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Abstract

We propose additive functional-based nonstationarity tests which exploit the di¤erent divergence
rates of the occupation times of a (possibly nonlinear) process under the null of nonstationarity
(stationarity) versus the alternative of stationarity (nonstationarity). We consider both discrete-time
series and continuous-time processes. The discrete-time case covers Harris recurrent Markov chains
and integrated processes. The continuous-time case focuses on Harris recurrent di¤usion processes.
The proposed tests are simple to implement and rely on tabutaled critical values. Simulations show
that their size and power properties are satisfactory. Our robustness to nonlinear dynamics provides
a solution to the typical inconsistency problem between assumed linearity of a time series for the
purpose of nonstationarity testing and subsequent nonlinear inference.
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1 Introduction

This paper suggests novel nonstationarity tests for possibly nonlinear discrete-time and continuous-time

processes. The vast literature on unit-root testing has virtually exclusively focused on linear models,

e.g., Phillips and Xiao (1998) for a review. A considerable amount of recent work has, however, been

devoted to the use of possibly highly nonlinear speci�cations to model an array of time series of interest.

In continuous-time �nance, for example, much attention has been on the use of di¤usion structures to

model interest rates and stock returns (e.g., Aït-Sahalia, 1996, Conley, Hansen, Luttmer and Scheinkman,

1997, and Pritsker, 1998, among others). A di¤usion sampled at discrete time intervals, i.e, the skeleton

of a di¤usion, is, in general, a nonlinear Markov chain. Nonetheless, the common practice is to test for

nonstationarity up-front by virtue of methods whose theoretical justi�cation hinges on linearity, as in

the Dickey-Fuller tradition and its many developments. This issue creates a fundamental inconsistency

between nonstationarity testing, which is typically conducted before inference begins, and modelling,

in the context of which nonlinear dynamics are now the norm, rather than the exception. To provide

a solution to this pervasive inconsistency problem, there is a need for nonstationarity tests which are

robust to nonlinear dynamics.

Our aim is to introduce and formalize ideas intended to �ll this important, in our view, gap in the

literature. We do so for a rather general class of Markov chains. Because the skeleton of a di¤usion is a

Markov chain, di¤usion processes are a sub-case of our broader treatment.

The intuition behind our methods goes as follows. If a process is stationary, the amount of time that

the process spends in the local neighborhood of a point diverges to in�nity linearly with the number of

observations. Under nonstationarity, the returns to open sets are rarer, thereby leading to slower rates

of recurrence which depend on the degree of nonstationarity. We employ this fundamental observation

to construct nonstationarity tests for processes in the Harris recurrent class.

Formally, let fXtgt�1 be a univariate Harris recurrent Markov chain with state space (E; E) and
unique invariant measure �. Denote the number of visits at a point x 2 D � R by

Ln(x) = #
n
t; 1 � t � n; Xt 2 lim

"!0
B" (x)

o
;

where B" (x) is an open ball of radius " centered at x. By recurrence, Ln(x)
a:s:! 1 as n!1. Null re-

current (i.e., nonstationary) and positive recurrent (strictly stationary or stationary in the limit) Markov

chains have, however, occupation times bLn(x) which diverge to in�nity at di¤erent rates. The tests that
we propose exploit the di¤erent divergence rates of the occupation times of a recurrent Markov chain

under the null of nonstationarity (stationarity) versus the alternative of stationarity (nonstationarity).

Estimating occupation times would require selecting a bandwidth parameter to capture locality. Even

though, for the class of processes discussed in this paper, the choice of the locality parameter may be

conducted as suggested by Bandi, Corradi, and Wilhelm (2011) in recent work, such a choice would

add an unnecessary layer of complication to our analysis. Importantly, additive functionals of the typePn
t=1 f(Xt), where f is a non-negative function integrable with respect to the process�invariant measure

�, are known to inherit the divergence properties of the corresponding occupation times. The divergence
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rates of
Pn

t=1 f(Xt); under di¤erent "degrees" of recurrence, have been established by Chen (1999).

We may therefore rely on the divergence rates of additive functionals of the process for the purpose of

constructing the tests. The tests combine sample conditioning with a randomization procedure. They

result in readily tabulated critical values and apply to all Harris recurrent Markov processes. In discrete

time, we explicitly cover Harris recurrent Markov chains (as in, e.g., Karlsen and Tjostheim, 2001, Guerre,

2004, and Schienle, 2008) and integrated processes (as in, e.g., Wang and Phillips, 2009a, 2009b). In

continuous time, we study the case of Harris recurrent di¤usion processes (Bandi and Phillips, 2003, and

Bandi and Phillips, 2010, for a review).

Randomized tests have �rst been suggested in series of papers by Pearson (1950), Stevens (1950), and

Tocher (1950) who combine results from independent experiments in the case of discontinuous random

variables. The basic idea is to add a uniform [0; 1] random variable to the sample observations. Suppose

we have a sample X1; ::::; Xn from a random variable X endowed with a discrete distribution. One

can then construct the continuous random variable Yi = Xi + Ui; where, for i = 1; :::; n, the Ui�s are

independent draws from a uniform distribution on [0; 1]. Another classical application of randomization

is in the context of rank tests, in the presence of ties due, for example, to the discreteness of the

underlying distribution, e.g., Hajek and Sidak (Chapter 3, 1967). In this case, one uses a supplementary

random experiment so that any possible rank assignment is drawn with equal probability. The rank test

statistic is then constructed by drawing one of the possible rank assignments. More recently, Lutkepohl

and Burda (1997) have used randomization in the context of Wald tests with asymptotically singular

covariance matrices. Speci�cally, they add a draw from a N(0;�) random vector to the (function of

the) estimated parameters. In all the papers cited above, the limiting distribution is driven by the joint

probability law of the sample and that of the added randomness, which is indeed the product of the two,

given independence. In this sense, there is no issue of sample conditioning.

A di¤erent use of randomization is that involved in the construction of conditional p-values (e.g.,

Hansen, 1996) or in Monte Carlo tests (e.g., Dufour and Kiviet, 1996). In this case, contrary to the

examples above, the actual statistic only depends on the sample of observations. However, the p-value

used to decide whether to reject or not the null hypothesis depends on added, simulated, randomness,

conditional on the sample. Typically, conditional p-values and Monte Carlo tests are used in situations

in which the statistic has a well-de�ned limiting distribution, though non-standard or dependent on

nuisance parameters.

Because of the joint presence of nonstationarity and nonlinearity, it is hardly feasible for our problem

to construct a statistic which has, if the null is true, a well-de�ned limiting distribution under the

probability law governing the sample, and which diverges under the alternative. For this reason, we

suggest a statistic which, conditional on the sample, and for all samples except a set of zero probability

measure, has a well-de�ned limiting distribution in terms of the law governing the added randomness,

and which diverges under the alternative. As explained in detail in the proof of Theorem 1 below, we can

decompose the suggested statistic into two terms. The �rst term, conditional on the sample, converges in

distribution under both hypotheses, in terms of the law governing the simulated randomness. The second
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term, for all samples under the null, converges to zero, and for all samples under the alternative, diverges.

In particular, the speed at which the second term converges to zero, or diverges, depends on the distance

between the null and the alternative hypothesis. Related approaches have been employed in other

contexts. Corradi and Swansson (2006) use randomized procedures to distinguish between unit-roots

in levels and in logs. After de�ning a (near) rate-optimal bandwidth selection method, Bandi, Corradi,

and Wilhelm (2011) employ it to bias-correct (i.e., appropriately center) the asymptotic distribution of

kernel estimates of �rst and second moments in the context of nonlinear autoregressive and cointegrating

models. Bandi, Corradi, and Moloche (2009) use it in the nonparametric estimation of continuous-time

Markov models to de�ne a feasible set in which the bandwidth needed for estimation of a speci�c

in�nitesimal moment satis�es all conditions for consistency and asymptotic zero-mean normality.

When dealing with linear unit-root processes, our approach, which relies on less information than

classical approaches for linear time series, is bound not to have the theoretical optimality, or near-

optimality, properties of autoregressive coe¢ cient-based (or t-ratio based) methods in the literature

(see, e.g., Elliott, Rothemberg, and Stock, 1996). However, robustness to nonlinear dynamics makes

our procedures particularly appealing when one is unwilling to impose a linear parametric structure

on the underlying process of interest. In the case of linear data generating processes, we compare the

size and power properties of our tests to that of standard unit-root tests. We do so for samples of

moderate magnitude. We �nd that the size of our test(s) is comparable to that of standard unit-root

tests. As expected, our tests are less powerful. However the loss of power, which varies across di¤erent

con�gurations, is overall rather mild. In other words, the price paid for robustness to nonlinearities is

small.

We start o¤ with preliminary technical notions (Section 2). Section 3 discusses additive functional-

based nonstationarity testing for Harris recurrent Markov chains. Section 4 covers the classical linear

unit-root case. Section 5 focuses on recurrent di¤usion processes. Size and power properties are examined

in Section 6. Some �nal remarks are in Section 7. Section 8 concludes. All proofs are in the Appendix.

2 Preliminary technical notions

We begin with formal assumptions on the underlying Markov process.

Assumption A. Let fXtgt�1 be a p�regular, ��irreducible Markov chain on a general state space
(E; E) with transition probability P (x;A) and invariant measure �. Let p 2 (0; 1]:1

We now introduce two results from Chen (1999) which will be employed, in what follows, to derive

our tests.

Proposition 1 (Chen, 1999, Theorem 2.3.) Let fXtg ; t � 1; be a p�regular Harris recurrent chain.
For every nonnegative function f 2 L1(E; E ; �), the additive functional

Pn
j=1 f (Xj), when standardized

1As said, the case p = 1; with the addition of some innocuous regularity conditions, corresponds to the case of positive
recurrent (or strictly stationary) chains.
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by �(n) = L(n)np with L(n) slowly-varying at in�nity and 0 � p � 1; satis�esPn
j=1 f (Xj)

�(n)
) (mlp)

Z
f(x)�(dx);

where mlp is the Mittag-Le er density with the same parameter p:

Proposition 2 (Chen, 1999, Theorem 2.4.) Let fXtg ; t � 1; be a p�regular Harris recurrent chain.
De�ne L2� = log logmax f�; eeg with � � 0. For every nonnegative function f 2 L1(E; E ; �), the
additive functional

Pn
j=1 f (Xj), when standardized by �

�
n

L2a(n)

�
L2a(n) with �(n) = L(n)np, L(n)

slowly-varying at in�nity and 0 � p � 1; satis�es

lim sup
n!1

Pn
j=1 f (Xj)

�
�

n
L2�(n)

�
L2�(n)

=
�(p+ 1)

pp(1� p)1�p
Z
f(x)�(dx) a:s:;

where one should interpret pp = (1� p)1�p = 1 if p = 0 or 1:

Proposition 1 provides a weak convergence result for additive functionals of recurrent Markov chains.

As n ! 1, the standardized additive functional
Pn

j=1 f (Xj) converges to a re-scaled Mittag-Le er

random variable with parameter p consistent with the regularity of the underlying process. If p = 0, the

Mittag-Le er density reduces to the exponential density and the limit distribution of the additive func-

tional is that of an exponential random variable with parameter
Z
f(x)�(dx). If p = 1, the Mittag-Le er

density is degenerate and
Pn
j=1 f(Xj)

�(n) =
Pn
j=1 f(Xj)

n

p!
Z
f(x)p(dx). As is well-known, this convergence

is also with probability one. Proposition 2 provides strong increasing rates for additive functionals.

Naturally, the number of times that the process fXtgt�1 visits a given set A 2 E with 0 < �(A) < 1
can be obtained by replacing f with 1A, the indicator function of the set A. Thus, Proposition 1 and 2

also provide the weak and strong rate of divergence of the occupation times of positive-recurrent (p = 1)

and null-recurrent (p < 1) chains. The class of p� regular Markov chains is rather broad. For example,
the �� recurrent Markov chains studied by Karlsen and Tjostheim (2001) are indeed p� regular with

p = �: Similarly, the skeleton of a nonlinear di¤usion process is, in general, a p� regular chain.

3 Additive functionals-based nonstationarity tests

Propositions 1 and 2 will be used below to justify novel nonstationarity tests. They readily imply that,

in the positive recurrent case p = 1; 1n
Pn

j=1 f (Xj)
a:s:! E(f(X)) > 0 as n ! 1; whereas in the null

recurrent case p < 1; 1n
Pn

j=1 f (Xj)
a:s:! 0 as n!1:

Of course, one cannot distinguish between p = 1 and p < 1 for any �xed sample size n. Any

testing argument should therefore hinge on asymptotic statements. This is indeed the same situation

occurring in the linear case when the goal is to discriminate between I(0) processes and I(1) processes

using the fact that partial sums of I(0) processes satisfy a functional central limit theorem (FCLT).

Kwiatkowski, Phillips, Schmidt and Shin (1992), KPSS henceforth, for example, test the null of I(0)
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versus the alternative of I(1): Breitung (2002) tests the null of I(1) versus the alternative of I(0): Müller

(2008) discusses the di¤erence between setting a null of I(0) versus a null of I(1), or vice versa.

It will be clear in what follows that we can choose the null as being stationarity (as in KPSS, 1992)

or nonstationarity (as in Breitung, 2002). Similarly to the KPSS test statistic, but di¤erently from the

Breitung statistic which converges to zero under the alternative, the proposed statistic will converge in

distribution under the null and will diverge under the alternative.

Because of nonlinearity, we have considerably less information than in the approaches mentioned

above. In particular, we only know that 1
n

Pn
j=1 f (Xj) has a strictly positive almost-sure limit under

positive recurrence and has a zero almost-sure limit under null recurrence. Thus, we cannot rely on a

FCLT and derive well-de�ned limiting distributions under the probability law governing the sample. To

overcome this issue, which is really a by-product of the mild assumptions that we impose on the dynamics,

we rely on a testing procedure based on the joint use of sample conditioning and randomization. While

the approach relates to those in Corradi and Swansson (2006), Bandi, Corradi and Moloche (2009) and

Bandi, Corradi and Wilhelm (2011) in other contexts, our focus on nonstationarity testing leads to

di¤erent randomized statistics to which we now turn.

3.1 Null of nonstationarity

We wish to test the null hypothesis

H0 : p � p < 1

against the alternative

HA : p = 1:

It is immediate to see that our null is "larger" than the usual null of a unit root, which may be stated as

p = 1=2: Under some additional regularity assumption, p can be estimated. However, its estimator would

only converge at a logarithmic rate (see Remark 3.7 in Karlsen and Tjostheim, 2001). Furthermore, no

limiting distribution result for the estimated p has been established so far. Hence, a t-ratio based test is

currently not viable.

We suggest the following randomized statistic:

VR;n =
2p
R

RX
j=1

 
1

(
�j � �

 Pn
j=1 f (Xj)

n

!)
� 1
2

!
; (1)

where f is non-negative, ��integrable function on E; �(x) is a positive monotonic function such that
�(x) ! 0 as x ! 0 and the �js are a set of standard normal draws (1 � j � R). The sample size of

the simulated series, R, is chosen in such a way as to guarantee that
p
R�
�
bp(n)
n

�
! 0 with bp(n) =�

n
log log(L(n)np)

�p
L
�

n
log log(L(n)np)

�
log log(L(n)np) and L(n) is a slowly-varying function at in�nity. It is

important to note that the upper bound of the value of p under the null, i.e. p; plays no role in the

construction of the statistic.2 Nevertheless, it plays a role in determining the rate at which the sample
2This is contrast with fractional Dickey-Fuller tests, in which the statistic depend on both the fractional di¤erencing

parameter under the null and under the alternative, see Dolado, Gonzalo and Mayoral (2002).
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size of the simulated randomness R can grow relative to n: The further p is from 1; and so the further the

null and the alternative are, the faster R can grow. Intuitively, given a sample size n; the more distant

the null and the alternative, the more we are able to discriminate between the two hypotheses.

In what follows, the symbols P � and d� denote convergence in probability and in distribution under

P �; which is the probability law governing the simulated random draws �j ; conditional on the sample.

Also, E� and Var� denote the mean and variance operators under P �. Furthermore, the notation a:s:�P
is used to mean "for all samples but a set of measure 0:"

The logic underlying the statistic in Eq. (1) is as follows. We can decompose VR;n into two terms:

VR;n =
2p
R

RX
j=1

 
1

(
�j � �

 Pn
j=1 f (Xj)

n

!)
� E�

 
1

(
�j � �

 Pn
j=1 f (Xj)

n

!)!!

+2
p
R

 
E�

 
1

(
�j � �

 Pn
j=1 f (Xj)

n

!)!
� 1
2

!
: (2)

The �rst term on the right-hand side of Eq. (2) converges in distribution to a normal random variable un-

der P � regardless of which hypothesis is satis�ed. Speci�cally, it converges to a standard normal random

variable under the null. Under H0; �
�Pn

j=1 f(Xj)

n

�
a:s:! 0; at speed �

�
bp(n)
n

�
where, up to a slowly-varying

term, bp(n)
n � np�1: Thus, for all samples, under the null, the second term is Oa:s:

�p
R�
�
bp(n)
n

��
=

oa:s: (1) for all p � p < 1; provided
p
R�
�
bp(n)
n

�
! 0: Under HA, �

�Pn
j=1 f(Xj)

n

�
a:s:! � (E(f(X))) > 0;

hence, for all samples, under the alternative,
�
E�
�
1
n
�j � �

�Pn
j=1 f(Xj)

n

�o�
� 1

2

�
> 0 and the second

term on the right-hand side of Eq. (2) diverges at rate
p
R: In light of these observations, it is clear that

the optimal choice of number of random draws R is to let it grow at rate ��2(1+")
�
bp(n)
n

�
with " > 0

arbitrarily small. When doing so, however, if p < p < 1; then the second term diverges, leading to the

wrong conclusion that the chain is positive recurrent.

The following theorem establishes the limiting behavior of VR;n:

Theorem 1. Let Assumption A hold, f be non-negative and such that f 2 L1(E; E ; �); and let � (x) be
monotonically-decreasing to zero as x! 0. Also, let bp(n) =

�
n

log log(L(n)np)

�p
L
�

n
log log(L(n)np)

�
log log(L(n)np);

with L(n) slowly-varying at in�nity. If, as R;n!1;
p
R�
�
bp(n)
n

�
! 0;

(i) Under H0;

VR;n
d�! N(0; 1) a:s:� P:

(ii) Under HA; there are constants c1; c2 > 0 so that

P �
�
R�1=2+c1VR;n > c2

�
! 1 a:s:� P:

Noting that the second term on the right-hand side of Eq. (2) cannot be negative, we should perform

a one-sided test, rejecting at level �%; whenever VR;n is larger than the (1� �)-percentile of the standard
normal random variable. Contrary to classical nonstationarity tests of the Dickey-Fuller type, the critical

values of the test are readily tabulated being those of a standard normal random variable.
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The implementation of the test requires a choice of �(:) and f(:). The choice of the function �(:)

determines a �nite sample trade-o¤ between size and power. The faster �(x) decreases to zero as x! 0,

the better the �nite sample size, the worse the �nite sample power. In practice, as illustrated in the

Monte Carlo section, the natural choice is a power function. Needless to say, the larger the sample

size, the less important the choice of �(:): The choice of the non-negative function f(:) depends on the

sub-class of processes being considered. It has to be such that integrability with respect to the invariant

density of the process is satis�ed. The indicator function of a compact set surely satis�es the positivity

and the integrability requirement. Though, in practice this is not the best choice, as it leaves with

the selection of a compact set to use. In the case of random walks (more on this in Section 4), any

non-negative function which is integrable with respect to the Lebesgue measure may, in principle, be

employed. In �nite samples, however, di¤erent integrable (with respect to �) functions may perform

di¤erently, thereby requiring care for implementation. In Section 6, we further discuss these issues.

Finally, it is worthwhile to point out the analogies and the di¤erences between the wild bootstrap

and our joint use of randomization and sample conditioning. Wild bootstrap statistics are constructed

using sample observations as well as simulated randomness. By drawing B simulated samples of the

same size as the actual sample size, one may construct B wild bootstrap statistics and their empirical

distribution. The (possible) rejection of the null hypothesis at level �% is then based on the comparison

of the actual statistic and the (1 � �)-percentile of the wild bootstrap empirical distribution. In our

case, instead, we draw only one random sample of size R. We then construct one statistic based on the

R random draws and on the n sample observations. The statistic is then compared to the critical value

of a standard normal. The wild bootstrap is used in situations in which the statistic has a well-de�ned

limiting distribution in terms of the probability law governing the sample. This is not our case. Wild

bootstrap critical values are used either to deal with the presence of nuisance parameters (as in Hansen,

1996) or to obtain higher order re�nements over asymptotic critical values (as in Davidson and Flachaire,

2008, and Gonçalves and Meddahi, 2009).

3.2 Null of stationarity

By switching the hypotheses in Section 3.1, we may also test the null of positive recurrence

H 0
0 : p = 1

against the alternative of null recurrence

H 0
A : p � p < 1:

Let, again, f be a non-negative, ��integrable function on E. We suggest the following statistic

eVR;n(p) = 2p
R

RX
j=1

 
1

(
�j � �

 
bp(n)Pn

j=1 f (Xj)

!)
� 1
2

!
; (3)
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where bp(n) and �(x) are de�ned as in the previous subsection, and the �j�s is a set of standard normal

draw (1 � j � R). The sample size of the simulated series, R, is chosen in such a way as to guarantee

that
p
R�
�
bp(n)
n

�
! 0; as before.

It is important to note that, contrary to our earlier results, the parameter p controlling the distance

between the null and the alternative hypothesis is now used in the construction of the statistic as well

as to determine the rate of growth of R: As in the case of VR;n; eVR;n can also be decomposed into
two terms. The �rst term converges in distribution under P �, regardless of whether H 0

0 or H
0
A is true.

The second term, which depends only on sample observations, converges to zero at rate
p
R�
�
bp(n)
n

�
;

for any sample generated under the null, and diverges at rate
p
R for any sample generated under the

alternative. Not surprisingly, the speed at which the second term approaches zero under H 0
0, or diverges

under H 0
A, increases the further the two hypotheses are. As for the �rst term, which depends on both

simulated randomness and sample observations, it converges to a normal random variable under P � for

any sample. Finally, the test has power against closer alternative, i.e., p < p < 1; provided R is such

that
p
R�
�
bp(n)
bp(n)

�
!1:

Theorem 2. Let Assumption A hold, f be non-negative and such that f 2 L1(E; E ; �); and let � (x) be
monotonically-decreasing to zero as x! 0. Also, let bp(n) =

�
n

log log(L(n)np)

�p
L
�

n
log log(L(n)np)

�
log log(L(n)np);

with L(n) slowly-varying at in�nity. If, as R;n!1;
p
R�
�
bp(n)
n

�
! 0;

(i) Under H0; eVR;n d�! N(0; 1) a:s:� P:

(ii) Under HA; there are constants c1; c2 > 0 so that

P �
�
R�1=2+c1 eVR;n > c2

�
! 1 a:s:� P:

Again, we reject the null at �% if eVR;n is larger that the (1 � �)�percentile of the standard normal
distribution.

4 Unit roots

We now turn to the most classical modelling approach in the literature, namely linear integrated

processes. In the case of martingale di¤erence series errors, linear integrated process are, in fact, 12�
regular recurrent Markov chains. Hence, the statements of Theorem 1 and 2 immediately apply with

p = p = 1
2 : On the other hand, in the linear case, we can dispense with the Markov assumption and can

still apply the test outlined in the previous section under Assumption B below.

Assumption B. Let fXtgt�1 satisfyXt = �Xt�1+�t where �t is ��mixing with size�(4(4+))=;  > 0;

and E
�
j�tj2(4+)

�
� C1 < 1: Also, there exists 0 < !20 < 1 so that

����T�1E��Pm+T
k=m+1 �k

�2�
� !20

���� �
C2T

� with  > 0 and C2 independent of m:
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Assumption B is rather standard. It controls the degree of memory and heterogeneity of the inno-

vation sequence. The null and the alternative hypothesis may also be cast in a familiar framework. We

test for nonstationarity

H 00
0 : � = 1

versus stationarity

H 00
A : j�j < 1:

Theorem 3. Let Assumption B hold, f be non-negative and such that f 2 L1(E; E ; �), and �(x) be

monotonically decreasing to zero as x! 0. Also, let R;n!1 and
p
R�
�p

n log logn
n

�
! 0:

(i) Under H 00
0 ;

VR;n
d�! N(0; 1) a:s:� P:

(ii) Under H 00
A; there are constants c1; c2 > 0 so that

P �
�
R�1=2+c1VR;n > c2

�
! 1 a:s:� P;

where VR;n is de�ned as in Eq. (1).

One may again switch the hypotheses above and perform a test of stationarity versus nonstationarity

under Assumption B, and a linear data-generating process, using the statistics eVR;n �12� de�ned in Eq.
(3) provided

p
R�
�p

n log logn
n

�
! 0:

As discussed above, because of their reliance on more limited structure, in the case of linear data-

generating processes, our tests do not share the optimality against n-local alternatives which standard

tests (such as the Dickey-Fuller test or Phillips�Z test) have. In Section 6, we show that the actual

power loss can be minimal in practise.

5 Di¤usion processes

The skeleton of a di¤usion, i.e. a di¤usion sampled at discrete time intervals, inherits the recurrence

properties of the underlying continuous-time process (Meyn and Tweedie, 1993). Hence, the tests out-

lined in Sections 3 and 4 should, in principle, be applicable to widely-used continuous-time processes

sampled discretely. However, if high-frequency observations on the process are available, one may wish to

use them, rather than just resort to a low-frequency skeleton. In this section, we formalize this intuition.

Consider a di¤usion process fXt : t � 0g de�ned as the unique, strong solution to dXt = �(Xt)dt+

�(Xt)dBt on A = (l; u), where fBt : t � 0g is a standard Brownian motion.
De�ne t�x = inf ft � 0jXt 2 lim"!0B" (x)g, the �rst crossing time of the level x. It is known that, if

P (t�x < 1jX0 = a) = 1, for all a and x in A, the process is recurrent. Speci�cally, it is null recurrent
if E(t�xj X0 = a) = 1 for all a and x in A. Alternatively, if E(t�xj X0 = a) < 1, the process is positive
recurrent.

We assume recurrence. In terms of the shape of the drift and di¤usion function �(:) and �(:),

the process is recurrent if, and only if, limb!l S(b) = �1 and limb!u S(b) = 1, where S(b) =
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R b
c exp

nR x
c

h
�2�(s)
�2(s)

i
ds
o
dx (with c 2 A) is the so-called scale function. Positive recurrence requires

the speed (or invariant) measure m(dx) = 2dx
S0(x)�2(x) = �(dx) to be integrable over A, i.e., m(A) =R

Am(x)dx <1. In this case, the stationary density of the process is p(x) =
m(x)
m(D) for x in A. We refer

the reader to Bandi and Phillips (2010) for further discussions.

Assume the process Xt is observed at discrete points ft1; t2; ::; tng in the time interval [0; T ] with
T � T0, where T0 and T are positive constants. Also, assume the data is equispaced.

Then, fX�n;T ; X2�n;T ; X3�n;T ; :::; Xn�n;T g are n observations, i.e., the di¤usion�s skeleton, at ft1 =
�n;T ; t2 = 2�n;T ; t3 = 3�n;T ; :::; tn = n�n;T g with �n;T = T=n: In the limit, let n ! 1; T ! 1; and
�n;T = T=n! 0.

As in the previous section, we work with additive functionals. For a ��integrable, non-negative
function f(:), we have

�n;T

nX
i=1

f
�
Xi�n;T

� a:s:� Z T

0
f(Xs)ds;

uniformly in T as �n;T ! 0. Further, Theorem 3.1 in Löcherbach and Loukianova (2009) implies that

lim sup
T!1

R T
0 f(Xs)ds

v
�

T
L2(v(T ))

�
L2(v(T ))

= CX

Z 1

�1
f(Xs)�(ds)

where CX > 0 is a process-speci�c constant, v(T ) = E'

�R T
0 f(Xs)ds

�
� T p log(T ) for any initial

measure ', and L2(v(T )) = L2� = log logmax f�; eeg with � � 0. Thus,

lim sup
T;n!1

�n;T
Pn

i=1 f
�
Xi�n;T

�
v
�

T
L2(v(T ))

�
L2(v(T ))

= CX

Z 1

�1
f(Xs)�(ds)

with �n;T ! 0.

We can now proceed as earlier. Under null recurrence (H0 : p < 1):

�n;T
Pn

i=1 f
�
Xi�n;T

�
T

= Oa:s:

�
bp(T )

T

�
= oa:s:(1):

where bp(T ) = v
�

T
L2(v(T ))

�
L2(v(T )). Under positive recurrence (HA : p = 1),

�n;T
Pn

i=1 f
�
Xi�n;T

�
T

= Oa:s: (1) .

De�ne now the statistics

VR;n;T =
2p
R

RX
j=1

 
1

(
�j � �

 
�n;T

Pn
i=1 f

�
Xi�n;T

�
T

!)
� 1
2

!
;

where the �js are, as earlier, R standard normal draws. We have the following:
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Theorem 4. Let Xt; t 2 R+ be a p-null recurrent di¤usion process. Let f be non-negative and such that
f 2 L1(E; E ; �) and �(x) be a monotonically-decreasing to zero as x! 0. Assume R;n; T !1, �n;T =

T=n! 0. Also, assume
p
R�
�
bp(T )
T

�
! 0 with bp(T ) =

�
T

log log(L(T )T p)

�p
L
�

T
log log(L(T )T p)

�
log log(L(T )T p)

and L(T ) slowly-varying at in�nity. Then,

(i) Under H0 : p � p < 1;

VR;n;T
d�! N (0; 1) a:s:� P:

(ii) Under HA : p = 1; there are constants c1; c2 > 0 so that

P �
�
R�1=2+c1VR;n;T > c2

�
! 1 a:s:� P:

Note that the admissible divergence rate of the number of random draws R should now depend on the

time span T rather than on the number of observations (n) in the sample.

6 Size and power

We consider 5% level tests and simulate three data generating processes.

Model I A classical autoregressive process, viz.

Xt = �Xt�1 + ut:

We set x0 = 0 and let ut be i.i.d. N(0; �2) with three values of �, namely 1, 100, and 0:01. Under

H0 : � = 1 the invariant measure of the process �(dx) � dx:

Model II An a¢ ne di¤usion process with �(x) = �(� � x) and �(x) = �, viz.

dXt = �(��Xt)dt+ �dWt:

We set � = 0, x0 = 0, and � =
p
0:008742. The process is simulated after discretization using

a classical Milshtein scheme. The case � = 0 gives null recurrence of the unit-root type. Under

H0 : � = 0, the invariant measure is, again, �(dx) � dx.

Model III A "natural scale" di¤usion with �(x) = 0 and �(x) = �(1 + x2) , viz.

dXt = �(1 +X2
t )
dWt:

We set � = 1. Again, the process is simulated after discretization using a Milshtein scheme. For

 � 1
2 the process is null-recurrent. For  > 1

2 the process is positive-recurrent. The invariant

measure is �(dx) � dx
(1+x2)2

.

In order to preserve the conditioning on the sample, we simulate a speci�c sample and calculate

1; 000 statistics (conditional on that sample) based on 1; 000 draws of an R-vector of standard normal

12



draws. This procedure gives us one rejection frequency, conditional on the sample. The same method is

implemented multiple times (100 times) before averaging the rejection frequencies across the 100 samples.

In the case of Model I, in agreement with much existing work on unit-root testing, results are based

on samples of moderate length. We set n equal to 500 and increase the sample size to n = 1; 000 to

evaluate the impact of this increase. In the case of Model II and Model III, we set the sample size equal

to n = 5; 000. This larger sample size is typical of the continuous-time �nance literature in which the

proposed models have been estimated. It corresponds to 40 years of daily data. The quantity R is set

equal to 1; 000 but is sometimes extended to 10; 000 to assess the gain in power, and the corresponding

loss in size, of an increase in the number of random draws. The functions �(x) and f(x) are set equal

to x�; for some � > 0, and 2
1+x2

, respectively. The choice of f(x) guarantees �-integrability in all three

cases. We focus on a nonstationary null. As discussed, the test is immediate to code up and hinges on

tabulated critical values, i.e., those of the standard normal distribution. We compare it to the classical

Dickey-Fuller test as well as to Phillips�Z test (Phillips, 1987). The latter is computed using a Parzen

kernel and an AR(1) �lter to estimate the spectrum.

6.1 Results

Even though the asymptotic properties of the test are not a¤ected by the choice of �(:) and f(:); provided

these functions satisfy the conditions listed in the theorems, �nite sample performance is naturally

in�uenced by these choices and requires care. While a complete discussion of these issues is beyond the

scopes of the present paper, we intend to give the reader general principles about how to implement the

test in practise.

We begin with Model I (Table 1 and 2). We set � = 5, thereby obtaining �(x) = x5. It is intuitive that

a small �2 may easily translate into an oversized test. Similarly, a large �2 will likely translate into an

undersized test. The reason for this is that a small �2 will result in observations which do not move away

from 0 fast enough in a small sample, thereby yielding values of 2
1+x2

which remain in a neighborhood

of about 2. This means that
Pn

j=1
1

1+X2
j
may grow roughly with the sample size and lead to rejections

of the null, even if � = 1. Conversely, a large �2 will make the process drift away from 0 quickly even in

a small sample, thereby yielding small values of 2
1+x2

and, hence, excessively "nonstationary" dynamics

in a �nite sample, even when j�j < 1. To this extent, in order to eliminate the �nite sample impact of

the shocks�variance, we �rst standardize the data by the (estimated) standard deviation of the shocks.

This is going to lead to 2
1+x2

values which, in light of the unit variance properties of the standardized

data, will be in the vicinity of 1 when the data is stationary and will be closer to zero under the null.

As we show below, the proposed correction achieves a �nite sample invariance to the shocks�variance

which mirrors the asymptotic invariance of the proposed tests as well as that of more classical tests for

unit roots.

Table 1 reports size and power for alternative choices of �2. Size is very satisfactory. As expected

in light of the superior e¢ ciency of classical unit root tests in the context of linear processes, power is

a bit smaller than for the existing tests. Increases in the number of random draws R (from 1; 000 to
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10; 000, in our case) will, however, yield slight size distortions but substantial power increases leading

to an overall performance which is comparable to that of extant, popular alternatives (Table 2). As

expected, increasing the number of observations leads, in general, to superior performance across the

board. The obvious size improvements might, however, be accompanied by slight deteriorations in power

for very close alternatives (see Table 2).

We now turn to Model II (Table 3). We only report the case �2 = 0:008742, which is typical of the

literature on short-term interest rate estimation using daily data in continuous time (see, e.g., Pritsker,

1998). As done in the case of Model I, in order to improve �nite sample performance, relying on the

linearity of the data generating process, we standardize the data by the estimated shocks� standard

deviation. Alternative values of �2 could therefore be handled similarly and would yield, as for Model

I, identical results. The integrable function f(x) is set equal to 2
1+x2

, as earlier. We employ n = 5; 000,

a typical sample size in the continuous-time literature, and set, as before, R = 1; 000. The coe¢ cient

� is now chosen equal to 3, rather than 5. The reason for this modi�cation has to do with the larger

sample size. If the sample is large, the function �(:) will play less of a role. Asymptotically, in fact, one

could even dispense with �(:) or, equivalently, set � = 1 if assuming that �(:) is a power function. Said

di¤erently, the smaller the sample size, the faster �(:) has to go to zero to aid the asymptotics. The

larger the sample size, the more ine¤ective the function �(:) has to be in order to avoid undersizing and

power losses. Said di¤erently, if assuming a power function, we advocate decreasing the size of � as n

increases. In the case of Model II, we vary � to assess size and power. The implied, given choices of �,

autoregressive parameters are reported in the last line of Table 3. The results are analogous to those

derived from Model I. The test is properly sized, but is less powerful, than classical alternatives in the

literature. Both the Dickey-Fuller test and Phillips�Z test have very high power for local alternatives

(� = 2) given the assumed sample size. Needless to say, an increase in the number of random draws R

would increase the power of the proposed test, as earlier, while determining some size deterioration.

Table 4 reports results for a nonlinear alternative, i.e., Model III. The parameter  controls, in this

case, the stationarity properties of the process. If 0 <  � 0:5, the process is null recurrent. It is

positive recurrent if  > 0:5. This is a case of volatility-induced stationarity, a speci�cation introduced

in the context of interest modelling in continuous time (Conley, Hansen, Luttmer and Scheinkman,

1997). We assess size by setting  equal to 0:1 and 0:2 and power by setting  equal to 0:6, 0:7, and

0:8. In agreement, again, with the continuous-time literature and Model II, the sample size is 5; 000

observations. The number of random draws is 1; 000. The parameter � is, again, equal to 3. We �nd

that traditional tests have very little power in this case. This is true across the board, not only for

local alternatives ( = 0:6). Consistent with this observation, the autoregressive parameter is always

estimated at values that are extremely close to 1. Conversely, the additive-functional based test is only

slightly oversized but has extremely high power. This result is striking and points to the inability of

traditional coe¢ cient-based tests to adapt to nonlinear structures in the data. We �nd, for instance,

that with ten times as many observations (namely, with a sample size of 50; 000 observations) the local

power of the Dickey-Fuller test would still be around 30%. This is in sharp contrast with the 63:2%
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rejection probability of the test that we propose for a more realistic sample size of 5; 000 observations.

7 Final remarks

As we emphasize above, the tests are asymptotically invariant to the magnitude of the process�shocks.

They are, however, not invariant in �nite samples since the scale of the function f(:) depends on the

variability of Xt. While in the nonlinear case one does not have, in general, a clean way to standardize

the data using the estimated variance of the process� shocks, it may still help to re-scale Xt by a

nonparametric estimator of its conditional variance suitably averaged over the evaluation points in order

not to alter the regularity properties of the chain. The conditional variance may be identi�ed along the

lines of Bandi, Corradi, and Wilhelm (2011) who, for classes of discrete-time models analogous to the ones

covered in this paper, discussed consistency and asymptotic normality of a nonparametric conditional

variance estimator without requiring assumptions on the degree of recurrence (for the continuous-time

case, we refer to Bandi and Phillips, 2003).

There are alternative ways in which randomized nonstationarity tests can be constructed. The issue

of �nite sample invariance should have implications for the construction of the tests in the presence

of alternative, possible, test speci�cations. It should also in�uence empirical implementations for any

chosen speci�cation.

We start with the former, i.e., test construction. As pointed out by a referee, whom we thank,

a statistic having a normal limiting distribution under the null, and diverging under the alternative,

conditionally on the sample, could, for instance, also be de�ned as

V R;n = � +
p
R�

0@ 1
n

nX
j=1

f(Xj)

1A ;

where � is a simulated N(0; 1) draw. Because
p
R�
�
1
n

Pn
j=1 f(Xj)

�
is almost surely zero under H0;

provided R = o
�
��2

�
bp(n)
n

��
, and diverges almost surely under HA; V R;n has the same asymptotic

properties as VR;n: The advantage of V R;n is that � is exactly normal, rather than asymptotically normal

as the �rst term in Eq. (2). Such a statistic, which is logically identical to the one we propose, is

easy to compute, provides additional intuition for the identical conditions on R and �(:) illustrated in

the theorems, and complements our proposed VR;n: However, due to the fact that both size and power

depend on the magnitude of �
�
1
n

Pn
j=1 f(Xj)

�
for a �nite n, we believe that the �nite sample scale of

f(:) will a¤ect V R;n more severely than VR;n. Simulations, not reported here for conciseness, show that

- for the same choices of R, �(:), and f(:) - V R;n is oversized as compared to VR;n. The reason for this

outcome is that the relative impact of the magnitude of �
�
1
n

Pn
j=1 f(Xj)

�
on VR;n is attenuated by the

use of the indicator function. The component which multiplies
p
R in VR;n is, in fact, between 0 and 1

2 ,

whereas the component multiplying
p
R in V R;n is also positive and, in theory, arbitrarily large.3 In this

3 In the unit-root case (Model I) above, for example, �
�

1p
n

Pn
j=1 f(Xj)

�
�
�R1

�1 f(x)�(x)dx
��

� (C�)�, for an

unrestricted C > 0, where � in the last expression denotes the number �, if f(x) � 1
1+x2

and �(x) � x�, since �(dx) � dx.
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sense, we conjecture that V R;n is, in general, more sensitive than VR;n to scaling issues and the related

selection of �(:) and f(:). Hence, it is less preferable in practise.

We now turn to implementation. The choice of �(:); f(:) and R is important and non trivial. It is a

price to pay to handle nonlinear dynamics. As outlined above, one may set �(x) = x�; where � ranges

between 2 and 5, say, with a preference for a smaller � the larger the sample. Provided �-integrability

is guaranteed, the choice of f(x) may not be limited to the class of functions a
1+x2

; with a > 0, used in

our Monte Carlo exercise. As emphasized above, re-scaling the data and selecting an appropriate f(:),

so as to attenuate �nite sample scaling issues for a smaller sample size, appear important. As for R; one

needs
p
R�
�
bp(n)
n

�
! 0, asymptotically, for correct sizing. The larger R; the higher power is. Hence, in

principle, one should select R � ��(2�")
�
bp(n)
n

�
, with " > 0 as small as possible. The focus of this paper

is on laying out ideas and providing preliminary recommendations for implementation. The design of

adaptive rules to select �(:); f(:) and R is important and will be the subject of future work.

8 Conclusions

A great deal of work in econometrics, particularly in �nancial econometrics, has been focusing on nonlin-

ear models. Stationarity is often tested up-front, and subsequently invoked if supported by classical tests,

as a way to justify inferential procedures which rely on it either for identi�cation or to derive limiting

results. This sequential approach is pragmatic and defensible. However, it generates a theoretical in-

consistency between the use of classical stationarity/nonstationarity tests, which assume linearity before

inference begins, and subsequent nonlinear inference. To address this issue, this paper introduces, and

formalizes, initial ideas for nonstationarity testing based on sample conditioning and randomization. We

show how randomization and conditional inference can be jointly put to work to derive nonstationarity

tests which are robust to nonlinearities of unknown form. In particular, we show how one may handle

situations in which well-de�ned parameter-based nonstationarity tests, as in the unit-root tradition, can

not be derived.

While randomization has some history in statistics, its use for occupation density-based nonstation-

arity testing is, to the best of our knowledge, novel. We use it here to evaluate relative "magnitudes,"

namely the magnitude of sums of integrable functions of the data as compared to the magnitude of the

sample size itself. We show that, when properly conducted, this comparison will give us information,

under mild assumptions, about stationary/nonstationarity behavior irrespective of the linearity proper-

ties of the underlying data-generating process. Much remains to be done. While the class of processes

which we evaluated is wider than that covered by classical unit-root tests, it now seems important to

broaden the scope of application further.
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9 Appendix

Proof of Theorem 1. Given Assumption A, by Proposition 2,

lim sup
n!1

Pn
j=1 f (Xj)

bp(n)
=

�(p+ 1)

pp(1� p)1�p
Z
f(x)�(dx) a:s:;

where bp(n) =
�

n
log log(L(n)np)

�p
L
�

n
log log(L(n)np)

�
log log(L(n)np). Hence, under the null of p < 1;

Pn
j=1 f(Xj)

n =

Oa:s:

�
bp(n)
n

�
= oa:s:(1): First, note that for all j; conditional on the sample, vj;n =

�j

�

�Pn
j=1

f(Xj)
n

� d� N

0@0; 1

�2
�Pn

j=1
f(Xj)
n

�
1A :

Let


n =

(
! : ��1

 Pn
j=1 f (Xj)

n

!
> " > 0

)
so that, under H0; P (limn!1
n) = 1. We shall proceed conditional on ! 2 
n: We obtain

VR;n =
2p
R

RX
j=1

(1 fvj;n � 1g � E� (1 fvj;n � 1g)) +
2p
R

RX
j=1

�
E� (1 fvj;n � 1g)�

1

2

�
;

where E� (1 fvj;n � 1g) = 1=2 + P � (0 � vj;n � 1) : Now,

P � (0 � vj;n � 1)

=
1�

2���2
�Pn

j=1 f(Xj)

n

��1=2 Z 1

0

exp

0@� x2

2��2
�Pn

j=1 f(Xj)

n

�
1A dx

= O

 
�

 Pn
j=1 f (Xj)

n

!!

= O

�
�

�
bp(n)

n

��
; (4)

Thus, for all ! 2 
n;

VR;n =
2p
R

RX
j=1

(1 fvj;n � 1g � E� (1 fvj;n � 1g)) +O
�p

R�

�
bp(n)

n

��
;

where the last term is o(1) since, for all p � p,
p
R�
�
bp(n)
n

�
! 0 as n;R!1: Given Eq. (4), and recalling that

E� (vj;nvs;n) = 0 for s 6= j conditionally on the sample,

Var�

0@ 1p
R

RX
j=1

(1 fvj;n � 1g �E� (1 fvj;n � 1g))

1A
=

1

R

RX
j=1

�
E� (1 fvj;n � 1g � E� (1 fvj;n � 1g))2

�

=
1

R

RX
j=1

�
E� (1 fvj;n � 1g � P � (vj;n � 1))2

�
= P � (vj;n � 1) (1� P � (vj;n � 1))

=

�
1=2 +O

�
�

�
bp(n)

n

����
1=2 +O

�
�

�
bp(n)

n

���
= 1=4 +O

�
�2
�
bp(n)

n

��
:
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Thus, VR;n is correctly standardized for a classical central limit theory for iid sequences to apply and VR;n
d�!

N (0; 1) : Now, let


+n =

(
! : ��1

 Pn
j=1 f (Xj)

n

!
< �, 0 < � <1

)

so that, under HA; P (limn!1

+
n ) = 1. For ! 2 
+n , ��1

�Pn
j=1 f(Xj)

n

�
a:s:! M: Hence, vj;n

d�! N(0;M2): As in

the null case, the statistic writes as

2p
R

RX
i=1

�
1 fvj;n � 1g �

1

2

�

=
2p
R

RX
i=1

(1 fvj;n � 1g � E� (1 fvj;n � 1g)) + 2
p
R

�
E� (1 fvj;n � 1g)�

1

2

�
; (5)

where, again, E� (1 fvj;n � 1g) = 1=2 + P � (0 � vj;n � 1) with P � (0 � vj;n � 1) as in Eq. (4). Now, for any
! 2 
+n ; the �rst term on the right-hand side of Eq. (5) converges in distribution to a (non-standard) zero-mean
normal random variable. However, P � (0 � vj;n � 1) > 0 and, thus, the second term diverges at rate

p
R: �

Proof of Theorem 2. Let vj;n =
�j

�

�
bp(n)Pn

j=1
f(Xj)

� d� N
�
0; ��2

�
bp(n)Pn

j=1 f(Xj)

��
: Now, for any sample, under the

null, by Proposition 2, �
�

bp(n)Pn
j=1 f(Xj)

�
= O

�
�
�
bp(n)
n

��
: On the other hand, for any sample, under the alternative,

�
�

bp(n)Pn
j=1 f(Xj)

�
= O

�
�
�
bp(n)
bp(n)

��
: The statement, then, follows by the same argument used in the proof of Theorem

1. �

Proof of Theorem 3. We solely have to prove that 1
n

Pn
t=1 f (Xt) = Oa:s:

�q
log logn

n

�
. Again, the statement of

the theorem will then follow from the same arguments leading to Theorem 1. To this extent, we show the result
for the case f(Xt) = 1fa � Xt � bg: Because the indicator function of a compact set is dense in the class of
bounded functions, the proof is without loss of generality. Let Bt = !0Wt with Wt a standard Brownian motion.
Let A = [a; b] and, with an abuse of notation, de�ne A=

p
n = [a=

p
n; b=

p
n] and

Ap
n
�
�
Btp
n
� Xtp

n

�
=

�
ap
n
�
�
Btp
n
� Xtp

n

�
;
bp
n
�
�
Btp
n
� Xtp

n

��
:

Finally, let �
�
Ap
n

�
= Pr

�
ap
n
� !0Z � bp

n

�
; with Z denoting a standard normal random variable. The function

�
�
Ap
n
�
�
Btp
n
� Xtp

n

��
is de�ned analogously. Let, also, � be the density function associated with �: We have,

1

n

nX
t=1

f (Xt) =
1

n

nX
t=1

1

�
Btp
n
2 Ap

n

�

+
1

n

nX
t=1

�
1

�
Btp
n
2
�
Ap
n
�
�
Btp
n
� Xtp

n

���
� 1

�
Btp
n
2 Ap

n

��
and
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1

n

nX
t=1

f (Xt) =
1

n

nX
t=1

�
1

�
Btp
n
2 Ap

n

�
� �

�
Ap
n

��
+�

�
Ap
n

�

+

"
1

n

nX
t=1

�
1

�
Btp
n
2
�
Ap
n
�
�
Btp
n
� Xtp

n

���
� �

�
Ap
n
�
�
Btp
n
� Xtp

n

���

� 1
n

nX
t=1

�
1

�
Btp
n
2 Ap

n

�
� �

�
Ap
n

��#

+
1

n

nX
t=1

�
�

�
Ap
n
�
�
Btp
n
� Xtp

n

��
� �

�
Ap
n

��
= In + IIn + IIIn + IVn:

The strong invariance principle for the Brownian motion ensures that In = Oa:s:

�q
log logn

n

�
: It is immediate

to see that IIn = O
�

1p
n

�
: Given Assumption B, because of the strong stochastic equicontinuity of the indicator

function, IIIn = Oa:s:

�
1p
n

�
: Finally, letting dn 2

�
ap
n
�
�
Btp
n
� Xtp

n

�
; bp

n
�
�
Btp
n
� Xtp

n

��
; in light of Assumption

B,

IVn =
1

n

nX
t=1

� (dn)

�
Btp
n
� Xtp

n

�
= Oa:s:

 r
log log n

n

!
;

because of the functional law of the iterated logarithm for strong mixing processes (e.g., Eberlein, 1986). Thus,

1

n

nX
t=1

f (Xt) = Oa:s:

 r
log log n

n

!
:

�

Proof of Theorem 4. Given Theorem 3.1. in Löcherbach and Loukianova (2009), it follows from the same
argument as that of the proof of Theorem 1. In this case, however, the rate of growth of the occupation measure
depends on the time span T rather than on the sample size n. �
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Table 1. 

  Size  Power         

             

  ρ=1   ρ=0.99  0.98  0.97  0.96  0.95 

             

BC (σ = 1)  6.1%  11.7%  21.4%  38.2%  51.2%  70.3% 

             

BC (σ = 100)  6.2%  11.8%  20.5%  34.4%  48.6%  68.5% 

             

BC (σ = 0.01)  5.5%  9.6%  19.7%  32.8%  59.1%  76.6% 

             

             

             

DF  (σ = 1)  4.75%  11.3%  30%  58.7%  84.3%  96.3% 

Z     (σ = 1)  5.6%  21%  48%  79.1%  95%  99.3% 
 

Model I. The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of 

data points (n) is 500. The number of normal draws (R) is equal to 1,000. The starting point is zero. DF stands for 

Dickey‐Fuller. Z stands for Phillips’ Z test. 

 

Table 2. (Larger number of draws and observations) 

  Size  Power         

             

  ρ=1   ρ=0.99  0.98  0.97  0.96  0.95 

             

BC (σ = 1)  
n=500, R=10,000 

7.8%  22%  44.8%  69.3%  87%  95.2% 

             

BC (σ = 1) 
n=1,000, R=10,000 

5.2%  11.5%  44.9%  78.1%  91%  99.73% 

 

Model I. The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of 

data points (n) is 500 or 1,000. The number of normal draws (R) is equal to 10,000. The starting point is zero. 

. 
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Table 3.  

  Size  Power     

         

  κ=0   κ=2  κ=6  κ=8 

         

BC  (σ =  0.008742 )  4.8%  16.0%  78.0%  95.2% 

         

DF  (σ =  0.008742 )  4.7%  85%  100%  100% 

         

Z     (σ =  0.008742 )  5.2%  90%  100%  100% 

         
   1  0.992  0.976  0.968 
 

Model II. The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of 

data points  (n)  is 5,000. The number of normal draws  (R)  is equal  to 1,000. The  starting point  is  zero.  is  the 

autoregressive parameter  implied by  the  choice of  κ  for daily data  (dt = 1/252). DF  stands  for Dickey‐Fuller.  Z 

stands for Phillips’ Z test. 

 

Table 4.  

  Size    Power     

           

  γ=0.1   γ=0.2  γ=0.6  γ=0.7  γ=0.8 

           

BC  (σ=1)  5.6%  7.4%  63.2%  93.2%  100% 

           

DF  (σ =1)  4.2%  4.9%  7.0%  8.8%  12.2% 

           

Z     (σ =1)  5.3%  7.0%  12.3%  17.2%  24.0% 

           

   0.9998  0.9987  0.9971  0.9966  0.9964 

 

Model III. The number of simulated samples is 100. The number of simulations per sample is 1,000. The number of 

data points  (n)  is 5,000. The number of normal draws  (R)  is equal  to 1,000. The starting point  is zero.   is  the 

estimated autoregressive parameter. DF stands for Dickey‐Fuller. Z stands for Phillips’ Z test. 


