽ) = v2(t|v) for all t ≥ 0. Since

the indifference curve ṽ2e
rB2 t is steeper than the sneaking-in function v2(t|ṽ) at each t,

there exists s∗ > 0 large enough so that when s = s∗, ṽ2 = v2(0|ṽ). Let v∗k be such that

v∗ke
rBk s∗ = vk, k = 1, 2. Then φB

k (s
∗ + t|v∗) = φB

k (t|v) for all t ≥ 0, k = 1, 2. By Lemma
11, for any ϵ > 0 small we can choose δ > 0 such that

ΦB
1 (ẑ

A, zB, a, b̂2, v
∗)

ΦB
2 (ẑ

A, zB, a, b̂2, v∗)
<

α2

α1
θ(a) + ϵ < 1.

Assume by contradiction that ΦB
1 (ẑ

A, zB , a, b̂2, v)/Φ
B
2 (ẑ

A, zB, a, b̂2, v) ≥ 1. The
function φB

1 (·|v∗) : [0, s∗ + t2] is quasiconcave and attains a maximum at some point in
(0, s∗ + t2). The function φB

2 (·|v∗) : [0, s∗ + t3] is quasiconcave and attains its maximum
at s∗ + t2. Moreover, φB

1 (0|v∗) > 0 = φB
2 (0|v∗) and φB

2 (s
∗ + t2|v∗) > 0 = φB

1 (s
∗ +

t2|v∗). Hence, there exists a unique t0 ∈ (0, s∗ + t2) such that φB
1 (t0|v∗) = φB

2 (t0|v∗), and
φB
1 (t|v∗) > φB

2 (t|v∗) for t ∈ (0, t0) and φB
1 (t|v∗) < φB

2 (t|v∗) for t ∈ (t0, s
∗+ t3). Therefore,

ΦB
1 (ẑ

A, zB, a, b̂2, v)/Φ
B
2 (ẑ

A, zB , a, b̂2, v) ≥ 1 implies that t0 − s∗ > 0.
As we move the vertical axes to the left, s increases from 0 to s∗ and (ṽ1, ṽ2) decreases

from (v1, v2) to (v∗1 , v
∗
2). We now study how the ratio

γ(s) =
ΦB

1 (ẑ
A, zB , a, b̂2, ṽ)

ΦB
2 (ẑ

A, zB , a, b̂2, ṽ)

varies with s. By assumption, when s = 0, ṽ = v and γ(0) ≥ 1. We now argue that γ(s) > 1
for all s ∈ (0, s∗]. Suppose that at some s ∈ (0, s∗], γ(s) = 1. Let s be the smallest such



ABREU, PEARCE AND STACCHETTI 37

point and vk be such that vke
rBk s = vk, k = 1, 2. Then, γ(s) > 1 for s ∈ (0, s), and

γ′(s) =
φB
1 (s

∗ − s|v∗)ΦB
2 (ẑ

A, zB , a, b̂2, v)− ΦB
1 (ẑ

A, zB, a, b̂2, v)φ
B
2 (s

∗ − s|v∗)
ΦB

2 (ẑ
A, zB, v)2

=
1

ΦB
2 (ẑ

A, zB, a, b̂2, v)
[φB

1 (s
∗ − s|v∗)− γ(s)φB

2 (s
∗ − s|v∗)] > 0.

Thus, γ(s) < 1 for s just smaller than s, which is a contradiction. Therefore, γ(s) > 1 for
all s ∈ (0, s∗]. But this implies that γ(s∗) > 1 which is also a contradiction because the
assumption α2θ(a)/α1 < 1 implies that γ(s∗) < 1, as we argued above. □

Proof of Lemma 13
Assume that ϵ < π. Then, ẑA ≥ zAπA(a)/ϵ. Since λA

1 > λB and and zA ≥ zB/R,
(5) implies that there exists z̄ such that for all z ∈ K(R, z̄) and each t ∈ (0, t1),

φB
1 (t) ≤

[
Rϵ

πA(a)

]λB/λA
1 πB(b̂2, t)

α1
[µ̄1(t)]

λB/λA
1 z̄1−λB/λA

1 .

Therefore, for some constant M > 0,

∫ tℓ1

0

φB
1 (t)dt ≤ M z̄1−λB/λA

1 ,

and clearly we can choose z̄ small enough so that M z̄1−λB/λA
1 ≤ ϵ. □
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