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Abstract. We show that in any game that is continuous at infinity, if a plan of action ai
is rationalizable for a type ti, then there are perturbations of ti for which following ai for

an arbitrarily long future is the only rationalizable plan. One can pick the perturbation

from a finite type space with common prior. Furthermore, for Bayesian Nash equilibria,

the perturbation can bepicked so that the unique rationalizable belief of the perturbed type

regarding the play of the game is arbitrarily close to the equilibrium belief of ti. As an

application we prove an unusual folk theorem: Any individually rational and feasible payoff

is the unique rationalizable payoff vector for some perturbed type profile, according to which

the repeated-game payoff structure and the discount factor are common knowledge.

JEL Numbers: C72, C73.

1. Introduction

In economic applications with infinite-horizon dynamic games, the sets of equilibrium

strategies and rationalizable strategies are often very large. For example, the literature on

repeated games is filled with folk theorems, concluding that every individually rational pay-

off can be supported by a subgame-perfect equilibrium. For a less transparent example, in

Rubinstein’s (1982) bargaining game, although there is a unique subgame-perfect equilib-

rium, any outcome can be supported in Nash equilibrium. Consequently, economists focus

on strong refinements of equilibrium and ignore other rationalizable strategies and equilib-

ria. This is so common that we rarely think about rationalizable strategies in extensively-

analyzed dynamic games. Of course, all these applications make strong common-knowledge

assumptions.
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In this paper, building on existing theorems for finite games, we prove structure the-

orems for rationalizability in infinite-horizon dynamic games that characterize the robust

predictions of any refinement. The main attraction of our results is that they are readily

applicable to most economic applications. Indeed, we provide two immediate applications,

one in repeated games with suffi ciently patient players and one in bargaining, showing that

no refinement can robustly rule out any individually rational outcome in these games.

We consider an arbitrary dynamic game that is continuous at infinity, and has finitely

many moves at each information set and a finite type space. Note that virtually all of

the games analyzed in economics, such as repeated games with discounting and bargaining

games, are continuous at infinity. For any type ti in this game, consider a rationalizable plan

of action ai, which is a complete contingent plan that determines which move the type ti
will take at any given information set of i.1 Fix some arbitrary integer L. We show that, by

perturbing the interim beliefs of type ti, we can find a new type t̂i who plays according to ai
in the first L information sets in any rationalizable action. The types ti and t̂i have similar

beliefs about the payoff functions, similar beliefs about the other players’beliefs about the

payoff functions, similar beliefs about the other players’beliefs about the players’beliefs

about the payoff functions, and so on, up to an arbitrarily chosen finite order. Moreover, we

can pick t̂i from a finite model with a common prior, so that our perturbations do not rely

on some esoteric large type space or the failure of the common-prior assumption.

In Weinstein and Yildiz (2007) we showed this result for finite-action games in normal

form, under the assumption that the space of payoffs is rich enough so that any action can

be dominant under some payoff specification. While this richness assumption holds when

one relaxes all common-knowledge assumptions on payoff functions in a static game, it fails if

one fixes a non-trivial dynamic game tree. This is because a plan of action cannot be strictly

dominant when some information sets may not be reached. Chen (2008) has nonetheless

extended the structure theorem to finite dynamic games, showing that the same result holds

1The usual notation in dynamic games and games of incomplete information clash; action ai stands for a

move in dynamic games but for an entire contingent plan in incomplete-information games; t stands for time

in dynamic games but type profile in incomplete-information games; hi stands for history in dynamic games

but hierarchy in incomplete-information games, etc. Following Chen, we will use the notation customary in

incomplete information games, so ai is a complete contingent plan of action. We will sometimes use “move”

to distinguish an action at a single node.
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under the weaker assumption that all payoff functions on the terminal histories are possible.

This is an important extension, but the finite-horizon assumption rules out many major

dynamic applications of game theory, such as repeated games and sequential bargaining.

Since the equilibrium strategies can discontinuously expand when one switches from finite-

to infinite-horizon, as in the repeated prisoners’ dilemma game, it is not clear what the

structure theorem for finite-horizon game implies in those applications. Here, we extend

Chen’s results further by allowing infinite-horizon games that are continuous at infinity, an

assumption that is made in almost all applications. There is a challenge in this extension,

because the construction employed by Weinstein and Yildiz (2007) and Chen (2008) relies

on the assumption that there are finitely many actions. The finiteness (or countability) of

the action space is used in a technical but crucial step of ensuring that the constructed

type is well-defined, and there are counterexamples to that step when the action space is

uncountable. Unfortunately, in infinite-horizon games, such as infinitely-repeated prisoners

dilemma, there are uncountably many strategies, even in reduced form. However, continuity

at infinity turns out to be enough to make infinite-horizon games behave well enough for the

result to carry over.

We now briefly explain the implications of our structure theorem to robustness.2 Imagine

a researcher who subscribes to an arbitrary refinement of rationalizability, such as sequential

equilibrium or proper equilibrium. Applying his refinement, he can make many predictions

about the outcome of the game, describing which histories we may observe. Let us confine

ourselves to predictions about finite-length (but arbitrarily long) outcome paths. For ex-

ample, in the repeated prisoners’dilemma game, “players cooperate in the first round”and

“player 1 plays tit-for-tat in the first 101,000,000 periods”are such predictions, but “players

always cooperate”and “players eventually defect”are not. Our result implies that any such

prediction that can be obtained by a refinement, but not by mere rationalizability, relies

crucially on assumptions about the infinite hierarchies of beliefs embedded in the model.

Therefore, refinements cannot lead to any new prediction about finite-length outcome paths

that is robust to misspecification of interim beliefs.

2For a more detailed discussion of the ideas in this paragraph, we refer to Weinstein and Yildiz (2007). In

particular, there, we have extensively discussed the meaning of perturbing interim beliefs from the perspective

of economic modelling and compared alternative formulations, such as the ex-ante perturbations of Kajii

and Morris (1997).
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One can formally derive this from our result by following the formulation in Weinstein

and Yildiz (2007). Here, we will informally illustrate the basic intuition. Suppose that the

above researcher observes a "noisy signal" about the players’first-order beliefs (which are

about the payoff functions), the players’second-order beliefs (which are about the first-order

beliefs), . . . , up to a finite order k, and does not have any information about the beliefs

at order higher than k. Here, the researcher’s information may be arbitrarily precise, in

the sense that the noise in his signal may be arbitrarily small and k may be arbitrarily

large. Suppose that he concludes that a particular type profile t = (t1, . . . , tn) is consistent

with his information, in that the interim beliefs of each type ti could lead to a hierarchy of

beliefs that is consistent with his information. Suppose that for this particular specification,

his refinement leads to a sharper prediction about the finite-length outcome paths than

rationalizability. That is, for type profile t, a particular path (or history) h of length L is

possible under rationalizability but not possible under his refinement. But there are many

other type profiles that are consistent with his information. In order to verify his prediction

that h will not be observed under his refinement, he has to make sure that h is not possible

under his refinement for any such type profile. Otherwise, his prediction would not follow

from his information or solution concept; it would rather be based on his modeling choice

of considering t but not the alternatives. Our result establishes that he cannot verify his

prediction, and his prediction is indeed based on his choice of modeling: there exist a type

profile t̂ that is also consistent with his information and, for t̂, h is the only rationalizable

outcome for the first L moves, in which case h is the only outcome for the first L moves

according to his refinement as well.

Our structure theorem has two limitations. First, it only applies to finite-length outcomes.

Second and more importantly, the perturbed types may find the unique rationalizable out-

come unlikely at the beginning of play. In particular, a player may expect to play different

moves in the future from what he actually plays according to the unique rationalizable plan.

Focusing on Bayesian Nash equilibria, we prove a stronger structure theorem that does not

have these limitations. For any Bayesian Nash equilibrium of any Bayesian game that is

continuous at infinity, we show that for every type ti in the Bayesian game there exists a

perturbed type for which the equilibrium action of ti is the unique rationalizable action and

the unique rationalizable belief of the perturbed type is arbitrarily close to the equilibrium
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belief of ti. In particular, if the original game is of complete information, then the per-

turbed type assigns nearly probability one to the equilibrium path. (We also show that such

perturbations can be found only for Bayesian Nash equilibria.)

As an application of this stronger result and the usual folk theorems, we show an unusual

folk theorem. We show that every individually rational and feasible payoff v in the interior

can be supported by the unique rationalizable outcome for some perturbation for suffi ciently

patient players. Moreover, in the actual situation described by the perturbation, all players

anticipate that the payoffs are within ε neighborhood of v. That is, the complete-information

game is surrounded by types with a unique solution, but the unique solution varies in such

a way that it traces all individually rational and feasible payoffs. While the multiplicity in

usual folk theorems may suggest a need for a refinement, the multiplicity in our unusual

folk theorem emphasizes the impossibility of a robust refinement. In the same vein, in

Rubinstein’s bargaining model, we show that any bargaining outcome can be supported as

a unique rationalizable outcome for some perturbation. Once again, no refinement can rule

out these outcomes without imposing a common knowledge assumption.

In some applications, a researcher may want to retain certain structural assumptions

regarding payoffs. In particular, in a repeated game, he may want to keep it common

knowledge that the players’payoffs in the repeated game is the discounted sum of the stage-

game payoffs. In general, such restrictions may lead to sharper predictions. In the particular

case of repeated games, however, we show that our conclusions above remain intact: the

perturbed types in the unusual folk theorem can be constructed while maintaining common

knowledge of the repeated-game payoff structure and the discount factor.

After laying out the model in the next section, we present our general results in Section

3. We present our applications to repeated games and bargaining in Sections 4 and 5,

respectively. We discuss the relation of our general results to broader literature on robustness

in Section 6. The proofs of our general results are presented in the appendix.

2. Basic Definitions

This section will be a bit tedious because of the notation involved in defining dynamic

Bayesian games and hierarchies of beliefs. We suggest that the reader skim the section

quickly and refer back as necessary; the main text is not very notation-heavy.
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Extensive game forms. We consider standard n-player extensive-form games with possibly

infinite horizon, as modeled in Osborne and Rubinstein (1994). In particular, we fix an

extensive game form Γ =
(
N,H, (Ii)i∈N

)
with perfect recall where N = {1, 2, . . . , n} is a

finite set of players, H is a set of histories, and Ii is the set of information sets at which player
i ∈ N moves. We use i ∈ N and h ∈ H to denote a generic player and history, respectively.

We write Ii (h) for the information set that contains history h, at which player i moves, i.e.

the set of histories i finds possible when he moves. The set of available moves at Ii (h) is

denoted by Bi (h). We have Bi (h) = {bi : (h, bi) ∈ H}, where (h, bi) denotes the history in

which h is followed by bi. We assume that Bi (h) is finite for each h. An action ai of i is

defined as any contingent plan that maps the information sets of i to the moves available at

those information sets; i.e. ai : Ii (h) 7→ ai (h) ∈ Bi (h). We write A = A1 × · · · ×An for the
set of action profiles a = (a1, . . . , an).3 We write Z for the set of terminal nodes, at which

no player moves. We write z (a) for the terminal history that is reached by profile a. We say

that actions ai and a′i are equivalent if z (ai, a−i) = z (a′i, a−i) for all a−i ∈ A−i.

Type spaces. Given an extensive game form, a Bayesian game is defined by specifying the

belief structure about the payoffs. To this end, we write θ (z) = (θ1 (z) , . . . , θn (z)) ∈ [0, 1]n

for the payoff vector at the terminal node z ∈ Z and write Θ∗ for the set of all payoff

functions θ : Z → [0, 1]n. The payoff of i from an action profile a is denoted by ui (θ, a).

Note that ui (θ, a) = θi (z (a)). We endow Θ∗ with the product topology (i.e. the topology of

pointwise convergence). Note that Θ∗ is compact and ui is continuous in θ. Note, however,

that Θ∗ is not a metric space. We will use only finite type spaces, so by a model, we mean a

finite set Θ× T1 × · · · × Tn associated with beliefs κti ∈ ∆ (Θ× T−i) for each ti ∈ Ti, where
Θ ⊆ Θ∗. Here, ti is called a type and T = T1 × · · · × Tn is called a type space. A model
(Θ, T, κ) is said to be a common-prior model (with full support) if and only if there exists

a probability distribution p ∈ ∆ (Θ× T ) with support Θ × T and such that κti = p (·|ti)

3Notation: Given any list X1, . . . , Xn of sets, write X = X1 × · · · ×Xn with typical element x, X−i =∏
j 6=iXj with typical element x−i, and (xi, x−i) = (x1, . . . , xi−1, xi, xi+1, . . . , xn). Likewise, for any family

of functions fj : Xj → Yj , we define f−i : X−i → X−i by f−i (x−i) = (fj (xj))j 6=i. This is with the

exception that h is a history as in dynamic games, rather than a profile of hierarchies (h1, . . . , hn). Given

any topological space X, we write ∆(X) for the space of probability distributions on X, endowed with Borel

σ-algebra and the weak topology.
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for each ti ∈ Ti. Note that (Γ,Θ, T, κ) defines a Bayesian game. In this paper, we consider

games that vary by their type spaces for a fixed game form Γ.

Hierarchies of Beliefs. Given any type ti in a type space T , we can compute the first-

order belief h1
i (ti) ∈ ∆ (Θ∗) of ti (about θ), second-order belief h2

i (ti) ∈ ∆ (Θ∗ ×∆ (Θ∗)n)

of ti (about θ and the first-order beliefs), etc., using the joint distribution of the types

and θ. Using the mapping hi : ti 7→ (h1
i (ti) , h

2
i (ti) , . . .), we can embed all such models in

the universal type space, denoted by T ∗ = T ∗1 × · · · × T ∗n (Mertens and Zamir (1985) and
Brandenburger and Dekel (1993)). We endow the universal type space with the product

topology of usual weak convergence. We say that a sequence of types ti (m) converges to a

type ti, denoted by ti (m) → ti, if and only if hki (ti (m)) → hki (ti) for each k, where the

latter convergence is in weak topology, i.e., “convergence in distribution.”

For each i ∈ N and for each belief π ∈ ∆ (Θ× A−i), we write BRi (π) for the set of

actions ai ∈ Ai that maximize the expected value of ui (θ, ai, a−i) under the probability

distribution π. Moreover, a solution concept Σi : ti 7→ Σi [ti] ⊆ Ai, i ∈ N , is said to be

closed under rational behavior if and only if for each ti and for each ai ∈ Σi [ti], there exists

a belief π ∈ ∆ (Θ× T−i × A−i) such that ai ∈ BRi

(
margΘ×A−iπ

)
, margΘ×T−iπ = κti and

π (a−i ∈ Σ−i [t−i]) = 1.

Interim Correlated Rationalizability. We define interim correlated rationalizability (ICR),

denoted by S∞, as the largest solution concept that is closed under rational behavior. Un-

der certain regularity conditions, e.g., in finite games, the interim correlated rationaliz-

ability can be computed by the following elimination procedure. For each i and ti, set

S0
i [ti] = Ai, and define sets Ski [ti] for k > 0 iteratively, by letting ai ∈ Ski [ti] if and only

if ai ∈ BRi

(
margΘ×A−iπ

)
for some π ∈ ∆ (Θ× T−i × A−i) such that margΘ×T−iπ = κti

and π
(
a−i ∈ Sk−1

−i [t−i]
)

= 1. That is, ai is a best response to a belief of ti that puts posi-

tive probability only to the actions that survive the elimination in round k − 1. We write

Sk−1
−i [t−i] =

∏
j 6=i S

k−1
j [tj] and Sk [t] = Sk1 [t1]× · · · × Skn [tn]. Then,4

S∞i [ti] =
∞⋂
k=0

Ski [ti] .

4In complete information games, this equality holds whenever the action spaces are compact and the

utility functions are continuous (Bernheim (1984)). The equality may fail in other complete information

games (Lipman (1994)).
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Interim correlated rationalizability has been introduced by Dekel, Fudenberg, and Morris

(2007) (see also Battigalli and Siniscalchi (2003) for a related concept). They show that

the ICR set for a given type is completely determined by its hierarchy of beliefs, so we

will sometimes refer to the ICR set of a hierarchy or “universal type.” ICR is the weakest

rationalizability concept, and hence our results remain true under other notions of rational-

izability.

Continuity at Infinity. We now turn to the details of the extensive game form. If a history

h =
(
bl
)L
l=1
is formed by L moves for some finite L, then h is said to be finite and have length

L. If h contains infinitely many moves, then h is said to be infinite. A game form is said to

have finite horizon if for some L <∞ all histories have length at most L; the game form is

said to have infinite horizon otherwise. For any history h =
(
bl
)L
l=1
and any L′, we write hL

′

for the subhistory of h that is truncated at length L′; i.e. h =
(
bl
)min{L,L′}
l=1

. We say that θ is

continuous at infinity (first defined by Fudenberg and Levine (1983)) iff for any ε > 0, there

exists L <∞, such that

(2.1)
∣∣∣θi (h)− θi(h̃)

∣∣∣ < ε whenever hL = h̃L

for all i ∈ N and all terminal histories h, h̃ ∈ Z. We say that a game (Γ,Θ, T, κ) is continuous

at infinity if each θ ∈ Θ is continuous at infinity.

We will confine ourselves to the games that are continuous at infinity throughout, including

our perturbations. Note that most games analyzed in economics are continuous at infinity.

This includes all finite-horizon games, repeated games with discounting, games of sequential

bargaining, and so on. Of course, our assumption that Bi (h) is finite restricts the games

to finite stage games and finite set of possible offers in repeated games and bargaining,

respectively.

3. Structure Theorem

In this section we will present our main result, which shows that in a game that is con-

tinuous at infinity, if an action ai is rationalizable for a type ti, then there are perturbations

of ti for which following ai for arbitrarily long future is the only rationalizable plan. As

we will explain, we also prove a stronger version of the theorem for outcomes that occur in

equilibrium.
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Weinstein and Yildiz (2007) have proven a version of this structure theorem for finite

action games under a richness assumption on Θ∗ that is natural for static games but rules

out fixing a dynamic extensive game form. Chen (2008) has proven this result for finite games

under a weaker richness assumption that is satisfied in our formulation. The following result

is implied by Chen’s theorem.

Lemma 1 (Weinstein and Yildiz (2007) and Chen (2008)). For any finite-horizon game

(Γ,Θ, T, κ), for any type ti ∈ Ti of any player i ∈ N , any rationalizable action ai ∈ S∞i [ti] of

ti, and any neighborhood Ui of hi(ti) in the universal type space T ∗, there exists a hierarchy

hi
(
t̂i
)
∈ U, such that for each a′i ∈ S∞i

[
t̂i
]
, a′i is equivalent to ai, and t̂i is a type in some

finite, common-prior model.

That is, if the game has finite horizon, then for any rationalizable action of a given type,

we can make the given action uniquely rationalizable (in the reduced game) by perturbing

the interim beliefs of the type. Moreover, we can do this by only considering perturbations

that come from finite models with a common prior. In the constructions of Weinstein and

Yildiz (2007) and Chen (2008), finiteness (or countability) of action space A is used in

a technical but crucial step that ensures that the constructed type is indeed well-defined,

having well-defined beliefs. The assumption ensures that a particular mapping is measurable,

and there is no general condition that would ensure the measurability of the mapping when A

is uncountable. Unfortunately, in infinite-horizon games, such as infinitely repeated games,

there are uncountably many histories and actions. (Recall that an action here is a complete

contingent plan of a type, not a move.) Our main result in this section extends the above

structure theorem to infinite-horizon games. Towards stating the result, we need to introduce

one more definition.

Definition 1. An action ai is said to be L-equivalent to a′i iff z (ai, a−i)
L = z (a′i, a−i)

L for

all a−i ∈ A−i.

That is, two actions are L-equivalent if both actions prescribe the same moves in the first

L moves on the path against every action profile a−i by others. For the first L moves ai and

a′i can differ only at the informations sets that they preclude. Of course this is the same as
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the usual equivalence when the game has a finite horizon that is shorter than L. We are now

ready to state our first main result.

Proposition 1. For any game (Γ,Θ, T, κ) that is continuous at infinity, for any type ti ∈ Ti
of any player i ∈ N , any rationalizable action ai ∈ S∞i [ti] of ti, any neighborhood Ui of hi(ti)

in the universal type space T ∗, and any L, there exists a hierarchy hi
(
t̂i
)
∈ Ui, such that

for each a′i ∈ S∞i
[
t̂i
]
, a′i is L-equivalent to ai, and t̂i is a type in some finite, common-prior

model.

Imagine a researcher who wants to model a strategic situation with genuine incomplete

information. He can somehow make some noisy observations about the players’(first-order)

beliefs about the payoffs, their (second-order) beliefs about the other players’beliefs about

the payoffs, . . . , up to a finite order. The noise in his observation can be arbitrarily small,

and he can observe arbitrarily many orders of beliefs. Suppose that given his information,

he concludes that his information is consistent with a type profile t that comes from a

model that is continuous at infinity. Note that the set of hierarchies that is consistent

with his information is an open subset U = U1 × · · · × Un of the universal type space, and
(h1 (t1) , . . . , hn (tn)) ∈ U . Hence, our proposition concludes that for every rationalizable

action profile a ∈ S∞ [t] and any finite length L, the researcher cannot rule out the possibility

that in the actual situation the first L moves have to be as in the outcome of a in any

rationalizable outcome. That is, rationalizable outcomes can differ from a only after L

moves. Since L is arbitrary, he cannot practically rule out any rationalizable outcome as the

unique solution.

Notice that Proposition 1 differs from Lemma 1 only in two ways. First, instead of

assuming that the game has a finite horizon, Proposition 1 assumes only that the game is

continuous at infinity, allowing most games in economics. Second, it concludes that for the

perturbed types all rationalizable actions are equivalent to ai up to an arbitrarily long but

finite horizon, instead of concluding that all rationalizable actions are equivalent to ai. These

two statements are, of course, equivalent in finite-horizon games.

A main step in our proof is indeed Lemma 1. There are, however, many involved steps

that need to be spelled out carefully. Hence, we relegate the proof to the appendix. In order

to illustrate the main idea, we now sketch out the proof for a simple but important case.

Suppose thatΘ =
{
θ̄
}
and T = {t̄}, so that we have a complete information game, and a∗ is a



STRUCTURE OF RATIONALIZABILITY 11

Nash equilibrium of this game. For eachm, perturb every history h at lengthm by assuming

that thereafter the play will be according to a∗, which describes different continuations at

different histories. Call the resulting history hm,a
∗
. This can also be described as a payoff

perturbation: define the perturbed payoff function θm by setting θm (h) = θ̄
(
hm,a

∗)
at every

terminal history h. Now consider the complete-information game with perturbed model

Θ̃m = {θm} and Tm = {t̄m}, where according to t̄m it is common knowledge that the payoff
function is θm (essentially, players are forced to play according to a∗ after themth information

set). We make three observations towards proving the proposition. We first observe that,

since θ̄ is continuous at infinity, by construction, θm → θ̄, implying that hi (t̄mi ) → hi (t̄i).

Hence, there exists m̄ > L such that hi (t̄m̄i ) ∈ Ui. Second, there is a natural isomorphism
between the payoff functions that do not depend on the moves after length m̄, such as

θm̄, and the payoff functions for the finite-horizon extensive game form that is created by

truncating the moves at length m̄. In particular, there is an isomorphism ϕ that maps the

hierarchies in the universal type space T m̄∗ for the truncated extensive game form to the

types in universal type space T ∗ for the infinite-horizon game form that make the common-

knowledge assumption that the moves after length m̄ are payoff-irrelevant. Moreover, the

rationalizable moves for the first m̄ nodes do not change under the isomorphism, in that

ai ∈ S∞i [ϕ (ti)] if and only if the restriction ami of ai to the truncated game is in S∞i [ti]

for any ti ∈ T m̄∗. We third observe that, since a∗ is a Nash equilibrium, it remains a Nash
equilibrium after the perturbation. This is because enforcing Nash equilibrium strategies

after some histories does not give a new incentive to deviate. Therefore, a∗i is a rationalizable

strategy in the perturbed complete information game: a∗i ∈ S∞i [t̄m̄i ]. Now, these three

observations together imply that the hierarchy ϕ−1 (hi (t̄
m̄
i )) for the finite-horizon game form

is in an open neighborhood ϕ−1 (Ui) ⊂ T m̄∗i and the restriction a∗m̄i of a∗i to the truncated

game form is rationalizable for ϕ−1 (hi (t̄
m̄
i )). Hence, by Lemma 1, there exists a type t̃i such

that (i) hi
(
t̃i
)
∈ ϕ−1 (Ui) and (ii) all rationalizable actions of t̃i are m̄-equivalent to a∗m̄i .

Now consider a type t̂i with hierarchy hi
(
t̂i
)
≡ ϕ

(
hi
(
t̃i
))
, where t̂i can be picked from a

finite, common-prior model because the isomorphic type t̃i comes from such a type space.

Type t̂i has all the properties in the proposition. First, by (i), hi
(
t̂i
)
∈ Ui because

hi
(
t̂i
)

= ϕ
(
hi
(
t̃i
))
∈ ϕ

(
ϕ−1 (Ui)

)
⊂ Ui.
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Second, by (ii) and the isomorphism in the second observation above, all rationalizable

actions of t̂i are m̄-equivalent to a∗i .

There are two limitations of Proposition 1. First, it is silent about the tails. Given a

rationalizable action ai, it does not ensure that that there is a perturbation under which ai
is the unique rationalizable plan– although it does ensure for an arbitrary L that there is

a perturbation under which following ai is the uniquely rationalizable plan up to L. The

second limitation, which equally applies to Chen’s (2008) result, is as follows. Given any

rationalizable path z (a) and L, Proposition 1 establishes that there is a profile t = (t1, . . . , tn)

of perturbed types for which zL (a) is the unique rationalizable path up to L. Nevertheless,

these perturbed types may all find the path zL (a) unlikely at the start of play. This may

lead to implausible-seeming outcomes such as in the following example —we use a two-stage

game for simplicity, since the relevant idea is the same as for infinite games.

Cooperation in Twice-Repeated Prisoners’Dilemma. Consider a twice-repeated pris-

oners’dilemma game with complete information and with no discounting. We shall need

the standard condition u(C,D) + u(D,C) > 2u(D,D), where u is the payoff of player 1 in

the stage game and C and D stand for the actions Cooperate and Defect, respectively. In

the twice-repeated game, though of course there is a unique Nash equilibrium outcome, the

following "tit-for-tat" strategy is rationalizable:

aT4T : play Cooperate in the first round, and in the second round play what the other player

played in the first round.

We show this rationalizability as follows. First, note that defection in every subgame,

which we call aDD, by both players is an equilibrium, so aDD is rationalizable. Next,

defection in the first period followed by tit-for-tat in the second period, which we call aDT ,

is a best response to aDD and therefore rationalizable. Finally, under the inequality above,

aT4T is a best response to aDT and so is rationalizable. This tells us that cooperation in

both rounds is possible under rationalizable play.

This counterintuitive sort of conclusion is one reason standard rationalizability is not

ordinarily used for extensive-form games; it is extremely permissive. This makes the results

of Chen (2008) more surprising. By his theorem, there exists a perturbation tT4T of the

common-knowledge type for which aT4T is the unique rationalizable action. If both players

have type tT4T , the unique rationalizable action profile
(
aT4T , aT4T

)
leads to cooperation
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in both rounds. However, we can deduce that the constructed type will necessarily have

certain odd properties. Since tT4T has a unique best reply, the player must assign positive

probability to the event that the other player cooperates in the first round. Such cooperation

must make him update his beliefs about the payoffs in such a way that Cooperate becomes

a better response than Defect. Since the definition of perturbation requires that, ex ante,

he believes with high probability the payoffs are similar to the repeated prisoner dilemma,

under which Defect is dominant in the second round, this drastic updating implies that tT4T

finds it unlikely that the other player will play Cooperate in the first round. Hence, when

both players have type tT4T , the story must be as follows: they each cooperate in the first

round even though they think they are playing Prisoners’Dilemma, motivated by a belief

that the other player has plan aDT . Then, when they see the other player cooperate, they

drastically update their payoffs (which they believe to be correlated with the other player’s

type) and believe that it is optimal to cooperate in the second period.

This sort of perturbation, in which the induced behavior can only occur on a path the play-

ers themselves assign low probability, is to some extent unconvincing.5 As mentioned above,

this motivates our Proposition 2 which shows that equilibrium outcomes can be induced by

perturbations without this property. This reinforces the natural view that rationalizability

is a weak solution concept in a dynamic context.

Stronger Structure Theorem for Equilibrium Outcomes. These limitations of Propo-

sition 1 are the motivation for our next proposition, a stronger version of the structure the-

orem for which we need an outcome to be a Bayesian Nash equilibrium rather than merely

rationalizable. In order to state the result formally, we need to introduce some new formal-

ism. We write Ā for the set of reduced-form action profiles in which each equivalence class is

represented by a unique action. We call a probability distribution π ∈ ∆
(
Θ∗ × T ∗−i × Ā−i

)
a rationalizable belief of type ti if margΘ×T−iπ = κhi(ti) and π

(
a−i ∈ S∞−i [t−i]

)
= 1. Given

any strategy profile s∗ : T → A, we write π∗ (·|ti, s∗) ∈ ∆
(
Θ∗ × T ∗−i × Ā−i

)
for the belief of

type ti given that the other players play according to s∗−i. We write Pr (·|π, si) and E [·|π, ai]

5The possibility of a player assigning small probability to the actual outcome arises under rationalizability

whenever we do not have an equilibrium. In this dynamic example, the disconnect between the actual

situation and the players’beliefs is more severe: their belief about their own future play differs from what

they end up playing. They anticipate defecting in the second period while they cooperate in the actual

realized type profile.
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for the resulting probability measure and expectation operator from playing ai against belief

π, respectively. The expectation operator under π∗ (·|ti, s∗) is denoted by E [·|s∗, ti]. Recall
that we consider the open neighborhoods of beliefs in the weak* topology as in the usual

convergence in distribution. With this formalism, our result is stated as follows.

Proposition 2. Let G = (Γ,Θ, T, κ) be a Bayesian game that is continuous at infinity, and

s∗ : T → A be a strategy profile in G. Then, the following are equivalent.

(A): s∗ is a Bayesian Nash equilibrium of G.

(B): For any i ∈ N , for any ti ∈ Ti, for any neighborhood Ui of hi(ti) in the universal
type space T ∗, and for any neighborhood Vi of the belief π∗ (·|ti, s∗) of type ti under
s∗, there exists a hierarchy hi

(
t̂i
)
∈ Ui, such that

(1) ai ∈ S∞i
[
t̂i
]
iff ai is equivalent to s∗i (ti), and

(2) the unique rationalizable belief π̂ ∈ ∆
(
Θ∗ × T ∗−i × Ā−i

)
of t̂i is in Vi.

Moreover, for every ε > 0, t̂i above can be chosen so that |E [uj (θ, a) |π, a∗i ]− E [uj (θ, a) |s∗, ti]| ≤
ε for all j ∈ N .

Given a Bayesian Nash equilibrium s∗, the first conclusion states that the equilibrium

action s∗i (ti) is the only rationalizable action for the perturbed type in reduced form. Hence,

the first limitation of Proposition 1 does not apply. The second conclusion states that the

rationalizable belief of the perturbed type t̂i is approximately the same as the equilibrium

belief of the original type ti. Hence, the second limitation of Proposition 1 does not apply,

either. Moreover, the second conclusion immediately implies that the interim expected

payoffs according to the perturbed type t̂i under rationalizability are close to the equilibrium

expected payoffs according to ti. All in all, Proposition 2 establishes that no equilibrium

outcome can be ruled out as the unique rationalizable outcome without knowledge of infinite

hierarchy of beliefs, both in terms of actual realization and in terms of players’ ex-ante

expectations.

One may wonder if one can reach such a strong conclusion for other rationalizable strate-

gies. The answer is a firm No, according to Proposition 2. In fact, the proposition establishes

that the converse is also true: if for every type ti one can find a perturbation under which

the the players’interim beliefs are close to the beliefs under the original strategy profile s∗



STRUCTURE OF RATIONALIZABILITY 15

(condition 2) and if the action s∗i (ti) is uniquely rationalizable for the perturbed type (con-

dition 1), then s∗ is a Bayesian Nash equilibrium. This is simply because, by the Maximum

Theorem, the two conditions imply that s∗i (ti) is indeed a best reply for ti against s∗−i.

In our applications, we will explore the implications of this result for some important

complete-information games in Economics. In order to state the result for the complete-

information games, we fix a payoff function θ∗, and consider the game in which θ∗ is common

knowledge. This game is represented by type profile tCK (θ∗) in the universal type space.

Corollary 1. Let
(
Γ, {θ∗} ,

{
tCK (θ∗)

}
, κ
)
be a complete-information game that is continu-

ous at infinity, and a∗ be a Nash equilibrium of this game. For any i ∈ N , for any neighbor-
hood Ui of hi(tCKi (θ∗)) in the universal type space T ∗, and any ε > 0, there exists a hierarchy

hi
(
t̂i
)
∈ Ui, such that for every rationalizable belief π of t̂i,

(1) ai ∈ S∞i
[
t̂i
]
iff ai is equivalent to a∗i ;

(2) Pr (z (a∗) |π, a∗i ) ≥ 1− ε, and
(3) |E [uj (θ, a) |π, a∗i ]− uj (θ∗, a∗)| ≤ ε for all j ∈ N .

For any Nash equilibrium a∗ of any complete-information game, the corollary presents a

profile t̂ of perturbations under which (1) the equilibrium a∗ is the unique rationalizable

action profile, (2) all players’rationalizable beliefs assign nearly probability one to the equi-

librium outcome z (a∗), and (3) the expected payoffs under these beliefs are nearly identical

to the equilibrium payoffs. As established in Proposition 2, one can find such perturbations

only for Nash equilibria.

The proof of Proposition 2 uses a contagion argument that is suitable for equilibrium. In

order to illustrate the construction, we sketch the proof for the complete-information games

considered in the corollary. Building on Proposition 1 we first show that for each action

ai there exists a type tai for which ai is uniquely rationalizable, extending a result of Chen

to infinite-horizon games. For any Nash equilibrium a∗ of any complete-information game(
Γ, {θ∗} ,

{
tCK (θ∗)

}
, κ
)
, we construct a family of types tj,m,λ, j ∈ N , m ∈ N, λ ∈ [0, 1], by

tj,0,λ = ta
∗
j ,

κtj,m,λ = λκ
t
a∗
j

+ (1− λ) δ(θ∗,t−i,m−1,λ) ∀m > 0,
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where δ(θ∗,t−i,m−1,λ) is the Dirac measure that puts probability one on (θ∗, t−i,m−1,λ). For large

m and small λ, ti,m,λ satisfies all the desired properties of t̂i. First note that for λ = 0, under

ti,m,0, it is mth-order mutual knowledge that θ = θ∗. Hence, when m is large and λ is small,

the belief hierarchy of ti,m,0 is close to the belief hierarchy of tCKi (θ∗), according to which

it is common knowledge that θ = θ∗. Second, for λ > 0, a∗j is uniquely rationalizable for

tj,m,λ in reduced form. To see this, observing that it is true for m = 0 by definition of tj,0,λ,

assume that it is true up to some m − 1. Then, any rationalizable belief of any type tj,m,λ
must be a mixture of two beliefs. With probability λ, his belief is the same as that of ta

∗
j , to

which a∗j is the unique best response in reduced form actions. With probability 1 − λ, the
true state is θ∗ and the other players play a∗−j (in reduced form), in which case a

∗
j is a best

reply, as a∗ is a Nash equilibrium under θ∗. Therefore, in reduced form a∗j is the unique best

response to any of his rationalizable beliefs, showing that a∗j is uniquely rationalizable for

tj,m,λ in reduced form. Finally, for any m > 0, under rationalizability type ti,m,λ must assign

at least probability 1− λ on
(
θ∗, a∗−i

)
in reduced form because a∗−i is uniquely rationalizable

for t−i,m−1,λ in reduced form.

4. Application: An Unusual Folk Theorem

In this section, we consider infinitely repeated games with complete information. Under

the standard assumptions for the folk theorem, we prove an unusual folk theorem, which

concludes that for every individually rational and feasible payoff vector v, there exists a

perturbation of beliefs under which there is a unique rationalizable outcome and players

expect to enjoy approximately the payoff vector v under any rationalizable belief.

For simplicity, we consider a simultaneous-action stage game G = (N,B, g) where B =

B1× · · ·×Bn is the set of profiles b = (b1, . . . , bn) of moves and g∗ : B → [0, 1]n is the vector

of stage payoffs. We have perfect monitoring. Hence, a history is a sequence h =
(
bl
)
l∈N

of profiles bl =
(
bl1, . . . , b

l
n

)
. In the complete-information game, the players maximize the

average discounted stage payoffs. That is, the payoff function is

θ∗δ (h) = (1− δ)
n∑
l=0

δlg∗
(
bl
) (

∀h =
(
bl
)
l∈N

)
where δ ∈ (0, 1) is the discount factor, which we will let vary. Denote the repeated game by

Gδ =
(
Γ, {θ∗δ} ,

{
tCK (θ∗δ)

}
, κ
)
.
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Let V = co (g (B)) be the set of feasible payoff vectors (from correlated mixed action

profiles), where co takes the convex hull. Define also the pure-action min-max payoff as

vi = min
b−i∈B−i

max
bi∈Bi

g∗ (b)

for each i ∈ N . We define the set of feasible and individually rational payoff vectors as

V ∗ = {v ∈ V |vi > vi for each i ∈ N} .

We denote the interior of V ∗ by intV ∗. The interior will be non-empty when a weak form

of full-rank assumption holds. The following lemma states a typical folk theorem (see

Proposition 9.3.1 in Mailath and Samuelson (2006) and also Fudenberg and Maskin (1991)).

Lemma 2. For every v ∈ intV ∗, there exists δ̄ < 1 such that for all δ ∈
(
δ̄, 1
)
, Gδ has a

subgame-perfect equilibrium a∗ in pure strategies, such that u (θ∗δ , a
∗) = v.

The lemma states that every feasible and individually rational payoff vector in the interior

can be supported as the subgame-perfect equilibrium payoffwhen the players are suffi ciently

patient. Given such a large multiplicity, both theoretical and applied researchers often focus

on effi cient equilibria (or extremal equilibria). Combining such a folk theorem with Corollary

1, our next result establishes that the multiplicity is irreducible.

Proposition 3. For all v ∈ intV ∗ and ε > 0, there exists δ̄ < 1 such that for all δ ∈
(
δ̄, 1
)
,

every open neighborhood U of tCK (θ∗δ) contains a type profile t̂ ∈ U such that

(1) each t̂i has a unique rationalizable action a∗i in reduced form, and

(2) under every rationalizable belief π of t̂i, the expected payoffs are all within ε neigh-

borhood of v:

|E [uj (θ, a) |π, a∗i ]− v| ≤ ε ∀j ∈ N.

Proof. Fix any v ∈ intV ∗ and ε > 0. By Lemma 2, there exists δ̄ < 1 such that for all δ ∈(
δ̄, 1
)
, Gδ has a subgame-perfect equilibrium a∗ in pure strategies, such that u (θ∗δ , a

∗) = v.

Then, by Corollary 1, for any δ ∈
(
δ̄, 1
)
and any open neighborhood U of tCK (θ∗δ), there

exists a type profile t̂ ∈ U such that each t̂i has a unique rationalizable action a∗i in reduced
form (Part 1 of Corollary 1), and under every rationalizable belief π of t̂i, the expected

payoffs are all within ε neighborhood of u (θ∗δ , a
∗) = v (Part 3 of Corollary 1). �
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Proposition 3 establishes an unusual folk theorem. It states that every individually ra-

tional and feasible payoff v in the interior can be supported by the unique rationalizable

outcome for some perturbation. Moreover, in the actual situation described by the pertur-

bation, all players play according to the subgame-perfect equilibrium that supports v and

all players anticipate that the payoffs are within ε neighborhood of v. That is, the complete-

information game is surrounded by types with a unique solution, but the unique solution

varies in such a way that it traces all individually rational and feasible payoffs. While the

multiplicity in usual folk theorems may suggest a need for a refinement, the multiplicity in

our unusual folk theorem emphasizes the impossibility of a robust refinement.

Chassang and Takahashi (2011) examine the question of robustness in repeated games

from an ex ante perspective. That is, following Kajii and Morris (1997), they define an

equilibrium as robust if approximately the same outcome is possible in a class of elaborations.

(An elaboration is an incomplete-information game in which each player believes with high

probability that the original game is being played.) They consider specifically elaborations

with serially independent types, so that the moves of players do not reveal any information

about their payoffs and behavior in the future. They obtain a useful one-shot robustness

result– to paraphrase, an equilibrium of the repeated game is robust if the equilibrium at

each stage game, augmented with continuation values, is risk-dominant. There are two

major distinctions. First, their perturbations are defined from an ex ante perspective, by

what players believe before receiving information. Ours are from an interim perspective,

based on what players believe just before play begins. This could be subsequent to receiving

information, but our setup does not actually require reference to a particular information

structure (type space with prior). For more on the distinction between these approaches,

see our 2007 paper. Second, while they focus on serially independent types, whose moves do

not reveal any information about the future payoffs, the moves of our perturbed types reveal

information about both their own and the other players’payoffs in the future stage games.

Structure Theorem with Uncertainty about the Stage Payoffs. An important draw-

back of the structure theorems is that they may rely on existence of types who are far from

the payoff and information structure assumed in the original model. If a researcher is willing

to make common knowledge assumptions regarding these structures, those structure theo-

rems may become inapplicable. Indeed, recent papers (e.g. Weinstein and Yildiz (2011) and
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Penta (2008)) study the robust predictions when some common knowledge assumptions are

retained.

In repeated games, one may wish to maintain common knowledge of the repeated-game

payoff structure. Unfortunately, in our proofs of the propositions above, the types we con-

struct do not preserve common knowledge of such a structure – they may depend on the

entire history in ways which are not additively separable across stages. It is more diffi cult

to construct types with unique rationalizable action when we restrict the perturbations to

preserve common knowledge of the repeated-game structure, but in our next two proposi-

tions we are able to do this. The proofs (deferred to the Appendix) are somewhat lengthy

and require the use of incentive structures similar to those in the repeated-game literature.

For simplicity, we exclude the trivial cases by assuming that each player has at least two

moves. For any fixed discount factor δ ∈ (0, 1), we define

(4.1) Θ∗δ =

{
θδ,g (h) ≡ (1− δ)

∞∑
l=0

δlg
(
bl
)
|g : B → [0, 1]n

}

as the set of repeated games with discount factor δ. Here, Θ∗δ allows uncertainty about the

stage payoffs g, but fixes all the other aspects of the repeated game, including the discount

factor. For a fixed complete information repeated game with stage-payoff function g∗, we are

interested in the robust predictions against the perturbations in which it remains common

knowledge that the payoffs come from Θ∗δ, allowing only uncertainty about the stage payoffs.

The complete information game is represented by type profile tCK (θδ,g∗) in the universal

type space. The next result result extends the structure theorem in Corollary 1 to this case.

Proposition 4. For any δ ∈ (0, 1), let
(
Γ, {θ∗} ,

{
tCK (θδ,g∗)

}
, κ
)
be a complete-information

repeated game and a∗ be a Nash equilibrium of this game. For any i ∈ N , for any neighbor-
hood Ui of hi(tCKi (θδ,g∗)) in the universal type space T ∗, any ε > 0 and any L, there exists

a hierarchy hi
(
t̂i
)
∈ Ui, such that

(1) ai ∈ S∞i
[
t̂i
]
iff ai is L-equivalent to a∗i ;

(2) |E [uj (θ, a) |π]− uj (θ∗, a∗)| ≤ ε for all j ∈ N and for all rationalizable belief π of t̂i
on (θ, a), and

(3) according to t̂i it is common knowledge that θ ∈ Θ∗δ.
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Proposition 4 strengthens Corollary 1 by adding the last condition that the perturbed

type still finds it common knowledge that he is playing a repeated game that is identical

to the original complete-information game in all aspects except for the stage payoffs. The

conclusion is weakened only by being silent about the tails, which will be immaterial to our

conclusions. Indeed, using Proposition 4 instead of Corollary 1 in the proof of Proposition

3, which is the main result in this application, one can easily extend that folk theorem to

the world in which a researcher is willing to retain common knowledge of the repeated game

structure:

Proposition 5. For all v ∈ intV ∗, there exists δ̄ < 1 such that for all δ ∈
(
δ̄, 1
)
, for all

ε > 0 and all L < ∞, every open neighborhood U of tCK (θ∗δ) contains a type profile t̂ ∈ U
such that

(1) each t̂i has a unique rationalizable action a∗i up to date L in reduced form;

(2) under every rationalizable belief π of t̂i, the expected payoffs are all within ε neigh-

borhood of v:

|E [uj (θ, a) |π]− v| ≤ ε ∀j ∈ N,

(3) and it is common knowledge according to t̂ that θ ∈ Θ∗δ.

That is, even if a researcher is willing to assume the repeated game payoff structure,

for high discount factors, he cannot rule out any feasible payoff vector as the approximate

outcome of the unique rationalizable belief for some nearby type. Hence, allowing uncertainty

about the stage payoffs is suffi cient to reach the conclusion of the unusual folk theorem above.

Proposition 4 is proved in the Appendix. The proof involves showing that each action

plan is uniquely rationalizable up to an arbitrarily long finite horizon for a type for which

it is common knowledge that θ ∈ Θ∗δ. Using this fact one then constructs the nearby types

in the proposition following the ideas sketched to illustrate the proof of Corollary 1 above.

The construction of the former types is quite involved using the ideas from learning and

incentives in repeated games. In the next example we illustrate the gist of the idea on the

twice-repeated prisoners’dilemma.

Example 1. Consider the twice-repeated prisoners’dilemma above with gPD1 (C,D)+gPD1 (D,C) >

2gPD1 (D,D), where gPD1 is the payoff of player 1 in the stage game and C and D stand for
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the actions Cooperate and Defect, respectively. Recall that D dominates C and δ = 1. We

will construct a nearby type for which tit-for-tat strategy is uniquely rationalizable. To this

end, we first construct some types (not necessarily nearby) for which certain action plans are

uniquely rationalizable. For any strategy profile b ∈ {C,D}2 in the stage game, consider the

payoff function gb where gbi (b′1, b
′
2) = 1 if b′i = bi and gbi (b′1, b

′
2) = 0 otherwise. For a type ti,bi,0

that puts probability 1 on θ
δ,g(bi,b−i)

for some b−i, playing bi in the first round is uniquely

rationalizable. Such a type may have multiple rationalizable actions in the second round as

he may put zero probability at some history. But now consider type ti,bi,1 that puts probabil-

ity 1/2 on
(
θ
δ,g(bi,b−i)

, t−i,C,0

)
and probability 1/2 on

(
θ
δ,g(bi,b−i)

, t−i,D,0

)
for some b−i. Since

types t−i,C,0 and t−i,D,0 play C and D, respectively, as their unique rationalizable move in the

first round, type ti,bi,1 puts positive probability at all histories at the beginning of the second

period that are not precluded by his own action. Hence, his unique rationalizable action

plan is to play bi at all histories. We next consider types ti,k with approximate kth-order

mutual knowledge of prisoners’dilemma payoffs who Defect at all histories in their unique

rationalizable plan. We consider ti,1 who puts probability 1/2 on each of
(
θδ,gPD , t−i,C,1

)
and

(
θδ,gPD , t−i,D,1

)
. Since the other player does not react to the moves of player i and i

is certain that he plays a prisoners’dilemma game, his unique rationalizable plan is to de-

fect everywhere (as he assigns positive probabilities to both moves). For any small ε and

k > 1, consider the type ti,k who puts probability 1 − ε on
(
θδ,gPD , t−i,k−1

)
and probability

ε on
(
θδ,gPD , t−i,C,1

)
. By the inductive application of the previous argument, type ti,k also

defects at all histories as the unique rationalizable plan. Moreover, when ε is small, there

is approximate kth-order mutual knowledge of prisoners’dilemma. Now for arbitrary k > 1

and small ε > 0, consider the type t̂i,k that puts probability 1 − ε on
(
θδ,gPD , t−i,k−1

)
and

probability ε on
(
θδ,g(C,C) , t−i,C,1

)
. He has approximate kth-order mutual knowledge of pris-

oners’dilemma. Moreover, since his opponent does not react to his moves and ε is small,

his unique rationalizable move at the first period is D. In the second period, if he observes

that his opponent played D in the first period, he becomes sure that they play prisoners’

dilemma and plays D as his unique rationalizable move. If he observes that his opponent

played C, however, he updates his belief and put probability 1 on g(C,C) according to which

C dominates D. In that case, he too plays C in the second period. The nearby types t̂i,k
play tit-for-tat while defecting at the beginning. Now consider the nearby types t̃i,k that put



22 JONATHAN WEINSTEIN AND MUHAMET YILDIZ

probability 1− ε on
(
θδ,gPD , t̂−i,k−1

)
and probability ε on

(
θδ,g(C,C) , t−i,C,1

)
. These types play

tit-for-tat with cooperation at the initial node as their unique rationalizable action.

5. Application: Incomplete Information in Bargaining

In a model of bilateral bargaining with complete information, Rubinstein (1982) shows that

there exists a unique subgame-perfect equilibrium. Subsequent research illustrates that the

equilibrium result is sensitive to incomplete information. In this section, using Proposition

2, we show quite generally that the equilibrium must be highly sensitive: every bargaining

outcome can be supported as the unique rationalizable outcome for a nearby model.

We consider Rubinstein’s alternating-offer model with finite set of divisions. There are

two players, N = {1, 2}, who want to divide a dollar. The set of possible shares is X =

{0, 1/m, 2/m, . . . , 1} for some m > 1. At date 0, Player 1 offers a division (x, 1− x), where

x ∈ X is the share of Player 1 and 1−x is the share of Player 2. Player 2 decides whether to
accept or reject the offer. If he accepts, the game ends with division (x, 1− x). Otherwise,

we proceed to the next date. At date 1, Player 2 offers a division (y, 1− y), and Player 1

accepts or rejects the offer. In this fashion, players make offers back and forth until an offer

is accepted. We denote the bargaining outcome by (x, l) if players reach an agreement on

division (x, 1− x) at date l. In the complete-information game, the payoff function is

θ∗ =

{
δl (x, 1− x) if the outcome is (x, l)

0 if players never agree

for some δ ∈ (0, 1).

When X = [0, 1], in the complete information game G∗ =
(
Γ, {θ∗} ,

{
tCK (θ∗)

}
, κ
)
, there

is a unique subgame perfect equilibrium, and the bargaining outcome in the unique subgame-

perfect equilibrium is

(x∗, 0) = (1/ (1 + δ) , 0) .

That is the players immediately agree on division (x∗, 1− x∗). When X = {0, 1/m, . . . , 1}
as in here, there are more subgame-perfect equilibria due to multiple equilibrium behavior

in the case of indifference. Nevertheless, the bargaining outcomes of these equilibria all

converge to (x∗, 0) as m→∞.
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In contrast with the unique subgame-perfect equilibrium, there is a large multiplicity of

non-subgame-perfect Nash equilibria, but these equilibria are ignored as they rely on incred-

ible threats or sequentially irrational moves off the path. Building on such non-subgame-

perfect Nash equilibria and Proposition 2, the next result shows that each bargaining outcome

is the outcome of unique rationalizable action plan under some perturbation.

Proposition 6. For any bargaining outcome (x, l) ∈ X × N and any ε > 0, every open

neighborhood U of tCK (θ∗δ) contains a type profile t̂ ∈ U such that

(1) each t̂i has a unique rationalizable action a∗i in reduced form;

(2) the bargaining outcome under a∗ is (x, l), and

(3) every rationalizable belief of t̂i assigns at least probability 1− ε on (x, l).

Proof. We will show that the complete-information game has a Nash equilibrium a∗ with

bargaining outcome (x, l). Proposition 2 then establishes the existence of type profile t̂ as in

the statement of the proposition. Consider the case of even l, at which Player 1 makes an

offer; the other case is identical. Define a∗ in reduced-form as

(a∗1) at any date l
′ 6= l, offer only (1, 0) and reject all the offers; offer (x, 1− x) at date l;

(a∗2) at any date l
′ 6= l, offer only (0, 1) and reject all the offers; accept only (x, 1− x) at l.

It is clear that a∗ is a Nash equilibrium, and the bargaining outcome under a∗ is (x, l). �

That is, for every bargaining outcome (x, l), one can introduce a small amount of incom-

plete information in such a way that the resulting type profile has a unique rationalizable

action profile and it leads to the bargaining outcome (x, l). Moreover, in the perturbed

type profile, players are all nearly certain that (x, l) will be realized. Unlike in the case of

non-subgame-perfect equilibria, one cannot rule out these outcomes by refinement because

there is a unique rationalizable outcome. In order to rule out these outcomes, one either

needs to introduce irrational behavior or rule out the information structure that leads to

the perturbed type profile by fiat (as he cannot rule out these structures by observation

of finite-order beliefs without ruling out the original model). Therefore, despite the unique

subgame-perfect outcome in the original model, and despite the fact that this outcome has

generated many important and intuitive insights, one cannot make any prediction on the
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outcome without introducing irrational behavior or making informational assumptions that

cannot be verified by observing finite-order beliefs.

Existing literature illustrates already that the subgame-perfect equilibrium is sensitive

to incomplete information. For example, for high δ, the literature on Coase conjecture

establishes that if one party has a private information about his own valuation, then he gets

everything– in contrast to the nearly equal sharing in the complete information game. This

further leads to delay due to reputation formation in bargaining with two-sided incomplete

information on payoffs (Abreu and Gul (2000)) or on players’second-order beliefs (Feinberg

and Skrzypacz (2005)).

Proposition 6 differs from these results in many ways. First difference is in the scope of

sensitivity: while the existing results show that another outcome may occur under a pertur-

bation, Proposition 6 shows that any outcome can be supported by a perturbation. Second

difference is in the solution concept: while the existing result show sensitivity with respect

to a sequential equilibrium or all sequential equilibria, there is a unique rationalizable out-

come in Proposition 6, ruling out reinstating the original outcome by a refinement. Third,

the existing results often consider the limit δ → 0, which is a point of discontinuity for

the complete-information model already. In contrast, δ is fixed in Proposition 6. Finally,

existing results consider simple perturbations, and these perturbations may correspond the

specification of economic parameters, such as valuation, or may be commitment types. In

contrast, given the generality of the results, the types constructed in our paper are compli-

cated, and it is not easy to interpret how they are related to the economic parameters. (In

specific examples, the same results could be obtained using simple types that correspond to

economic parameters, as in Izmalkov and Yildiz (2010)).

6. Concluding Remarks and Literature Review

Early literature identified two mechanisms through which small amount of incomplete

information can have a large effect: reputation formation (Kreps, Milgrom, Roberts, and

Wilson (1982)) and contagion (Rubinstein (1989)). In reputation formation, one learns

about the other players’payoffs from their unexpected moves. As we have seen in the twice-

repeated prisoners’dilemma game, our perturbed types exhibit this property at a higher

level: they learn not only about the other players’payoffs but also about their own payoffs
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from the others’unexpected moves. Moreover, our perturbations are explicitly constructed

using a generalized contagion argument. Hence, the perturbations here and in Chen (2008)

combine the two mechanisms in order to obtain a very strong conclusion: any rationalizable

action can be made uniquely rationalizable under some perturbation.

As the above example illustrates in our perturbations a player i may learn about the

payoffs of j from the moves of another player k. This is reasonable in many contexts due to

interdependence of preferences, and we are mainly dropping the common knowledge aspect

of the assumption that k does not know the payoffs of j. Nevertheless, it may also be

reasonable to keep it common knowledge that some parameters are only known by some

players. For example, one may want to keep common knowledge that a firm’s cost is its own

private information, so that one does not update his beliefs about the firm’s cost by observing

some other player’s move. Penta (2008) solves this problem. Keeping it common knowledge

that some arbitrarily given parameters are known only by some arbitrarily given players, he

obtains an identical structure theorem for what he calls interim sequential rationalizability

(ISR) instead of interim correlated rationalizability (ICR). Of course, ISR depends on what

is kept common knowledge and is equal to ICR when nothing is kept common knowledge.

We believe that one can extends Penta’s result to infinite-horizon games by modifying our

construction, obtaining a more general result. We have not considered that extension for

clarity because ICR is a more transparent solution concept, and for we believe that the case

of dropping all common knowledge assumptions is an important benchmark.

Some other papers considered perturbations by keeping some payoffs structure common

knowledge. For nice games, which are static games with unidimensional action spaces and

strictly concave utility functions, Weinstein and Yildiz (2008) obtain a characterization for

sensitivity of Bayesian Nash equilibria in terms of a local version of ICR, keeping arbitrary

common knowledge restrictions on payoffs.6 In the same vein, Oury and Tercieux (2007)

allow arbitrarily small perturbations on payoffs to obtain an equivalence between continuous

partial implementation in Bayesian Nash equilibria and full implementation in rationalizable

strategies.

6Weinstein and Yildiz (2011) also solve the problem of uncountable action spaces within the important

class of nice games using a special structure of those games, which is clearly different from the structure in

infinite-horizon games that allowed our characterization.
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Appendix A. Proof of Structure Theorem

We start with describing the notation we use in the appendix.

Notation 1. For any belief π ∈ ∆ (Θ×A−i) and action ai and for any history h, write E [·|h, ai, π]

for the expectation operator induced by action ai and π conditional on reaching history h. For any

strategy profile s : T → A and any type ti, we write π (·|ti, s−i) ∈ ∆ (Θ× T−i ×A−i) for the belief
induced by ti and s−i. Given any functions f : W → X and g : Y → Z, we write (f, g)−1 for the

preimage of the mapping (w, y) 7→ (f (w) , g (y)).

A.1. Preliminaries. We now define some basic concepts and present some preliminary results. By

a Bayesian game in normal form, we mean a tuple (N,A, u,Θ, T, κ) where N is the set of players, A

is the set of action profiles, (Θ, T, κ) is a model, and u : Θ×A→ [0, 1]n is the payoff function. While

this notation is consistent with our formulation, we will also define some auxiliary Bayesian games

with different action spaces, payoff functions and parameter spaces. For any G = (N,A, u,Θ, T, κ),

we say that ai and a′i are G-equivalent if

u (θ, ai, a−i) = u
(
θ, a′i, a−i

)
(∀θ ∈ Θ, a−i ∈ A−i) .

By a reduced-form game, we mean a game GR =
(
N, Ā, u,Θ, T, κ

)
where Āi contains at least one

representative action from each G-equivalence class for each i. Rationalizability depends only on

the reduced form:

Lemma 3. Given any game G and a reduced form GR for G, for any type ti, the set S∞i [ti] of

rationalizable actions in G is the set of all actions that are G-equivalent to some rationalizable

action of ti in GR.

The lemma follows from the fact that in the elimination process, all members of an equivalence

class are eliminated at the same time; i.e. one eliminates, at each stage, a union of equivalence

classes. It implies the following isomorphism for rationalizability.

Lemma 4. Let G = (N,A, u,Θ, T, κ) and G′ = (N,A′, u′,Θ′, T ′, κ) be Bayesian games in normal

form, µi : Ai → A′i, i ∈ N , be onto mappings, and ϕ : Θ → Θ′ and τ i : Ti → T ′i , i ∈ N , be

bijections. Assume (i) κτ i(ti) = κti ◦ (ϕ, τ−i)
−1 for all ti and (ii) u′ (ϕ (θ) , µ (a)) = u (θ, a) for all

(θ, a). Then, for any ti and ai,

(A.1) ai ∈ S∞i [ti] ⇐⇒ µi (ai) ∈ S∞i [τ i (ti)] .
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Note that the bijections ϕ and τ are a renaming, and (i) ensures that the beliefs do not change

under the renaming. On the other hand, µi can map many actions to one action, but (ii) ensures

that all those actions are G-equivalent. The lemma concludes that rationalizability is invariant to

such a transformation.

Proof. First note that (ii) implies that for any ai, a′i ∈ Ai,

(A.2) ai is G-equivalent to a′i ⇐⇒ µi (ai) is G′-equivalent to µi
(
a′i
)
.

In particular, if µi (ai) = µi (a′i), then ai is G-equivalent to a
′
i. Hence, there exists a reduced-form

game GR =
(
N, Ā, u,Θ, T, κ

)
for G, such that µ is a bijection on Ā, which is formed by picking a

unique representative from each µ−1 (µ (a)). Then, by (A.2) again, G′R =
(
N,µ

(
Ā
)
, u′,Θ′, T ′, κ

)
is a reduced form for G′.7 Note that GR and G′R are isomorphic up to the renaming of actions,

parameters, and types by µ, ϕ, and τ , respectively. Therefore, for any a′i ∈ Āi and ti, a′i is

rationalizable for ti in GR iff µi (a′i) is rationalizable for τ i (ti) in G′R. Then, Lemma 3 and (A.2)

immediately yields (A.1). �

We will also apply a Lemma from Mertens-Zamir (1985) stating that the mapping from types in

any type space to their hierarchies is continuous, provided the belief mapping κ defining the type

space is continuous.

Lemma 5 (Mertens and Zamir (1985)). Let (Θ, T, κ) be any model, endowed with any topology,

such that Θ× T is compact and κti is a continuous function of ti. Then, h is continuous.

A.2. Truncated Games. We now formally introduce an equivalence between finitely-truncated

games and payoff functions that implicitly assume such a truncation. For any positive integer m,

define a truncated extensive game form Γm =
(
N,Hm, (Ii)i∈N

)
by

Hm = {hm|h ∈ H} .

The set of terminal histories in Hm is

Zm = {zm|z ∈ Z} .

We define

Θ̄m =
(

[0, 1]Z
m
)n

7Proof: Since µi is onto, A
′
i = µi (Ai). Moreover, for any µi (ai) ∈ A′i, there exists a

′
i ∈ Āi that is

G-equivalent to ai. By (A.2), µi (ai) is G′-equivalent to µi (a′i) ∈ µi
(
Āi
)
.
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as the set of payoff functions for truncated game forms. Since Zm is not necessarily a subset of Z,

Θ̄m is not necessarily a subset of Θ∗. We will now embed Θ̄m into Θ∗ through an isomorphism to

a subset of Θ∗. Define the subset

Θ̂m =
{
θ ∈ Θ∗|θ (h) = θ

(
h̄
)
for all h and h̄ with hm = h̄m

}
.

This is the set of payoff functions for which moves after period m are irrelevant. Games with such

payoffs are nominally infinite but inherently finite, as we formalize via the isomorphism ϕm : Θ̄m →
Θ̂m defined by setting

(A.3) ϕm (θ) (h) = θ (hm)

for all θ ∈ Θ̄m and h ∈ Z, where hm ∈ Hm is the truncation of h at length m. Clearly, under the

product topologies, ϕm is an isomorphism, in the sense that it is one-to-one, onto, and both ϕm
and ϕ−1

m are continuous. For each ai ∈ Ai, let ami be the restriction of action ai to the histories with
length less than or equal tom. The set of actions in the truncated game form is Ami = {ami |ai ∈ Ai}.

Lemma 6. Let G = (Γ,Θ, T, κ) and Gm = (Γm,Θm, Tm, κ) be such that (i) Θm ⊂ Θ̄m, (ii) Θ =

ϕm (Θm) and (iii) Ti = τ i (Tmi ) for some bijection τmi and such that κτmi (tmi ) = κtmi ◦
(
ϕm, τ

m
−i
)−1

for each tmi ∈ Tmi . Then, the set of rationalizable actions are m-equivalent in G and Gm:

ai ∈ S∞i [τmi (tmi )] ⇐⇒ ami ∈ S∞i [tmi ] (∀i, tmi , ai) .

Proof. In Lemma 4, take ϕ = ϕ−1
m , τ i = (τmi )−1, and µ : ai 7→ ami . We only need to check that

um
(
ϕ−1
m (θ) , am

)
= u (θ, a) for all (θ, a) where um denotes the utility function in the truncated

game Gm. Indeed, writing zm (am) for the outcome of am in Gm, we obtain

um
(
ϕ−1
m (θ) , am

)
= ϕ−1

m (θ) (zm (am)) = ϕ−1
m (θ) (z (a)m)

= ϕm
(
ϕ−1
m (θ)

)
(z (a)) = θ (z (a)) = u (θ, a) .

Here, the first and the last equalities are by definition; the second equality is by definition of am,

and the third equality is by definition (A.3) of ϕm. �

Let T ∗m be the Θ̄m-based universal type space, which is the universal type space generated by

the truncated extensive game form. This space is distinct from the universal type space, T ∗, for

the original infinite-horizon extensive form. We will now define an embedding between the two

type spaces, which will be continuous and one-to-one and preserve the rationalizable actions in the

sense of Lemma 6.

Lemma 7. For any m, there exists a continuous, one-to-one mapping τm : T ∗m → T ∗ with

τm (t) = (τm1 (t1) , . . . , τmn (tn)) such that for all i ∈ N and ti ∈ T ∗mi ,
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(1) ti is a hierarchy for a type from a finite model if and only if τmi (ti) is a hierarchy for a

type from a finite model;

(2) ti is a hierarchy for a type from a common-prior model if and only if τmi (ti) is a hierarchy

for a type from a common-prior model, and

(3) for all ai, ai ∈ S∞i [τmi (ti)] if and only if ami ∈ S∞i [ti].

Proof. Since T ∗m and T ∗ do not have any redundant type, by the analysis of Mertens and Zamir

(1985), there exists a continuous and one-to-one mapping τm such that

(A.4) κτmi (ti) = κti ◦
(
ϕm, τ

m
−i
)−1

for all i and ti ∈ T ∗mi .8 First two statements immediately follow from (A.4). Part 3 follows from

(A.4) and Lemma 6. �

A.3. Proof of Proposition 1. We will prove the proposition in several steps.

Step 1 . Fix any positive integer m. We will construct a perturbed incomplete information game

with an enriched type space and truncated time horizon at m under which each rationalizable

action of each original type remains rationalizable for some perturbed type. For each rationalizable

action ai ∈ S∞i [ti], let

X [ai, ti] =
{
a′i ∈ S∞i [ti] |a′i is m-equivalent to ai

}
and pick a representative action rti (ai) from each set X [ai, ti]. We will consider the type space

T̃m = T̃m1 × · · · × T̃mn with

T̃mi = {(ti, rti (ai) ,m) |ti ∈ Ti, ai ∈ S∞i [ti]} .

Note that each type here has two dimensions, one corresponding to the original type the second

corresponding to an action. Note also that T̃m is finite because there are finitely many equivalence

classes X [ai, ti], allowing only finitely many representative actions rti (ai). Towards defining the

beliefs, recall that for each (ti, rti (ai) ,m), since rti (ai) ∈ S∞i [ti], there exists a belief πti,rti (ai) ∈
∆ (Θ× T−i ×A−i) under which rti (ai) is a best reply for ti and margΘ×T−i(π

ti,rti (ai)) = κti . Define

a mapping φti,rti (ai),m : Θ∗ → Θ∗ between the payoff functions by setting

(A.5) φti,rti (ai),m
(θ) (h) = E

[
θ (h) |hm, rti (ai) , π

ti,rti (ai)
]

8If one writes ti =
(
t1i , t

2
i , . . .

)
and τmi (ti) =

(
τm,1i

(
t1i
)
, τm,2i

(
t2i
)
, . . .

)
as a hierarchies, we define τmi

inductively by setting τm,1i

(
t1i
)

= t1i ◦ ϕ−1m and τm,ki

(
tki
)

= tki ◦
(
ϕm, τ

m,1
−i , . . . , τ

m,k−1
−i

)−1
for k > 1.
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at each θ ∈ Θ∗ and h ∈ Z. Define a joint mapping

(A.6) φ̄ti,rti (ai),m
: (θ, t−i, a−i) 7→

(
φti,rti (ai),m

(θ) , (t−i, rt−i (a−i) ,m)
)

on tuples for which a−i ∈ S∞−i [t−i]. We define the belief of each type (ti, rti (ai) ,m) by

(A.7) κti,rti (ai),m = πti,rti (ai) ◦ φ̄−1
ti,rti (ai),m

.

Note that κti,rti (ai),m has a natural meaning. Imagine a type ti who wants to play rti (ai) under

a belief πti,rti (ai) about (θ, t−i, a−i). Suppose he assumes that payoffs are fixed as if after m the

continuation will be according to him playing rti (ai) and the others playing according to what is

implied by his belief πti,rti (ai). Now he considers the outcome paths up to length m in conjunction

with (θ, t−i). His belief is then κti,rti (ai),m. Let Θ̃m = ∪ti,rti (ai)φti,rti (ai),m (Θ). The perturbed

model is
(

Θ̃m, T̃m, κ
)
. We write G̃m =

(
Γ, Θ̃m, T̃m, κ

)
for the resulting Bayesian game, which we

will sometimes refer to as a normal-form game.

Step 2 . For each ti and ai ∈ S∞i [ti], the hierarchies hi (ti, rti (ai) ,m) converge to hi (ti).

Proof: Let T̃∞ =
∞⋃
m=1

T̃m ∪ T be a type space with beliefs as in each component of the union,

and topology defined by the basic open sets being singletons {(ti, rti (ai) ,m)} together with sets
{(ti, rti (ai) ,m) : ai ∈ S∞i [ti] ,m > k} ∪ {ti} for each ti ∈ T and integer k. That is, the topology

is almost discrete, except that there is non-trivial convergence of sequences (ti, rti (ai) ,m) → ti.

Since T̃∞ is compact under this topology, Lemma 5 will now give the desired result, once we prove

that the map κ from types to beliefs is continuous. This continuity is the substance of the proof

—if not for the need to prove this, our definition of the topology would have made the result true

by fiat.

At types (ti, rti (ai) ,m) the topology is discrete and continuity is trivial, so it suffi ces to shows

continuity at types ti. Since Θ is finite, by continuity at infinity, for any ε we can pick an m such

that for all θ ∈ Θ,
∣∣∣θi (h)− θi(h̃)

∣∣∣ < ε whenever hm = h̃m. Hence, by (A.5),∣∣∣φti,rti (ai),m (θ) (h)− θ(h)
∣∣∣ =

∣∣∣E [θ (h̃) |h̃m = hm, rti (ai) , π
ti,rti (ai)

]
− θ(h)

∣∣∣
≤ E

[∣∣∣θ (h̃)− θ(h)
∣∣∣ |h̃m = hm, rti (ai) , π

ti,rti (ai)
]
< ε.

Thus, φti,rti (ai),m (θ) (h) → θ(h) for each h, showing that φti,rti (ai),m (θ) → θ. From the defin-

ition (A.6) we see that this implies φ̄ti,rti (ai),m (θ, t−i, a−i) → (θ, t−i) as m → ∞. (Recall that(
t−i, rt−i (a−i) ,m

)
→ t−i.) Therefore, by (A.7), as m→∞,

κti,rti (ai),m → πti,rti (ai) ◦ proj−1
Θ×T−i = margΘ×T−i(π

ti,rti (ai)) = κti ,
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which is the desired result.

Step 3 . The strategy profile s∗ : T̃m → A with s∗i (ti, rti (ai) ,m) = rti (ai) is a Bayesian Nash

equilibrium in G̃m.

Proof : Towards defining the belief of a type (ti, rti (ai) ,m) under s∗−i, define mapping

γ :
(
θ, t−i, rt−i (a−i) ,m

)
7→
(
θ, t−i, rt−i (a−i) ,m, rt−i (a−i)

)
,

which describes s∗−i. Then, given s
∗
−i, his beliefs about Θ× T̃−i ×A−i is

π
(
·|ti, rti (ai) ,m, s

∗
−i
)

= κti,rti (ai),m ◦ γ
−1 = πti,rti (ai) ◦ φ̄−1

ti,rti (ai),m
◦ γ−1,

where the second equality is by (A.7). His induced belief about Θ×A−i is

margΘ×A−iπ
(
·|ti, rti (ai) ,m, s

∗
−i
)

= πti,rti (ai) ◦ φ̄−1
ti,rti (ai),m

◦ γ−1 ◦ proj−1
Θ×A−i

= πti,rti (ai) ◦
(
φti,rti (ai),m

, r−i
)−1

(A.8)

where r−i : (t−i, a−i) 7→ rt−i (a−i). To see this, note that

projΘ×A−i ◦ γ ◦ φ̄ti,rti (ai),m : (θ, t−i, a−i) 7→
(
φti,rti (ai),m

(θ) , rt−i (a−i)
)
.

Now consider any deviation a′i such that a
′
i (h) = rti (ai) (h) for every history longer than m. It

suffi ces to focus on such deviations because the moves after length m are payoff-irrelevant under

Θ̃m by (A.5). The expected payoff vector from any such a′i is

E
[
u
(
θ, a′i, s

∗
−i
)
|κti,rti (ai),m

]
= E

[
u
(
φti,rti (ai),m

(θ) , a′i, rt−i (a−i)
)
|πti,rti (ai)

]
= E

[
φti,rti (ai),m

(θ)
(
z
(
a′i, rt−i (a−i)

))
|πti,rti (ai)

]
= E

[
E
[
θ
(
z
(
a′i, rt−i (a−i)

))
|z
(
a′i, rt−i (a−i)

)m
, rti (ai) , π

ti,rti (ai)
]
|πti,rti (ai)

]
= E

[
E
[
θ
(
z
(
a′i, rt−i (a−i)

))
|z
(
a′i, rt−i (a−i)

)m
, a′i, π

ti,rti (ai)
]
|πti,rti (ai)

]
= E

[
θ
(
z
(
a′i, rt−i (a−i)

))
|πti,rti (ai)

]
,

where the first equality is by (A.8); the second equality is by definition of u; the third equality

is by definition of φti,rti (ai),m, which is (A.5); the fourth equality is by the fact that a
′
i is equal

to rti (ai) conditional on history z
(
a′i, rt−i (a−i)

)m, and the fifth equality is by the law of iterated
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expectations. Hence, for any such a′i,

E
[
ui
(
θ, rti (ai) , s

∗
−i
)
|κti,rti (ai),m

]
= E

[
θi
(
z
(
rti (ai) , rt−i (a−i)

))
|πti,rti (ai)

]
≥ E

[
θi
(
z
(
a′i, rt−i (a−i)

))
|πti,rti (ai)

]
= E

[
ui
(
θ, a′i, s

∗
−i
)
|κti,rti (ai),m

]
,

where the inequality is by the fact that rti (ai) is a best reply to πti,rti (ai), by definition of πti,rti (ai).

Therefore, rti (ai) is a best reply for type (ti, rti (ai) ,m), and hence s∗ is a Bayesian Nash equilib-

rium.

Step 4 . Referring back to the statement of the proposition, by Step 2, pick m, ti, and ai such that

m > L and hi((ti, rti (ai) ,m)) ∈ Ui. By Step 3, ai is rationalizable for type (ti, rti (ai) ,m).

Proof : Since hi((ti, rti (ai) ,m))→ hi(ti) and Ui is an open neighborhood of ti, hi((ti, rti (ai) ,m)) ∈
Ui for suffi ciently large m. Hence, we can pick m as in the statement. Moreover, by Step 3, rti (ai)

is rationalizable for type (ti, rti (ai) ,m) (because it is played in an equilibrium). This implies also

that ai is rationalizable for type (ti, rti (ai) ,m), because m-equivalent actions are payoff-equivalent

for type (ti, rti (ai) ,m).

The remaining steps will show that a further perturbation makes ai uniquely rationalizable.

Step 5 . Define hierarchy hi
(
t̃i
)
∈ T ∗mi for the finite-horizon game form Γm by

hi
(
t̃i
)

= (τmi )−1 (hi((ti, rti (ai) ,m))) ,

where τmi is as defined in Lemma 7 of Section A.2. Type t̃i comes from a finite game Gm =

(Γm,Θm, Tm, κ) and ami ∈ S∞i
[
t̃i
]
.

Proof : By Lemma 7, since type (ti, rti (ai) ,m) is from a finite model, so is t̃i. Since ai is

rationalizable for type (ti, rti (ai) ,m), by Lemma 7, ami is rationalizable for hi
(
t̃i
)
and hence for

type t̃i in Gm.

Step 6 . By Step 5 and Lemma 1, there exists a hierarchy hi (t̄mi ) in open neighborhood (τmi )−1 (Ui)

of hi
(
t̃i
)
such that each element of S∞i [t̄mi ] is m-equivalent to ami , and t̄

m
i is a type in a finite,

common-prior model.

Proof : By the definition of hi
(
t̃i
)
in Step 5, hi

(
t̃i
)
∈ (τmi )−1 (Ui). Since Ui is open and τmi is

continuous, (τmi )−1 (Ui) is open. Moreover, t̃i comes from a finite game, and ami is rationalizable

for t̃i. Therefore, by Lemma 1, there exists a hierarchy hi (t̄mi ) in (τmi )−1 (Ui) as in the statement

above.
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Step 7 . Define the hierarchy hi
(
t̂i
)
by

hi
(
t̂i
)

= τmi (hi (t̄mi )) .

The conclusion of the proposition is satisfied by t̂i.

Proof : Since hi (t̄mi ) ∈ (τmi )−1 (Ui),

hi
(
t̂i
)

= τmi (hi (t̄mi )) ∈ τmi
(

(τmi )−1 (Ui)
)
⊆ Ui.

Since t̄mi is a type from a finite, common-prior model, by Lemma 7, t̂i can also be picked from a

finite, common-prior model. Finally, take any âi ∈ S∞i
[
t̂i
]
. By Lemma 7, âmi ∈ S∞i

[
t̂i
]
. Hence, by

Step 6, âmi is m-equivalent to ami . It then follows that âi is and m-equivalent to ai. Since m > L,

âi is also L-equivalent to ai.

Appendix B. Proof of Proposition 2

Using Proposition 1, we first establish that every action can be made rationalizable for some type.

This extends the lemma of Chen from equivalence at histories of bounded length to equivalence at

histories of unbounded length.

Lemma 8. For all plans of action ai, there is a type tai of player i such that ai is the unique

rationalizable action for tai, up to reduced-form equivalence.

Proof. The set of non-terminal histories is countable, as each of them has finite length. Index the

set of histories where it is i’s move and the history thus far is consistent with ai as {h (k) : k ∈ Z+}.
By Proposition 1, for each k there is a type tk−i whose rationalizable actions are always consistent

with history h (k). We construct type tai as follows: his belief about t−i assigns probability 2−k

to type tk−i. His belief about θ is a point-mass on the function θai , defined as 1 if all of i’s actions

were consistent with ai and 1− 2−k if his first inconsistent move was at history h (k). Now, if type

tai plays action ai he receives a certain payoff of 1. If his plan bi is not reduced-form equivalent

to ai, let h (k) be the shortest history in the set {h (k) : k ∈ Z+} where bi(h (k)) 6= ai(h (k)).

By construction, there is probability at least 2−k of reaching this history if he believes the other

player’s action is rationalizable, so his expected payoff is at most 1 − 2−2k. This completes the

proof. �

Proof of Proposition 2. We first show that (A) implies (B). Assume that s∗ is a Bayesian Nash

equilibrium of G. Construct a family of types τ j (tj ,m, λ), j ∈ N , tj ∈ Tj , m ∈ N, λ ∈ [0, 1], as
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follows

τ j (tj , 0, λ) = ts
∗
j (tj),

κτ j(tj ,m,λ) = λκ
t
s∗
j(tj)

+ (1− λ)βtj ,m,λ ∀m > 0

where

βtj ,m,λ (θ, τ−j (t−j ,m− 1, λ)) = κtj (θ, t−j) ∀ (θ, t−j) ∈ Θ× T−j .

For large m and small λ, τ j (ti,m, λ) satisfies all the properties of t̂i, as we establish below.

Now, we use mathematical induction on m to show that for all λ > 0 and for all m and tj ,

aj ∈ S∞j [τ j (tj ,m, λ)] if and only if aj is equivalent to s∗j (tj), establishing the first conclusion in

(B). This statement is true for m = 0 by definition of τ j (tj , 0, λ) and Lemma 8. Now assume that

it is true up to some m − 1. Consider any rationalizable belief of any type τ j (tj ,m, λ). With

probability λ, his belief is the same as that of ts
∗
j (tj). By definition, s∗j (tj) is the unique best

response to this belief in reduced form actions. With probability 1 − λ, his belief on Θ∗ × A−j
is the same as the equilibrium belief of tj on Θ∗ × A−j . The action s∗j (tj) is also a best reply to

this belief because s∗ is a Bayesian Nash equilibrium in the original game. Therefore, s∗j (tj) is the

unique best response to the rationalizable belief of type τ j (tj ,m, λ) in reduced form. Since type

τ j (tj ,m, λ) and his rationalizable belief are picked arbitrarily, this proves the statement.

Note that by the preceding paragraph, for any λ > 0 and m > 0, τ j (tj ,m, λ) has a unique

rationalizable belief

π (tj ,m, λ) = κτ j(tj ,m,λ) ◦ γ−1
j,m,λ

where

γj,m,λ : (θ, h−j (t−j ,m, λ)) 7→
(
θ, h−j (t−j ,m, λ) , s∗−j (t−j)

)
.

Here, the mapping γj,m,λ corresponds to the fact that the newly constructed types play according to

the equilibrium strategy of the original types. We leave the actions of the other types unassigned as

their actions are not relevant for our proof. For λ = 0, we define π (tj ,m, λ) by the same equation,

although the type τ j (tj ,m, λ) may also have other rationalizable beliefs.

In order to show that for large m and small λ, the beliefs of τ j (tj ,m, λ) are as in the proposition,

note that for λ = 0, themth-order belief of τ j (tj ,m, 0) is equal to themth-order belief of tj . Hence,

as m→∞, hj (τ j (tj ,m, 0))→ hj (tj) for each j. Consequently, for each j, as m→∞, π (tj ,m, 0)

converges to

π∗tj = κtj ◦
(
γ∗
j

)−1
with γ∗

j
: (θ, t−j) 7→

(
θ, t−j , s

∗
−j (t−j)

)
.

Note that π∗tj is the equilibrium belief of type tj under s∗. Therefore, there exists m̄ > 0 such that

hi (τ i (ti, m̄, 0)) ∈ Ui and π (ti,m, 0) ∈ Vi. Moreover, for j ∈ N , m ≤ m̄, and λ ∈ [0, 1], beliefs of
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τ j (tj ,m, 0) are continuous in λ. Hence, by Lemma 5,9 for each tj , as λ → 0, hj (τ j (tj , m̄, λ)) →
hj (τ j (tj , m̄, 0)) and (thereby) π (tj ,m, λ) → π (tj ,m, 0). Thus, there exists λ̄ > 0 such that

hi
(
τ i
(
ti, m̄, λ̄

))
∈ Ui and π

(
ti,m, λ̄

)
∈ Vi. Therefore, the type t̂i = τ i

(
ti, m̄, λ̄

)
satisfies all the

properties in (B).

In order to show the converse (i.e. that (B) implies (A)), take any type ti and assume (B). Then,

there exists a sequence of types t̂i (m) with unique rationalizable beliefs π̂m ∈ ∆
(
Θ∗ × T ∗−i ×A−i

)
and unique rationalizable action s∗i (ti) where π̂m converges to the belief π∗ti of type ti under s

∗.

Since s∗i (ti) ∈ S∞i
[
t̂i (m)

]
, s∗i (ti) ∈ BR

(
margΘ∗×A−i π̂m

)
for each m. Since ui is continuous and

π̂m → π∗ti , together with the Maximum Theorem, this implies that s∗i (ti) ∈ BR
(
margΘ∗×A−iπ

∗
ti

)
,

showing that s∗i (ti) is a best reply to s∗−i for type ti. Since ti is arbitrary, this proves that s
∗ is a

Bayesian Nash equilibrium. �

Appendix C. Proof of Proposition 4

In our proof we will need a couple of lemmas and definitions. First, we write T
CK(Θ∗δ)
i for the set

of types of player i according to which it is common knowledge that θ ∈ Θ∗δ . Second, we consider

the following action plans.

Definition 2. A plan ai in reduced form is said to be Bayes consistent if and only if it never

happens that for a partial history h and move bi ∈ Bi, ai(h, (ai(h), b−i)) = bi for every b−i but

ai(h) 6= bi.

This concept is important in the next lemma because the construction we use in the proof is

based on information received by player i rather than punishments and rewards. Consequently, he

must follow this form of the sure-thing principle for the construction to work.

Lemma 9. For any δ, any L and any Bayes consistent action plan ai, there exists a type tai,L

∈ TCK(Θ∗δ)
i for which playing according to ai until L is uniquely rationalizable in reduced form.

Proof. We will induct on L. The result is vacuous for L = −1. Fix L, ai and assume the result is

true for L− 1. In outline, the type we construct will have payoffs which are completely insensitive

to the actions of the other players, but will find those actions informative about his own payoffs.

He also will believe that if he ever deviates from ai, the other players’ subsequent actions are

9To ensure compactness, put all of the types in construction of types ts
∗
j (tj) together and for τ (tj ,m, λ)

with tj ∈ Tj , j ∈ N , m ∈ {0, 1, . . . , m̄}, λ ∈ [0, 1], use the usual topology for (tj ,m, λ).
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uninformative. Let n = |B−i| be the number of static moves for the other players. Let Ĥ be the

set histories of length L−1 in which player i always follows the plan ai, so that |Ĥ| = nL−1. In our

construction tai,L will assign equal weight to each of nL−1 pairs (t−ih , θh), one for each history in Ĥ,

where t−ih is assumed to play according to this history so long as i follows ai, and to simply repeat

his last move through period L − 1 if player i deviates. (Note that this plan is Bayes consistent

because at every history there is at least one branch where the current action is repeated.) We

will define each θh via an iterative process where we describe the average payoff function of player

i conditional on reaching each node, starting at time 0. In particular, we will define a payoff

f : Ĥ × Bi → R, representing i’s expected value of his stage-game payoffs conditional on reaching
that history.

To construct tai,L , we must first construct f , as follows: Fix ε > 0. Let f(∅, ai(∅)) = 1 and

f(∅, b) = 0 for all b 6= ai(∅), where ∅ is the initial node. Next, assume f(h, ·) has been defined
and proceed for the relevant one-step continuations of h as follows:

Case 1: If ai(h, (ai(h), b−i)) = ai(h) for all b−i, then let f((h, b), ·) = f(h, ·) for every b.

Case 2: Otherwise, by Bayes consistency, at least two different actions are prescribed for contin-

uations (h, (ai(h), b−i)). For each action bi ∈ Bi, let Sbi = {b−i : ai(h, (ai(h), b−i)) = bi} be the set
of continuations where bi is prescribed. Then let

f((h, (ai(h), b−i)), bi) =

 f(h, ai(h)) + ε if b−i ∈ Sbi
nf(h,bi)−|Sbi |(f(h,ai(h))+ε)

n−|Sbi |
if b−i /∈ Sbi

where the last denominator is non-zero by the observation that at least two different actions are

prescribed.

These payoffs are chosen so that

(C.1) f(h, bi) =
1

n

∑
b−i

f((h, (ai(h), b−i)), bi)

and so that f(h, ai(h)) ≥ f(h, bi) + ε for every h and bi 6= ai(h). Define gh(b) = f(h, bi) for each

history h of length L−1 and define θh accordingly, as in (4.1). Let tai,L assign equal weight to each

of nL−1 pairs (t−ih , θh), one for each history h of length L − 1 which is consistent with ai, where

the types t−ih are assumed (by induction), under rationalizable play, to always play consistently

with h through stage L − 1when ai is followed, or to repeat their last move through stage L − 1

if not. We claim that under rationalizable play, from the perspective of type tai,L, when he has

followed ai and reaches history h, f(h, ·) is the expected value of the stage-game payoff g. This is
true by definition for length-L− 1 histories. Since type tai,L always thinks his opponents’actions
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are distributed uniformly over b−i, the recursive relation (C.1) implies backwards-inductively that

the claim is true. Note also that if he follows ai through period L, player i always learns his

true payoff. Let āi be the plan which follows ai through period L, then plays the known optimal

action from period L + 1 onward. We claim that āi strictly outperforms any plan which deviates

by period L. The intuitive argument is as follows. Because type tai,L has stage-game payoffs which

are insensitive to the other players’moves, he only has two possible incentives at each stage: to

maximize his average stage-game payoffs at the current stage, and to receive further information

about his payoffs. The former goal is strictly satisfied by the move prescribed by āi, and the latter

is at least weakly satisfied by this move, since after a deviation he receives no further information.

Formally, we must show that for any fixed plan a′i not L-equivalent to ai and any rationalizable

belief of tai,L, the plan āi gives a better expected payoff. Given a rationalizable belief on opponents’

actions, any initial deviation at or before L is reached with positive probability. Let h be a random

variable equal to the earliest realized history at which a′i differs from ai, or ∞ if they do not differ

by period L. Conditional on any non-infinite value of h, āi outperforms a′i on average. In fact this

is weakly true stage-by-stage, and strictly true at the first deviation, because:

At stage |h|+ 1: The average payoff f(h, bi) is strictly optimized by āi(h).

At stages |h|+2, ..., L: The plan āi optimizes stage-game payoffs relative to its information, which

comes from a finer information partition than that available under plan a′i (because the opponents’

play is uninformative subsequent to a deviation.) Hence, even if it plays conditionally optimally,

a′i will never perform better on average than āi.

At stages L+ 1, ...: Under plan āi , player i now has complete information about his payoff and

optimizes perfectly, so a′i cannot do better.

If h =∞, again āi cannot be outperformed because he optimizes based on complete information
after L.

Finally, since there are only finitely many histories and types in the construction, the payoffs are

bounded and so can be normalized to lie in [0, 1]. �

This lemma implies the following result on repeated games.

Lemma 10. For any δ ∈ (0, 1), any L and any action plan ai, there exists a type t
ai,L
i ∈ TCK(Θ∗δ)

i

for which playing according to ai until L is uniquely rationalizable in reduced form.

Proof. For some b∗−i ∈ B−i, consider a stage payoff function gi with gi
(
bi, b

∗
−i
)

= 1 and gi (bi, b−i) =

0 for all b−i 6= b∗−i. Note that player i’s payoff does not depend on his own action, and the other
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players may reward him by playing b∗−i. Write θ̂ ∈ Θ∗δ for a payoff function resulting from gi, i.e.,

θ̂i (h) = (1− δ)
∑

l δ
tgi
(
bt
)
. Fix a large M with δM < δL (|Bi| − 1) / (2 |Bi| − 1). Let Â−i be the

set of action profiles a−i such that

(1) for any l ≤ L+ 1, any b−i, and any hl−1, there exists a unique bi
[
hl−1, b−i

]
∈ Bi such that

a−i
(
hl−1, (bi, b−i)

)
= b∗−i if bi = bi

[
hl−1, b−i

]
and aj

(
hl−1, (bi, b−i)

)
6= b∗j for every j 6= i

otherwise;10

(2) bi
[
hL, b−i

]
= ai

(
hL
)
if player i has played according to ai throughout the history hL, and

(3) for any l ∈ {L+ 2, . . . ,M} and any h at the beginning of l, a−i (h) = a−i
(
hL+1

)
.

Note that the other players reward a unique move of i at any history, with the only restriction

that player i is rewarded for sure at dates L+ 1, . . . ,M if he sticks to ai throughout l = 0, . . . , L.

This implies that if player i sticks to ai up to L−1 and deviates at L, then he will not be rewarded

at dates L+ 1, . . . ,M . This is the only restriction, and the set Â−i is symmetric in all other ways.

Note also that at any l ≤ M , a player j either reacts differently to different moves of player i or

repeats his previous move regardless. Hence, the actions in Â−i are all Bayes-consistent up to date

M , and thus for each a−i ∈ Â−i, there exists a Bayes-consistent action â−i that is M -equivalent
to a−i. Let ÂM−i be a finite subset of A−i that consists of one Bayes-consistent element from each

M -equivalence class in Â−i. By Lemma 9, for each a−i ∈ ÂM−i, there exists t
a−i,M for which all

rationalizable action profiles areM -equivalent to a−i. Consider a type t
ai,L
i that assigns probability

1/
∣∣∣Âm−i∣∣∣ to each (θ̂, ta−i,M) with a−i ∈ Âm−i. Note that, according to tai,Li the rewarded actions

up to l = L − 1 are independently and identically distributed with uniform distribution over his

moves. This leads to the formulas for the probability of reward in the next paragraph.

For any history h at the beginning of any date l, write P ∗l (h) for the probability that b∗−i is

played at t conditional on h according to the rationalizable belief of tai,Li . As noted above, by

symmetry,

(C.2) P ∗l (h) = 1/ |Bi| ∀l ≤ L,

and

(C.3) P ∗L+1 (h) =


1 if i follows ai until L

0 if i follows ai until L− 1 and deviates at L

1/ |Bi| otherwise.

10Note that hl−1 is the list of moves played at dates 0, 1, . . . , l − 2, and aj
(
hl−1, b

)
is the move of player

j at date l if players play b at l − 1 after history hl−1.



STRUCTURE OF RATIONALIZABILITY 39

Note that the expected payoff of type tai,Li under any action a′i is

(C.4) Ui
(
a′i
)

=
∑

l
(1− δ) δlE

[
P ∗l |a′i

]
.

Using the above formulas, we will now show that type tai,Li does not have a best response that

differs from ai at some history of length l ≤ L. Consider such a action plan a′i. Define also a
∗
i , by

setting

a∗i

(
hl
)

=

{
ai
(
hl
)
if l ≤ L

a′i
(
hl
)
if l > L

at each history hl at the beginning of l. We will show that a∗i yields a higher expected payoff than

a′i. To this end, for each history h, define τ (h) as the smallest date l such that the play of player

i is in accordance with both ai and a′i throughout history h
l, ai

(
hl
)
6= a′i

(
hl
)
, and player i plays

a′i
(
hl
)
at date l according to h. (Here, τ can be infinite.) Note also that, by (C.2) and (C.3), a∗i

always yields

Ui (a∗i ) =
(
1− δL+1

)
/ |Bi|+

(
δL+1 − δM+1

)
· 1 +

∑
l>M

(1− δ) δlE [P ∗l |a∗i ] .

On the event τ > L, a∗i and a
′
i are identical and hence yield the same payoff. On the event τ = L,

by (C.2) and (C.3), a′i yields the payoff of

Ui
(
a′i|τ = L

)
=
(
1− δL+1

)
/ |Bi|+

∑
l>M

(1− δ) δlE
[
P ∗l |a′i, τ = L

]
.

On the event τ < L, by (C.2) and (C.3), a′i yields the payoff of

Ui
(
a′i|τ < L

)
=
(
1− δL+1

)
/ |Bi|+

(
δL+1 − δM+1

)
· 1/ |Bi|+

∑
l>M

(1− δ) δlE
[
P ∗l |a′i, τ < L

]
.

Hence,

Ui (a∗i )− Ui
(
a′i
)
≥ Pr (τ ≤ L)

[(
δL+1 − δM+1

)
(1− 1/ |Bi|) +

∑
l>M

(1− δ) δl
[
E [P ∗l |a∗i , τ ≤ L]− E

[
P ∗l |a′i, τ ≤ L

]]]
≥ Pr (τ ≤ L)

[(
δL+1 − δM+1

)
(1− 1/ |Bi|)− δM+1

]
> 0,

where the first inequality follows from the previous three displayed equations, the next inequality

is by the fact that P ∗l ∈ [0, 1], and the strict inequality follows from the fact that Pr (τ ≤ L) > 0

by definition (as tai,Li puts positive probability at all histories up to date L and a′i differs from ai

at some such history) and the fact that δM < δL (|Bi| − 1) / (2 |Bi| − 1). �

This lemma establishes that any action can be made uniquely rationalizable for arbitrarily long

horizon even within the restricted class of repeated game payoffs with the given discount factor δ.

Using this lemma, we will next prove Proposition 4.
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Proof of Proposition 4. First, note that by continuity at infinity there exist λ̄ ∈ (0, 1) and l∗ <

∞ such that if a player i assigns at least probability 1 − λ̄ on the event that θ = θδ,g∗ and

everybody follows a∗ up to date l∗, then the expected payoff vector under his belief will be within

ε neighborhood of u (θδ,g∗ , a
∗).

We construct a family of types tj,m,l,λ, j ∈ N , m, l ∈ N, λ ∈
[
0, λ̄
]
, by

tj,0,l,λ = ta
∗
j ,l,

κtj,m,l,λ = λκ
t
a∗
j
,l + (1− λ) δ(θδ,g∗ ,t−i,m−1,l′,λ)

∀m > 0,

where ta
∗
j ,l ∈ TCK(Θ∗δ)

j is the type for whom a∗j is uniquely rationalizable up to date l, δ(θδ,g∗ ,t−i,m−1,λ)
is the Dirac measure that puts probability one on

(
θδ,g∗ , t−i,m−1,l′λ

)
and l′ will be defined momen-

tarily. The types tj,m,l,λ will be constructed in such a way that under any rationalizable plan

they will follow a∗j up to date l and the first m orders of beliefs will be within λ neighborhood of

tCK (θδ,g∗). Note that under κ
t
a∗
j
,l it is a unique best reply to follow a∗j up to date l, and if the

other players follow a∗−j forever then it is a best response under θδ,g∗ to follow a∗j up to date l. In

that case, it would be a unique best response to follow a∗j up to date l if one puts probability λ on

κ
t
a∗
j
,l and (1− λ) on the latter scenario with θ = θδ,g∗ . Since there are only finitely many plans to

follow up to date l and the game is continuous at infinity, there exists a finite l′ ≥ l∗ such that it is
still the unique best response under θδ,g∗ to follow a∗j up to date l if the other players played a

∗
−j

only up to date l′. We pick such an l′ ≥ l∗.

We now show that for large m and l and small λ, ti,m,l,λ satisfies all the desired properties of t̂i.

First note that for λ = 0, under ti,m,l,0, it is mth-order mutual knowledge that θ = θδ,g∗ . Hence,

there exist m∗ and λ∗ > 0 such that when m ≥ m∗ and λ ≤ λ∗, the belief hierarchy of ti,m,l,λ is

within the neighborhood Ui of the belief hierarchy of tCKi (θδ,g∗), according to which it is common

knowledge that θ = θδ,g∗ . Second, for λ > 0, a∗j is uniquely rationalizable up to date l for tj,m,l,λ in

reduced form. To see this, observing that it is true for m = 0 by definition of tj,0,l,λ, assume that

it is true up to some m− 1. Then, any rationalizable belief of any type tj,m,l,λ must be a mixture

of two beliefs. With probability λ, his belief is the same as that of ta
∗
j ,l, and with probability

1 − λ, he believes that the true state is θδ,g∗ and the other players play a∗−j (in reduced form) up
to date l′. But we have chosen l′ so that following a∗j up to date l is a unique best response under

that belief. Therefore, any rationalizable action of tj,m,l,λ is l-equivalent to a∗j . Third, for any

m > 0 and l ≥ l∗, the expected payoffs are within ε neighborhood of u (θδ,g∗ , a
∗). Indeed, under

rationalizability, type ti,m,l,λ must assign at least probability 1 − λ ≥ 1 − λ̄ on θ = θδ,g∗ and that

the other players follow a∗−i up to date l
′ ≥ l∗ while he himself follows a∗i up to date l ≥ l∗. The

expected payoff vector is ε neighborhood of u (θδ,g∗ , a
∗) under such a belief by definition of λ̄ and l∗.
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Finally, each tj,m,l,λ is in T
CK(Θ∗δ)
j because all possible types in the construction assigns probability

1 on θ ∈ Θ∗δ . We complete our proof by picking t̂i = ti,m,l,λ for some m > m∗, l ≥ max {L, l∗}, and
λ ∈

(
0,min

{
λ̄, λ∗

})
. �
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