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Goal: formulate a definition of sequential equilibrium for multi-stage games with 
infinite type sets and infinite action sets, and prove general existence. 
Sequential equilibria were defined for finite games by Kreps-Wilson 1982,  
but rigorously defined extensions to infinite games have been lacking. 
Most detailed formulation of "perfect bayesian eqm" in Fudenberg-Tirole 1991. 
Harris-Stinchcombe-Zame 2000 explored definitions with nonstandard analysis. 
 
It is well understood that sequential equilibria of an infinite game can be defined 
by taking limits of sequential equilibria of finite games that approximate it. 
The problem is to define what finite games are good approximations. 
It is easy to define sequences of finite games that seem to be converging to the 
infinite game (in some sense) but have limits of equilibria that seem wrong. 
We must try to define a class of finite approximations that yield limit-equilibria 
which include reasonable equilibria and exclude unreasonable equilibria. 
Here we present the best definitions that we have been able to find, 
but of course this depends on intuitive judgments about what is "reasonable". 
Others should explore alternative definitions. 



 3

Dynamic multi-stage games =(,N,A,T,,v,p) 
 = {initial state space}, i  N = {players}, finite set. 
k  {1,...,K}  periods of the game. 
Let  L = {(i,k)| iN, k{1,...,K}} = {dated players}.  We write ik for (i,k). 
Aik = {possible actions for player i at period k}. 
Tik = {possible informational types for player i at period k}, disjoint sets. 
Algebras (closed under finite  and complements) of measurable subsets are 
specified for  and Tik, including all one-point sets as measurable. 
If  is a finite set, then all subsets of  and Tik are measurable. 
There is a finitely additive probability measure p on the measurable subsets of . 
A = hK iN Aih  = {possible sequences of actions in the whole game}. 
The subscript, <k, denotes the projection onto periods before k.  For example,  
A<k = h<k iN Aih = {possible action sequences before period k}  (A<1 = {}), 
and for aA, a<k=h<k iN aih is the partial sequence of actions before period k. 
Any player i's information at any period k is specified by a type function 
ik:A<k  Tik  such that, aA, ik(,a<k) is a measurable function of . 
Assume perfect recall:  ikL,  m<k,  ikm:TikTimAim such that  
ikm(ik(,a<k)) = (im(,a<m),aim), , aA, and  
{tik| ikm(tik)Rim{aim}} is measurable in Tik,  measurable RimTim, aimAim. 
Each player i has a bounded utility function  vi:A  such that  
vi(,a) is a measurable function of , aA.  Bound    |vi(,a)|, (i,,a). 
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Problems of finite support mixtures in approximating games 
Example. (Kuhn) Consider a zero-sum game in which player 1 chooses a number 
a1 in [0,1], and player 2 chooses a continuous function, f, from [0,1] into itself 
whose Lebesgue integral must be 1/2. Player 1’s payoff is f(a1). 
Player 1 can guarantee 1/2 by choosing a1 uniformly from [0,1] and player 2 can 
guarantee 1/2 by choosing f(x) = 1/2 for all x. 
But in any finite approximation in which player 2 can choose a function that is 
zero at each of player 1’s finitely many available actions, player 1’s equilibrium 
payoff is 0. 
One solution is to replace ordinary action sets with mixed action sets.  
Algebras (closed under finite  and complements) of measurable subsets are 
specified also for each Aik, including all one-point sets as measurable. 
Each ik(,a<k) and each vi(,a) is assumed jointly measurable in (,a). 
Let  ̃ = (ik [0,1]).  In the state ̃ = (,( ̃ik)ikL), nature draws  from the given 
p, and, for each ik, draws  ̃ik[0,1] independently from Lebesgue measure.  
This defines a new distribution p̃ on  ̃.  No player observes any of the new  ̃ik. 
Let Ãik={measurable maps ãik:[0,1] Aik} be player ik’s set of mixed actions. 
Then  ṽi( ̃,ã) = vi(,ã( ̃))  and   ̃ik(̃,ã<k) = (ik(,ã( ̃)<k), ãi,<k)  are measurable in  ̃ 
for each profile of mixed actions ã. 
All our analysis could be done for this model with Ã, ̃,p̃ instead of A,,p. 
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Problems of spurious knowledge in approximating games  
Some approximations of the state space  can change the information structure 
and give players information that they do not have in the original game. 
 
Example.   includes two independent uniform [0,1] random variables: 
the first (1's cost to sell some object) is observed only by player 1, 
the second (2's value of buying this object) is observed only by player 2. 
For any integer m>0, we might finitely approximate this game by one in which 
the state space includes 102m equally likely pairs of numbers:  
the first number, observed by 1, ranges over the 10m m-digit decimals in [0,1]; 
the second, observed by 2, is a 2m-digit decimal in which the first m digits range 
over all m-digit decimals but the last m digits repeat the first number in the pair. 
As m, these pairs uniformly fill the unit square in the state space ,  
but they represent games in which player 2 knows 1's type. 
 
To avoid distorting the information structure, we will keep the original state 
space  and probability distribution p in all finite approximations. 
A player should not know anything about the state and past history in a finite 
approximation that he does not know in the given infinite game. 
To avoid giving spurious knowledge to any player here, information is made 
finite by finitely partitioning each dated-player's type space Tik independently. 



 6

Problems of spurious signaling in approximating games  
Example. The state   is a 0-or-1 random variable, which is observed by player 1 
as his type t1.  Then player 1 chooses a number a1 in [0,1], which is subsequently 
observed by player 2. 
Consider a finite approximation in which 1 observes t1, and then can choose any 
m-digit decimal number in [0,1] whose m-th digit is t1. 
Then 1's choice would reveal his observation, even if he wanted to conceal it. 
 
To avoid such spurious signaling, we should assume that the finite action choices 
available to player 1 do not depend on his observed type information. 
That is, the finite subset of actions Aik that are available to player i at period k in 
a finite approximation should not depend on what ik has observed in Tik. 
 
In some games, the ability to choose some special action in Aik or the ability to 
distinguish some special subsets of Tik may be particularly important. 
So we consider convergence of a net of approximations (not just a sequence) that 
are indexed on all finite subsets of Aik and all finite partitions of Tik. 
In such a net, any finite collection of actions and any finite partition of types can 
be assumed available when we are determining the properties of the limits. 
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Problems of spurious concealment in approximating games  
Example. The state  is a 0-or-1 random variable, which is observed by player 1 
as his type t1.  Then player 1 chooses a number a1 in [0,1], which is subsequently 
observed by players 2 and 3. 
Consider a finite approximation in which 1 observes t1, and then can choose any 
m-digit decimal number in [0,1]. 
Suppose that player 1 wants to share information with 2 but conceal it from 3. 
 
Such concealed signaling would be possible in a finite approximation where 2 
can observe 1's action exactly while 3 can observe only its first m-1 digits. 
But in the real game, any message that 1 sends to 2 is also observed by 3,  
and it should not be possible for 1 and 2 to tunnel information past 3. 
 
We can avoid such spuriously concealed communication by taking limits of finite 
approximations in which every player's ability to observe increases faster than 
any player's ability to choose different actions. 
So we first take limits as partitions of type-space Tik become infinitely fine,  
and we then take limits as the finite subsets of feasible actions expand to fill Aik. 
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 Observable events and action approximations  
For any aA and any measurable RikTik, let P(Rik|a) = p({| ik(,a<k)Rik}).  
(For k=1, we could write P(Ri1) for P(Ri1|a), ignoring the trivial a<1=.) 

The set of observable events for i at k that can have positive probability is 
Qik = {Rik  Tik| Rik is measurable and a  A such that P(Rik|a) > 0}. 
Let Q = ikL Qik  (a disjoint union) denote the set of all events that can be 
observed with positive probability by some dated player. 

We extend this notation to describe observable events that can have positive 
probability when players are restricted to actions in some subsets of the Aik. 
An action approximation is any C =ikL Cik such that each Cik is a nonempty 
finite subset of Aik, and so  CA. 

For any action approximation C  A, let  
Qik(C) = {RikTik| Rik is measurable and cC such that P(Rik|c) > 0}. 
Let  Q(C) = ikL Qik(C)  denote the set of all events that can be observed with 
positive probability by some dated player when all players use actions in C. 

Action approximations are partially ordered by inclusion. 
If C  Co then C is a better approximation than Co to the true action sets A. 
Fact.  If  C  Co  then  Q(C)  Q(Co).   
Q is the union of all Q(C) over all finite approximations C. 
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Finite approximations of the game  
An information approximation is any S =ikL Sik such that each Sik is a finite 
partition of measurable subsets of Tik. 
(So elements of each Sik are disjoint measurable sets with union Tik.) 
 
Let U(Sik) denote the set of nonempty unions of sets in Sik. 
Let U(S) = ikL U(Sik)  (a disjoint union). 
Information approximations are partially ordered by inclusion of their unions. 
If U(S)  U(So) then S is a better approximation than So to the true type sets T. 
 
An action approximation C and an information approximation S together define a 
finite approximation (C,S) of the game. 
Any sik in Sik is a possible type of dated player ik in this finite approximation. 
 
(C,S) satisfies perfect recall iff  ikL, sikSik, m<k, simSim, dimCim s.t. 
{(,a)| ik(,a<k)sik, aimCim}  {(,a)| im(,a<m)sim, aim=dim}. 
Let F denote the set of finite approximations with perfect recall. 
Fact.  For any action approximation C and any information approximation So, 
there exists an information approximation S such that U(S)  U(So) and (C,S) 
satisfies perfect recall, so that (C,S)F. 
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Strategy profiles for finite approximations  
Here let (C,S)F be a given finite approximation of the game. 
A strategy profile for the finite approximation (C,S) is any  = (ik)ikL  
such that each ik:Sik(Cik). 
So  ik(cik|sik)0, cikCik,  C_ik ik(|sik)=1, sikSik. 
 
Let [tik] denote the element of Sik containing tikTik. 
 
Given (C,S)F, for any measurable Z and cC, let   
P(Z,c|) = Z (ikL ik(cik|[ik(,c<k)])) p(d). 
For any observable RikU(Sik), let 
P(Rik|)= cC P({| ik(,c<k)Rik},c|). 
 
A totally mixed strategy profile  for (C,S) has  ik(cik|sik)>0 cikCik, sikSik. 
Any totally mixed  yields  P(Rik|) > 0,  Rik U(Sik)Qik(C),  ikL. 
 
With P(Rik|) > 0, let  P(Z,c|,Rik) = P(Z{|ik(,c<k)Rik},c|)/P(Rik|). 
We can extend this probability function to define  
P(Y|,Rik) = cC P(Y(c),c|,Rik)  for any YA such that,  
for each cC,  Y(c) = {| (,c)Y}  is a measurable subset of .
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Approximate sequential equilibria  
Here let (C,S)F be a given finite approximation of the game,  
and let  be a totally mixed strategy profile for (C,S). 
With the probability function P defined above, we can define 
Vi(|Rik) = cC  vi(,c) P(d,c|,Rik),  RikU(Sik)Qik(C). 
 
For any ikL and any cikCik, let (ik,cik) denote the strategy profile that differs 
from  only in that i chooses action cik at k with probability 1. 
Changing the action of i at k does not change the probability of i's types at k, so  
P(Rik|ik,cik) = P(Rik|) > 0 , RikU(Sik)Qik(C). 
So we can similarly define Vi(ik,cik|Rik) to be i's sequential value of choosing 
action cik at period k, given the observation Rik, if others apply the  strategies. 
 
For >0,  is an -approximate sequential equilibrium for the finite 
approximation (C,S) iff  is a totally mixed strategy for (C,S) and   
Vi(ik,cik|sik)  Vi(|sik) + ,  ikL,  sikSikQik(C),  cikCik. 
This inequality for types implies the same inequality for their unions: 
Vi(ik,cik|Rik)  Vi(|Rik) + ,  ikL,  RikU(Sik)Qik(C),  cikCik. 
 
Fact.  Any finite approximation has an -approximate sequential equilibrium. 
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Assessments  
Let Y denote the set of all outcome events  Y  A  such that 
{| (,a)Y} is a measurable subset of , aA. 
For any finite approximation (C,S), let W(C,S) = ikL Cik(Qik(C)U(Sik)). 
The sequential values that are compatible with (C,S) are indexed on W(C,S). 
Let W = ikL AikQik  (the union of all such W(C,S) domains). 
For the bounded utility functions, let  be such that |vi(,a)|   i, , a. 
 
An assessment is a pair (,), where the vector  specifies conditional 
probabilities (Y|Q)[0,1]  YY,  QQ,  and the vector  specifies 
sequential values i(aik|Rik)[,]  ikL,  aikAik,  RikQik.  
So (,) is in [0,1]YQ  [, ]W, which is compact in product topologies.  
 
An assessment-test is a pair of sets Φ=(Φ1, Φ2) such that Φ1YQ, Φ2W, and 
both Φ1 and Φ2 are finite sets.  
An assessment test Φ is compatible with a finite approximation (C,S) iff 
Φ1  Y(Q(C)U(S)) and Φ2  W(C,S). 
Compatibility means that all elements of Φ are conditioned on events that can be 
observed with positive probability in (C,S), and Φ2 considers only actions in C. 
Fact.  If Φ is compatible with (Co,So) and Co  C and U(So)  U(S)  
then Φ is compatible with (C,S). 
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Basic sequential equilibria  
An assessment (,) is a basic sequential equilibrium iff: for every  > 0, for 
every finite assessment-test Φ=(Φ1,Φ2), for every action approximation Co,  
there exists an action approximation C  Co such that, 
for every information approximation So, 
there exists an information approximation S such that U(S)  U(So), (C,S)F, 
the test Φ is compatible with (C,S),  
and (C,S) has some -approximate sequential equilibrium  such that 
|(Y|Q)P(Y|,Q)|  , (Y,Q)Φ1 and 
|i(aik|Rik)Vi(ik,aik|Rik)|  , (aik,Rik)Φ2. 
 
Theorem.  The set of basic sequential equilibria is nonempty and is a closed 
subset of [0,1]YQ  [, ]W with the product topology. 
 
The proof is based on Tychonoff's Theorem on compactness of products of 
compact sets.  Kelley, 1955, p143. 
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Defining basic sequential equilibria as limits of nets 
A set of assessments U is open (in the product topology) iff: 
(,)U, an assessment-test Φ=(Φ1,Φ2) and >0 such that 
U contains all points (’,’) such that |’(Y|Q)(Y|Q)|  , (Y,Q)Φ1  
and |’i(aik|Rik)i(aik|Rik)|  , (aik,Rik)Φ2. 
A set of assessments is closed iff its complement in [0,1]YQ  [, ]W is open. 
 
Let E(,C,S) denote the set of -approximate sequential equilibria for the finite 
approximation (C,S).  Given any E(,C,S): 
let m(Y|Q,,C,S) = P(Y|,Q) if QQ(C)U(S),  else m(Y|Q,,C,S) = 0; 
let wi(aik|Rik,,C,S) = Vi(ik,aik|Rik) if (aik,Rik)W(C,S),  else wi(aik|Rik,,C,S)=0. 
 
Action and information approximations are directed sets, partially ordered by 
inclusion (CoC or U(So) U(S)), where the union of any pair is beyond both.  
(For positive numbers , "beyond" means closer to 0.)  
For any net of sets indexed by a directed set, a subnet limit is any point x such 
that, for any open set containing x and any given index value, the net must 
include a set, with an index beyond the given index, that contains a point in the 
open set.  Let "lim" here denote the set of such subnet limits. 
Then our basic sequential equilibria are 
lim>0 limCA (limS:(C,S)F {(m(,C,S),w(,C,S))| E(,C,S)}).
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Elementary properties of basic sequential equilibria  
For any dated player ik and any observable event Rik  Tik, let 
I(Rik) = {(,a)A| ik(,a<k)Rik}. 
 
Let (,) be a basic sequential equilibrium. 
Then  has the following general properties of conditional probabilities, 
for any outcome events Y and Z and any observable events Rik and Rjm: 
(Y|Rik)[0,1],  (A|Rik) = 1,  (|Rik) = 0  (probabilities); 
if  YZ=  then  (YZ|Rik) = (Y|Rik) + (Z|Rik)  (finite additivity); 
(Y|Rik) = (YI(Rik)|Rik)  (conditional support); 
(YI(Rjm)|Rik) = (YI(Rik)|Rjm) (I(Rjm)|Rik)  (Bayes consistency). 
 
Bayes consistency implies that (Y|Tik) = (Y|Tjm), for all ik and jm in L. 
So the unconditional distribution on outcomes A for a basic sequential 
equilibrium can be defined by  (Y) = (Y|Tik), YA, ikL. 
The unconditional marginal distribution of  on  is the given prior p: 
(ZA) = p(Z),  for any measurable Z. 
 
Fact (sequential rationality). If (,) is a basic sequential equilibrium then, 
ikL, RikQik, cikAik,  vi(,a) (d,da|Rik)  i(cik|Rik). 
The left-hand side integral is player i’s equilibrium payoff conditional on Rik. 
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Games with perfect information 
If ={0}, then a dynamic multi-stage game has perfect information iff: 
k{1,...,K}, |Aik|>1 for at most one player iN, and  
ikL , ik: {0}A<k  Tik is one to one.  
(No two players make choices at the same date, and all players observe the past 
history of play.) 
 
 
Theorem. Every dynamic multi-stage game of perfect information with ={0} 
has a basic sequential equilibrium, (,), in which all prior probabilities are 0 or 
1. That is, ({0}B){0,1}, BA. 
 
(Proof Sketch: C, So such that (C,S) has perfect information and a single state 
of Nature for every U(S)U(So). Hence, (C,S) has a pure strategy sequential 
equilibrium which, being pure, has the requisite property. The property therefore 
holds in a basic sequential equilibrium limit.) 
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Limitations of step-strategy approximations  
Example:  is uniform [0,1], player 1 observes , chooses a1[0,1], 
v1(,a1)=1  if a1=,  v1(,a1)=0  if a1. 
In any finite approximation, player 1's finite action set cannot allow any positive 
probability of c1 matching  exactly, and so 1's expected payoff must be 0. 
Player 1 would like to use the strategy "choose a1=," but this strategy can be 
only approximated by step functions when 1 has finitely many feasible actions. 
Step functions close to this strategy yield very different expected payoffs because 
the utility function is discontinuous. 
If we gave player 1 an action that simply applied this strategy, he would use it! 
(It may be hard to choose any real number exactly, but easy to say "I choose .") 

Thus, adding a strategic action that implements a strategy which is feasible in the 
limit game can significantly change our sequential equilibria. 
This problem follows from our principle of finitely approximating information 
and actions separately, which is needed to prevent spurious signaling. 

Example (Akerlof):  uniform [0,1], 1 observes 1=, 1 chooses a1[0, 1.5],  
2 chooses a2{0,1},  v1(,a1,1) = a1,  v2(,a1,1) = 1.5a1,  vi(,a1,0) = 0. 
Given any finite set of strategies for 1, we could always add some strategy b1  
such that   < b1() < 1.5  ,  and b1() has probability 1 of being in a range 
that has probability 0 under the other strategies in the given set. 
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Finite additivity of solutions  
Example: Consider a game where the winner is the player who chooses the 
smallest strictly positive number.  In any finite approximation, let each player 
choose the smallest strictly positive number that is available to him. 
In the limit, we get  (0a1x) = 1, x>0,  but  (a1=0) = 0. 
The probability measure  is not countably additive, only finitely additive,  
and this finite additivity lets us represent an infinitesimal positive action a1. 
Expected utilities are well-defined with finite additivity, as utility is bounded. 

Suppose the players are {1,2}, and player 2 observes a1 before choosing a2. 
For any possible value of a1, 2 would always choose a2<a1 after observing this a1 
in any sufficiently large finite approximation.  So in the limit, we get:   
x>0,  (a2<a1|a1=x) = 1  and  (0<a1x) = 1. 
But multiple equilibria can have any prior P(2 wins) = (a2<a1)  in {0,1}. 
By considering a subnet of finite approximations in which 1 always has smaller 
actions than 2, we can get an equilibrium with  (a2<a1) = 0 even though  
(a2<a1|a1=x) = 1 x>0  and  (a1>0)=1. 
In this subnet, 1 always chooses a1 where 2's strategy has not converged, and so 
the outcome cannot be derived by backward induction from 2's limiting strategy. 
 
Strategic actions avoid such problems, as would considering subnets where later 
players' actions grow faster than earlier players' (fast inner limits for later Ck).
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Strategic entanglement (Milgrom-Weber 1985) 
Example:  is uniform [0,1], observed by both players 1 and 2, who then 
simultaneously play a battle-of-sexes game where  A1=A2={1,2}, 
vi(,a1,a2) = 2  if a1=a2=i,  vi = 1 if a1=a2i, and  vi = 0  if a1a2. 
Consider finite-approximation equilibria such that, for a large integer m, they do 
a1=a2=1 if the m'th digit of  is odd, a1=a2=2 if the m'th digit of  is even. 
As m, these equilibria converge to a limit where the players randomize 
between actions (1,1) and (2,2), each with probability 1/2, independently of . 
In the limit, the players' actions are not independent given  in any positive 
interval.  They are correlated by commonly observed infinitesimal details of . 
Given  in any positive interval, player 1's expected payoff is 1.5 in eqm,  
but 1's sequential value of deviating to a1=1 is 1(1) = 0.5(2)+0.5(0) = 1,  
and 1's sequential value of deviating to a1=2 is 1(2) = 0.5(0)+0.5(1) = 0.5. 

Thus, the sequential-rationality inequalities can be strict for all actions. 
To tighten the sequential-rationality lower bounds for conditional expected 
payoffs in equilibrium, we could consider also deviations of the form: "deviate to 
action cik when the equilibrium strategy would select an action in the set Bik" for 
any cikAik and any BikAik. 

In the next example, strategic entanglement is unavoidable, occurring in the only 
basic sequential equilibrium. 
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Strategic entanglement (cont'd) (Harris-Reny-Robson 1995) 
Example: Date 1: Player 1 chooses a1 from [-1,1], player 2 chooses from {L,R}.  
Date 2: Players 3 and 4 observe the date 1 choices and each choose from {L,R}. 
 
For i=3,4, player i’s payoff is -a1 if i chooses L and a1 if i chooses R. 
 
Player 2’s payoff depends on whether she matches 3’s choice. 
If 2 chooses L then she gets 1 if player 3 chooses L but -1 if 3 chooses R; and 
If 2 chooses R then she gets 2 if player 3 chooses R but -2 if 3 chooses L. 
 
Player 1’s payoff is the sum of three terms: 
(First term) If 2 and 3 match he gets -|a1|, if they mismatch he gets |a1|; 
plus (second term) if 3 and 4 match he gets 0, if they mismatch he gets -10; 
plus (third term) he gets -|a1|2. 
 
Approximations in which 1’s action set is {-1,…,-2/m,-1/m,1/m,2/m,…,1} have a 
unique subgame perfect (hence sequential) equilibrium in which player 1 chooses 
±1/m with probability ½ each, player 2 chooses L and R each with probability ½ , 
and players i=3,4 both choose L if a1=-1/m and both choose R if a1=1/m.  
Player 3’s and player 4’s strategies are entangled in the limit. 
 
The limit of every approximation produces (the same) strategic entanglement. 
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Strategic entanglement, type 2 (Harris, Stinchcombe, Zame 2000) 
Example:  is uniform [0,1], payoff irrelevant, observed by both players 1 and 2, 
who then simultaneously play the following 2x2 game. 
 
 
 
 
Consider finite approximations in which, for large integers m, each player 
observes the first m-1 digits of the ternary expansion of . 
Additionally, player 1 observes whether the m’th digit is 1 or not and player 2 
observes whether the m’th digit is 2 or not. 
Consider equilibria in which each player i chooses R if the m’th digit of the 
ternary expansion of  is i and chooses L otherwise.  As m, these converge to 
a correlated equilibrium of the 2x2 game where each cell but (R,R) obtains with 
probability 1/3, independently of .   Not in the convex hull of Nash equilibria! 
The type of strategic entanglement ("type 2") generated here is impossible to 
generate in some approximations—it depends on the fine details—unlike the 
entanglement ("type 1") in the previous two examples. 
Curiously, viewing this and the "Strategic Entanglement I" example as Bayesian 
games as in Milgrom-Weber (1985), the first type-1 entanglement can arise as a 
limit of Bayes-Nash equilibria, while the present type-2 entanglement cannot. 

  L  R 
L 1,1 3,2
R 2,3 0,0
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Spuriously exclusive coordination 
Example: Three players choose simultaneously from [0,1].  
Players 1 and 2 wish to match one another, receiving 1 if they do but 0 otherwise, 
and to mismatch player 3, each receiving an additional 1 if they individually 
mismatch 3 and an additional 0 otherwise.  
Player 3 wishes to match player 1, receiving 1 if he matches and 0 otherwise. 
 
Consider finite approximations in which players 1 and 2 share an action that is 
not available to player 3, e.g., players 1 and 2 always have available the action 
that is one-half the smallest positive action available to 3.  
Then there are pure strategy equilibria in which 1 and 2 coordinate on that special 
common action and player 3 chooses any action, a3=1 for example. 
 
Hence, there is a basic sequential equilibrium (,) such that  assigns 
probability one to any open set containing the action profile (0,0,1) and such that 
players i=1,2 each receive the equilibrium payoff vi(a)(da)=2, while player 3 
receives the equilibrium payoff v3(a)(da)=0. 
 
As with type 2 strategic entanglement, the exclusivity of the coordination 
occurring here depends on the fine details of the approximation.
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Resolving type-2 strategic entanglement and spurious exclusion 
To avoid the problems of type 2 strategic entanglement and spuriously exclusive 
coordination, one could insist that equilibria be robust to all approximations.  
But this is not compatible with a general existence result (e.g., two players each 
wish to choose the smallest strictly positive number). 
One resolution is to require a weaker form of robustness to the approximation. 
 
Essential sequential equilibria 
The set of essential sequential equilibria is the smallest closed set of assessments 
containing every set of assessments M that is minimal with respect to the 
following property: M is closed and there exists a selection () such that 
(,C,S)E(,C,S) for every (,C,S) and 
lim>0 limCA (limS:(C,S)F {(m((,C,S),C,S),w((,C,S),C,S))})  M. 
 
Theorem.  The set of essential sequential equilibria is nonempty and is a closed 
subset of the set of basic sequential equilibria. 

(The proof, using Zorn’s lemma and Tychonoff’s Theorem, establishes the 
existence of at least one such minimal set M that is nonempty.)  
 
Another possible solution: Require that type sets and action sets which are "the 
same" must have the same finite approximations.  (How to recognize sameness?) 
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Using strategic actions to solve problems of step-strategy approximations 
One way to avoid the problems of step-strategies is to permit the use of strategic 
actions. This must be done with care to avoid the problem of spurious signaling. 
Algebras (closed under finite  and complements) of measurable subsets are 
specified also for each Aik, including all one-point sets as measurable. 
Each ik(,a<k) and each vi(,a) now assumed jointly measurable in (,a).  
If  is a finite set, then all subsets of Aik are measurable. 
A strategic action for ikL is a measurable function, aik*:Tik→Aik. 
Let Aik* denote ik’s set of strategic actions. 
The set of intrinsic actions Aik is a subset of Aik* because for each aikAik,  
Aik* contains the constant strategic action taking the value aik on Tik. 
For every a*A* and every , let (,a*) denote the action profile aA that 
is determined when the state is  and each player plays according to the strategic 
action profile a*.  Note that for each a*A*, (,a*) is measurable in . 
To ensure perfect recall, define new type spaces and type maps:  
Tik* = Tik(h<k Aih*), with measurable subsets whose slices contained in Tik 
defined by any a<k* are measurable, and ik*(,a<k*)=(ik(,(,a*)<k), h<k aih*). 
Extend each vi(,a) from A to A* by defining vi(,a*)= vi(,(,a*)). 
Note that for every ikL and every a*A*, ik*(,a<k*) and vi(,a*) are 
measurable functions of . 
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This defines a dynamic multi-stage game, Γ*, with perfect recall and we may 
therefore employ all of the notation and definitions we previously developed. 
Qik* is the set of observable events for player i at period k that can have positive 
probability in *.  Q* is the (disjoint) union of these Qik* over all ik. 
Approximations of  Γ* are defined, as before, by (C,S), where C is any finite set 
of (strategic) action profiles in A* and S is any information approximation of all 
the Tik*. 
 
Perfect recall in * 
In a finite approximation of Γ*, perfect recall means that a player ik remembers, 
looking back to a previous date m<k, the partition element containing his 
information-type at that date and the strategic action chosen there.  
If the partition element contains more than one of his information types and his 
strategic action there is not constant across the projection of those types onto Tim, 
then he will not recall the action in A actually taken at the previous date.  
Thus, there is perfect recall with respect to strategic actions but not with respect 
to intrinsic actions.  
Of course, if the strategic action chosen is a constant function, i.e., equivalent to 
an intrinsic action, then the action too is recalled. 
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Misrepresentations and incentive compatibility 
The Akerlof example shows that applying basic sequential equilibrium to Γ* is 
inadequate as a solution to Γ because of spurious signaling.  
To avoid spurious signaling we take a direct approach. 
Given an approximation (C,S) of Γ*, a misrepresentation for ikL is a Tik*-
measurable function rik:Tik*Tik* such that for each sikSik, the range rik(sik) is 
contained in some element, [rik(sik)], of Sik.  
(Misrepresentations permit players’ information types in Γ* to mimic other of 
their information types.) 
 
In the approximation (C,S), define ik◦rik so that, for any information type sik, 
ik◦rik assigns the probability ik(cik|[rik(sik)]) to the strategic action cik◦rikAik*.   
That is  ik◦rik(cik◦rik|sik) = ik(cik|[rik(sik)]),  cikAik*,  sikSik. 
The strategic action cik◦rik specifies action cik(rik(tik)) for any type tik in sik. 
 
Given an approximation (C,S) of Γ* and >0, 
a totally mixed strategy  is -incentive compatible iff 
Vi(ik, ik◦rik|sik)  Vi(|sik) + ,  ikL,  sikSikQik(C), misrepresentatn rik. 
 
Note. The containment condition on rik(sik) ensures that every -approximate 
sequential equilibrium of (C,S) is -incentive compatible whenever CA.
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Maximal incentive compatible sets of strategic actions  
Any subset B of A* is incentive compatible iff BA and 
for every >0 and every finite subset Co of B, 
there is a finite set C such that CoCB, and such that 
for every information approximation So, 
there is an information approximation S such that U(S)  U(So), (C,S)F and 
(C,S) has an -incentive compatible -approximate sequential equilibrium. 
 
The subset B of A* is maximally incentive compatible if it is incentive 
compatible and no subset of A* strictly containing B is also incentive compatible. 
 
Note. Because B=A is incentive compatible and arbitrary unions of nested 
incentive compatible sets are incentive compatible, Zorn’s lemma yields the 
existence of at least one maximally incentive compatible set. 
 

Let Y* be the set of all Y  A* such that a*A*, {| (,a*)Y} is a 
measurable subset of , and let W* = ikL Aik*Qik*. 
 
Let E*(,C,S) denote the set of -incentive compatible -approximate sequential 
equilibria for the finite approximation (C,S) of Γ*. (For >0, if BA* is incentive 
compatible, then {CB|{S|E*(,C,S) , (C,S)F} is cofinal} is cofinal in B.)
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To resolve the problem of step-strategies, we offer the following definition. 
 
Extended sequential equilibria 
The set of extended sequential equilibria of Γ is the smallest closed set of 
assessments in [0,1]Y*Q*  [, ]W* that contains, for every maximally 
incentive compatible subset B of A*, the set, 
lim>0 limCB limS:(C,S)F {(m(,C,S),w(,C,S))| E*(,C,S)}. 
 
(Note. E*(,C,S) may be empty for some (,C,S).) 
 
 
Theorem.  The set of extended sequential equilibria is nonempty and is a closed 
subset of [0,1]Y*Q*  [, ]W* with the product topology. 
 
The proof is based on the previous observation that there is at least one nonempty 
maximally incentive compatible subset, B say, of A*.  
Then, in particular, lim>0 limCB limS:(C,S)F {(m(,C,S),w(,C,S))| E*(,C,S)} 
is nonempty, by Tychonoff’s theorem. 
 
(Note. If A is finite, there is an equivalence between the sets of extended and 
basic sequential equilibria of  Γ because every a* is a step strategy.)
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The following simultaneously resolves all of the problems identified above. 
 
Essential extended sequential equilibria 
The set of essential extended sequential equilibria of Γ is the smallest closed set 
of assessments in [0,1]Y*Q*  [, ]W* containing every set of assessments M 
that is minimal with respect to the following property: M is closed and there is a 
selection () such that (,C,S)E*(,C,S) whenever E*(,C,S), and such that 
lim>0 limCB limS:(C,S)F and E*(,C,S) {(m((,C,S),C,S),w((,C,S),C,S))}  M 
for every maximally incentive compatible B  A*.  
 
Theorem.  The set of essential extended sequential equilibria of Γ is nonempty 
and is a closed subset of the set of extended sequential equilibria of Γ. 
 

The proof, using Zorn’s lemma and Tychonoff’s Theorem, establishes the 
existence of at least one such minimal set M that is nonempty. 
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