
Modes of Convergence

Almost sure convergence
Consider a random sample Zt; t = 1; 2; :::, and let ! denote the entire se-

quence Z1; Z2; :::; i.e. for any draw ! 2 
; with 
 denoting the underlying
probability space, we observe a di¤erent realization of the random sequence.
Typically, we are interested in sample averages

bT (!) = T
�1

TX
t=1

Zt:

We say that bT (!) converges almost surely to b; i.e. bT (!)
a:s:! b; or simply

bT
a:s:! b if:

P (! : bT (!)! b) = 1;

where P is the probability measure de�ned on 
; which describes the distribu-
tion of ! and so determines the joint distribution of the entire sequence fZtg :
Herafter, with the notation fZtg we mean Zt; with t = 1; 2; :::
Note that bT

a:s:! b; if the probability of observing a sequence fZtg such that
T�1

PT
t=1 Zt does not converge to b is zero.

Almost sure convergence for vectors and matrices is equivalent to almost
sure convergence of each element.

Property AS1: If g is a function which is continuous at b; then bT
a:s:! b implies

that g(bT )
a:s:! g(b):

Usefulness of this property: ifX0X=T
a:s:! M and det(M) > 0; then (X0X=T )

�1 a:s:!
M�1: This is because the inversion of a positive de�nite matrix is a continous
transformation.
Sometine in the case of heterogeneous observations, there is no a �xed value

(scalar, vector, etc.) b to which bT converges almost sure, though there exists
a deterministic sequence cT ; uniformly bounded, i.e. supT jcT j < � < 1; such
that

P (! : bT (!)� cT ! 0) = 1;

or bT (!)� cT
a:s:! 0:

Uniform Continuity: If for any � > 0; there exists a �(�); such that for any
for any a; b 2 B; whenever ja� bj < �(�), jg(a)� g(b)j < �; with � dependent on
� but not on b; then g is said to be uniformly continuous on B:
Uniform continuity implies pointwise continuity, but not the other way round.

Though, if B is a compact set (i.e. a set which is bounded and closed), then
pointwise continuity is equivalent to uniform continuity.

Property AS2: If g is a function which is uniform continuous in B; supT jcT j <
� <1; then bT � cT

a:s:! 0 implies that g(bT )� g(cT )
a:s:! 0:
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Usefulness of this property: if X0X=T �MT
a:s:! 0 and infT det(MT ) > 0;

then (X0X=T )
�1 � M�1

T
a:s:! 0: This is because the inversion of a uniformly

positive de�nite matrix is a uniform continous transformation.

A few de�nitions. (i) We say that bT is Oa:s:(1) (or almost surely
bounded) if there exists 0 < � < 1; and T0; such that for all T > T0;
P (! : jbT (!)j < �) = 1:
(ii) bT is said to be at most of almost sure order T�; i.e. Oa:s:(T�); if there

exists 0 < � <1; and T0; such that for all T > T0; P
�
! : T�� jbT (!)j < �

�
= 1

(iii) bT is said to be almost sure order smaller than T�; i.e. oa:s:(T�); if
T��bT

a:s:! 0: Thus, if bT (!)� cT
a:s:! 0; then bT (!)� cT = oa:s:(1):

(iv) A deterministic sequence cT is said to be respectively O(1); O(T�); o(T�)
if there exists 0 < � < 1; and T0; such that for all T > T0; jcT j < �;
T�� jcT j < �; and T��cT ! 0

Convergence in Probability.
Let bT be a sequence of random variables. We say that bT (!) converges in

probablity to b; i.e. bT (!)
p! b; or simply bT

p! b; or p lim bT = b if:

P (! : bT (!)! b)! 1:

With almost sure convergence, the probability measure P controls the entire
sequence fZtg ; while with convergence in probability it controls only the �rst
T elements.
Note that bT

p! b; if the probability of observing a sequence fZtg such that
T�1

PT
t=1 Zt does not converge to b becomes less and less likely as T increases.

Almost sure convergence implies convergence in probability, but not the
other way round.

Property PR1: If g is a function which is continuous at b; then bT
p! b implies

that g(bT )
p! g(b):

Usefulness of this property: ifX0X=T
p!M and det(M) > 0; then (X0X=T )

�1 p!
M�1: This is because the inversion of a positive de�nite matrix is a continous
transformation.
Property PR2: If g is a function which is uniform continuous in B; supT jcT j <
� <1; then bT � cT

p! 0 implies that g(bT )� g(cT )
p! 0:

Another few de�nitions. (i) We say that bT is Op(1) (or bounded in
probability) if there exists 0 < � < 1; and T0; such that for all T > T0;
P (! : jbT (!)j < �)! 1:
(ii) bT is said to be at most of probability order T�; i.e. Op(T�); if there exists

0 < � <1; and T0; such that for all T > T0; P
�
! : T�� jbT (!)j < �

�
! 1

(iii) bT is said to be of probability order smaller than T�; i.e. op(T�); if
T�bT

p! 0: Thus, if bT (!)� cT
p! 0; then bT (!)� cT = op(1):
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Product Rule: If AT is oP (1) and bT is OP (1); then AT bT = oP (1): That
is, the product of something which is bounded in probability times something
which goes in probability to zero, goes in probability to zero. Analogously, if
AT is oa:s:(1) and bT is Oa:s:(1); then AT bT = oa:s:(1):

Convergence in r�th Mean.
Let bT be a sequence of random variables. We say that bT (!) converges in

r�th mean to b; r > 0; if

E (jbT (!)� bjr)! 0 as T !1:

We also say that bT
r:m:! b:

Property RM1: If bT
r:m:! b; then for all s < r; bT

s:m:! b; i.e. convergence in r-th
mean implies convergence in s-th mean for all s < r:
In order to prove the Property above, we need the following,

Jensen�s Inequality: If g is a convex (concave) function on a set B; then for any
random variable Z; such that P (Z 2 B) = 1; it follows that g(E(Z)) � E(g(Z))
(g(E(Z)) � E(g(Z))).
Now, for s < r;

E (jbT (!)� bjs) = E
�
(jbT (!)� bjr)

s=r
�

� (E ((jbT (!)� bjr)))
s=r
;

thus if E (jbT (!)� bjr)! 0 also E (jbT (!)� bjs)! 0:

Property RM1: If for r > 0; bT
r:m:! b; then bT

p! b; i.e. convergence in r-th
mean implies convergence in probability.
In order to show the property above, we need the following,

Generalized Chebyshev Inequality (or Markov Inequality): Given a random vari-
able Z; such that E(jZjr) <1; then for any r > 0; there exists " > 0 such that,

P (jZj > ") � 1

"r
E(jZjr):

Now,

P (jbT � bj > ") �
1

"r
E(jbT � bjr)! 0:

For later...Given a random sequence fZtg;
(i) if T�1

PT
t=1(Zt � E(Zt))

a:s:! 0; we say that fZtg satisfy a Strong Law
of Large Numbers
(ii) if T�1

PT
t=1(Zt �E(Zt))

p! 0; we say that fZtg satisfy a (Weak) Law
of Large Numbers

Convergence in Distribution
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Let bT (!) be a sequence of random vectors, with distribution FT : If, as T !
1; FT (z) ! F (z); for any continuity point z of F; where F is the distribution

function of Z; we say that bT converges in distribution to Z; i.e. bT
d! Z:

If Z is a normal random variable, then bT is said to be Asymptotically Nor-
mal.
If bT

p! b; then bT converges in distribution to a random variable Z which
takes the value b with probability one.
:

Continuous Mapping Theorem: If bT
d! Z; then for any continuous function g;

g(bT )
d! g(Z):

Property CD1: If bT
d! Z; then bT = OP (1); i.e. random sequence converging

in distribution, is bounded in probability.

Proof: as bT
d! Z; P (jbT j > �) ! P (jZj > �) ; and so for any �; there

exists � > 0; such that

limP (jbT j > �) = P (jZj > �) < �:

Product Rule (again): We have see that if AT = oP (1) and bT = OP (1); then

AT bT = oP (1): Thus, if AT
p! 0 and bT

d! Z; then AT bT
p! 0:

Asymptotic Equivalence: If aT � bT = oP (1); and bT
d! Z; then aT

d! Z:
Very useful result: crucial in showing the asymptotic normality of estimators

and test statistics.

Choleski decomposition: Any positive (semi) de�nite matrix V; can be de-
composed as V = V 1=2V 1=2; where V 1=2 does not need to be unique.

Asymptotic Covariance Matrix: Let VT be a k � k matrix which is positive
de�nite for all T > T0; if V

�1=2
T bT

d! N(0; IK); then VT is said to be the
asymptotic covariance matrix of bT ; orVT = avar(bT ): Note that if the smallest
eigenvalue of VT and V

�1
T are bounded away from zero, then VT = avar(bT ) =

var(bT ):

Quadratic Forms: If V�1=2
T bT

d! N(0; IK); then b0TV
�1
T bT

d! �2k (immediate
from continuous mapping theorem).

For later...Given a random sequence fZtg;
(i) if V�1=2

T T�1=2
PT

t=1(Zt � E(Zt))
d! N(0; IK) we say that fZtg satisfy a

Central Limit.
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Consistency and Asymptotic Normality of OLS

Linear Model:
y = X�y+� (1)

where y is T � 1; X is T � k; �y is k � 1 and � is T � 1; or

yt = X
0
t�
y + �t; (2)

with yt; �t scalars, Xt and �
y k � 1: Hereafter, Xt = (1; X2;t; :::; Xk;t):

We say that the linear model is correctly speci�ed for E(ytjXt) if

E(ytjXt) = X
0
t�
y:

Note that correct speci�cation for E(ytjXt) is EQUIVALENT to E(�tjXt) = 0:
In the case of correct speci�cation, �y is the parameter vector of the condi-
tional expectation. For example, if (yt;Xt) is jointly normal, then ytjXt '
N(X0

t�
y; �2�); and so the linear model is correctly speci�ed. Otherwise, there is

no particular reason why the linear model is correctly speci�ed for E(ytjXt):
Now, E(ytjXt) implies that E(Xt�t) = 0; in fact, by the Law of the Iterated

Expectations,

E(Xt�t) = E (E(Xt�tjXt)) = E(XtE(�tjXt))

= 0 if E(�tjXt) = 0:

If we simply assume that E(Xt�t) = 0; then the linear model is not necessarily
correctly speci�ed, and �y is not necessarily the parameter of the conditional
expectation, though �y can be interpreted as the best linear predictor.
Provided (E(XtX

0
t))

�1 exists, i.e. no perfect collinearities, note that by
premultiplying (2) by Xt and taking the expectation, we have that

E (Xtyt) = E(XtX
0
t)�

y + E(Xt�t);

so that if E(Xt�t) = 0;

�y = (E(XtX
0
t))

�1
E (Xtyt) :

Now, it is immediate to see that �y can be also de�ned as:

�y = argmin
�

1

T

TX
t=1

E (yt �X0
t�)

2

and so is the best linear predictor. In fact, by the �rst order conditions, recall-

ing that E
�
Xt

�
yt �X0

t�
y
��

= 0 for all t; 2 1T
PT

t=1E
�
Xt

�
yt �X0

t�
y
��

= 0;

which indeed implies, �y = (E(XtX
0
t))

�1
E (Xtyt) :
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De�ne the OLS (Ordinary least Square Estimator), b�T ; where
b�T = argmin

�

1

T

TX
t=1

(yt �X0
t�)

2
;

and so

b�T =
 
1

T

TX
t=1

XtX
0
t

!�1 
1

T

TX
t=1

Xtyt

!
: (3)

Assumption OLS-1
(i) yt = X0

t�
y + �t; with E(Xt�t) = 0:

(ii) 1
T

PT
t=1Xt�t

a:s:! E(Xt�t) = 0 (strong law of large numbers)
(iii) 1

T

PT
t=1XtX

0
t�MT

a:s:! 0; whereMT =
1
T

PT
t=1E (XtX

0
t) = O(1); with

infT detMT > 0 (strong law of large numbers)

(iv) V�1=2
T

1
T 1=2

PT
t=1Xt�t

d! N(0; Ik); with VT = var
�

1
T 1=2

PT
t=1Xt�t

�
=

O(1) and infT detVT > 0 (central limit theorem for the score)

Theorem OLS-1:
(a) Given Assumption OLS-1(i)-(iii), then

b�T a:s:! �y

(b) Given Assumption OLS1-(i)-(iv), then

D
�1=2
T T 1=2

�b�T � �y� d! N(0; Ik);

where DT =
�
1
T

PT
t=1XtX

0
t

��1
VT

�
1
T

PT
t=1XtX

0
t

��1
:

(c) Given Assumption OLS-1(i)-(iv), if there exists bVT �VT
pr! 0; then

bD�1=2
T T 1=2

�b�T � �y� d! N(0; Ik);

where bDT =
�
1
T

PT
t=1XtX

0
t

��1 bVT � 1T PT
t=1XtX

0
t

��1
:

Proof: (a) Given (3), and (2),

b�T =

 
1

T

TX
t=1

XtX
0
t

!�1 
1

T

TX
t=1

Xt

�
X0
t�
y + �t

�!

= �y +

 
1

T

TX
t=1

XtX
0
t

!�1
1

T

TX
t=1

Xt�t
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Now,

b�T � �y
= M�1

T

1

T

TX
t=1

Xt�t

+

0@ 1
T

TX
t=1

XtX
0
t

!�1
�M�1

T

1A 1

T

TX
t=1

Xt�t (4)

Given A-OLS-1(iii),MT = O(1) andMT uniformly positive de�nite (i.e. infT detMT >

0); it follows that M�1
T = O(1): Now, by A-OLS-1(i)-(ii), 1

T

PT
t=1Xt�t =

oa:s:(1): Thus,

M�1
T

1

T

TX
t=1

Xt�t = O(1)oa:s:(1) = oa:s:(1)

by the product rule (recall that a term which is O(1) is also Oa:s:(1)): As for the
second term on the RHS of (4), as the inversion of a uniformly positive de�nite
matrix is a continuous operation, given A-OLS-1(iii) and given Property AS1, 

1

T

TX
t=1

XtX
0
t

!�1
�M�1

T = oa:s:(1):

Thus, recalling A-OLS-1(ii), the second term of the right hand side of (4) is
oa:s:(1): This concludes the proof of part (a).
(b) Given (4), we have that

T 1=2D
�1=2
T

�b�T � �y�
= D

�1=2
T M�1

T V
1=2
T V

�1=2
T

1

T 1=2

TX
t=1

Xt�t

+D
�1=2
T

0@ 1
T

TX
t=1

XtX
0
t

!�1
�M�1

T

1AV1=2
T V

�1=2
T

1

T 1=2

TX
t=1

Xt�t (5)

We �rst show that the second term on the RHS of (5) is oP (1):
Given, A-OLS-1(iv), V�1=2

T
1

T 1=2

PT
t=1Xt�t = OP (1); as it converges in dis-

tribution. Also, given the fact thatMT and VT are O(1) and uniformly positive
de�nite, D�1=2

T and V1=2
T are O(1):

In part (a), we have shown that
�
1
T

PT
t=1XtX

0
t

��1
�M�1

T = oa:s:(1): Thus

the second term on the RHS of (5) is oP (1) by the product rule (recall that a
oa:s:(1) term is also oP (1)):
Now, consider the �rst term on the RHS of (5).
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First, note that, as DT =
�
1
T

PT
t=1XtX

0
t

��1
VT

�
1
T

PT
t=1XtX

0
t

��1
;

D
1=2
T =

 
1

T

TX
t=1

XtX
0
t

!�1
V
1=2
T

and so

D
�1=2
T = V

�1=2
T

 
1

T

TX
t=1

XtX
0
t

!
:

So, given A-OLS-1(iii), and recalling the product rule,

D
�1=2
T M�1

T V
1=2
T

= V
�1=2
T

 
1

T

TX
t=1

XtX
0
t

!
M�1

T V
1=2
T

= V
�1=2
T

  
1

T

TX
t=1

XtX
0
t

!
�MT

!
M�1

T V
1=2
T

+V
�1=2
T MTM

�1
T V

1=2
T

= oa:s:(1) + Ik

Thus, the

D
�1=2
T M�1

T V
1=2
T V

�1=2
T

1

T 1=2

TX
t=1

Xt�t

= V
�1=2
T

1

T 1=2

TX
t=1

Xt�t + op(1)

Given A-OLS-1(iv), V�1=2
T

1
T 1=2

PT
t=1Xt�t

d! N(0; Ik); and by the asymptotic
equivalence lemma, the LHS (which is the �rst term on the RHS of (5)) converges
in distribution to a N(0; Ik): Recalling that the second term on the RHS of (5)
is op(1); part (b) follows by applying again the asymptotic equivalence lemma.
(c)

T 1=2 bD�1=2
T

�b�T � �y�
= T 1=2D

�1=2
T

�b�T � �y�
+
�bD�1=2

T �D�1=2
T

�
T 1=2

�b�T � �y� (6)

By part (ii), we know that the �rst term on the RHS of (6) converges in
distribution to a N(0; Ik): Now, given that bVT � VT

pr! 0; it follows thatbD�1=2
T �D�1=2

T = oP (1); T
1=2
�b�T � �y� is OP (1) as it converges in distribu-

tion. Thus, the second term on the RHS of (6) is op(1) by the product rule.
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Part (c) then follows by the asymptotic equivalence lemma.

Remark 1: If in Assumption OLS-1(ii)-(iii), we replace almost sure conver-
gence with convergence in probability, the statement in part (a) would beb�T p! �y; while the statements in part (b) and (c) would not change.
Remark 2: The proof of Theorem OLS-1 is based on four elements: law of
large numbers, central limit, product rule and asymptotic equivalence. So far,
we have assumed that law of large numbers and central limit hold (Assumptions
OLS-1(ii),(iii),(iv)). Though, these are NOT primitive assumptions. In the
sequel, we shall provide di¤erent set of assumptions on the degree of memory
and dependence of the data, ensuring that law of large numbers and central
limit hold.
Remark 3: In statement (c), we have assumed that there exists a consistent
estimator of the (asymptotic) variance of 1

T 1=2

PT
t=1Xt�t: In the sequel, we

shall provide su¢ cient conditions for that. We anticipate that, in the case of
dynamically misspeci�ed models, this is somewhat complex, i.e. cannot rely
just on law of large numbers.

Before addressing the issues in Remarks 2 and 3, we �rst outline the as-
ymptotic behavior of the three classical tests, Wald, Lagrange Multiplier and
Likelihood Ratio, still assuming that Assumptions OLS-1(ii)-(iv) hold.
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Hypothesis Testing: Wald, Lagrange Multiplier and
Likelihood Ratio Tests

Often we are interested in testing linear restriction about parameters, that
is we want to test the null hypothesis

H0 : R�
y= r (7)

versus the alternative,
HA : R�

y 6= r (8)

where R is a q�k selection matrix and r is a q�1 vector, q denotes the number
of linear restrictions.
Examples:Suppose we want to test H0 : �

y
2 = 0 vs H1 : �

y
2 6= 0:

R =
�
0 1 0 : : : 0

�
; r = 0

1. Suppose we want to test H0 : �
y
2 = �

y
3 = ::: = �

y
k = 0 vs H1 : �

y
i 6= 0 for

at least one i = 2; :::; k: In this case we test

R�y= r vs R�y 6= r

R =

26664
0 1 0 : : : 0
0 1
...

. . .
0 0 1

37775 ; r =

26664
0
0
...
0

37775
where R is (k � 1)� k and r is (k � 1)� 1.

2. Suppose we want to test H0 : �
y
2 + �

y
3 = 0 vs H1 : �

y
2 + �

y
3 6= 0: In this

case we test
R�y= r vs R�y 6= r

R =
�
0 1 1 0 : : : 0

�
; r = 0

3. Suppose we want to test H0 : �
y
3� �

y
4 = 0 and �

y
2 = 1 vs H1 : �

y
3� �

y
4 6= 0

and/or �y2 6= 1: In this case we test

R�y= r vs R�y 6= r

R has two rows, one for �y2 = 1, and one for �
y
3 � �

y
4 = 0:

R =

�
0 1 0 0 0 0 : : : 0
0 0 1 �1 0 0 : : : 0

�
; r =

�
1
0

�
Wald Test
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When performing Wald test, we estimate only the unrestricted model. Here-

after, let VT = var
�

1
T 1=2

PT
t=1Xt�t

�
; and let bVT be a consistent estimator of

VT (under H0); and let b�T be the OLS estimator of the unrestricted model.
De�ne the Wald statistic as

WT = T
�
Rb�T � r�0 �RbDTR

0
��1 �

Rb�T � r�
where

bDT =

 
1

T

TX
t=1

XtX
0
t

!�1 bVT  1
T

TX
t=1

XtX
0
t

!�1
(9)

:
Theorem Wald-1: Let the assumptions of Theorem OLS-1(c) hold. Then:

(i) under H0; WT
d! �2q

(ii) under HA; WT diverges to in�nity.
Proof: (i) Under H0; r = R�y; thus

WT = T
�
Rb�T �R�y�0 �RbDTR

0
��1 �

Rb�T �R�y�
By Theorem OLS-1(c), T 1=2

�
RbDTR

0
��1=2 �

Rb�T �R�y� d! N(0; Iq) and so

WT
d! �2q because of the continuous mapping theorem.
(ii) Under HA; r 6= R�y; thus

WT = T
�
Rb�T �R�y�0 �RbDTR

0
��1 �

Rb�T �R�y�
+T

�
R�y � r

�0 �
RbDTR

0
��1 �

Rb�T �R�y�
+T

�
Rb�T �R�y�0 �RbDTR

0
��1 �

Rb�T � r�
+T

�
Rb�T � r�0 �RbDTR

0
��1 �

Rb�T � r� (10)

The �rst term on the RHS of (10) is OP (1) as it converges in distribution
under both hypotheses. The second and third term are of order OP (T 1=2) as�
Rb�T �R�y� = OP (T�1=2) and R�y � r 6= 0: Finally, the last term diverges

to (plus) in�nity at rate T; as R�y � r 6= 0:

Remarks on Wald Test
(i) The Wald test is not an invariant test, in the sense that is not invariant

to parameters reparametrization (one to one transformation of the parameter
space), see Dagenais and Dufour (Econometrica 1991). Broadly speaking, if
instead of test H0 : � = 0; we test H 0

0 : ln (�) = 1; we may get quite di¤erent
answers.
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(ii) If var
�

1
T 1=2

PT
t=1Xt�t

�
= T�1

PT
t=1E (XtX

0
t)�

2
� ; i.e. in the case of

conditional homoskedasticity, the Wald statistics writes as:

WT = T
�
Rb�T � r�0 �R (X0X=n)

�1
R0
��1 �

Rb�T � r� =b�2�
and is numerically identical to qF; whereF is the standard F-statistic for the
same null.

Lagrange Multiplier Test

An alternative approach to the Wald approach above is to impose the re-
strictions, i.e. estimate only the restricted model. Let e�T be de�ned as:

e�T = argmin
�

1

T

TX
t=1

(yt �X0
t�)

2 subject to R� = r; (11)

i.e.Now let e�t be the restricted residuals, i.e. e�t = yt �X0
t
e�T : Note that is the

restricted least square estimators, which is DIFFERENT from the unrestricted
OLS estimator of the restricted model. In fact, e�T is k � 1 even if there are
zero restrictions.
The Lagrange Multiplier statistic is de�ned as:

LMT

= T

 
1

T

TX
t=1

Xte�t!0 1
T

TX
t=1

XtX
0
t

!�1
R0
�
ReDTR

0
��1

�R
 
1

T

TX
t=1

XtX
0
t

!�1 
1

T

TX
t=1

Xte�t! ; (12)

where

eDT =

 
1

T

TX
t=1

XtX
0
t

!�1 eVT

 
1

T

TX
t=1

XtX
0
t

!�1
(13)

and eVT is an estimator of VT based on the restricted residuals, recall that

VT = var
�

1
T 1=2

PT
t=1Xt�t

�
:

Theorem LM-1: Let the assumptions of Theorem OLS-1(b) hold: Then:

(i) Assume that eVT �VT = op(1); then under H0; LMT
d! �2q

(ii) under HA; LMT diverges to in�nity.

Proof: (i) Consider

LM1=2
T = T 1=2

�
ReDTR

0
��1=2

R

 
1

T

TX
t=1

XtX
0
t

!�1 
1

T

TX
t=1

Xte�t!
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and, recalling that e�t � �t = �X0
t

�e�T � �y� ; note that
LM1=2

T = T 1=2
�
ReDTR

0
��1=2

R

 
1

T

TX
t=1

XtX
0
t

!�1 
1

T

TX
t=1

Xt�t

!

�T 1=2
�
ReDTR

0
��1=2

R
�e�T � �y� : (14)

Now, under H0; R�
y= r; and by construction Re�T = r: Thus, under the null,

the second term on the RHS of (14) is equal to zero. Now, from the proof of
Theorem OLS-1(b), we have seen that

T 1=2
�b�T � �y� =

 
1

T

TX
t=1

XtX
0
t

!�1
1

T 1=2

TX
t=1

Xt�t:

Thus, the �rst term on the RHS of (14) writes as:

T 1=2
�
ReDTR

0
��1=2

R
�b�T � �y� :

As we have assumed that eVT�VT = op(1); T
1=2
�
ReDTR

0
��1=2

R
�b�T � �y� d!

N(0; 1) by the same argument used in the proof of Theorem OLS-1(c). Part (i)
then follows from the continuous mapping theorem.
(ii) under HA; R�

y 6= r; and by construction Re�T = r; thus by adding and
subtracting r in the second term on the RHS of (14), we have that

LM1=2
T = T 1=2

�
ReDTR

0
��1=2

R

 
1

T

TX
t=1

XtX
0
t

!�1 
1

T

TX
t=1

Xt�t

!

+T 1=2
�
ReDTR

0
��1=2 �

R�y � r
�

(15)

The �rst term on the RHS of (15) is OP (1) as it converges in distribution by
the same argument as in part (i), but the second term is of OP (1)O(T 1=2) and
thus when premultiplied by its transpose it diverges to in�nity at rate T:

Remarks on Lagrange Multiplier Test
(i) Also, the Lagrange Multiplier test is (in general) not an invariant test.

(ii) If var
�

1
T 1=2

PT
t=1Xt�t

�
= T�1

PT
t=1E (XtX

0
t)�

2
� ; i.e. in the case of

conditional homoskedasticity, then the LM test can be performed in a TR2

format, at least for the case in which we are testing zero restrictions. That is,
we estimate the restricted model, and then regress the residuals on a constant
and on the omitted variables, and compute the R2 from the latter regression.

Under the null, TR2 d! �2q; under the alternative, it diverges to in�nity at rate
T:
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Likelihood Ratio Test

If �tjXt is iid N(0; �2�); then the OLS b�T is also the Maximum Likelihood
estimator (MLE); on the other hand if �tjXt is NOT iid N(0; �2�) then b�T is a
Quasi Maximum Likelihood estimator (QMLE), i.e. an estimator constructed
under the wrong assumption that the marginal of the error is normal. Let e�T
be de�ned as in (11), then de�ne the likelihood ratio statistics as LRT ;

LRT =
T

2
ln
�b�2�=e�2�� ; (16)

where b�2� = 1
T

PT
t=1

�
yt �X0

t
b�T�2 and e�2� = 1

T

PT
t=1

�
yt �X0

t
e�T�2 :

Theorem LRT-1: Let the assumptions of Theorem OLS-1(b) hold. Also, as-

sume conditional homoskedasticity, i.e. var
�

1
T 1=2

PT
t=1Xt�t

�
= T�1

PT
t=1E (XtX

0
t)�

2
� .

Then:
(i) under H0; �2LRT

d! �2q
(ii) under HA; �2LRT diverges to in�nity.

The proof of Theorem LRT-1 requires the following result:
Intermediate value theorem. Let s : Rk ! R be de�ned on an open set � � Rk
and it�s di¤erentiable on �; with gradient rs: Then, for any � and �0 in �;
s(�) = s(�0) +rs(�)0 (� � �0) ; with � 2 (�; �0) :

Proof: (i) First, recalling that X0b� = 0 by construction, note that
e�2� = b�2� + �b�T � e�T�0 (X0X=T)

�b�T � e�T� ;
and so

LRT = �
T

2
ln

�
1 +

�b�T � e�T�0 (X0X=T )
�b�T � e�T� =b�2�� :

We now make use of the intermediate value theorem, setting �0 = 0 and

� =
�b�T � e�T�0 (X0X=T )

�b�T � e�T� =b�2�
Then,

LRT = �
T

2

�
1 + �

��1 �b�T � e�T�0 (X0X=T )
�b�T � e�T� =b�2� ;

where � 2 (�; 0) : As � ! 1;
�
1 + �

��1
; and so

�2LRT � T
�b�T � e�T�0 (X0X=T )

�b�T � e�T� =b�2� p! 0:

14



By the asymptotic equivalence Lemma, it su¢ ce to consider the limiting distri-
bution of

T
�b�T � e�T�0 (X0X=T )

�b�T � e�T� =b�2� :
Now (i leave the proof for homework),�b�T � e�T� = (X0X=T )

�1
R0
�
R (X0X=T )

�1
R0
��1 �

Rb�T�r� :
Thus, �2LRT is asymptotically equivalent to T

�
Rb�T � r�0 �R (X0X=n)

�1
R0
��1 �

Rb�T � r� =b�2� ;
which is the Wald test for the case of conditional homoskedasticity.
(ii) Do it! easy.

Remarks on LR test.
(i) Advantage: It is an invariant test
(ii) Disadvantage. If conditional homoskedasticity does not hold, it does no

longer have a chi-squared limiting distribution (though it has a distribution).

Other Remarks on Wald, LM and LR.
(iii) We have seen that under the null, and in the presence of conditional

homoskedasticity, WT ; LMT and �2LRT are asymptotic equivalent. Though,
in �nte sample, the following hold:

WT � �2LRT � LMT :

(iv) Suppose we are interested in testing nonlinear restrictions, i.e. we have
to test H0 : h(�

y) = 0 vs HA : h(�
y) 6= 0; where h : Rk ! Rq; q � k: Then

WT = Th(b�T )0 �r�h(b�T )bDTr�h(b�T )0��1 h(b�T );
and the statement in theorem Wald-1 still applies. As for the Lagrange Multi-
plier and Likelihood Ratio, they are constructed as in (12) and (16), but withe�T compute as e�T = argmin�

1
T

PT
t=1 (yt �X0

t�)
2 subject to h(�) = 0: The

statement in Theorems LM-1 and LR-1 still apply.
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We have derived the asymptotic normality of OLS estimators, as well as as
the limiting distribution of Wald, Lagrage Multiplier and Likelihood Ratio test,
assuming that:
(a) X0X=T and X0� satisfy a Strong Law of Large Numbers
(b) X0�=T 1=2 satisfy a Central Limit Theorem
(c) There exist a consistent estimator for var

�
X0�=T 1=2

�
:

In the sequel we shall provide various sets of primitive su¢ cient conditions
on the data (yt;Xt) ensuring that the law of large number is statis�ed, central
limit theorem applies and we can consistently estimate var

�
X0�=T 1=2

�
:

Strong Law of Large Numbers

We shall proceed from the easier case of independent and identically dis-
tributed data to the more complex in which we allow for both dependence and
heterogeneity.

In the sequel we need the following inequality:
Holder Inequality: If p > 1; p�1 + q�1 = 1; and if E(jY jp) <1 and E(jZjq) <
1;

E (jY Zj) � (E(jY jp))1=p (E(jZjq))1=q

For p = q = 2; we have the well known Cauchy-Schwarz Inequality, i.e.

E (jY Zj) �
�
E(jY j2)

�1=2 �
E(jZj2)

�1=2
:

Proposition IID-1: If fZtg is an iid sequence, then for any continuous functiuon
g; fg(Zt)g is also iid (this is true more a more general class than continuous
function, in fact it holds for all measurable function).
Identically and Independently Distributed Observations (Kolmogorov SLLN)
Let fZtg be a sequence of iid observation. Then T�1

PT
t=1 Zt

a:s:! � if and
only if E(jZtj) <1 and E(Zt) = �:

Proposition SLLN-1: Let fyt; Xtg be independently and identically distrib-
uted random sequence. If E(Xi;t2) < 1 for i = 1; :::k and if E(�2t ) < 1;
then:

(i)
1

T

TX
t=1

Xt�t
a:s:! E(X1�1)

(ii)
1

T

TX
t=1

XtX
0
t
a:s:! M; where M =E(X0

1X1)

If E(X1�1) = 0; then A-OLS-1(ii) is satis�ed. Also, if M is positive de�nite
A-OLS-1(iii) is also satis�ed.
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Proof of (i): By Chauchy-Schwartz inequality, E jX1�1j � (E (X1X
0
1))

1=2 �
E(�2i )

�1=2
<

1: Also, by Proposition IID-1, Xt�t is iid (the product is a continuous function);
thus statement (i) follows from Kolmogorov Law of Large Numbers

(ii) By CS inequality, E(jXi;tXj;tj) �
�
E(Xi;t

2)
�1=2 �

E(Xj;t
2)
�1=2

: Thus,
for all i; j = 1; :::; 1T

PT
t=1Xi;tXj;t

a:s:! E(Xi;1Xj;1): Almost sure convergence of
each element ensures almost sure convergence of the matrix.

Independent and Heterogeneous Observations (SLNN)

Let fZtg be a a sequence of independent observations, with E(Zt) = �t. If
for some � > 0; E(jZtj1+�) < � <1 then T�1

PT
t=1(Zt � �t)

a:s:! 0:

Proposition SLLN-2: Let fyt; Xtg be independently and heterogeneously
distributed random sequence. If E(Xi;t2(1+�)) < 1 for i = 1; :::k and if
E(�

2(1+�)
t ) <1; then

(i)
1

T

TX
t=1

(Xt�t � E(Xt�t))
a:s:! 0

(ii)
1

T

TX
t=1

XtX
0
t �MT

a:s:! 0; where MT=
1

T

TX
t=1

E(X0
tXt)

If E(Xt�t) = 0; then A-OLS-1(ii) is satis�ed. Also, if MT is uniformly positive
de�nite A-OLS-1(iii) is also satis�ed.

Dependent and Homogeneously Distributed Observations

While the independent assumption often holds for cross section data, it can-
not hold for time series data. The issue is to see how much dependence we
can allow for and still have (S)LLN holding (we�ll see that the restriction on
dependence necessary for CLT are stronger than those necessary for (S)LNN).
We need some preliminary and then investigate some memory conditions

often used in the literature.

��Algebra: A family (collection) F of subsets of 
 is a ���eld (��algebra), if:
(a) the empty set (?) and 
 belong to F ; (ii) if F 2 F , then F c 2 F (F c is the
complement of F ) (iii) If fFig is a sequence of sets in F ; then [1i=1Fi 2 F :
The pair (
;F) is a measurable space whenever F is a ���eld. Any F 2 F ,

can be interpreted as an event.
Probability Measure. Let (
;F) be a measurable space. A mapping P : F ![0; 1]
is a probability measure on (
;F) ; provided: (i) P (?) = 0 and P (
) = 1; (ii)
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for any F 2 F , P (F c) = 1 � P (F ); (iii) For any disjoint sequence Fi 2 F ; i.e.
Fi \ Fj = 0 for all i 6= j; P ([1i=1Fi) =

P1
i=1 P (Fi):

The triplet (
;F ,P ) is said to be a probaility space.

Measurable Function: A function g : 
 ! R is said to be F�measurable if for
any real number a; the set [! : g(!) � a] 2 F :
Any continuous g is F�measurable.

Measure Preserving Transformation. Let (
;F ,P ) be a probability space. A
mapping � : 
 ! 
 is a measure preserving transformation if for any F 2 F ,
P (��1F ) = P (F ):
Stationarity: Given a random sequence fZtg; we say that fZtg is stationary if
for any � = :::� 1; 0; 1; ::: the joint distribution of (:::Z�1; Z0; Z1; :::) is identical
to the joint distribution of (:::Z�1+� ; Z� ; Z1+� ; :::):

Stationarity is sometime termed STRICT STATIONARITY to distinguish
it from covariance stationarity. Recall that Zt; is covariance stationary if (i)
E(Zt) = � (ii) V ar(Zt) = �2 < 1 (iii) Cov(Zt; Zt�k) = 
k: A (strictly)
stationary sequence with �nite variance is covariance stationary.

Proposition SS-1: fZtg is stationary if and and only if there exists a measure pre-
serving transformation� such that, Z1(!) = Z1(!); Z2(!) = Z1(�!); :::; ZT (!) =
Z1(�

T�1!):
Note that iid implies stationarity. Though, if we relax the independence

assumptions, the fact that fZtg is identically distributed, does NOT imply strict
stationarity. In fact, identically distributed means that the marginal distribution
of Zt is the same for all t; while strict stationarity means that the JOINT
distribution of fZtg is the same as the JOINT distribution of fZt+�g; for all � :

Ergodicity: Let (
;F ,P ) be a probability space and let fZtg be a stationary
sequence, and let � be a measure preserving transformation. Then, fZtg is
ergodic if:

lim
T!1

1

T

TX
t=1

P
�
F \�tG

�
= P (F )P (G) ;

for all F;G 2 F .

In the independent case, P (F \G) = P (F )P (G) : Can think at �tG as at
the event G shifted t periods ahead. Since P (G) = P (�tG) ; (� is measure
preserving) ergodicity means that F and �tG are independent on average in
the limit. Thus ergodicity is a form of asymptotic independence on average.

Property SS-2: If fZtg is stationary ergodic, then for any F-measurable function
g; g(:::Zt�1;Zt; Zt+1; :::) is also stationary ergodic. Note that g may be function
of the in�nite history of Zt:
SLNN for Stationary Ergodic Sequence (Ergodic Theorem)
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Let fZtg be a stationary ergodic sequence, with EjZtj <1. Then 1
T

PT
t=1 Zt

a:s:!
� = E(Z1):

Proposition SLLN-3: Let fyt;Xtg be stationary ergodic random sequences.
If E(Xi;t2) <1 for i = 1; :::k and if E(�2t ) <1; then:

(i)
1

T

TX
t=1

Xt�t
a:s:! E(X1�1)

(ii)
1

T

TX
t=1

XtX
0
t
a:s:! M; where M =E(X0

1X1)

If E(X1�1) = 0; then A-OLS-1(ii) is satis�ed. Also, if M is positive de�nite
A-OLS-1(iii) is also satis�ed.
Proof: By the same argument as in the proof of Proposition SLLN1, recalling
that if fyt;Xtg are stationary ergodic, then also XtX

0
t and Xt�t are stationary

ergodic.

Dependent and Heterogeneously Distributed Observations

We have seen that that ergodicity applies only to stationary sequences. Also,
ergodicity is a too weak memory requirement in several circumstances. For
heterogeneously distributed sequences, we need some stronger conditions, known
as mixing conditions.
��Mixing and ��Mixing: Let Bn�1 = �(:::; Zn�1; Zn) and B1n+m = �(Zn+m; Zn+m+1; :::)
and de�ne the � and � mixing coe¢ cient as:

�
�
Bn�1;B1n+m

�
= sup

fG2Bn�1;F2B1n+m:P (G>0)g
jP (HjG)� P (H)j

�
�
Bn�1;B1n+m

�
= sup

fG2Bn�1;F2B1n+m:g
jP (H \G)� P (H)P (G)j

Note that �
�
Bn�1;B1n+m

�
and �

�
Bn�1;B1n+m

�
measure the degree of depen-

dence among two events which are m�periods apart. Note that, as P (H \G) =
P (HjG)P (G); �

�
Bn�1;B1n+m

�
� �

�
Bn�1;B1n+m

�
: Now, let

�(m) = sup
n
�
�
Bn�1;B1n+m

�
and � (m) = sup

n
�
�
Bn�1;B1n+m

�
(i) If as m!1 �(m)! 0; fZtg is ��mixing (or uniform mixing)
(ii) If as m!1 �(m)! 0; fZtg is ��mixing (or strong mixing)
Note that ��mixing implies ��mixing, as for all m �(m) � �(m):

Basically a mixing random sequence is a sequence which is asymptotically
independent, i.e. two events which are m periods apart, become independent as
m!1:
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For (S)LLN and CLT hold, we need that the mixing coe¢ cient goes to zero
fast enough.

Mixing Size
For a 2 R, if �(m) = O(m�a�"); for some " > 0; then � is of size �a;

similarly if �(m) = O(m�a�"); for some " > 0; then � is of size �a:
The smaller is � the higher the dependence.

Property Mix1: If fZtg is a ��mixing process of size �a; then for any measure
function g; g(Zt; Zt+1; :::; Zt+� ); with � <1; is ��mixing of size �a; similarly
If fZtg is a ��mixing process of size �a; then for any measure function g;
g(Zt; Zt+1; :::; Zt+� ); with � <1; is ��mixing of size �a:
Thus, any measurable function of a FINITE history of a mixing process, is

mixing of the same size.

Covariance stationary ARMA processes are ��mixing with mixing coe¢ -
cient decaying at an exponential rate (therefore are said exponentially mixing),
but they are not necessarily ��mixing.

SLNN Dependent Heterogeneous Sequences (McLeish)
Let fZtg be a ��mixing sequence with size �r=(2r�1); r � 1 or a ��mixing

sequence with size �r=(r� 1); r > 1; and with E(jZtjr+�) < � <1; for � > 0:
Then, 1T

PT
t=1 (Zt � E(Zt))

a:s:! 0:

Note trade-o¤ between moments and memory conditions: the higher is r the
more dependence we allow, but at the cost of stronger moment conditions (and
less heterogeneity).
Proposition SLLN-4: Let fyt; Xtg be � (�) random sequence of size �r=(2r�
1); r � 1 (�r=(r � 1); r > 1). If E(Xi;t2(1+�)) < 1 for i = 1; :::k and if
E(�

2(1+�)
t ) <1; then

(i)
1

T

TX
t=1

(Xt�t � E(Xt�t))
a:s:! 0

(ii)
1

T

TX
t=1

XtX
0
t �MT

a:s:! 0; where MT=
1

T

TX
t=1

E(X0
tXt)

If E(Xt�t) = 0; then A-OLS-1(ii) is satis�ed. Also, if MT is uniformly positive
de�nite A-OLS-1(iii) is also satis�ed.
Proof: By the same argument as in the proof of Proposition SLLN1, recalling
that if fyt;Xtg are be � (�) random sequence of size �a, then also XtX

0
t and

Xt�t are also � (�) random sequence of size �a.
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Central Limit Theorems
We now need to �nd moments and memory conditions under which 1

T 1=2

PT
t=1Xt�t

satis�es a CLT, and so Assumption A-OLS-1(iv) is satis�ed. As we see such
conditions are slightly in stronger than those needed for the SLLN to hold. In
particular, as for the law of large numbers, in the stationary case, ergodicity
su¢ ces, but this is no longer the case for the CLT.
In the sequel, we�ll need the following result:

Cramer-Wold device
Let bT a k� 1 random vector, and let � be a k� 1 vector, such that �0� = 1

and �0bT
d! �0Z: Then bT

d! Z:
CLT are stated for scalars, then the Cramer Wold device is used to obtain

the CLT for vectors.

Identically and Independent Observations (Linderberg-Levy CLT)
Let fZtg be a iid sequence, with E(Zt) = �; V ar(Zt) = �2; with 0 < �2 <

1; then 1
T 1=2

PT
t=1

�
Zt��
�

�
d! N(0; 1):

Proposition CLT-1: Let fyt; Xtg be an independently and identically distrib-
uted random sequence. If E(Xi;t4) < 1 for i = 1; :::k and if E(�4t ) < 1; then
if E(Xt�t) = 0:

V �1=2
1

T 1=2

TX
t=1

Xt�t
d! N(0; Ik);

where V = V ar
�

1
T 1=2

PT
t=1Xt�t

�
: Thus, A-OLS-1(iv) is satis�ed.

Proof: By Cauchy-Schwarz inequality, for i = 1; :::; k E
�
X2
i;t�

2
t

�
<
�
E
�
X4
i;t

��1=2 �
E(�4t )

�
<

1: By Proposition IID-1, Xt�t is iid. For � k � 1 vector, such that �0� = 1;

V ar
�
�0V

�1=2
T

1
T 1=2

PT
t=1Xt�t

�
= 1; and Linderberg-Levy CLT, �0V �1=2T

1
T 1=2

PT
t=1Xt�t

d!

�0N(0; Ik): Thus, by the Cramer-Wold device, V
�1=2
T

1
T 1=2

PT
t=1Xt�t

d! N(0; Ik):

Heterogeneous and Independent Observations (Liapunov CLT)
Let fZtg be an independent sequence, with E(Zt) = �t; V ar(Zt) = �2t ;

E(jZt � �tj2+�) < � < 1; with � > 0; and �2T =
1
T

PT
t=1 �

2
t > �0 > 0: Then

1
T 1=2

PT
t=1

�
Zt��t
�T

�
d! N(0; 1):

In the heterogenous case, we need to have a CLT for V �1=2T
1

T 1=2

PT
t=1Xt�t;

where the summands V �1=2T Xt�t may depend on T: We need the following gen-
eralization of the theorem above,

Identically and Heterogeneous Observations (Loeve CLT)
Let fZtT g be an independent sequence, with E(ZtT ) = �tT ; V ar(ZtT ) =

�2tT ; E(jZtT � �tT j2+�) < � <1; with � > 0; and �2T = 1
T

PT
t=1 �

2
tT > �

0 > 0:

Then 1
T 1=2

PT
t=1

�
ZtT��tT

�2T

�
d! N(0; 1):
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Proposition CLT-2: Let fyt; Xtg be an independently distributed random
sequence. If E(X2(2+�)

i;t ) < � < 1; E(�2(2+�)i;t ) < � < 1; for i = 1; :::k and
some � > 0; VT is uniformly positive de�nite. Then if E(Xt�t) = 0:

V
�1=2
T

1

T 1=2

TX
t=1

Xt�t
d! N(0; Ik);

where VT = V ar
�

1
T 1=2

PT
t=1Xt�t

�
: Thus, A-OLS-1(iv) is satis�ed.

Proof: By Cauchy-Schwartz inequality, E(jXi;t�i;tj2+�) �
�
E(X

2(2+�)
i;t )

�1=2 �
E(�

2(2+�)
i;t )

�1=2
<

�: By construction, VT = 1
T

PT
t=1 var (Xt�t) : Recalling that continuous func-

tion of independent rv is independent, the desired result follows by Loeve CLT
and Cramer Wold device.

Dependent Observations.

Our objective is to provide primitive conditions on the observations, so that a
CLT applies and A-OLS-1(iv) hold.
In the case of independent conditions, CLT hold by just strengthen the moment
conditions required for the SLLN.
In the case of dependent observations, we need also to impose stronger conditions
on the allowed degree of memory. In particular, stationary-ergodicity is not an
enough strong memory requirement for ensuring a CLT to hold.
From Proposition SS1 and MIX1, we have see that Xt�t cannot have more

memory than fyt;Xtg: In fact, if fyt;Xtg is stationary ergodic, then Xt�t is
also stationary ergodic, and if fyt;Xtg is �-mixing of size �a; then Xt�t is also
�-mixing of size �a:
Nevertheless, Xt�t can display much less memory than fyt;Xg: This depends

on whether the linear model is dynamically correctly speci�ed.
Hereafter, let Ft = � (y1; :::; yt�1; X1; X2;:::Xt) :1

(Dynamic) Correct Speci�cation
The linear model yt = X0

t�
y+�t is dynamically correctly speci�ed if E(ytjFt) =

E(ytjXt) = X
0
t�
y:

Note that dynamic correct speci�cation implies correct speci�cation, but
the reverse does not hold. For example, suppose that data are generated by
a AR(2) process, i.e. yt = �0;1yt�1 + �0;2yt�2 + �t: However, i estimate a
AR(1), say yt = �y1yt�1 + �t (�0;1 6= �y1): Then, the AR1 model is correctly
speci�ed, in the sense that E(ytjyt�1) = �y1yt�1; but dynamically misspeci�ed,
as E(ytjFt) = E(ytjyt�1; yt�2) 6= E(ytjyt�1):

1Recall that Xt is k � 1; if one of its the component is yt�1; then

Ft = � (y1; :::; yt�1; X1; X2;:::Xt)

= � (X1; X2;:::Xt)
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Below we shall show that if the model is dynamically correctly speci�ed,
then Xt�t is a martingale di¤erence sequence.

Martingale Di¤erence Sequence (mds)
Let Zt be Ft�measurable random sequence, with E(Zt) = 0: Then fZt;Ftg

is called a martingale di¤erence sequence, if

E(ZtjFt) = 0

Note that a continuous function of a martingale di¤erence is NOT a martingale
di¤erence, i.e. if Zt is a mds, then Z2t is NOT mds.

Proposition DCS (dynamic correct speci�cation): If the linear model is
dynamically correctly speci�ed, then Xt�t is a martingale di¤erence sequence.
Proof:

E(�tjFt) = E(ytjFt)� E(X0
t�
yjFt)

= E(ytjFt)�X0
t�
y = 0

Now, by the law of the iterated expectations,

E(Xt�tjFt) = E (XtE(�tjFt)) = 0:

Below, we provide conditions under which A-OLS-1(iv) (CLT) hold, for dynam-
ically correctly speci�ed models, distinguishing between the stationary and the
heterogeneous case.

Proposition CLT3 (CLT for stationary martingale di¤erence sequences)
Let (yt; Xt) be a stationary ergodic sequence, with E(X4

i;t) < 1; E(�4i;t) <
1; and let fXt�t;Ftg be a martingale di¤erence sequence. Then, if V =

var
�

1
T 1=2

PT
t=1Xt�t

�
positive de�nite, then

V
�1=2
T

1

T 1=2

TX
t=1

Xt�t
d! N(0; Ik);

where VT = V ar
�

1
T 1=2

PT
t=1Xt�t

�
: Thus, A-OLS-1(iv) is satis�ed.

Proof: By a similar argument as in the proof of Proposition CLT1, as the
CLT theorem for stationary mds follows under the same conditions as the CLT
for iid.

Proposition CLT4 (CLT for heterogeneous martingale di¤erence se-
quences)
Let fXt�t;Ftg be a martingale di¤erence sequence, with E(X2(2+�)

i;t ) < � <

1; E(�2(2+�)t ) < � <1: Then, if VT = var
�
1
T

PT
t=1Xt�t

�
is uniformly positive

de�nite, then

V
�1=2
T

1

T 1=2

TX
t=1

Xt�t
d! N(0; Ik);
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Thus, A-OLS-1(iv) is satis�ed.
Proof: By a similar argument as in the proof of Proposition CLT3, as the

CLT theorem for heterogeneous mds follows under the same conditions as the
CLT for heterogeneous independent sequence.

In the case of dynamic misspeci�cation. Xt�t is no longer a martingale
di¤erence sequence, and simply inherits the same degree of dependence of the
observations fyt;Xtg:
For the case of homogeneous series, stationarity and ergodicity (regardless the
moment conditions we are willing to impose) do not su¢ ce for a CLT. Given
that, we restrict out attention to mixing sequences. We provide a general CLT
for mixing, heterogeneous observations.

CLT for heteregeneous mixing sequences (Wooldridge and White)
Let fZtT g be ��mixing sequence of size �r=2(r � 1) r > 1, or ��mixing

with size �r=(r � 2) r > 2; with E(Zt;T ) = 0; E (jZtT jr) < � < 1; r > 2;

var( 1
T 1=2

PT
t=1 Zt) = �

2
T > � > 0: Then

1
T 1=2

PT
t=1

�
Zt
�T

�
d! N(0; 1):

Proposition CLT5 (CLT for mixing sequences)
Let fyt;Xtg be a ��mixing sequence of size �r=2(r�1) r > 1, or ��mixing

with size �r=(r � 2) r > 2; with E(jXi;tj2r) < � <1 and E(j�tj2r) < � <1;
r > 2; and let VT = var

�
1

T 1=2

PT
t=1Xt�t

�
be uniformly positive de�nite. Then:

V
�1=2
T

1

T 1=2

TX
t=1

Xt�t
d! N(0; Ik);

Thus, A-OLS-1(iv) is satis�ed.
Proof: First, by CS inequality, E (jXi;t�tjr) < � <1; also

var

 
1

T 1=2
�0V

�1=2
T

TX
t=1

Xt�t

!
= �0V

�1=2
T VTV

�1=2
T � = 1;

For � 2 Rk; �0� = 1: Thus, recalling that by Proposition MIX1, Xt�t are mixing

of the same size as (yt;Xt); by theWooldrige-White CLT, �
0V

�1=2
T

1
T 1=2

PT
t=1Xt�t

d!
�0N(0; Ik); and the statement then follows by the Cramer-Wold device.
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Consistent Estimation of Asymptotic Covariance
Matrices

We have provided primitive conditions, in terms of memory and heterogene-
ity of the observations, under which V�1=2

T
1

T 1=2

PT
t=1Xt�t is asymptotically

standard normal. In practice, we do not know VT ; and we need a consistent es-
timator bVT ; i.e. such that bVT �VT = oP (1): We have seen (Theorem OLS-1(d),
Wald-1, LM-1, LRT-1) that test statistics based on VT and bVT are asymptotic
equivalent.
Now, recalling that E(Xt�t) = 0;

V ar

 
1

T 1=2

TX
t=1

Xt�t

!
=
1

T

TX
t=1

E
�
XtX

0
t�
2
t

�

+
1

T

TX
t=1

X
s 6=t

E (XtX
0
s�t�s) +

1

T

TX
t=1

X
s 6=t

E (XsX
0
t�t�s) : (17)

Now, in the case of independent observations, Xt�t is an independent sequence,
and so E (XsX

0
t�t�s) = 0 for all t 6= s:

Also, we have seen that in the case of dynamic correct speci�cation, Xt�t is a
martingale sequence, and so for s > t; by the law of the iterated expectations,

E (XtX
0
s�t�s) = E (E (XtX

0
s�t�s) jFt) = E (Xt�tE (X

0
s�s) jFt) = 0:

Therefore, in the case of either independent observations or dynamic correct
speci�cation, we can ignore all the covariance term. Therefore, we just need
to provide a consistent estimator for 1

T

PT
t=1E

�
XtX

0
t�
2
t

�
: Though, we need

to distinguish two possible cases, conditional homoskedasticity and conditional
heteroskedasticity.
Conditional Homoskedasticity: In this case, we know that E(�2t jXt) = �

2
� :
2 Now,

E
�
XtX

0
t�
2
t

�
= E

�
E
�
XtX

0
t�
2
t

�
jXt

�
= E

�
XtX

0
tE
�
�2t
�
jXt

�
= E (XtX

0
t)�

2
�

and so
1

T

TX
t=1

E
�
XtX

0
t�
2
t

�
=
1

T

TX
t=1

E (XtX
0
t)�

2
�

We state the theorem for the case of mixing observations, thus implicitely assum-
ing that we have dynamic correct speci�cation, otherwise we could not ignore
the cross terms.

Proposition Var1: Let fyt;Xtg be a ��mixing sequence of size �r=2(r � 1)
r > 1, or ��mixing with size �r=(r � 2) r > 2; with E(jXi;tj2r) < � <1 and

2Note that we are not ruling out the possibility that �t be unconditionally heteroskedastic.
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E(j�tj2r) < � < 1; r > 2: Also, E(Xt�t) = 0 and E
�
XtX

0
t�
2
t

�
= E (XtX

0
t)�

2
� :

Then, bVT � VT = oP (1)
where,

bVT =  1
T

TX
t=1

XtX
0
t

!b�2�T
VT =

 
1

T

TX
t=1

E(XtX
0
t)

!
�2�

and3 b�2�T = 1
T

PT
t=1b�2t :

Proof: Let cMT =
1
T

PT
t=1XtX

0
t and MT =

1
T

PT
t=1E(XtX

0
t):

bVT � VT =
�cMT �MT

�
�2� +MT

�b�2�T � �2��
+
�cMT �MT

��b�2�T � �2�� (18)

It su¢ ces to show that the �rst two terms on the RHS of (18) are oP (1): The
third term will then be oP (1) as a product of oP (1) is oP (1): The �rst term is
oa:s:(1); by the SLLN, given the moments and memory conditions assumed. As
for the second term,

b�2�T =
1

T

TX
t=1

b�2t
=

1

T

TX
t=1

�
�t �X0

t

�b�T � �y��2
=

1

T

TX
t=1

�2t +
�b�T � �y�0 1T

TX
t=1

XtX
0
t

�b�T � �y�
� 2
T

TX
t=1

�tX
0
t

�b�T � �y� (19)

Now, 1
T

PT
t=1 �

2
t � �2� = oa:s:(1) by the SLLN, while the last two terms on the

last equality (19) are op(1); as
�b�T � �y� = OP (T�1=2); because of the CLT.

Conditional Heteroskedasticity
We still assume that E (XsX

0
t�t�s) = 0 for all t 6= s; but we relax the

conditional homoskedasticity assumption.
Proposition Var2: Let fyt;Xtg be a ��mixing sequence of size �r=2(r � 1)
r > 1, or ��mixing with size �r=(r � 2) r > 2; with E(jXi;tj2(r+�)) < � < 1

3Note that bVT is the default estimator used by computer packages.
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and E(j�tj2(r+�)) < � <1; r > 2:Also, E(Xt�t) = 0 and V ar
�

1
T 1=2

PT
t=1Xt�t

�
=

1
T

PT
t=1E

�
XtX

0
t�
2
t

�
: Then,

bVT � VT = oP (1) (20)

where,

bVT = 1

T

TX
t=1

XtX
0
tb�2t

VT =
1

T

TX
t=1

E
�
XtX

0
t�
2
t

�
:

Note that the variance estimator de�ned in (20) is known as White Covariance
estimator.
Proof: As �t is a scalar, b�0t = b�t:

bVT =
1

T

TX
t=1

Xt�t�
0
tX

0
t

+
1

T

TX
t=1

Xt

�
�t �X0

t

�b�T � �y����0t � �b�T � �y�0Xt

�
X0
t

=
1

T

TX
t=1

Xt�t�
0
tX

0
t +

1

T

TX
t=1

XtX
0
t

�b�T � �y��b�T � �y�0XtX
0
t

� 1
T

TX
t=1

XtX
0
t

�b�T � �y�X0
t�
0
t �

1

T

TX
t=1

Xt�t

�b�T � �y�0XtXt:(21)

Given the moment conditions above, by the SLLN,

1

T

TX
t=1

Xt�t�
0
tX

0
t � VT = oa:s:(1):

Thus, it remains to show that the last three terms on the RHS of (21) are oP (1):4

We begin by considering the second term on the last equality on the RHS of

4Given a n�m matrix A = [aij ]; vec(A) = (a11; a12; :::; anm):
For B p� q; A
B is (np�mq) matrix

A
B =

0@ a11B : a1mB
: : :

a1nB : anmB

1A
Given ABC,

vec (ABC) =
�
C0 
A

�
vecB
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(21).

1

T

TX
t=1

vec
�
XtX

0
t

�b�T � �y�X0
t�t

�
=

1

T

TX
t=1

(Xt�t 
XtX
0
t) vec

��b�T � �y��
= Op(1)op(1) = op(1):

The third and fourth terms on the last equality on the RHS of (21) can be
treated in an analogous manner.

Estimation of Asymptotic Covariance Matrices in the Dynamically Misspeci�ed
Case

We now consider the case in which we have dependent observations and our
model is dynamically misspeci�ed. In this case, Xt�t is no longer a martingale
di¤erence sequence, and thus we do no loger have that E (XtX

0
s�t�s) = 0 for

t 6= s: In this case, we need to take into account the cross terms too. Recall
that, in the general case

V ar

 
1

T 1=2

TX
t=1

Xt�t

!
=
1

T

TX
t=1

E
�
XtX

0
t�
2
t

�

+
1

T

TX
�=1

TX
t=�+1

�
E
�
XtX

0
t�� �t�t��

�
+ E (Xt��X

0
t�t�t�� )

�
:

Broadly speaking as we have a sum of T 2 covariance terms divided by T; in

order to ensure that V ar
�

1
T 1=2

PT
t=1Xt�t

�
is �nite, we need conditions under

which E
�
XtX

0
t�� �t�t��

�
! 0 fast enough as � ! 1: The speed at which

the covariance terms are approaching zero, depends on the speed at which the
mixing coe¢ cient approach zero. Hereafter, with the notation kZkp we mean
(E (jZjp))1=p :

Lemma MIX (Covariance Inequality)
If for all � � 0; E(Zt+� ) = 0; var(Zt) <1; and E(jZt+� jq) <1; q � 2; for

all � � 1; then

jE (ZtZt+� )j � 2�(�)1�1=q (var(Zt))1=2 kZt+�kq

and
jE (ZtZt+� )j � 2(21=2 + 1)�(�)1=2�1=q (var(Zt))1=2 kZt+�kq

Thus, the faster the mixing coe¢ ent are going to zero, the faster the covariance
terms are going to zero.
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Intuitively, if the covariance terms approach zero fast enough, then it will be
enough to estimate say mT covariance terms, where mT ! 1 as T ! 1 but
mT goes to in�nity slow enough.
De�ne:

bVT =
1

T

TX
t=1

XtX
0
tb�2t

+
1

T

mTX
�=1

TX
t=�+1

w�T
�
XtX

0
t��b�tb�t�� +Xt��X

0
tb�tb�t��� ; (22)

where as T ! 1; mT ! 1; mT =T
1=4 ! 0; and w�T ! 1: A commonly used

weight is
w�T = 1�

�

mT � 1
:

Note that the role of the weight w�T is to ensure that the estimator is posi-
tive de�nite (Newey-West 1987). bVT is known as HAC (heteroskedasticity and
autocorrelation rrobut) covariance estimator.
The following theorem (adapted from ATE Thm 6.21) provide su¢ cient

conditions for the consistency of the HAC estimators.

Proposition Var3 (Consistency of HAC covariance estimators).
Let fyt;Xtg be a ��mixing sequence of size �r=2(r�1) r > 1, or ��mixing

with size �r=(r � 2) r > 2; with E(jXi;tj4(r+�)) < � < 1 and E(j�tj4(r+�)) <
� < 1; � > 0; r > 2: If as T ! 1; mT ! 1; mT =T

1=4 ! 0; and w�T ! 1;
then bVT � VT = oP (1);
where bVT is de�ned as in (22).
In practice one has to choose mT ; this is delicate...There are data driven

way (e.g. Andrews Econometrica 1991). Typically, one tries a few values...
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