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Abstract
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1 Introduction

Implementation theory, sometimes referred to as the theory of full implementation, has

been concerned with designing mechanisms, or game forms, that implement desired social

choices in every equilibrium of the mechanism. Numerous characterizations of imple-

mentable social choice rules have been obtained in one-shot settings in which agents

interact only once. However, many real world institutions, from voting and markets to

contracts, are used repeatedly by their participants. Despite its relevance, implementa-

tion theory has yet to offer much to the question of what is generally implementable in

repeated contexts (see, for example, the surveys of Jackson [14], Maskin and Sjöström

[23] and Serrano [32]).1

In many repeated settings, the agent’s preferences change over time in an uncertain

manner and the planner’s objective is to repeatedly implement the same social choice for

each possible preference profile. A number of applications naturally fit this description.

In repeated voting or auctions, the voters’ preferences over candidates or the bidders’

valuations over the objects could follow a stochastic process, with the planner’s goal

being for instance to always enact an outcome that is Condorcet-consistent or to sell each

object to the bidder with highest valuation. Similarly, a community that collectively owns

a technology could repeatedly face the problem of efficiently allocating resources under

changing circumstances.

This paper examines such a repeated implementation problem in complete informa-

tion environments. In our setup, the agents are infinitely-lived and their preferences are

represented by state-dependent utilities with the state being drawn randomly in each pe-

riod from an identical prior distribution. Utilities are not necessarily transferable, and

the realizations of states are complete information among the agents.2

In the one-shot implementation problem with complete information, the critical condi-

tion for implementing a social choice rule is the well-known (Maskin) monotonicity. This

condition is necessary and, together with some minor qualification, also sufficient.3 As

is the case between one-shot and repeated games, however, a repeated implementation

1The literature on dynamic mechanism design does not address the issue of full implementation since
it is concerned only with establishing a single equilibrium of some mechanism with desired properties.

2A companion paper [19] explores the case of incomplete information.
3Monotonicity can be a strong requirement. Some formal results showing its restrictiveness can be

found in Mueller and Satterthwaite [27], Dasgupta, Hammond and Maskin [9] and Saijo [29].
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problem introduces fundamental differences to what we have learned about implemen-

tation in the one-shot context. In particular, one-shot implementability does not imply

repeated implementability if the agents can co-ordinate on histories, thereby creating

other, possibly unwanted, equilibria.

To gain some intuition, consider a social choice function that satisfies sufficiency con-

ditions for Nash implementation in the one-shot complete information setup (e.g. mono-

tonicity and no veto power) and a mechanism that implements it (e.g. Maskin [21]).

Suppose now that the agents play this mechanism repeatedly and in each period a state

is drawn independently from a fixed distribution, with its realization being complete in-

formation.4 This is simply a repeated game with random states. Since in the stage game

every Nash equilibrium outcome corresponds to the desired outcome in each state, this

repeated game has an equilibrium in which each agent plays the desired action at each

period/state regardless of past history. However, we also know from the study of repeated

games (e.g. Mailaith and Samuelson [20]) that unless minmax payoff profile of the stage

game lies on the efficient payoff frontier of the repeated game, by the Folk theorem, there

will be many equilibrium paths along which unwanted outcomes are implemented. Thus,

the conditions that guarantee one-shot implementation are not sufficient for repeated

implementation. Our results below also show that they are not necessary either.

Given the multiple equilibria and collusion possibilities in repeated environments, at

first glance, implementation in such settings seems a daunting task. But our under-

standing of repeated interactions also provides us with several clues as to how it may be

achieved. First, a critical condition for repeated implementation is likely to be some form

of efficiency of the social choices, that is, the payoff profile of the social choice function

ought to lie on the efficient frontier of the corresponding repeated game/implementation

payoffs. Second, we need to devise a sequence of mechanisms such that, roughly speaking,

the agents’ individually rational payoffs also coincide with the efficient payoff profile of

the social choice function.

While repeated play introduces the possibility of co-ordinating on histories by the

agents, thereby creating difficulties towards full repeated implementation, it also allows

for more structure in the mechanisms that the planner can enforce. We introduce a

sequence of mechanisms, or a regime, such that the mechanism played in a given period

depends on the past history of mechanisms played and the agents’ corresponding actions.

4A detailed example is provided in Section 3 below.
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This way the infinite future gives the planner additional leverage: the planner can alter

the future mechanisms in a way that rewards desirable behavior while punishing the

undesirable. In fact, we observe institutions with similar features. For instance, many

constitutions involve explicit provisions for amendment,5 while a designer of repeated

auctions or other repeated allocation mechanisms often commits to excluding collusive

bidders or free-riders from future participation.

Formally, we consider repeated implementation of a social choice function (henceforth,

called SCF) in the following sense: there exists a regime such that (i) its equilibrium

set is non-empty and (ii) in any equilibrium of the regime, the desired social choice

is implemented at every possible history of past play of the regime and realizations of

states. A weaker notion of repeated implementation seeks the equilibrium continuation

payoff (discounted average expected utility) of each agent at every possible history to

correspond precisely to the one-shot payoff (expected utility) of the social choices. Our

main analysis adopts Nash equilibrium as the solution concept.6

We first demonstrate the following necessity result: if the agents are sufficiently patient

and an SCF is repeated-implementable, it cannot be strictly Pareto dominated (in terms of

expected utilities) by any convex combination of SCFs whose ranges belongs to that of the

desired SCF. Just as the theory of repeated game suggests, the agents can indeed “collude”

in our repeated implementation setup if there is a possibility of collective benefits.

It is then shown that, under some minor conditions, any SCF that is efficient in the

range can be repeatedly implemented. This sufficiency result is obtained by constructing

for each SCF a canonical regime in which, at any history along an equilibrium path, each

agent’s continuation payoff has a lower bound equal to his payoff from the SCF, thereby

ensuring the individually rational payoff profile in any continuation game to be no less

than the desired profile. It then follows that if the desired payoff profile is located on the

efficient frontier the agents cannot sustain any collusion away from it; moreover, if there

is a unique SCF associated with such payoffs than repeated implementation of the desired

outcomes is achieved.

The construction of the canonical regime involves two steps. We first show, for each

player i, that there exists a regime Si in which the player obtains a payoff exactly equal

5Barbera and Jackson [6] explore the issue of “stability” of constitutions (voting rules).
6Our results do not rely on imposing credibility off -the-equilibrium to sharpen predictions, as done

in Moore and Repullo [25], Abreu and Sen [3] and others.
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to that from the SCF and, then, embed this into the canonical regime such that each

agent i can always induce Si in the continuation game by an appropriate deviation from

his equilibrium strategy. The first step is obtained by applying Sorin’s [31] observation

that with infinite horizon any payoff can be generated exactly by the discounted average

payoff from some sequence of outcomes, as long as the discount factor is sufficiently large.7

The second step is obtained by allowing each agent the possibility of making himself the

“odd-one-out” in any equilibrium.

Our main analysis is extended in several directions. In particular, we also explore

what can be achieved with regimes employing only finite mechanisms. While this does not

alter the results when we restrict attention to pure strategies, the use of finite mechanisms

creates the problem of unwanted mixed strategy equilibria. The problem is particularly

severe in one-shot settings because Jackson [13] shows that even when an SCF is Nash

implementable there could still be a mixed equilibrium that strictly Pareto dominates it.

In our repeated setup, Jackson’s criticism works in our favor. We construct a regime with

finite mechanisms in which, with minor qualifications, every mixed Nash equilibrium is

itself dominated by other (pure) equilibria that achieves desired efficient implementation.

Furthermore, using the same construction, and focusing on subgame perfect equilibria,

we eliminate randomization altogether by introducing a mild equilibrium refinement based

on complexity considerations. Specifically, in our construction, any equilibrium involving

mixing can only be sustained by strategies that are unnecessarily too complex ; that is,

there are simpler strategies that would generate the same payoff at any on- or off-the-

equilibrium history of the game. Therefore, such mixed equilibria will not be chosen when

the agents have, at least at the margin, a preference for less complex strategies.

To this date, only few papers address the problem of repeated implementation. Kalai

and Ledyard [17] and Chambers [7] ask the question of implementing an infinite sequence

of outcomes when the agents’ preferences are fixed. Kalai and Ledyard [17] find that,

if the planner is more patient than the agents and, moreover, is interested only in the

long-run implementation of a sequence of outcomes, he can elicit the agents’ preferences

truthfully in dominant strategies. Chambers [7] applies the intuitions behind the virtual

implementation literature to demonstrate that, in a continuous time, complete information

setup, any outcome sequence that realizes every feasible outcome for a positive amount

7In our setup, the threshold on discount factor required for the main sufficiency results is one half
and, therefore, an arbitrarily large discount factor is not needed.
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of time satisfies monotonicity and no veto power and, hence, is Nash implementable.

In these models, however, there is only one piece of information to be extracted from

the agents who, therefore, do not interact repeatedly themselves. More recently, Jackson

and Sonnenschein [16] consider “budgeted” mechanisms in a finitely linked, or repeated,

incomplete information implementation problem with independent private values. They

find that for any ex ante Pareto efficient SCF all equilibrium payoffs of such a budgeted

mechanism must approximate the target payoffs corresponding to the SCF, as long as the

agents are sufficiently patient and the horizon is sufficiently long. In contrast to [16], our

setup deals with infinitely-lived agents and the case of complete information (see [19] for

our incomplete information analysis). In terms of results, we derive a necessary condition

as well as precise, rather than approximate, repeated implementation of an efficient SCF

at every possible history of the regime, not just the payoffs computed at the outset.

The sufficiency results do not require the discount factor to be arbitrarily large and are

obtained with arguments that are very much distinct from those of [16].

The paper is organized as follows. Section 2 first introduces the implementation prob-

lem in the one-shot setup with complete information which will lay out the basic definitions

and notation throughout the paper. Section 3 then describes the problem of infinitely re-

peated implementation. Our main results are presented and discussed in Section 4. We

consider the key extensions of our analysis in Section 5 before concluding in Section 6.

Some proofs are relegated to an Appendix. Also, we provide a Supplementary Material

to present some results and proofs whose details are left out for expositional reasons.

2 Preliminaries

Let I be a finite, non-singleton set of agents; with some abuse of notation, I also denotes

the cardinality of this set. Let A be a finite set of outcomes and Θ be a finite, non-

singleton set of the possible states and p denote a probability distribution defined on Θ

such that p(θ) > 0 for all θ ∈ Θ. Agent i’s state-dependent utility function is given by

ui : A×Θ→ R. An implementation problem, P , is a collection P = [I, A,Θ, p, (ui)i∈I ].

An SCF f in an implementation problem P is a mapping f : Θ→ A such that f(θ) ∈ A
for any θ ∈ Θ. The range of f is the set f(Θ) = {a ∈ A : a = f(θ) for some θ ∈ Θ}.
Let F denote the set of all possible SCFs and, for any f ∈ F , define F (f) = {f ′ ∈ F :

f ′(Θ) ⊆ f(Θ)} as the set of all SCFs whose range belongs to f(Θ).
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For an outcome a ∈ A, define vi(a) =
∑

θ∈Θ p(θ)ui(a, θ) as its expected utility, or

(one-shot) payoff, to agent i. Similarly, though with some abuse of notation, for an SCF

f define vi(f) =
∑

θ∈Θ p(θ)ui(f(θ), θ). Denote the profile of payoffs associated with f by

v(f) = (vi(f))i∈I . Let V =
{
v(f) ∈ RI : f ∈ F

}
be the set of expected utility profiles of

all possible SCFs. Also, for a given f ∈ F , let V (f) =
{
v(f ′) ∈ RI : f ′ ∈ F (f)

}
be the

set of payoff profiles of all SCFs whose ranges belong to the range of f . We write co(V )

and co(V (f)) for the convex hulls of the two sets, respectively.

A payoff profile v′ = (v′1, .., v
′
I) ∈ co(V ) is said to Pareto dominate another profile

v = (v1, .., vI) if v′i ≥ vi for all i with the inequality being strict for at least one agent.

Furthermore, v′ strictly Pareto dominates v if the inequality is strict for all i. An efficient

SCF is defined as follows.

Definition 1 An SCF f is efficient if there exists no v′ ∈ co(V ) that Pareto dominates

v(f); f is strictly efficient if it is efficient and there exists no f ′ ∈ F , f ′ 6= f , such that

v(f ′) = v(f).

Our notion of efficiency is similar to ex ante Pareto efficiency used by Jackson and

Sonnenschein [16]. The difference is that we define efficiency over the convex hull of

the set of expected utility profiles of all possible SCFs. As will shortly become clear,

this reflects the set of (discounted average) payoffs that can be obtained in an infinitely

repeated implementation problem.8

We also define efficiency in the range as follows.

Definition 2 An SCF f is efficient in the range if there exists no v′ ∈ co(V (f)) that

Pareto dominates v(f); f is strictly efficient in the range if it is efficient in the range and

there exists no f ′ ∈ F (f), f ′ 6= f , such that v(f ′) = v(f).

As a benchmark, we next specify Nash implementation in the one-shot context. A

mechanism is defined as g = (M g, ψg), where M g = M g
1 × · · · ×M

g
I is a cross product of

message spaces and ψg : M g → A is an outcome function such that ψg(m) ∈ A for any

message profile m = (m1, . . . ,mI) ∈M g. Let G be the set of all feasible mechanisms.

Given a mechanism g = (M g, ψg), we denote by Ng(θ) ⊆M g the set of Nash equilibria

of the game induced by g in state θ. We then say that an SCF f is Nash implementable if

8Clearly an efficient f is ex post Pareto efficient in that, given state θ, f(θ) is Pareto efficient. An ex
post Pareto efficient SCF needs not however be efficient.
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there exists a mechanism g such that, for all θ ∈ Θ, ψg(m) = f(θ) for all m ∈ Ng(θ). The

seminal result on (one-shot) Nash implementation is due to Maskin [21]: (i) If an SCF f is

Nash implementable, f satisfies monotonicity; (ii) If I ≥ 3, and if f satisfies monotonicity

and no veto power, f is Nash implementable.9 As mentioned before, monotonicity can be

a restrictive condition, and one can easily find cases in standard problems such as voting

or auction where, for example, efficient SCFs are not monotonic and hence not (one-shot)

Nash implementable.10

3 Repeated Implementation

3.1 An Illustrative Example

We begin our analysis of repeated implementation by discussing an example that will

illustrate the key issues. Consider the following case: I = {1, 2, 3}, A = {a, b, c}, Θ =

{θ′, θ′′} and the agents’ state-contingent utilities are given below:

θ′ θ′′

i = 1 i = 2 i = 3 i = 1 i = 2 i = 3

a 4 2 2 3 1 2

b 0 3 3 0 4 4

c 0 0 4 0 2 3

The SCF f is such that f(θ′) = a and f(θ′′) = b. This SCF is efficient, monotonic and

satisfies no veto power. The Maskin mechanism,M = (M,ψ), for f is defined as follows:

Mi = Θ× A× Z+ (where Z+ is the set of non-negative integers) for all i and ψ satisfies

1. if mi = (θ, f(θ), 0) for all i, ψ(m) = f(θ);

2. if there exists some i such that mj = (θ, f(θ), 0) for all j 6= i and mi = (·, ã, ·) 6= mj,

ψ(m) = ã if ui(f(θ), θ) ≥ ui(ã, θ) and ψ(m) = f(θ) if ui(f(θ), θ) < ui(ã, θ);

9An SCF f is monotonic if, for any θ, θ′ ∈ Θ and a = f(θ) such that a 6= f(θ′), there exist some i ∈ I
and b ∈ A such that ui(a, θ) ≥ ui(b, θ) and ui(a, θ′) < ui(b, θ′). An SCF f satisfies no veto power if,
whenever i, θ and a are such that uj(a, θ) ≥ uj(b, θ) for all j 6= i and all b ∈ A, then a = f(θ).

10An efficient SCF may not even satisfy ordinality, which allows for virtual implementation (Mat-
sushima [24] and Abreu and Sen [4]).
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3. if m = ((θi, ai, zi))i∈I is of any other type and i is lowest-indexed agent among those

who announce the highest integer, ψ(m) = ai.

By monotonicity and no veto power of f , for each θ, the unique Nash equilibrium of

M consists of each agent announcing (θ, f(θ), 0), thereby inducing outcome f(θ).

Next, consider the infinitely repeated version of Maskin mechanism, where in each

period state θ is drawn randomly and the agents play the same Maskin mechanism.

Clearly, this repeated game with random states admits an equilibrium in which the agents

play the unique Nash equilibrium of the stage game in each state regardless of past history,

thereby implementing f in each period. However, if the agents are sufficiently patient,

there will be other equilibria and the SCF cannot be (uniquely) implemented.

For instance, consider the following repeated game strategies which implement out-

come b in both states of each period. Each agent reports (θ′′, b, 0) in each state/period

with the following punishment schemes: (i) if either agent 1 or 2 deviates then each agent

ignores the deviation and continues to report the same; (ii) if agent 3 deviates then each

agent plays the stage game Nash equilibrium in each state/period thereafter independently

of subsequent history.

It is easy to see that neither agent 1 nor agent 2 has an incentive to deviate: although

agent 1 would prefer a over b in both states, the rules ofM do not allow implementation

of a from his unilateral deviation; on the other hand, agent 2 is getting his most preferred

outcome in each state. If sufficiently patient, agent 3 does not want to deviate either.

This player can deviate in state θ′ and obtain c instead of b but this would be met by

punishment in which his continuation payoff is a convex combination of 2 (in θ′) and 4

(in θ′′), which is less than the equilibrium payoff.

In the above example, we have deliberately chosen an SCF that is efficient (as well as

monotonic and satisfying no veto power) so that the Maskin mechanism in the one-shot

framework induces unique Nash equilibrium payoffs on its efficient frontier. Despite this,

we cannot repeatedly implement the SCF via a repeated Maskin mechanism. The reason

is that in this example the Nash equilibrium payoffs differ from the minmax payoffs of

the stage game. For instance, agent 1’s minmax utility in θ′ is equal to 0, resulting from

m2 = m3 = (θ′′, f(θ′′), 0), which is less than his utility from f(θ′) = a; in θ′′, minmax

utilities of agents 2 and 3, which both equal 2, are below their respective utilities from

f(θ′′) = b. As a result, the set of individually rational payoffs in the repeated game is

not singleton, and one can obtain numerous equilibrium paths/payoffs with sufficiently
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patient agents.

The above example highlights the fundamental difference between repeated and one-

shot implementation, and suggests that one-shot implementability, characterized by mono-

tonicity and no veto power of an SCF, may be irrelevant for repeated implementability.

Our understanding of repeated interactions and the multiplicity of equilibria gives us two

clues. First, a critical condition for repeated implementation is likely to be some form of

efficiency of the social choices; that is, the payoff profile of the SCF ought to lie on the

efficient frontier of the repeated game/implementation payoffs. Second, we want to devise

a sequence of mechanisms such that, roughly speaking, the agents’ individually rational

payoffs also coincide with the efficient payoff profile of the SCF. In what follows, we shall

demonstrate that these intuitions are indeed correct and, moreover, achievable.

3.2 Definitions

An infinitely repeated implementation problem is denoted by P∞, representing infinite

repetitions of the implementation problem P = [I, A,Θ, p, (ui)i∈I ]. Periods are indexed

by t ∈ Z++. In each period, the state is drawn from Θ from an independent and identical

probability distribution p.

An (uncertain) infinite sequence of outcomes is denoted by a∞ =
(
at,θ
)
t∈Z++,θ∈Θ

, where

at,θ ∈ A is the outcome implemented in period t and state θ. Let A∞ denote the set of

all such sequences. Agents’ preferences over alternative infinite sequences of outcomes are

represented by discounted average expected utilities. Formally, δ ∈ (0, 1) is the agents’

common discount factor, and agent i’s (repeated game) payoffs are given by a mapping

πi : A∞ → R such that

πi(a
∞) = (1− δ)

∑
t∈Z++

∑
θ∈Θ

δt−1p(θ)ui(a
t,θ, θ).

It is assumed that the structure of an infinitely repeated implementation problem

(including the discount factor) is common knowledge among the agents and, if there is

one, the planner. The realized state in each period is complete information among the

agents but unobservable to an outsider.

We want to repeatedly implement an SCF in each period by devising a mechanism

for each period. A regime specifies a sequence of mechanisms contingent on the publicly
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observable history of mechanisms played and the agents’ corresponding actions. It is

assumed that a planner, or the agents themselves, can commit to a regime at the outset.

To formally define a regime, we need some notation. Given a mechanism g = (M g, ψg),

define Eg ≡ {(g,m)}m∈Mg , and let E = ∪g∈GEg. Let H t = E t−1 (the (t− 1)-fold Cartesian

product of E) represent the set of all possible histories of mechanisms played and the

agents’ corresponding actions over t − 1 periods. The initial history is empty (trivial)

and denoted by H1 = ∅. Also, let H∞ = ∪∞t=1H
t. A typical history of mechanisms and

message profiles played is denoted by h ∈ H∞.

A regime, R, is then a mapping, or a set of transition rules, R : H∞ → G. Let

R|h refer to the continuation regime that regime R induces at history h ∈ H∞. Thus,

R|h(h′) = R(h, h′) for any h, h′ ∈ H∞. A regime R is history-independent if and only if,

for any t and any h, h′ ∈ H t, R(h) = R(h′). Notice that, in such a history-independent

regime, the specified mechanisms may change over time in a pre-determined sequence.

We say that a regime R is stationary if and only if, for any h, h′ ∈ H∞, R(h) = R(h′).11

Given a regime, a (pure) strategy for an agent depends on the sequence of realized

states as well as the history of mechanisms and message profiles played.12 Define Ht as

the (t − 1)-fold Cartesian product of the set E × Θ, and let H1 = ∅ and H∞ = ∪∞t=1H
t

with its typical element denoted by h. Then, each agent i’s corresponding strategy,

σi, is a mapping σi : H∞ × G × Θ → ∪g∈GM g
i such that σi(h, g, θ) ∈ M g

i for any

(h, g, θ) ∈ H∞×G×Θ. Let Σi be the set of all such strategies, and let Σ ≡ Σ1×· · ·×ΣI .

A strategy profile is denoted by σ ∈ Σ. We say that σi is a Markov (history-independent)

strategy if and only if σi(h, g, θ) = σi(h
′, g, θ) for any h,h′ ∈ H∞, g ∈ G and θ ∈ Θ. A

strategy profile σ = (σ1, . . . , σI) is Markov if and only if σi is Markov for each i.

Next, let θ(t) = (θ1, . . . , θt−1) ∈ Θt−1 denote a sequence of realized states up to, but

not including, period t with θ(1) = ∅. Let q(θ(t)) ≡ p(θ1)×· · ·× p(θt−1). Suppose that R

is the regime and σ the strategy profile chosen by the agents. Let us define the following

variables on the outcome path:

• h(θ(t), σ, R) ∈ Ht denotes the t − 1 period history generated by σ in R over state

11A constitution (over voting rules) can therefore be thought of as a regime in the following sense. In
each period, each agent reports his preference over the candidate outcomes and also chooses a voting rule
to be enforced in the next period. The current voting rule aggregates the agents’ first reports, while the
amendment rule dictates the transition according to the second reports.

12We later extend the analysis to allow for mixed (behavioral) strategies. See Section 5.1.
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realizations θ(t) ∈ Θt−1.

• gθ(t)(σ,R) ≡ (M θ(t)(σ,R), ψθ(t)(σ,R)) refers to the mechanism played at h(θ(t), σ, R).

• mθ(t),θt
(σ,R) ∈ M θ(t)(σ,R) refers to the message profile reported at h(θ(t), σ, R)

when the current state is θt.

• aθ(t),θt
(σ,R) ≡ ψθ(t)

(
mθ(t),θt

(σ,R)
)
∈ A refers to the outcome implemented at

h(θ(t), σ, R) when the current state is θt.

• πθ(t)i (σ,R), with slight abuse of notation, denotes agent i’s continuation payoff at

h(θ(t), σ, R); that is,

π
θ(t)
i (σ,R) = (1− δ)

∑
s∈Z++

∑
θ(s)∈Θs−1

∑
θs∈Θ

δs−1q (θ(s), θs)ui
(
aθ(t),θ(s),θ

s

(σ,R), θs
)
.

For notational simplicity, let πi(σ,R) ≡ π
θ(1)
i (σ,R). Also, when the meaning is clear,

we shall sometimes suppress the arguments in the above variables and refer to them simply

as h(θ(t)), gθ(t), mθ(t),θt
, aθ(t),θ

t
and π

θ(t)
i .

A strategy profile σ = (σ1, . . . , σI) is a Nash equilibrium of regime R if, for each i,

πi(σ,R) ≥ πi(σ
′
i, σ−i, R) for all σ′i ∈ Σi. Let Ωδ(R) ⊆ Σ denote the set of (pure strategy)

Nash equilibria of regime R with discount factor δ.

We are now ready to define the following notions of Nash repeated implementation.

Definition 3 An SCF f is payoff-repeated-implementable in Nash equilibrium from period

τ if there exists a regime R such that (i) Ωδ(R) is non-empty; and (ii) every σ ∈ Ωδ(R)

is such that π
θ(t)
i (σ,R) = vi(f) for any i, t ≥ τ and θ(t). An SCF f is repeated-

implementable in Nash equilibrium from period τ if, in addition, every σ ∈ Ωδ(R) is

such that aθ(t),θ
t
(σ,R) = f(θt) for any t ≥ τ , θ(t) and θt.

The first notion represents repeated implementation in terms of payoffs, while the

second asks for repeated implementation of outcomes and, therefore, is a stronger con-

cept. Repeated implementation from some period τ requires the existence of a regime

in which every Nash equilibrium delivers the correct continuation payoff profile or the

correct outcomes from period τ onwards for every possible sequence of state realizations.
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4 Main Results

4.1 Necessity

As illustrated by the example in Section 3.1, our understanding of repeated games suggests

that some form of efficiency ought to play a necessary role towards repeated implementa-

tion. However, note that any constant SCF is trivially repeated-implementable, implying

that an SCF needs not be efficient over the entire set of possible SCFs. Our first result

establishes the following: if the agents are sufficiently patient and an SCF f is repeated-

implementable from any period, then there cannot be a payoff vector v′ belonging to the

convex hull of all feasible payoffs that can be constructed from the range of f such that

all agents strictly prefer v′ to v(f).

We demonstrate this result by showing that, if this were not the case, there would

be a “collusive” equilibrium in which the agents obtain the higher payoff vector v′. To

construct this collusive equilibrium, we first invoke the result by Fudenberg and Maskin

[11] on convexifying the set of payoffs without public randomization in repeated games

to show that, with sufficiently large δ, there exists a sequence of non-truthful announce-

ments and corresponding outcomes in the range of f such that the payoff profile v′ is

obtained. Then, we show that these announcements can be supported in equilibrium by

constructing strategies in which any unilateral deviation triggers the original equilibrium

in the continuation game (that repeated-implements f).

Theorem 1 Consider any SCF f such that v(f) is strictly Pareto dominated by another

payoff profile v′ ∈ co (V (f)). Then there exists δ̄ ∈ (0, 1) such that, for any δ ∈ (δ̄, 1) and

period τ , f is not repeated-implementable in Nash equilibrium from period τ .13

Proof. By assumption, there exists ε > 0 such that v′i > vi(f)+2ε for all i. Let δ1 = 2ρ
2ρ+ε

,

where ρ ≡ maxi∈I,θ∈Θ,a,a′∈A [ui(a, θ)− ui(a′, θ)].
Since v′ ∈ co (V (f)), there exists δ2 > 0 such that, for all δ ∈ (δ2, 1), there exists an

infinite sequence of SCFs F ′ = {f 1, f 2, . . .} such that

f t ∈ F (f) for all integer t (1)

13The necessary condition here requires the payoff profile of the SCF f to lie on the frontier of co(V (f)).
Thus, it will correspond to efficiency in the range when co(V (f)) is strictly convex.
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and, for any t′, ∣∣∣∣∣v′ − (1− δ)
∑
t≥t′

δt−t
′
v(f t)

∣∣∣∣∣ < ε. (2)

The proof of this claim is analogous to the standard result by Fudenberg and Maskin [11]

on convexifying the set of payoffs without public randomization in repeated games (see

Lemma 3.7.2 of Mailath and Samuelson [20]).

Next, let δ = max{δ1, δ2}. Fix any δ ∈ (δ, 1) and any sequence F ′ = {f 1, f 2, . . .} that

satisfies (1) and (2) for any date t′. Also, fix any date τ . We want to show that f cannot

be repeatedly implemented from period τ . Suppose not; then there exists a regime R∗

that repeated-implements f from period τ .

For any strategy profile σ in regime R∗, any player i, any date t and any sequence of

states θ(t), let Mi(θ(t), σ, R
∗) and ψθ(t)(σ,R) denote, respectively, the set of messages that

i can play and the corresponding outcome function at history h(θ(t), σ, R∗). Also, with

some abuse of notation, for any mi ∈ Mi(θ(t), σ, R
∗) and any θt ∈ Θ, let π

θ(t),θt

i (σ)|mi

represent i’s continuation payoff from period t + 1 if the sequence of states (θ(t), θt) is

observed, i deviates, by playing mi, from σi for only one period at h(θ(t), σ, R∗) after

observing θt and every other agent plays the regime according to σ−i.

Consider any σ∗ ∈ Ωδ(R∗). Since σ∗ is a Nash equilibrium that repeated-implements

f from period τ , the following must be true about the equilibrium path: for any i, t ≥ τ ,

θ(t), θt and m′i ∈Mi(θ(t), σ
∗, R∗),

(1− δ)ui(aθ(t),θ
t

(σ∗, R∗), θt) + δvi(f) ≥ (1− δ)ui
(
a, θt

)
+ δπ

θ(t),θt

i (σ∗)|m′i,

where a ≡ ψθ(t)(σ∗, R∗)(m′i,m
θ(t),θt

−i (σ∗, R∗)). This implies that, for any i, t ≥ τ , θ(t), θt

and m′i ∈Mi(θ(t), σ
∗, R∗),

δπ
θ(t),θt

i (σ∗)|m′i ≤ (1− δ)ρ+ δvi(f). (3)

Next, note that, since f t ∈ F (f), there must exist a mapping λt : Θ → Θ such

that f t(θ) = f(λt(θ)) for all θ. Consider the following strategy profile σ′: for any i, g,

and θ, (i) σ′i(h, g, θ) = σ∗i (h, g, θ) for any h ∈ Ht, t < τ ; (ii) for any h ∈ Ht, t ≥ τ ,

σ′i(h, g, θ) = σ∗i (h, g, λ
t(θ)) if h is such that there has been no deviation from σ′, while

σ′i(h, g, θ) = σ∗i (h, g, θ) otherwise.

Then, by (2), we have

π
θ(t)
i (σ′, R) = (1− δ)

∑
t≥τ

δt−τv(f t) > v′i − ε for all i, t ≥ τ and θ(t) (4)
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Given the definitions of σ′ and σ∗ ∈ Ωδ(R∗), and since v′i − ε > vi(f), (4) implies that it

pays no agent to deviate from σ′ at any history before period τ .

Next, fix any player i, any date t ≥ τ, any sequence of states θ(t) and any state θt. By

(4), we have that agent i’s continuation payoff from σ′ at h(θ(t), σ′, R∗) after observing

θt is no less than

(1− δ)ui
(
aθ(t),θ

t

(σ′, R∗), θt
)

+ δ(v′i − ε). (5)

On the other hand, the continuation payoff of i from any unilateral one-period devia-

tion m′i ∈Mi(θ(t), σ
′, R∗) from σ′ at θ(t) and θt is given by

(1− δ)ui
(
a′, θt

)
+ δπ

θ(t),θt

i (σ′)|m′i, (6)

where a′ = ψθ(t)(σ′, R∗)(m′i,m
θ(t),θt

−i (σ′, R∗)).

Notice that, by the construction of σ′, there exists some θ̃(t) such that h(θ(t), σ′, R∗) =

h(θ̃(t), σ∗, R∗) and, hence, Mi(θ(t), σ
′, R∗)) = Mi(θ̃(t), σ

∗, R∗). Moreover, after a devia-

tion, σ′ induces the same continuation strategies as σ∗. Thus, we have

π
θ(t),θt

i (σ′)|m′i = π
θ̃(t),λt(θt)
i (σ∗)|m′i.

Then, by (3) above, the deviation payoff (6) is less than or equal to

(1− δ)
[
ui
(
a′, θt

)
+ ρ
]

+ δvi(f).

This, together with v′i > vi(f) + 2ε, δ > δ̄ = max(δ1, δ2) and the definition of δ1,

implies that (5) exceeds (6). But, this means that it does not pay any agent i to deviate

from σ′ at any date t ≥ τ . Therefore, σ′ must also be a Nash equilibrium of regime R∗.

Since, by (4), π
θ(t)
i (σ′, R∗) > v′i− ε > vi(f) = π

θ(t)
i (σ∗, R∗) for any i, t ≥ τ and θ(t), we

then have a contradiction against the assumption that R∗ repeated-implements f from

period τ .

4.2 Sufficiency

Let us now investigate if an efficient SCF can indeed be repeatedly implemented. We

begin with some additional definitions and an important general observation.

First, we call a constant rule mechanism one that enforces a single outcome (constant

SCF). Formally, φ(a) = (M,ψ) is such that Mi = {∅} for all i and ψ(m) = a ∈ A for all
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m ∈ M . Also, let d(i) denote a dictatorial mechanism in which agent i is the dictator,

or simply i-dictatorship; formally, d(i) = (M,ψ) is such that Mi = A, Mj = {∅} for all

j 6= i and ψ(m) = mi for all m ∈M .

Next, let vii =
∑

θ∈Θ p(θ) maxa∈A ui(a, θ) denote agent i’s maximal one-period payoff.

Clearly, vii is i’s payoff when i is the dictator and he acts rationally. Also, let Ai(θ) ≡
{arg maxa∈A ui(a, θ)} represent the set of i’s best outcomes in state θ. Define the maximum

payoff i can obtain when agent j 6= i is the dictator by vji =
∑

θ∈Θ p(θ) maxa∈Aj(θ) ui(a, θ).

We make the following assumption throughout the paper.

(A) There exist some i and j such that Ai(θ) ∩ Aj(θ) is empty for some θ.

This assumption is equivalent to assuming that vii 6= vji for some i and j. It implies

that in some state there is a conflict between some agents on the best outcome. Since we

are concerned with repeated implementation of efficient SCFs, Assumption (A) incurs no

loss of generality when each agent has a unique best outcome for each state: if Assumption

(A) were not to hold, we could simply let any agent choose the outcome in each period

to obtain repeated implementation of an efficient SCF.

Our results on efficient repeated implementation below are based on the following

relatively innocuous auxiliary condition.

Condition ω. For each i, there exists some ãi ∈ A such that vi(f) ≥ vi(ã
i).

This property says that, for each agent, the expected utility that he derives from

the SCF is bounded below by that of some constant SCF. One could compare it to the

bad outcome condition appearing in Moore and Repullo [26] (which requires existence of

an outcome strictly worse than the desired social choice for all agents in every state).

Condition ω is weaker for three reasons. First, condition ω does not require that there

be a single constant SCF to provide the lower bound for all agents; second, for each

i, outcome ãi is worse than the SCF only on average; third, the inequality is weak.

In many applications, condition ω is naturally satisfied (e.g. zero consumption in the

group allocation problem mentioned in the Introduction). Furthermore, there are other

properties that can serve the same role, which we discuss in Section 4.3 below.

Now, let Φa denote a stationary regime in which the constant rule mechanism φ(a) is

repeated forever and let Di denote a stationary regime in which the dictatorial mechanism

d(i) is repeated forever. Also, let S(i, a) be the set of all possible history-independent
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regimes in which the enforced mechanisms are either d(i) or φ(a) only. For any i, j ∈ I,

a ∈ A and Si ∈ S(i, a), we denote by πj(S
i) the maximum payoff j can obtain when Si

is enforced and agent i always chooses a best outcome under d(i).

Our first Lemma applies the result of Sorin [31] to our setup. If an SCF satisfies con-

dition ω, any individual’s corresponding payoff can be generated precisely by a sequence

of appropriate dictatorial and constant rule mechanisms, as long as the discount factor is

greater than a half.

Lemma 1 Consider an SCF f and any i. Suppose that there exists ãi ∈ A such that

vi(f) ≥ vi(ã
i). Then, for any δ > 1

2
, there exists Si ∈ S(i, ãi) such that πi(S

i) = vi(f).

Proof. By assumption there exists some outcome ãi such that vi(f) ∈ [vi(ã
i), vii]. Since

vi(ã
i) is the one-period payoff of i when φ(ãi) is the mechanism played and vii is i’s payoff

when d(i) is played and i behaves rationally, it follows from the algorithm of Sorin [31]

(see Lemma 3.7.1 of Mailath and Samuelson [20]) that there exists a regime Si ∈ S(i, ãi)

that alternates between φ(a) and d(i), and generates the payoff vi(f) exactly.

The above statement assumes that δ > 1
2

because vi(f) is a convex combination of

exactly two payoffs vi(ã
i) and vii. For the remainder of the paper, unless otherwise stated,

δ will be fixed to be greater than 1
2

as required by this Lemma. But, note that if the

environment is sufficiently rich that, for each i, one can find some ãi with vi(ã
i) = vi(f)

(for instance, when utilities are quasi-linear and monetary transfers can be arranged) then

our results below are true for any δ ∈ (0, 1).

Three or more agents The analysis with three or more agents is somewhat different

from that with two players. We begin with the former case and assume that I ≥ 3.

Our arguments are constructive. First, fix any SCF f that satisfies condition ω and

define mechanism g∗ = (M,ψ) as follows: Mi = Θ × Z+ for all i, and ψ is such that (i)

if mi = (θ, ·) for at least I − 1 agents, ψ(m) = f(θ) and (ii) if m = ((θi, zi))i∈I is of any

other type, ψ(m) = f(θ̃) for some arbitrary but fixed state θ̃ ∈ Θ.

Next, we define our canonical regime. Let R∗ denote any regime in which R∗(∅) = g∗

and, for any h = ((g1,m1), . . . , (gt−1,mt−1)) ∈ H t such that t > 1 and gt−1 = g∗, the

following transition rules hold:

Rule 1: If mt−1
i = (·, 0) for all i, R∗(h) = g∗.
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Rule 2: If there exists some i such that mt−1
j = (·, 0) for all j 6= i and mt−1

i = (·, zi)
with zi > 0, R∗|h = Si, where Si ∈ S(i, ãi) such that vi(ã

i) ≤ vi(f) and πi(S
i) =

vi(f) (by condition ω and Lemma 1, regime Si exists).

Rule 3: If mt−1 is of any other type and i is lowest-indexed agent among those who

announce the highest integer, R∗|h = Di.

Regime R∗ starts with mechanism g∗. At any period in which this mechanism is

played, the transition is as follows. If all agents announce zero, then the mechanism next

period continues to be g∗. If all agents but one, say i, announce zero and i does not,

then the continuation regime at the next period is a history-independent regime in which

the “odd-one-out” i can guarantee himself a payoff exactly equal to the target level vi(f)

(invoking Lemma 1). Finally, if the message profile is of any other type, one of the agents

who announce the highest integer becomes a dictator forever thereafter.

Note that, unless all agents “agree” on zero when playing mechanism g∗, the game ef-

fectively ends; for any other message profile, the continuation regime is history-independent

and employs only dictatorial and/or constant rule mechanisms.

We now characterize the set of Nash equilibria of regime R∗. A critical feature of

our regime construction is conveyed in our next Lemma: beyond the first period, as long

as g∗ is the mechanism played, each agent i’s equilibrium continuation payoff is always

bounded below by the target payoff vi(f). Otherwise, the agent whose continuation payoff

falls below the target level could profitably deviate by announcing a positive integer in

the previous period, thereby making himself the “odd-one-out” and hence guaranteeing

the target payoff.

Lemma 2 Suppose that f satisfies condition ω. Fix any σ ∈ Ωδ(R∗). For any t > 1 and

θ(t), if gθ(t)(σ,R∗) = g∗ then π
θ(t)
i (σ,R∗) ≥ vi(f) for all i.

Proof. Suppose not; then, at some t > 1 and θ(t), π
θ(t)
i (σ,R∗) < vi(f) for some i. Let

θ(t) = (θ(t − 1), θt−1). By the transition rules of R∗, it must be that gθ(t−1)(σ,R∗) = g∗

and, for all i, m
θ(t−1),θt−1

i (σ,R∗) = (θ, 0) for some θ.

Consider agent i deviating to another strategy σ′i identical to the equilibrium strat-

egy σi at every history, except at h(θ(t − 1), σ, R∗) and period t − 1 state θt−1 where it

announces the state announced by σi, θ, and a positive integer. Note that the outcome

function ψ of mechanism g∗ is independent of integers and, therefore, the outcome at
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(h(θ(t− 1), σ, R∗), θt−1) does not change, i.e. aθ(t−1),θt−1
(σ′i, σ−i, R

∗) = aθ(t−1),θt−1
(σ,R∗).

But, by Rule 2, Si will be the continuation regime at the next period and i can ob-

tain continuation payoff vi(f). Thus, the deviation is profitable, contradicting the Nash

equilibrium assumption.

We next show that indeed mechanism g∗ will always be played on the equilibrium

path. Note that, in our dynamic construction, the agents play an “integer game” over

the identity of dictator in the continuation game. Given Assumption (A), when two or

more agents announcing a positive integer, there must be another agent who can profitably

deviate to a higher integer. In order to ensure that there cannot be an equilibrium with an

“odd-one-out,” say i, and hence the continuation regime Si, we also assume the following:

for each i and ãi ∈ A used for constructing Si,

if vi(f) = vi(ã
i) then vjj > vj(ã

i) for some j. (7)

Lemma 3 Suppose that f satisfies ω. Also, suppose that, for each i, outcome ãi ∈ A used

in the construction of Si above satisfies (7). Then, for any σ ∈ Ωδ(R∗), t, θ(t) and θt, we

have: (i) gθ(t)(σ,R∗) = g∗; (ii) m
θ(t),θt

i (σ,R∗) = (·, 0) for all i; (iii) aθ(t),θ
t
(σ,R∗) ∈ f(Θ).

Proof. Note that R∗(∅) = g∗. Thus, by Rule 1 and induction, and by ψ, it suffices to

show the following: For any t and θ(t), if gθ(t) = g∗ then m
θ(t),θt

i = (·, 0) for all i and θt.

We shall use proof by contradiction. To do so, we first establish two claims that will

ensure that, if the statement were not true, Assumption (A) and the extra condition (7)

would imply existence of an agent who could profitably deviate.

Claim 1 : Fix any i and any ai(θ) ∈ Ai(θ) for every θ. There exists j 6= i such that

vjj >
∑

θ p(θ)uj(a
i(θ), θ).

To prove this claim, suppose otherwise; then vjj =
∑

θ p(θ)uj(a
i(θ), θ) for all j 6= i.

But this means that ai(θ) ∈ Aj(θ) for all j 6= i and θ. Since by assumption ai(θ) ∈ Ai(θ),
this contradicts Assumption (A).

Claim 2 : Fix any σ ∈ Ωδ(R∗), t, θ(t) and θt. If gθ(t) = g∗ and m
θ(t),θt

i = (·, zi) with

zi > 0 for some i then there must exist some j 6= i such that π
θ(t),θt

j < vjj .

To prove this claim note that, given the definition of R∗, the continuation regime at

the next period is either Di or Si for some i. There are two cases to consider.

Case 1: The continuation regime is Si = Φãi
(Si enforces ãi ∈ A at every period).
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In this case π
θ(t),θt

i = vi(f) = vi(ã
i). Then the claim follows from π

θ(t),θt

j = vj(ã
i) and

condition (7).

Case 2: The continuation regime is either Di or Si 6= Φãi
.

By assumption under d(i) every agent j receives at most vij ≤ vjj . Also, when the

constant rule mechanism φ(ãi) is played every agent j receives a payoff vj(ã
i) ≤ vjj . Since

in this case the continuation regime involves playing either d(i) or φ(ãi), it follows that,

for every j, π
θ(t),θt

j ≤ vjj . Furthermore, by Claim 1, it must be that this inequality is strict

for some j 6= i. This is because in this case there exists some t′ > t and some sequence of

states θ(t′) = (θ(t), θt+1, ..θt
′−1) such that the continuation regime enforces d(i) at history

h(θ(t′)); but then aθ(t
′),θ ∈ Ai(θ) for all θ and therefore, by Claim 1, there exists an agent

j 6= i such that vjj >
∑

θ p(θ)uj(a
θ(t′),θ, θ).

Now, suppose that, at some t and θ(t), gθ(t) = b∗ but m
θ(t),θt

i = (·, zi) with zi > 0 for

some i and θt. Then, by Claim 2, there exists j 6= i such that π
θ(t),θt

j < vjj . Next consider

j deviating to another strategy identical to σj at every history, except at (h(θ(t)), θt)

where it announces the same state as σj but an integer higher than any integer that can

be reported by σ at this history. Given ψ, such a deviation does not incur a one-period

utility loss while strictly improving the continuation payoff as of the next period since,

by Rule 3, the deviator j becomes a dictator himself and by Claim 2 π
θ(t),θt

j < vjj . This is

a contradiction.

Given the previous two lemmas, we can now pin down the equilibrium payoffs by

invoking efficiency in the range.

Lemma 4 Suppose that f is efficient in the range and satisfies condition ω. Also, suppose

that, for each i, outcome ãi ∈ A used in the construction of Si above satisfies (7). Then,

for any σ ∈ Ωδ(R∗), π
θ(t)
i (σ,R∗) = vi(f) for any i, t > 1 and θ(t).

Proof. Suppose not; then f is efficient in the range but there exist some σ ∈ Ωδ(R∗), t > 1

and θ(t) such that π
θ(t)
i 6= vi(f) for some i. By Lemma 2, it must be that π

θ(t)
i > vi(f).

Also, by part (iii) of Lemma 3,
(
π
θ(t)
j

)
j∈I
∈ co(V (f)). Since f is efficient in the range, it

then follows that there must exist some j 6= i such that π
θ(t)
j < vj(f). But, this contradicts

Lemma 2.

It is straightforward to show that R∗ has a Nash equilibrium in Markov strategies

which attains truth-telling and, hence, the desired social choice at every possible history.
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Lemma 5 Suppose that f satisfies condition ω. There exists σ∗ ∈ Ωδ(R∗), which is

Markov, such that, for any t, θ(t) and θt, (i) gθ(t)(σ∗, R∗) = g∗; (ii) aθ(t),θ
t
(σ∗, R∗) = f(θt).

Proof. Consider σ∗ ∈ Σ such that, for all i, σ∗i (h, g
∗, θ) = σ∗i (h

′, g∗, θ) = (θ, 0) for

any h,h′ ∈ H∞ and θ. Thus, at any t and θ(t), we have π
θ(t)
i (σ∗, R∗) = vi(f) for all

i. Consider any i making a unilateral deviation from σ∗ by choosing some σ′i 6= σ∗i
which announces a different message at some (θ(t), θt). But, given ψ, it follows that

aθ(t),θ
t
(σ′i, σ

∗
−i, R

∗) = aθ(t),θ
t
(σ∗, R∗) = f(θt) while, by Rule 2, π

θ(t),θt

i (σ′i, σ
∗
−i, R

∗) = vi(f).

Thus, the deviation is not profitable.14

We are now ready to present our main results. The first result requires a slight

strengthening of condition ω in order to ensure implementation of SCFs that are efficient

in the range.

Condition ω′. For each i, there exists some ãi ∈ A such that

(a) vi(f) ≥ vi(ã
i) and

(b) if vi(f) = vi(ã
i) then either (i) there exists j such that vjj > vj(ã

i) or (ii) the

payoff profile v(ãi) does not Pareto dominate v(f).

Note that the additional requirement (b) in ω′ that separates it from ω applies only in

the special case when vi(f) = vi(ã
i). Even in such a non-generic case, (b) amounts to a

minimal addition. For example, part (i) of (b) is satisfied if, instead of Assumption (A),

at least three agents have distinct best outcomes in some state.

Theorem 2 Suppose that I ≥ 3, and consider an SCF f satisfying condition ω′. If f is

efficient in the range, it is payoff-repeated-implementable in Nash equilibrium from period

2; if f is strictly efficient in the range, it is repeated-implementable in Nash equilibrium

from period 2.

Proof. Consider any profile of outcomes (ã1, . . . , ãI) satisfying condition ω′. There are

two cases to consider.

14In this Nash equilibrium, each agent is indifferent between the equilibrium and any unilateral de-
viation. The following modification to regime R∗ will admit a strict Nash equilibrium with the same
properties: for each i, construct Si such that i obtains a payoff vi(f)− ε for some arbitrarily small ε > 0
(to do so, we will need the inequality in condition ω to be strict). This will, however, result in the
equilibrium payoffs of our canonical regime to approximate the efficient target payoffs.
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Case 1: For all i, ãi ∈ A satisfies condition (7).

In this case the first part of the theorem follows immediately from Lemmas 4 and 5.

To prove the second part, fix any σ ∈ Ωδ(R∗), i, t > 1 and θ(t). Then,

π
θ(t)
i =

∑
θt∈Θ

p(θt)
[
(1− δ)ui(aθ(t),θ

t

, θt) + δπ
θ(t),θt

i

]
. (8)

Also, by Lemma 4 we have π
θ(t)
i = vi(f) and π

θ(t),θt

i = vi(f) for any θt. But then, by (8),

we have
∑

θt p(θt)ui(a
θ(t),θt

, θt) = vi(f). Since, by part (iii) of Lemma 3, aθ(t),θ
t ∈ f(Θ),

and since f is strictly efficient in the range, the claim follows.

Case 2: For some i, condition (7) does not hold.

In this case, vi(f) = vi(ã
i) and vjj = vj(ã

i) for all j 6= i. Then, by b(ii) of condition ω′,

v(ãi) does not Pareto dominate v(f). Since vjj ≥ vj(f), it must then be that vj(f) = vj(ã
i)

for all j. Such an SCF can be trivially payoff-repeated-implemented via Φãi
. Furthermore,

since vj(f) = vj(ã
i) = vjj for all j, f is efficient. Thus, if f is strictly efficient (in the range),

it must be constant, i.e. f(θ) = ãi for all θ, and hence can also be repeated-implemented

via Φãi
.

Note that when f is efficient (over the entire set of SCFs) part (b)(ii) of condition ω′ is

vacuously satisfied. Therefore, we can use condition ω instead of ω′ to establish repeated

implementation with efficiency.

Corollary 1 Suppose that I ≥ 3, and consider an SCF f satisfying condition ω. If f

is efficient, it is payoff-repeated-implementable in Nash equilibrium from period 2; if f is

strictly efficient, it is repeated-implementable in Nash equilibrium from period 2.

Note that Theorem 2 and its Corollary establish repeated implementation from the

second period and, therefore, unwanted outcomes may still be implemented in the first

period. This point will be discussed in more detail below.

Two agents As in one-shot Nash implementation (Moore and Repullo [26] and Dutta and

Sen [10]), the two-agent case brings non-trivial differences to the analysis. In particular,

with three or more agents a unilateral deviation from “consensus” can be detected; with

two agents it is not possible to identify the misreport in the event of disagreement. In

our repeated implementation setup, this creates a difficulty in establishing existence of an

equilibrium in the canonical regime.
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As identified by Dutta and Sen [10], a necessary condition for existence of an equi-

librium in the one-shot setup is a self-selection requirement that ensures the availabil-

ity of a punishment whenever the two players disagree on their announcements of the

state but one of them is telling the truth. We show below that, with two agents,

such a condition together with condition ω (ω′), delivers repeated implementation of

an SCF that is efficient (efficient in the range). Formally, for any f , i and θ, let

Li(θ) = {a ∈ A|ui(a, θ) ≤ ui(f(θ), θ)} be the set of outcomes that are no better than f

for agent i. We say that f satisfies self-selection if L1(θ)∩L2 (θ′) 6= ∅ for any θ, θ′ ∈ Θ.15

Theorem 3 Suppose that I = 2, and consider an SCF f satisfying condition ω (ω′)

and self-selection. If f is efficient (in the range), it is payoff-repeated-implementable in

Nash equilibrium from period 2; if f is strictly efficient (in the range), it is repeated-

implementable in Nash equilibrium from period 2.

For the proof, which appear in the Supplementary Material (Section A), we construct a

new regime R̂ that is identical to the canonical regime R∗ with three or more agents, except

that at any history the immediate outcome following announcement of different states is

chosen according to the self-selection condition to support truth-telling in equilibrium.

Formally, we replace mechanism g∗ in the construction of R∗ by a new mechanism ĝ =

(M,ψ) defined as follows: Mi = Θ× Z+ for all i and ψ is such that

1. if m1 = (θ, ·) and m2 = (θ, ·), then ψ(m) = f(θ);

2. if m1 = (θ1, ·) and m2 = (θ2, ·), and θ1 6= θ2, then ψ(m) ∈ L1(θ2) ∩ L2(θ1) (by

self-selection, this is well defined).

Thus, regime R̂ is such that R̂(∅) = ĝ and, for any h = ((g1,m1), . . . , (gt−1,mt−1)) ∈
H t such that t > 1 and gt−1 = ĝ, the following transition rules hold:

Rule 1: If mt−1
1 = (·, 0) and mt−1

j = (·, 0), then R̂(h) = ĝ.

Rule 2: If mt−1
i = (·, zi), mt−1

j = (·, 0) and zi 6= 0, then R̂|h = Si (Lemma 1).

Rule 3: If mt−1 is of any other type and i is lowest-indexed agent among those who

announce the highest integer, then R̂|h = Di.

15Self-selection is clearly weaker than the bad outcome condition in [26].
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The replacement of g∗ by ĝ ensures that with two players the regime has a Nash

equilibrium in which each player announces the true state and zero integer at every history.

By self-selection, any unilateral deviation results in a current period outcome that is no

better for the deviator; as with the three-or-more-agent construction, by making himself

the “odd-one-out,” the deviator obtains the same (target level) continuation payoff at the

next period. Showing that every equilibrium of R̂ repeatedly implements the SCF from

period 2 (in terms of payoffs or outcomes) proceeds analogously to the corresponding

characterization for R∗ with I ≥ 3.

The purpose of self-selection here is to ensure existence of an equilibrium by appealing

to one-shot incentives. In our repeated setup, there are alternative ways to obtain a similar

result if the agents are sufficiently patient. For instance, we show in the Supplementary

Material that with large enough δ the two requirements of self-selection and condition ω′

in Theorem 3 above can be replaced by assuming an outcome ã that is strictly worse than

f for both players on average, i.e. vi(ã) < vi(f) for all i = 1, 2.

4.3 Discussion

We next offer some discussion of our main results above.

More on condition ω In our analysis, repeated implementation of an efficient SCF

has been obtained with an auxiliary condition ω (or its variant ω′) which assumes that,

for each agent, the payoff from implementation of the SCF must be bounded below by

that of some constant SCF. The role of this condition is to construct, for each agent i, a

history-independent and non-strategic continuation regime Si in which the agent derives

a payoff equal to the target level vi(f).

While condition ω is satisfied in many applications, it is by no means necessary. An

obvious alternative to construct such a regime Si is to sequence dictatorship of i with

dictatorship of another player j if j-dictatorship generates a unique payoff to i no greater

than vi(f). Denoting the set of players whose dictatorships induce a unique payoff to i

by Γi = {j 6= i | vji =
∑

θ∈Θ p(θ)ui(a(θ), θ);∀a(θ) ∈ Aj(θ),∀θ}, we can define another

condition that can fulfill the same role as condition ω: an SCF f is non-exclusive if for

each i, there exists some j ∈ Γi such that vji ≤ vi(f).16

16The name of this property comes from the fact that, otherwise, there must exist some agent i such
that vi(f) < vji for all j 6= i; in other words, there exists an agent who strictly prefers a dictatorship by
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It is important to note that, with I = 2, the inequality part of non-exclusion is

vacuously satisfied if the SCF is efficient and, therefore, we only need to assume that

Γi = {j} for each i = 1, 2. This is true, for instance, if Ai(θ) is a singleton set for all θ,

i.e. each player’s best response when dictator is always unique.17

More generally, constructing regime Si could also be achieved with dictatorial mech-

anisms over restricted sets of outcomes. Specifically, for each agent j and any N ⊆ A,

let Aj(N, θ) = {a ∈ N | uj(a, θ) ≥ uj(a
′, θ) ∀a′ ∈ N} be the outcomes that j would

choose from the restricted outcome set N in state θ when he is dictator, and let vji (N) =∑
θ∈Θ p(θ) maxa∈Aj(N,θ) ui(a, θ) be i’s maximum payoff from j-dictatorship over N , with

vj(N) denoting the corresponding payoff profile. Also, define Γi(N) as the set of all agents

other than i such that i has a unique payoff from their dictatorships over N .18 Then, for

each i, Si can be constructed if there exist a set N and a player j ∈ Γi(N) such that

vji (N) ≤ vi(f). Note that both condition ω and non-exclusion are equivalent to the above

condition when N is a singleton set or the entire set A, respectively. Thus, for repeated-

implementing efficient SCFs the two conditions can be subsumed by the following: for

each i, there exists some v = (v1, . . . , vI) ∈ {vj(N)}j∈Γi(N),N∈2A such that vi ≤ vi(f).

Off the equilibrium In one-shot implementation, it has been shown that one can

improve the range of achievable objectives by employing extensive form mechanisms to-

gether with refinements of Nash equilibrium as solution concept (e.g. Moore and Repullo

[25] and Abreu and Sen [3]). Although this paper also considers a dynamic setup, the

solution concept adopted is that of Nash equilibrium and our characterization results do

not rely on imposing off-the-equilibrium credibility to eliminate unwanted equilibria.19 At

the same time, our existence results do not involve construction of Nash equilibria based

on non-credible threats off-the-equilibrium. Thus, we can replicate the same set of results

with subgame perfect equilibrium as the solution concept.

A related issue is that of efficiency of off-the-equilibrium paths. In one-shot extensive

any other agent to the SCF itself (i.e. “excluded” by the SCF).
17While non-exclusion can replace condition ω for repeated implementation of efficient SCFs, we still

need an extra condition similar to (7) to achieve the results with efficiency in the range. Specifically, for
each i, if vi(f) = vji for all j ∈ Γi then there must be some k 6= i and some j ∈ Γi such that vkk > vjk.

18Formally, Γi(N) =
{
j 6= i | vji (N) =

∑
θ∈Θ p(θ)ui(a(θ), θ);∀a(θ) ∈ Aj(N, θ),∀θ

}
.

19In particular, note that we do not require each player i to behave rationally when he is dictator at
some off-the-equilibrium history. Lemmas 2-3 only appeal to the possibility that dictatorial payoffs could
be obtained by the deviator.
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form implementation, it is often the case that off-the-equilibrium inefficiency is imposed

in order to sustain desired outcomes on the equilibrium. Several authors have, therefore,

investigated to what extent the possibility of renegotiation affects implementability (e.g.

Maskin and Moore [22]). For many of our repeated implementation results, this needs

not be a cause for concern since off-the-equilibrium outcomes in our regimes can actually

be made efficient. If the environment is rich enough, the outcomes needed for condition

ω could be found on the efficient frontier itself. Moreover, if the SCF is non-exclusive,

the regimes can also be constructed so that off-the-equilibrium is entirely associated with

dictatorships, which are efficient.

Period 1 The critical aspect of our constructions behind Theorems 2-3 is that if any

player expects a payoff below his target level from the continuation play then this player

could deviate in the previous period and make himself the “odd-one-out.” This argument

ensures that from period 2 desired outcomes are implemented. Our results however do not

guarantee period 1 implementation of the SCF; in fact one can easily find an equilibrium

of regime R∗ or R̂ where the players report false states and integer zero in period 1 (at

every other history they follow truth-telling and announce zero). If the SCF satisfies the

standard conditions required for one-shot implementation, nonetheless, our constructions

can be altered to achieve period 1 implementation. For example, with monotonicity and

no veto power we could just modify mechanism for period 1 as in Maskin [21].

We could also deal with period 1 implementation if there were a pre-play round that

takes place before the first state is realized. In such a case, prior to playing the canonical

regime one could let the players simply announce a non-negative integer with the same

transition rules such that equilibrium payoffs at the beginning of the game correspond

exactly to the target levels.

Alternatively, we could consider an equilibrium refinement. In the Supplementary

Material (Section B), we formally introduce agents who possess, at least at the margin, a

preference for simpler strategies, in a similar way that complexity-based equilibrium re-

finements have yielded sharper predictions in various dynamic game settings (e.g. Abreu

and Rubinstein [2], Chatterjee and Sabourian [8], Gale and Sabourian [12]). By adopt-

ing a natural measure of complexity and a refinement based on very mild criteria in

terms of complexity, we show that every equilibrium in the canonical regimes above must

be Markov and hence the main sufficiency results extend to implementation from out-

set. Similar refinements will later be used to analyze constructions employing only finite
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mechanisms; we refer the reader to Section 5.2 below.

Social choice correspondence Our analysis could be extended to repeated im-

plementation of a social choice correspondence (SCC) as follows. For any mapping

F : Θ → 2A\{∅}, let F (F) = {f ∈ F : f(θ) ∈ F(θ) ∀θ}. Then an SCC F is repeated-

implementable if we can find a a regime such that for any f ∈ F (F) there exists a Nash

equilibrium that repeated-implements it, in the sense of Definition 3, and every Nash

equilibrium repeated-implements some f ∈ F (F). With this definition, it is trivially the

case that our necessary condition for repeated implementation in Theorem 1 also holds

for each f ∈ F (F).

We can also obtain an equivalent set of sufficiency results to Theorems 2-3 (and Corol-

lary 1) for repeated-implementing F by modifying the canonical regime as follows. In

period 1, each agent first announces an SCF from the set F (F); if all announce the same

SCF, say, f , then they play the canonical regime, R∗ when I ≥ 3 or R̂ when I = 2, defined

for f , while otherwise they play the canonical regime that corresponds to some arbitrary

f̃ ∈ F (F). If every f ∈ F (F) satisfies efficiency and the other auxiliary conditions, such

a regime would repeated-implement F. Thus, when indifferent among several (efficient)

SCFs, the planner can let the agents themselves choose a particular SCF and payoff profile

in the first period.

Learning by the planner In a dynamic environment, one may ask what would happen

if the planner could also observe the state at the end of a period with some probability, say,

ε. Depending on the interpretation of the state, this could be an important issue. While

our sufficiency results clearly remain true, the necessity result is robust to such learning

by the planner in the following sense. Suppose that an SCF f is repeated-implementable

but strictly dominated by another SCF (in its range). Then, for sufficiently small values

of ε, the regime must admit another equilibrium in which the agents collude to achieve

the superior payoffs by similar arguments to those behind Theorem 1 above.

5 Mixed Strategies and Finite Mechanisms

In this section, we broaden the scope of our sufficiency results by considering mixed

strategies as well as constructions involving only finite mechanisms.
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5.1 Mixed strategies

In our analysis thus far, repeated implementation of an efficient SCF has been obtained

under restriction to pure strategies. In the static Nash implementation literature, it is

well known that the canonical mechanism can be modified to deal with mixed strategies

(Maskin [21]). The unbounded nature of the integer game ensures that there cannot be

an equilibrium in pure or mixed strategies in which positive integers are announced.

It is similarly possible to incorporate mixed (behavioral) strategies into our repeated

implementation setup. In the Supplementary Material (Section C), we establish an analo-

gous sufficiency result to the results of Section 4.2 for the case of I ≥ 3 (the two-agent case

can be dealt with similarly and hence omitted). Specifically, we show that an SCF that

satisfies efficiency (strict efficiency) and condition ω can be payoff-repeated-implemented

(repeated-implemented) in pure or mixed strategy Nash equilibrium from period 2.20

We obtain these results with the same canonical regime R∗. With mixed strategies,

each player i faces uncertainty about the others’ messages and, therefore, the “odd-one-

out” argument first obtains a lower bound for each player’s expected continuation payoffs

at each history (in contrast to Lemma 2). If the SCF is efficient these expected continua-

tion payoffs are equal to the target levels. Given this, integer arguments can be extended

to show that, whether playing pure or mixed strategies, the agents must always announce

zero at every history and hence mechanism g∗ must always be played. Although the play-

ers may still mix over their reports on state, we can then once again apply the previous

arguments to reach the results.

5.2 Finite mechanisms

Our sufficiency results appeal to integer games to determine the continuation play at each

history. In the one-shot implementation literature, integer-type arguments have been at

times criticized for its lack of realism or for technical reasons (e.g. being unbounded or

not having undominated best responses). Such criticisms may also be applied to our

constructions. One response, both in static and our repeated setups, is that integers are

used to demonstrate what can possibly be implemented in most general environments; in

specific examples more appealing constructions may also work. Furthermore, given The-

orem 1, our sufficiency results show that indeed efficiency is a relatively tight (necessary)

20With mixed strategies, our necessity result (Theorem 1) holds via identical arguments.
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condition for repeated implementation.

Another response in the static implementation literature to the criticism of integer

games has been to restrict attention to finite mechanisms, such as the modulo game. Using

a finite mechanism to achieve Nash implementation, however, brings an important draw-

back: unwanted mixed strategy equilibria. This could be particularly problematic in one-

shot settings because as Jackson [13] has shown a finite mechanism Nash-implementing

an SCF could invite unwanted mixed equilibria that strictly Pareto dominate the SCF.21

If we exclude mixed strategies, it is also straightforward to replace the integer games

in our repeated game constructions with a finite alternative like the modulo game. More

challenging is the issue of unwanted mixed strategy equilibria in a regime that employs

only finite mechanisms. Regarding this issue, note that we are implementing an efficient

SCF and, hence, there cannot be another mixed equilibrium that dominates it. In fact,

below we go further and construct a regime with finite mechanisms (involving at most

three integers) that, under minor qualifications, possesses the following two features.

First, every non-pure Nash equilibrium of the regime is strictly Pareto dominated

by the pure equilibria which obtain implementation of the efficient SCF. Thus, we turn

Jackson’s criticism of one-shot Nash implementation into our favor: non-pure equilibria

in our repeated settings are less plausible from the same efficiency perspective.

Second, and more importantly, we can eliminate randomization altogether by consid-

ering Nash equilibrium strategies that are credible (subgame perfect) and by invoking an

additional equilibrium refinement, based on complexity considerations, that is appealing

and very marginal.

The basic idea that we introduce to obtain these twin findings is that, even with

simple finite mechanisms, the freedom to choose different mechanisms at different histories

enables the planner to design a regime with the following property: if the players were

to randomize in equilibrium, the strategies would prescribe (i) inefficient outcomes and

(ii) a complex pattern of behavior (i.e. choosing different mixing probabilities at different

histories) that could not be justified by payoff considerations, as simpler strategies could

induce the same payoff as the equilibrium strategy at every history.

To save space, here we present the formal analysis only for the two-agent case. The

21In order to address mixed strategies with finite mechanisms, the static implementation literature has
explored the role of refinements and/or virtual implementation in specific environments (e.g. Jackson,
Palfrey and Srivastava [15], Sjöström [30] and Abreu and Matsushima [1]).
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analysis for the case of I ≥ 3 is more lengthy and complicated. We offer a brief remark on

this case at the end of this section and leave the details to the Supplementary Material.

Unless otherwise mentioned, all formal proofs in this section appear in the Appendix.

Construction Suppose that I = 2, and fix any SCF f that satisfies efficiency and

self-selection, as required for Theorem 3 above. To obtain our results, we modify the

two-agent canonical regime R̂ in Section 4.2 as follows. First, we replace mechanism ĝ in

regime R̂ by the following extensive form mechanism, referred to as ge:

Stage 1 - Each agent i = 1, 2 announces a state, θi, from Θ. If θ1 = θ2 = θ, f(θ) is

implemented; otherwise, an outcome from the set L1(θ2) ∩ L2(θ1) is implemented.

Stage 2 - Each agent announces an integer, zi, from the set Z ≡ {0, 1, 2}.

In this mechanism, the outcome implemented as a function of the states announced

is essentially the same as that of mechanism ĝ. However, it differs from ĝ in that the

agents only choose integers 0,1 or 2, and also, the mechanism has a two-stage sequential

structure. The latter change, as will be clarified shortly, enables us to define the notion

of complexity of a strategy in a natural way.

Our second modification to R̂ involves changing the continuation regimes after a non-

zero integer announcement. As we argued in Section 4.3, with two agents, Si can be

constructed by alternating dictatorships of the two players, as long as the payoff profile

from each dictatorship is unique (e.g. each dictator has a unique best response in each

state). For the rest of this section, we assume that this is indeed the case. Thus, for each

i = 1, 2, there exists a regime Si that yields a unique (discounted average) payoff profile

wi = (wii, w
i
j) such that wii = vi(f). Furthermore, since f is efficient it must be that, for

j 6= i, wij ≤ wjj . If the latter inequality binds then f can be payoff-implemented from

period 1 by simply adopting Si.22 Thus, with (almost) no loss of generality, assume that

wij < wjj for every j 6= i. (9)

Given (9), there must then exist regimes X(t) for each t = 1, 2, . . . and Y that respec-

tively induce unique payoff profiles x(t) and y satisfying the following condition:

w2
1 < y1 < x1(t) < w1

1 and w1
2 < x2(t) < y2 < w2

2. (10)

22Note that, in this case, we can invoke Fudenberg and Maskin [11] and construct Si in such a way
that the continuation payoffs at any date is also arbitrarily close to v(f).
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To construct these regimes, let x(t) = λ(t)w1 + (1 − λ(t))w2 and y = µw1 + (1 − µ)w2

for some 0 < µ < λ(t) < 1. By (9), these payoffs satisfy (10). Furthermore, since wi for

each i is a convex combination of the two dictatorial payoffs v1 and v2, such payoffs can

be obtained by regimes that appropriately alternate between the two dictatorships.

Now, we define new regime Re inductively as follows: (i) mechanism ge is implemented

at t = 1 and (ii) if, at some date t, ge is the mechanism played with a pair of states

θ˜ and a pair of integers z˜ = (z1, z2) announced over the two stages, the continuation

mechanism/regime at the next period is as follows:

Rule 1: If z1 = z2 = 0, the mechanism next period is ge.

Rule 2: If z1 > 0 and z2 = 0 (z1 = 0, z2 > 0), the continuation regime is S1 (S2).

Rule 3: Suppose that z1, z2 > 0. Then, we have the following.

Rule 3.1: If z1 = z2 = 1, the continuation regime is X ≡ X(t̃) for some

arbitrary t̃, with the payoffs denoted by x.

Rule 3.2: If z1 = z2 = 2, the continuation regime is X(t).

Rule 3.3: If z1 6= z2, the continuation regime is Y .

As in R̂, announcement of any non-zero integer in regime Re ends the game, and if only

one agent announces zero, the other agent obtains his target payoff in the continuation

regime. The rest of transitions are designed to achieve our new objectives. In particular,

when both agents report 2 (Rule 3.2) the continuation regimes could actually be different

across periods. This feature will later be used to facilitate our refinement arguments.

Next we define strategies in Re. In this regime the histories that matter are only

those at which the agents engage in mechanism ge. Using the same notation as before, we

denote by Ht the set of all such finite histories observed by the agents at the beginning of

period t; let H∞ = ∪∞t=1H
t. Also, since ge has a two-stage sequential structure, we need to

additionally describe information available within a period. We refer to such information

as partial history and denote it by d ∈ Θ ∪ (Θ×Θ2) ≡ D; thus d = θ represents the

beginning of stage 1 of ge after state θ has been realized and d = (θ, θ˜) refers to the

beginning of stage 2 after realization of θ followed by profile θ˜ announced in stage 1.

Then, using ∆ before a set to denote the probability distributions over the set, we

represent a mixed (behavioral) strategy of agent i = 1, 2 in regime Re as the mapping
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bi : H∞ × D → (4Θ) ∪ (4Z) such that, for any h ∈ H∞, bi(h, d) ∈ 4Θ if d ∈ Θ and

bi(h, d) ∈ 4Z if d ∈ Θ×Θ2. Let Bi be the set of i’s strategies in Re. With slight abuse

of notation, we write πh
i (b, Re) as player i’s continuation payoff at history h ∈ H∞ under

strategy profile b.

Properties of Nash equilibria We begin by obtaining an important property of Nash

equilibrium of the above regime. At any information set on the equilibrium path where

the players face stage 2 (the integer part) of mechanism ge, they must all be either playing

0 for sure and obtaining the target payoffs v(f) in the continuation game next period, or

mixing between 1 and 2 for sure and obtaining less than v(f).

Lemma 6 Consider any Nash equilibrium of regime Re. Fix any t, h ∈ Ht and d =

(θ, θ˜) ∈ Θ×Θ2 on the equilibrium path. Then, one of the following must hold at (h, d):

1. Each i announces 0 for sure and his continuation payoff at the next period is vi(f).

2. Each i announces 1 or 2 for sure, with the probability of choosing 1 equal to
xi(t)−yi

xi+xi(t)−2yi
∈ (0, 1), and his continuation payoff at the next period is less than vi(f).

Let us sketch the steps of the proof. First, assume no randomization over integers at

the relevant history. Then, the inequalities of (10) ensure that in equilibrium the agents

must announce zero and hence, by reasoning similar to the “odd-one-out” argument, the

continuation payoff of each i is vi(f).

Second, we show that if the players are mixing over integers then zero cannot be

chosen. Since xi(t) > wji and yi > wji for i, j = 1, 2, the transition rules imply that

each agent prefers to announce 1 than to announce 0 if the other player is announcing

a positive integer for sure. It then follows that if agent i attaches a positive weight to

0 then the other agent j must also do the same, and i’s continuation payoff is at least

(strictly larger than) vi(f) when j announces 0 for sure (attaches a positive weight to a

positive integer). Applying this argument to both agents leads to a contradiction against

the assumption that the SCF is efficient.

Finally, i’s continuation payoff at the next period when both choose a positive integer

is xi, xi(t) or y. The precise probability of choosing integer 1 by i in the case of mixing is

determined trivially by these payoffs as in the lemma. Also, since these payoffs are all by

assumption less than vi(f), we have that mixing results in continuation payoffs strictly

below the target levels.
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Given Lemma 6 we can also show that if the players mix over integers at any on-

the-equilibrium history it must be in period 1; otherwise, both players must be playing

0 in the previous period where either player i could profitably deviate by announcing a

positive integer and activating continuation regime Si. Combining this with Lemma 6,

we state the following.

Proposition 1 Fix any Nash equilibrium b of regime Re.

1. If any player mixes over integers on the equilibrium path, then both players ran-

domize at some partial history in stage 2 of period 1; furthermore, πh
i (b, Re) ≤ vi(f) for

all i and any on-the-equilibrium history h ∈ H2 with the inequality being strict at every

such history that involves randomization in stage 2 of period 1.

2. Otherwise, πh
i (b, Re) = vi(f) for any i, any t > 1 and any (on-the-equilibrium)

history h ∈ Ht.

Note also that Re trivially admits a Nash equilibrium in which each agent always

announces the true state and integer zero. This, together with part 2 of Proposition 1,

implies that Re payoff-repeated-implements f from period 2 if players do not randomize

over integers. Part 1 demonstrates that such randomization results in an expected con-

tinuation payoff from period 2 that is less than the target payoff for every player. This

however does not rule out the possibility that in period 1 some player obtains a one-period

expected payoff greater than the target level. With sufficiently large δ one-period payoffs

have small weights and therefore we can claim that any such randomized Nash equilibrium

is dominated by equilibria that do not involve the randomization.

Refinement We now introduce our refinement arguments. Note first that, if we apply

subgame perfection, the statements of Lemma 6 above can be readily extended to hold

for any on- or off -the-equilibrium history after which the agents find themselves in the

integer part of mechanism ge; that is, in a subgame perfect equilibrium (SPE) of regime

Re, at any (h, (θ, θ˜)) they must either choose 0 for sure or mix between 1 and 2.

Next, we add to the construction of Re the following property: the sequence of regimes

{X(t)}t is such that, in addition to (10) above, the corresponding payoffs {x(t)}t satisfy

x1(t) 6= x1(t′) and x2(t) 6= x2(t′) for any t, t′, t 6= t′. (11)

Note that this can be done simply by ensuring that the sequence {λ(t) : λ(t) ∈ (µ, 1) ∀(t)}
used before to construct these regimes is such that λ(t) 6= λ(t′) for any t 6= t′.
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Clearly, this additional feature does not alter Lemma 6, or its extension to SPE.

However, it implies for any SPE that, if the agents mix over integers at some period t and

partial history within t on or off the equilibrium path, each i’s mixing probability, given

by xi(t)−yi

xi+xi(t)−2yi
, is determined uniquely by t.

We next introduce a “small” cost associated with implementing a more complex strat-

egy. Complexity of a strategy can be measured in a number of ways. For our analysis, it

is sufficient to have a notion of complexity that captures the idea that stationary behavior

(always making the same choice) at every stage in mechanism ge is simpler than taking

different actions in ge at different histories. We adopt the following.

Definition 4 For any i and any pair of strategies bi, b
′
i ∈ Bi, we say that bi is more com-

plex than b′i if the strategies are identical everywhere except, after some partial history in

mechanism ge, b′i always behaves (randomizes) the same way while bi does not. Formally,

there exists some d′ ∈ D ≡ Θ ∪ (Θ×Θ2) with the following properties:

1. b′i(h, d) = bi(h, d) for all h ∈ H∞ and all d ∈ D, d 6= d′.

2. b′i(h, d
′) = b′i(h

′, d′) for all h,h′ ∈ H∞.

3. bi(h, d
′) 6= bi(h

′, d′) for some h,h′ ∈ H∞.

Notice that this definition imposes a very weak and intuitive partial order over the

strategies. It has a similar flavor to the complexity notions used by Chatterjee and

Sabourian [8], Sabourian [28] and Gale and Sabourian [12] who consider bargaining and

market models. Our results also hold with other similar complexity measures, which we

discuss in further detail at the end of this section.23

Using Definition 4, we refine the set of SPEs as follows.24

Definition 5 A strategy profile b is a weak perfect equilibrium with complexity cost (WPEC)

of regime Re if b is an SPE and for each i no other strategy b′i ∈ Bi is such that

1. b′i is less complex than bi; and

2. b′i is a best response to b−i at every information set for i (on or off the equilibrium).

23We could also adopt measures such as counting the number of “states of the automaton” implementing
the strategy (e.g. Abreu and Rubinstein [2]) or the “collapsing state condition” (Binmore, Piccione and
Samuelson [5]).

24In the Supplementary Material (Section D), we discuss another equivalent way of introducing cred-
ibility and complexity cost into the equilibrium notion by explicitly considering the possibility of errors
(off-the-equilibrium moves).
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WPEC is a very mild refinement of SPE since it requires players to adopt minimally

complex strategies among the set of strategies that are best responses at every informa-

tion set. This means that complexity appears lexicographically after both equilibrium

and off-equilibrium payoffs in each player’s preferences. This contrasts with the more

standard equilibrium notion in the literature on complexity in dynamic games that re-

quires strategies to be minimally complex among those that are best responses only on

the equilibrium path.25 This latter approach, however, has been criticized for prioritizing

complexity costs ahead of off-equilibrium payoffs in preferences. Our notion of WPEC

avoids this issue since it only excludes strategies that are unnecessarily complex without

any payoff benefit on or off the equilibrium.

Note that strategies that always report the true state and zero continue to be an

equilibrium with this notion. We now show that there cannot be a WPEC in which

mixing over integers occurs.

Lemma 7 Fix any WPEC of regime Re. Also, fix any h ∈ H∞ and d ∈ Θ × Θ2 (on or

off the equilibrium path). Then, every agent announces zero for sure at this history.

To obtain this lemma we show that, otherwise, either agent could deviate to another

less complex strategy identical to the equilibrium strategy everywhere except that it al-

ways responds to partial history d = (θ, θ˜) by announcing 1, and obtain the same payoff

at every history. Three crucial features of our regime construction deliver this argu-

ment. First, the deviation is less complex because the mixing probabilities are uniquely

determined by the date t and, hence, the equilibrium strategy must prescribe different

behaviors at different histories. Second, since the players can only randomize between 1

and 2, the deviation would not affect payoffs at histories where the equilibrium strategies

randomize. Finally, since at histories where the equilibrium strategies do not mix they

report 0 for sure with continuation payoffs equal to v(f), by reporting 1 the deviator

becomes the “odd-one-out” and ensures the same target payoff.

Recall that for any SPE in which no randomization over integers occurs the continu-

ation payoffs at any history beyond period 1 are equal to v(f). Then, by Lemma 7, we

can immediately establish the following.

25The two exceptions in the existing literature are Kalai and Neme [18] and Sabourian [28]. The notion
of WPEC was first introduced by [28].
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Proposition 2 1. If f is efficient, every WPEC, b, of regime Re payoff-repeated-implements

f from period 2 at every history; i.e. πh
i (b, Re) = vi(f) for all i, t ≥ 2 and h ∈ Ht.

2. If f is strictly efficient, every WPEC, b, of regime Re repeated-implements f from

period 2 at every history.

The complexity of our regime construction driving these WPEC results is captured by

the non-stationarity of continuation regimes {X(t)}. This feature generates Nash equi-

librium strategies involving randomization to follow a complex pattern. The arguments

behind Lemma 7 would in fact hold as long as these continuation regimes differ in just two

periods. In general, the planner could also write the continuation regime X(·) as a func-

tion of the entire (publicly observable) history instead of just its date, thereby reinforcing

the complexity of such mixing behavior and making our arguments more compelling.

One may, however, question why we consider a preference for less complex behavior

only by the agents and not by the planner. We note here that our complexity notion only

calls for any additional complexity of a strategy to be justified by payoffs. Similarly, for

the planner the complexity of the above regime is warranted in the sense that it allows

for better implementation results.

Alternative complexity measure The basic idea behind our complexity measure is

that stationary behavior is simple. Definition 4 captures this by saying that a strategy

that at every date t responds identically to some partial history d, independently of the

previous history of play before t, is less complex than one that responds differently to

the same partial history d. Another measure with a similar flavor would be to say that a

strategy that announces the same integer (or state) regardless of both the history before

the date and the partial history within the date is less complex than one that announces

different integers (or states) while being identical everywhere else. In the Supplementary

Material we formally explain how our results can be extended to such a partial order.26

Three or more agents In the Supplementary Materia (Section D), we extend the above

26With this alternative complexity measure, our characterization of WPECs of regime Re above remains
true via exactly the same reasoning. Also, when the self-selection condition is strict (so that there exists an
outcome strictly worse than what the SCF prescribes in each state), Re admits a truth-telling equilibrium
that is robust to this refinement. When strict self-selection is not satisfied, however, truth-telling will
not constitute an equilibrium of Re with this alternative definition of complexity, as the players may be
able to economize on complexity cost of reporting different (true) states without affecting payoffs. In the
Supplementary Material (Section D) we show that this case can be handled by slightly modifying Re.
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analysis to the case of I ≥ 3. Two points are worth making. First, analogous results

are obtained if, as in the two-agent case, we can construct for each agent i a history-

independent and non-strategic regime Si that yields a unique payoff profile (wii, . . . , w
i
I)

such that wii = vi(f) and, as in (9), wij < wjj for all j 6= i. While this condition is

innocuous when I = 2 (as we only needed to assume that dictatorial payoffs are unique),

it is less so when I ≥ 3.

Second, in the regime constructed to handle the case of I ≥ 3 the size of the mechanim

does not increase with the number of players (involves at most three integers). This con-

trasts with standard finite constructions like modulo game where the number of integers

needed is at least the number of players. Specifically, we extend Re as follows: only two

agents are given the option to choose from {0, 1, 2} in the integer part of mechanism ge

while all remaining agents choose from {0, 1}. The transition rules are set in a way that

integer reports of the first two players are given priority over the rest and, therefore, the

key qualitative features of the two-agent regime also hold with more than two players.

6 Conclusion

This paper sets up a problem of infinitely repeated implementation with stochastic prefer-

ences and establishes that, with minor qualifications, a social choice function is repeated-

implementable in Nash equilibrium in complete information environments if and only if it

is efficient (in the range). We also argue that our results are robust to various refinements

and extend them to incorporate mixed strategies and finite mechanisms.

Our findings contrast with those obtained in the literature on static Nash implementa-

tion in which monotonicty occupies a critical position. The reason for this fundanmental

difference is that in our repeated implementation setup the agents learn the infinite se-

quence of states gradually rather than all at once.27

In the one-shot implementation problem with incomplete information, full implemen-

tation requires incentive compatibility in addition to Bayesian Monotonicity (an extension

of Maskin monotonicity). The main arguments developed in this paper can be extended

to show that neither is necessary for repeated implementation. A companion paper (Lee

and Sabourian [19]) establishes the following results.

27If the agents learned the states at once and the SCF were a mapping from the set of such sequences
Θ∞ to the set of infinite outcomes A∞ the problem would be analogous to one-shot implementation.
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First, in a general incomplete information setup, we show that an SCF satisfying effi-

ciency and incentive compatibility can be repeated-implemented in Bayesian Nash equi-

librium. In a regime similar to the canonical regimes in this paper, efficiency pins down

continuation payoffs of every equilibrium; incentive compatibility ensures existence.28 Sec-

ond, restricting attention to the case of interdependent values, repeated implementation

of an efficient SCF is obtained when the agents are sufficiently patient by replacing in-

centive compatibility with an intuitive condition that we call identifiability. This condi-

tion stipulates that a unilateral deviation from truth-telling can be detected by another

player after the outcome is implemented in the period. Given this, we construct another

regime that, while maintaining the desired payoff properties of its equilibrium set, ad-

mits a truth-telling equilibrium based on incentives of repeated play instead of one-shot

incentive compatibility of the SCF.

There are several important questions still outstanding. In particular, it remains

to be seen whether efficiency is also necessary in incomplete information settings. The

sufficiency results in [19] also assume either incentive compatibility or identifiability in

the case of interdependent values, and leaves open the issue of how important these

assumptions are in general.

Another interesting direction for future research is to generalize the process with which

individual preferences evolve. However, allowing for such non-stationarity makes it diffi-

cult to define efficiency of social choices. Also, this extension will introduce the additional

issue of learning.

Appendix

Proof of Lemma 6 Fix any h ∈ H∞ and d ∈ Θ×Θ2. For any i = 1, 2, let Πi denote i’s

continuation payoff at the next period if both agents announce zero. Also, let zi denote

the integer that i ends up choosing at (h, d). At this history the players either randomize

(over integers) or do not randomize. We consider each case separately.

Case 1: No player randomizes.

28With incomplete information, we evaluate repeated implementation in terms of expected continuation
payoffs computed at the beginning of a regime. This is because continuation payoffs in general depend
on an agent’s ex post beliefs about the others’ past private information at different histories but we do
not want our solution concept to depend on such beliefs.
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In this case we show that each player must play 0 for sure. Suppose otherwise; then

some i plays zi 6= 0 for sure and the other announces zj for sure. We derive contradiction

by considering the following subcases.

Subcase 1A: zi > 0 and zj = 0.

The continuation regime at the next period is Si (Rule 2). But then, since yj > wij by

construction, j can profitably deviate by choosing a strategy identical to the equilibrium

strategy except that it announces the positive integer other than zi at this history, which

activates the continuation regime Y instead of Si (Rule 3.3). This is a contradiction.

Subcase 1B: zi > 0 and zj > 0.

The continuation regime is either X, X(t) or Y (Rule 3). Since y2 > x2(t) for any t, it

follows that if the continuation regime is X or X(t) then player 2 can profitably deviate

just as in Subcase 1A, a contradiction. Since x1 > y1, if the continuation regime is Y

player 1 can profitably deviate and we obtain a similar contradiction.

Given that both players choose 0 for sure, the players then face mechanism ge at

the next period. Therefore, we can apply the “odd-one-out” argument of Lemma 2 and

efficiency of f to show that the continuation payoffs must equal v(f).

Case 2: Some player randomizes.

We proceed by first establishing the following two claims.

Claim 1 : For each i, the continuation payoff from announcing 1 is greater than that

from announcing 0, if zj > 0 for sure, j 6= i.

Proof of Claim 1. If i announces zero, by Rule 2, his continuation payoff is wji . If he

announces 1, by Rules 3.1 and 3.3, the continuation payoff is xi > wji or yi > wji .

Claim 2 : Suppose that agent i announces 0 with a positive probability. Then the other

agent j must also announce 0 with a positive probability and Πi ≥ vi(f). Furthermore,

Πi > vi(f) if j does not choose 0 for sure.

Proof of Claim 2. By Claim 1, playing 1 must always yield a higher continuation

payoff for player i than playing 0, except when j plays 0. Since i plays 0 with a positive

probability, it must then be that (i) j chooses 0 with a positive probability and (ii) if j

also attaches a positive weight to a positive integer, i’s continuation payoff is greater from

choosing 0 than from choosing 1, i.e. Πi > vi(f). Finally, if j chooses 0 for sure then i

obtains Πi from 0 and vi(f) from 1 or 2; hence in this case we must have Πi ≥ vi(f).

We now show that, in this Case 2, both players choose a postive integer for sure. To

show this suppose otherwise; then some player chooses 0 with a positive probability. By
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Claim 2, the other player must also play 0 with a positive probability and, also, Πi ≥ vi(f)

for any i = 1, 2. Moreover, since this case assumes that some player is choosing 0 with

a probability less than one, by appealing to Claim 2 once again, it must be that at least

one of the inequalities Π1 ≥ v1(f) or Π2 ≥ v2(f) is strict. But, since f is efficient, this is

a contradiction.

In this case, therefore, both players mix between 1 and 2 for sure and, by simple com-

putation, it must be that each i plays 1 with probability xi(t)−yi

xi+xi(t)−2yi
∈ (0, 1). Furthermore,

since for each i, vi(f) exceeds xi, xi(t) or y, it follows that the continuation payoff at the

next period must be less than vi(f).

Proof of Proposition 1 Given Lemma 6, it suffices to show that if the players mix

over integers on the equilibrium path it must happen in period 1. Suppose not; so, there

exists a Nash equilibrium b such that, for some t > 1, there exist ht ∈ Ht and d ∈ Θ×Θ2

that occur on the equilibrium path at which the players are mixing.

First, note that by Lemma 6 the players must have all announced 0 for sure in the

previous period. Thus, we can deduce that πht

i (b, Re) = vi(f) for all i = 1, 2 by invok-

ing the same arguments as in Lemma 2 and efficiency of f . Second, for any (on-the-

equilibrium) partial history d′ ∈ Θ×Θ2, we can also apply similar reasoning to show that

π
ht,d′,z˜i (b, Re) = vi(f) for all i if z˜ = (0, 0).

Next, let r(d′, z˜) denote the probability of (d′, z˜) occurring at ht under b, and let

aht,d′ denote the outcome implemented at (ht, d′). Then, with slight abuse of notation,

i’s continuation payoff at ht can be written as

πht

i (b, Re) =
∑

(d′,z˜)∈Θ×Θ2×Z

r(d′, z˜)
[
(1− δ)ui(aht,d′ , d′) + δπ

ht,d′,z˜i

]
= vi(f). (12)

Lemma 6 implies that, for any i and any d′, it must be either that z˜ = (0, 0) and

hence, by the argument above, π
ht,d′,z˜i = vi(f), or that both players announce a positive

integer and hence π
ht,d′,z˜i < vi(f). Thus, since we assume that mixing occurs after d, it

follows from (12) that
∑

(d′,z˜) r(d
′, z˜)ui(aht,d′ , d′) > vi(f) for all i. But this contradicts

that f is efficient.

Proof of Lemma 7 Suppose not. Then, there exists a WPEC, b, such that, by Lemma

6 applied to SPE, at some t, ht ∈ Ht and d = (θ, θ˜) ∈ Θ × Θ2, the two agents play 1

or 2 for sure; each i plays 1 with probability xi(t)−yi

xi+xi(t)−2yi
. Furthermore, by construction,
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x1(t′) and x2(t′) are distinct for each t′ and, therefore, it follows that, for some t′ 6= t and

ht
′ ∈ H t′ , and for each i, we have bi(h

t, d) 6= bi(h
t′ , d).

Now, consider any i = 1, 2 deviating to another strategy b′i that is identical to the

equilibrium strategy bi except that, for all h ∈ H∞, b′i(h, d) prescribes announcing 1 with

probability 1. Since b′i is less complex than bi, we obtain a contradiction by showing that

πh
i (b′i, b−i, R

e) = πh
i (b, Re) for all h ∈ H∞. To do so, it suffices to fix any history h and

consider continuation payoffs after the given partial history d. Given Lemma 6, there are

two cases to consider at (h, d).

First, if the other agent j mixes between 1 and 2, by part 2 of Lemma 6, i is indifferent

between choosing 1 and 2. Second, suppose that j plays 0 for sure. Then, by Lemma

6, i also plays 0 for sure and obtains a continuation payoff equal to vi(f) in equilibrium.

Deviation also induces the same continuation payoff vi(f) as it makes i the “odd-one-out.”
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