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1 Introduction

Even though testing for the presence of international market links has a long history in asset pricing (see

survey by Roll, 1989), the literature has been gaining momentum since the October 1987 crash. The

main interest lies on the analysis of volatility transmission across markets. King and Wadhwani (1990)

argue that the strength of international market links depends mainly on volatility. As the latter declines,

the correlation between price changes in the different markets also decreases and so market links become

weaker. In contrast, international market links become stronger in periods of high volatility. The idea is

that, with Bayesian update of beliefs about variances, a common shock to all markets would result in an

increase in the perceived variance of any common factor and hence of the correlation.

This paper develops formal statistical tools for testing conditional independence between volatility

processes. We propose a nonparametric approach in stark contrast with most papers in the literature.

In particular, under the assumption that asset prices follow a multivariate jump-diffusion process, we

show how to test whether the conditional distribution of asset A’s integrated variance (say, over a day)

also depends on asset B’s integrated variance. The procedure is nonparametric in that, apart from some

mild regularity conditions, we impose no parametric assumption on the functional form of the drift and

diffusive term as well as on the presence of leverage or jumps. Broadly speaking, our testing procedure

checks whether conditioning also on asset B’s integrated variance, rather than exclusively on asset A’s past

integrated variance, entails a different conditional distribution for asset A’s integrated variance. As we do

not observe daily variance, we rely on model-free realized measures based on intraday returns. We focus on

the conditional distribution for two reasons. It allows for nonlinear channels of volatility transmission in

contrast to the standard practice of carrying out pointwise analyses based on the conditional mean of the

volatility. In addition, the distribution of the daily integrated variance is of particular interest for pricing

variance swap contracts (Carr, Geman, Madan and Yor, 2005).

The asymptotic theory we develop proceeds in three steps. First, we establish the asymptotic normality

of the unfeasible statistics based on unobservable integrated variances using either kernel or local linear

smoothing. Second, we provide conditions on the rate of growth of intraday observations relative to the

number of days under which the feasible statistic, based on realized measures, is asymptotically equivalent

to its unfeasible counterpart. Our setting is general enough to allow for microstructure noise as well as

for jumps. Third, we establish the first-order validity of bootstrap-based critical values based on the m

out of n (henceforth, moon) bootstrap (Bretagnolle, 1983; Bickel, Götze and van Zwet, 1997). Bootstrap

inference is typically more robust to variations in the bandwidth as the latter plays roughly the same

role on both the original and bootstrap statistics. Monte Carlo simulations indeed reveal that the moon

bootstrap works reasonably well even in relatively small samples.

We carry out the nonparametric analysis using different realized measures as a means to discern the

main channels of quadratic variation transmission between stock markets. The idea is similar to Aı̈t-

Sahalia and Jacod’s (2010) analogy of turning the knobs of a measurement device running spectrographic
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analysis. Note that we consider only two tuning parameters. The first is the type of the realized measure.

It essentially combines the truncation and power knobs of Aı̈t-Sahalia and Jacod (2010), enabling us to

eliminate the contribution of either jumps or market microstructure noise to the quadratic variation. The

second is the sampling frequency, which we vary as another means to alleviate market microstructure effects.

For instance, the tripower variation is robust to jumps and hence it would capture only the contribution

of the diffusive volatility to the quadratic variation if using returns at a sufficiently low frequency, say 30

minutes. In turn, the realized kernel approach kills the contribution of the market microstructure noise

to the quadratic variation, but not that of jumps. We thus view the differences in the test results using

the above realized measures as very informative. Suppose we find no significant transmission using the

tripower variation, but significant evidence of spillovers using the realized kernel measure. This would

imply that the main channel of transmission is likely through jumps given that rejection of the null occurs

only if we do not exclude the jump contribution to the quadratic variation.

We investigate the links between international stock markets using intraday data from China, Japan,

UK, and US from January 2000 to December 2005. By varying the realized measure, we show that the

primary channel of transmission within the quadratic variation of asset prices is through spillovers in

the integrated variance. The empirical evidence of volatility spillovers becomes indeed stronger once we

control for jumps and/or market microstructure effects. The only exception is the transmission from China

to the US, which runs mainly through price jumps. There is to some extent significant interdependence

between all of the stock market indices we consider. Further, the volatility transmission mechanisms are

mostly symmetrical in that we normally reject the null of conditional independence in both directions

using almost the same realized measures. Finally, we show that the financial markets seemingly price these

interconnections in view that there are also volatility spillovers to the options-implied market volatility in

the US. In other words, investors form their expectations about the future volatility of the S&P 500 index

accounting for the stock market information coming from China, Japan and, especially, the UK.

To ensure that the volatility spillovers we uncover are indeed genuine, we carry out a series of robustness

checks. We first examine whether the evidence is spurious due to time-series persistence. We redo the

spillover analysis for the US stock market adding an extra control, namely, the VIX index. The latter is a

market volatility index from the Chicago Board Options Exchange (CBOE) that gauges the options-implied

volatility of the S&P 500 index. Conditioning on the VIX index should effectively control for further serial

dependence in the integrated variance given the strong link between the actual volatility and its risk-neutral

expectation (Bandi and Perron, 2006). There are no qualitative changes in our main results; in fact, the

evidence of significant transmission from the UK and Japan become stronger. We then investigate whether

the volatility spillovers running from China and Japan to the US are truly about Asia-specific shocks by

further conditioning on the FTSE 100 realized measure over the same day. The idea is that the FTSE

100 index should reflect any global shock, though not necessarily Asia-specific shocks that may affect the

US. We observe no qualitative change in the results for Japan. In stark contrast, we now find much more
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significative volatility transmission from China to the US. Further conditioning on the realized measure

of the FTSE 100 index seems to help disentangle the China-specific spillovers from the global volatility

shocks. Finally, we also carry out a similar analysis considering hourly realized measures to check for a

swifter reaction time possibly through jumps in prices or in volatility (King and Wadhwani, 1990). We find

strong evidence of volatility spillovers across all markets, especially if controlling for market microstructure

noise by means of the realized kernel approach. The only exception is that we find no significant volatility

transmission from Japan to the UK.

There are several papers in the literature that carry out similar, though mostly parametric, analyses of

volatility transmission across international stock markets. Engle and Ng (1988), Hamao, Masulis and Ng

(1990), Engle, Ito and Lin (1990), King, Sentana and Wadhwani (1994), Lin, Engle and Ito (1994), Karolyi

(1995), and Wongswan (2006) employ multivariate GARCH models to show that volatility spillovers indeed

occur across foreign exchange markets as well as international stock markets, notably, between Japan, UK

and US. In contrast, Cheung and Ng (1996), Hong (2001), Pantelidis and Pittis (2004), Sensier and van

Dijk (2004), and van Dijk, Osborne and Sensier (2005) propose simple tests of noncausality in variance

based on the cross-correlation between leads and lags of squared GARCH-standardized residuals. More

recently, Gourieroux and Jasiak (2007) address causality in variance (or even in higher-order moments)

by means of approximate conditional log-Laplace transforms of compound autoregressive processes. The

testing strategy of the above papers mainly differs from ours in three respects. First, they assume a discrete-

time data generating mechanism in which the conditional variance is a measurable function of past asset

returns. In contrast, we assume that asset prices follow a multivariate jump-diffusion process and then test

for spillovers within the quadratic variation. Second, their tests are sensitive to misspecifications in the

conditional mean and variance equations, whereas the nonparametric nature of our tests minimizes any

misspecification risk. Third, they do not contemplate any sort of nonlinear dependence between variances

as opposed to our testing procedures, whose nontrivial power against nonlinear channels of volatility

transmission results from looking at the whole volatility distribution.

The testing strategy put forth by Diebold and Yilmaz (2009, 2011) is the closest to ours. They ex-

amine volatility spillovers by means of a VAR approach using range-based measures of volatility. The

latter belongs to the class of realized measures robust to market microstructure noise and hence provides

a consistent nonparametric estimator of the quadratic variation of the underlying diffusion process. How-

ever, Diebold and Yilmaz do not study how the realized estimation of the quadratic variation affects the

subsequent VAR analysis. In addition, their approach also differs from ours in that they focus on linear

spillovers in the conditional mean of the quadratic variation of asset prices.

The remainder of this paper ensues as follows. Section 2 describes the data generating process we assume

for asset prices and discusses the hypotheses of interest. Section 3 establishes the asymptotic normality

of the unfeasible statistic based on integrated variances. Section 4 derives the asymptotic equivalence of

feasible test statistics that substitute realized measures for integrated variances. Section 5 first establishes
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the first-order validity of bootstrap-based critical values and then examines their finite-sample properties

of the resulting test through Monte Carlo simulations. Section 6 investigates whether there are significant

volatility spillovers across international stock markets using data from China, Japan, UK and US. Section

7 offers some closing remarks, whereas the Appendix collects all technical proofs.

2 Volatility transmission: Setup and issues

In this section, we discuss how to analyze volatility transmission through nonparametric tests of conditional

independence. For notational simplicity, we restrict attention to testing whether the daily variance of asset

B affects the dynamic of asset A’s daily variance. It is straightforward to consider more than two assets,

though the usual concern with the curse of dimensionality applies. See also Section 6.1.2 for empirical

applications with three stock markets.

Let pA,t and pB,t denote the log-prices of assets A and B with instantaneous (stochastic) volatility

given by σ2
A,t and σ2

B,t, respectively. We assume that asset prices follow a continuous-time semimartingale

process, as implied by a very weak form of the no-arbitrage property (Delbaen and Schachermayer, 1994).

Note that this is not a very stringent requirement given that semimartingales nest almost every continuous-

time model in finance (e.g., Harrison and Pliska, 1981; Andersen, Bollerslev and Dobrev, 2007). To fix

ideas, we consider a simple example in which asset prices follow a multivariate stochastic-volatility process

with jumps:


dpA,t

dpB,t

dσ2
A,t

dσ2
B,t

 =


µA,t

µB,t

b1,A(σ2
A,t, σ

2
B,t)

b1,B(σ2
A,t, σ

2
B,t)

 dt +


dJ1,t

dJ2,t

dJ3,t

dJ4,t

 +


√

1− ρ2A σA,t

σBA,t

0

0

 dW1,t +


σAB,t√

1− ρ2B σB,t

0

0

 dW2,t

+


ρA σA,t

0

b2,A(σ2
A,t, σ

2
B,t)

b2,BA(σ2
A,t, σ

2
B,t)

 dW3,t +


0

ρB σB,t

b2,AB(σ2
A,t, σ

2
B,t)

b2,B(σ2
A,t, σ

2
B,t)

 dW4,t, (1)

where (W1,t, . . . ,W4,t) are independent standard Brownian motions and (J1,t, . . . , J4,t) are jump processes.

The latter is such that dJi,t =
∫
A ci(u)Ni( dt, du), for i = 1, . . . , 4, where Ni([t1, t2],A) is a Poisson

measure that counts the number of jumps between t1 and t2, whose size ci(u) is an iid random variable

in A. The jump process is such that, over a finite time span, there is only a finite number of jumps.

Although we allow for leverage effects between asset prices and their own stochastic volatility through

the correlation coefficients ρA and ρB, for the sake of simplicity, we assume away cross-leverage effects

by imposing zero correlation between one asset price and the stochastic volatility of the other asset.1 We

1 Cross-leverage effects would only add other possible channels of volatility transmission between assets A and B. Although
this would bring about additional misspecification risk in any parametric approach to test for volatility transmission, it does
not affect in any way the nonparametric procedure we propose.
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also assume that the drift components µA,t and µB,t follow predictable processes. This is not stringent

for their role is asymptotically negligible in the context of volatility transmission. Finally, as standard in

multivariate stochastic volatility models, we suppose for simplicity that asset prices do not directly affect

volatility.

It is possible to decompose the quadratic variation process 〈·〉t of a given asset price, say pA, over the

time interval [0, t] into the part due to the discontinuous jump component pDA and the part due to the con-

tinuous diffusive component pCA. In particular, 〈pA〉t =
〈
pCA
〉
t
+
〈
pDA
〉
t
, where

〈
pDA
〉
t
≡
∫ t

0

∫
A c

2
1(u)N1(ds,du)

and
〈
pCA
〉
t

corresponds to the integrated variance over the time interval [0, t], namely, IVA,t =
∫ t

0 σ
2
A,s ds+∫ t

0 σ
2
AB,s ds. Now, recall that∫ t

0
σ2
A,s ds =

∫ t

0

(∫ s

0
b1,A(σ2

A,u, σ
2
B,u) du

)
ds+

∫ t

0

(∫ s

0
dJ3,u

)
ds

+

∫ t

0

(∫ s

0
b2,A(σ2

A,u, σ
2
B,u) dW3,u

)
ds+

∫ t

0

(∫ s

0
b2,AB(σ2

A,u, σ
2
B,u) dW4,u

)
ds

and that
〈
pCA, p

C
B

〉
t

=
∫ t

0 (σA,sσBA,s + σB,sσAB,s) ds is the integrated covariation between pA and pB over

the [0, t] interval. It is easy to see that IVB does not affect IVA,t if and only if

(i) σAB,s = 0 a.s.

(ii) J3,s is independent of J4,t

(iii) b1,A(σ2
A,u, σ

2
B,u) = b1,A(σ2

A,u) a.s.

(iv) b2,A(σ2
A,u, σ

2
B,u) = b2,A(σ2

A,u) a.s.

(v) b2,AB(σ2
A,u, σ

2
B,u) = 0 a.s.

If any of the above conditions fails to hold, then IVA,t remains dependent upon IVB,t even after conditioning

on its own past values. Regardless of whether condition (i) holds, volatility interdependence may arise

even in the case that volatility is a measurable function of past asset prices due to a violation of condition

(iii), which reduces to b1,A(pA,u, pB,u) = b1,A(pA,u) almost surely. It thus turns out that it does not suffice,

nor it is necessary, to impose that the cross-variation process
〈
pCA, p

C
B

〉
t

is zero almost surely. In principle,

it is possible to test directly whether conditions (i) to (v) hold if one is ready to specify the parametric

functional forms of the drift, diffusive, and jump terms. The outcome would however depend heavily on

the correct specification of the data generating process in (1). To minimize the risk of misspecification, we

take a nonparametric route.

Our goal is to check whether the daily variance of asset B helps predict the daily variance of asset A.

We thus formulate a testing procedure that focuses on the density restrictions implied by conditional

independence:

H0 : f
IVA,t+1|IV

(qA)

A,t ,IV
(qB)

B,t+k

(
y
∣∣ IV (qA)

A,t , IV
(qB)
B,t+k

)
= f

IVA,t+1|IV
(qA)

A,t

(
y
∣∣ IV (qA)

A,t

)
a.s. for all y, (2)

where f
IVA,t+1|IV

(qA)

A,t

and f
IVA,t+1|IV

(qA)

A,t ,IV
(qB)

B,t+k

denote the conditional density of IVA,t+1 given IV
(qA)
A,t and(

IV
(qA)
A,t , IV

(qB)
B,t+k

)
, with IV

(qA)
A,t ≡ (IVA,t, . . . , IVA,t−qA+1)′ and IV

(qB)
B,t+k ≡ (IVB,t, . . . , IVB,t+k−qB+1)′
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standing for vectors of dimension qA and qB concerning the information about the integrated variances of

assets A and B, respectively. We allow for k ∈ {0, 1} so as to control for time differences between the

markets under consideration.2 As usual, we define the alternative hypothesis as the negation of the null

hypothesis.

In general, the integrated variance does not follow a finite-order Markov process.3 This means that,

to test for noncausality in variance, one would have to let the number of conditioning variables (qA and

qB) to increase with the sample size. This is unfeasible due to the curse of dimensionality and hence we

consider the less ambitious null of conditional independence by fixing the number of conditioning variables

in (2) to a finite (and, possibly, small) figure.4

To implement a nonparametric test for H0, we propose a statistic that gauges the discrepancy between

the nonparametric estimates of the density functions that appear in (2). In particular, our test statistic

hinges on the sample counterpart of the following integrated square relative distance

∫ fIVA,t+1|IV
(qA)
A,t

,IV
(qB)
B,t+k

(y|x(qA),x(qB))−f
IVA,t+1|IV

(qA)
A,t

(y|x(qA))

f
IVA,t+1|IV

(qA)
A,t

(y|x(qA))

2

π(y,x(qA),x(qB)) dy dx(qA) dx(qB), (3)

where IV
(qi)
i,t ≡ (IVi,t, . . . , IVi,t−qi+1) with IVi,t denoting asset i’s integrated variance over day t (i =

A,B). We employ a weighting scheme π(·, ·, ·) so as to avoid the lack of precision that afflicts conditional

density estimation in areas of low density of the conditioning variables. The integrated square distance

that we adopt in (3) is convenient because it facilitates the derivation of the asymptotic theory. Bickel

and Rosenblatt (1973), Aı̈t-Sahalia (1996), Aı̈t-Sahalia, Bickel and Stoker (2001), Amaro de Matos and

Fernandes (2007), and Aı̈t-Sahalia, Fan and Peng (2009) use similar squared distance measures, though one

could likewise employ entropic pseudo-distance measures as in, e.g., Robinson (1991) and Hong and White

(2004). Alternatively, one could also implement testing procedures based on the cumulative distribution

functions, such as the Kolmogorov-Smirnov and Cramér-von Mises tests. However, Fan (1996) provides

ample evidence that these goodness-of-fit tests have little power against local deviations such as bumps

and global deviation at higher frequencies of the Fourier expansion of the cumulative distribution function.

We derive the limiting distribution of the test statistic in (3) in Sections 3 and 4.

3 Asymptotic theory for the unfeasible case

To simplify notation, we denote by Yt the integrated variance of interest IVA,t+1, whereas we denote the

conditioning vectors IV
(qA)
A,t and

(
IV

(qA)
A,t , IV

(qB)
B,t+k

)
respectively by X

(qA)
t and X

(q)
t , with q = qA + qB

2 For instance, as the Tokyo Stock Exchange closes before the opening of the New York Stock Exchange, one may condition
on the same day information (k = 1) rather than on information from the previous trading day (k = 0).

3 Meddahi (2003) shows, for instance, that the CIR specification entails an ARMA(1,1) process for the integrated variance.
4 In the empirical application in Section 6, we add the VIX index as an extra control so as to accommodate for the

non-Markovian nature of the data. Alternatively, one could adapt our asymptotic theory to deal with dimension reduction
techniques as in, e.g., Hall and Yao (2005) and Fan, Peng, Yao and Zhang (2009).
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standing for the higher dimension. The null hypothesis of conditional independence in (2) now reads

H0 : fY |X(q)(y
∣∣x(q)) = fY |X(qA)(y

∣∣x(qA)) for all (y,x(q)). (4)

We employ local linear smoothing to estimate both the right- and left-hand sides of (4). The sample analog

of (3) then is

T∑
t=1

 f̂Y |X(q)(Yt
∣∣X(q)

t )− f̂Y |X(qA)(Yt
∣∣X(qA)

t )

f̂Y |X(qA)(Yt
∣∣X(qA)

t )

2

π(Yt,X
(q)
t ), (5)

where the conditional density estimates f̂Y |X(q) and f̂Y |X(qA) derive from local linear smoothing using

different sets of bandwidths.

Denote by β̂T (y,x(q)) =
(
β̂0T (y,x(q)), β̂1T (y,x(q)), . . . , β̂qT (y,x(q))

)′
with x(q) = (x1, . . . , xq) the

argument that minimizes

1

T

T∑
t=1

[
Kb(Yt − y)− β0 − β1(X1t − x1)− . . .− βq(Xqt − xq)

]2
q∏
j=1

Whq(Xjt − xj), (6)

where Kb(u) = b−1K(u/b) and Whq(u) = h−1
q W (u/h) are symmetric kernels. The local linear estimator

of the conditional density function fY |X(q) is given by f̂Y |X(q)(y
∣∣x(q)) = β̂0T (y,x(q)). The local linear

estimator f̂Y |X(qA) of the lower dimensional conditional density is analogous for x(qA) = (x1, . . . , xqA).

To establish the limiting behavior of the test statistic in (5), we shall rely on the following assumptions.

Assumption A1: The product kernels W (u) =
∏q
j=1W (uj) and W̃ (u) =

∏qA
j=1W (uj) rest on a sym-

metric, nonnegative, continuous univariate kernel W of second order with bounded support [−∆,∆] for

1 ≤ j ≤ q. The kernel W is also at least twice differentiable on the interior of its support. The symmetric

kernel K is of order s ≥ 2 (even integer) and at least twice differentiable on the interior of its bounded

support [−∆,∆].

Assumption A2: The density functions fY |X(q)(y
∣∣x(q)) and fYX(q)(y,x(q)) are r-times continuously dif-

ferentiable in (y, x(q)) with bounded derivatives and with r ≥ s. The same condition also holds for the

lower-dimensional density functions fY |X(qA)(y
∣∣x(qA)) and fYX(qA)(y,x(qA)).

Assumption A3: The weighting function π
(
y,x(q)

)
is continuous and integrable, with second derivatives

in a compact support.

Assumption A4: The stochastic process
(
Yt,X

(q)
t

)
is strictly stationary and β-mixing with βτ = O (ρτ ),

where 0 < ρ < 1.

Assumptions A1 to A4 are quite standard in the literature on local linear smoothing (see, e.g., Fan, Yao

and Tong, 1996) and hence we only briefly discuss them in what follows. Assumption A1 rules out higher-

order kernels for W essentially to ensure the positivity of the criterion function in (6). Assumptions A2 and

A3 require that the weighting scheme and the density functions are both well defined and smooth enough
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to admit functional expansions. Assumption A4 restricts the amount of data dependence, requiring that

the stochastic process is absolutely regular with geometric decay rate. Alternatively, one could assume

α−mixing conditions as in Aı̈t-Sahalia et al. (2009) and Gao and Hong (2008), though the conditions

under which the quadratic variation of a jump-diffusion process satisfies Assumption A4 are quite weak

(see discussion in Corradi, Distaso and Swanson, 2011). See also Chen, Linton and Robinson (2001)

for some advantages of the β−mixing assumption relative to the α−mixing condition in the context of

nonparametric density estimation.

The scaled and centered version of (5) reads as

Λ̂T = Ω̂−1
T


h
q/2
q b1/2

∑T
t=1

[
f̂
Y |X(q) (Yt|X(q)

t )−f̂
Y |X(qA) (Yt|X

(qA)
t )

f̂
Y |X(qA) (Yt|X

(qA)
t )

]2

π(Yt,X
(q)
t )

− h−q/2q b−1/2 µ̂1,T − hq/2q h−qAqA b−1/2 µ̂2,T + 2h
q/2−qA
q b−1/2 µ̂3,T

 , (7)

where µ̂1,T , µ̂2,T , µ̂3,T , and Ω̂T are consistent estimators of the asymptotic bias terms and variance,

respectively (see Appendix A for definitions).

To ensure the asymptotic standard normality of Λ̂T in (7), we must impose some conditions on the rates

at which the bandwidths shrink to zero in Lemmata 1 to 2 (see Appendix B). It turns out that there are no

bandwidth rates that jointly meet the conditions (v) and (vi) in Lemma 1 for q > 2 if K is of second order

(s = 2) and for q > 3 if K is of higher order (s ≥ 4). The main snag is that, as aforementioned, one cannot

increase the order of the kernel function W in the local-linear smoothing. In turn, restricting attention

to at most two conditioning variables and to second-order kernels, the bandwidth conditions in Lemmata

1 and 2 hold if b = h1 = O
(
T−1/5

)
and h2 = o

(
T−1/m

)
with 30/7 < m ≤ 50

9 . Note that b and h1 have

optimal rates, whereas the bandwidth for the full conditioning set entails some degree of undersmoothing.

As expected , the bandwidth conditions in Lemmata 1 and 2 in general require more undersmoothing as

the dimensionality of the conditioning sets increases.

We are now ready to state our main result concerning the asymptotic behavior of the normalized test

statistic in (7) under both the null and alternative hypotheses.

Theorem 1: Let Assumptions A1 to A4 hold as well as the bandwidth conditions (i) to (vi) in Lemmata

1 and 2. It follows for q ≤ 3 and qA ≤ 2 that

(i) Under the null hypothesis H0, Λ̂T
d−→ N(0, 1).

(ii) Under the alternative hypothesis HA, Pr
(
T−1 h

−q/2
q b−1/2

∣∣∣Λ̂T ∣∣∣ > ε
)
−→ 1 for any ε > 0.

Part (i) of Theorem 1 provides the means to compute the asymptotic critical values of the test, whereas

(ii) establishes consistency. If one restricts attention to the case in which q = 1 and qA = 0, the above

result follows almost immediately from Aı̈t-Sahalia et al.’s (2009) Corollary to Theorem 1. Yet, even in

this simple case, it is necessary to account for the bias component that arises due to the nonparametric

estimation of the lower-dimensional model.

9



We now deal with higher dimensions (i.e., q > 3) by employing a Nadaraya-Watson estimator based on

higher-order kernels. More specifically, consider

f̄Y |X(q)(y|x(q)) =
f̄Y,X(q)(y,x(q))

f̄X(q)(x(q))
=

1
T

∑T
t=1 W̄ hq(X

(q)
t − x(q))Kb(Yt − y)

1
T

∑T
t=1 W̄ hq(X

(q)
t − x(q))

,

where W̄ hq(u) = h−pq
∏q
j=1 W̄ (uj/hq). Define f̄Y |X(qA) analogously using the product kernel given by˜̄W hqA

(u) = h−qAqA

∏qA
j=1 W̄ (uj/hqA). We next modify Assumption A1 to accommodate higher-order kernels.

Assumption A5: The kernel functions K and W̄ are of even integer orders (s, s̄ ≥ 2), symmetric,

continuous, and at least twice differentiable on the interior of their bounded support [−∆,∆].

The kernel-based test statistic is essentially analogous to the one based on local linear smoothing:

Λ̄T = Ω̄−1
T


h
q/2
q b1/2

∑T
t=1

[
f̄
Y |X(q) (Yt|X(q)

t )−f̄
Y |X(qA) (Yt|X

(qA)
t )

f̄
Y |X(qA) (Yt|X

(qA)
t )

]2

π(Yt,X
(q)
t )

− h−q/2q b−1/2 µ̄1,T − hq/2q h−qAqA b−1/2 µ̄2,T + 2h
q/2−qA
q b−1/2 µ̄3,T

 . (8)

We provide expressions for the bias and scaling terms in Appendix A. As before, to ensure the asymptotic

standard normality of Λ̄T in (8), we must impose the bandwidth conditions in Lemmata 4 and 5 (see

Appendix B). The fact that we can now increase the order of the kernel that we employ to smooth the

conditioning set is very advantageous. We are now able to find bandwidths that satisfy the conditions for

q = 4 and qA = 3 as long as W̄ is of fourth order. This is a huge improvement relative to the local linear

case. Surprisingly, it turns out that it pays off to use a second-order kernel for K if we fix both b and hqA

to their optimal rates. This is the configuration that entails the least undersmoothing. For instance, in

the event that b = O
(
T−1/5

)
and h1 = O

(
T−1/9

)
, we require only a bit of undersmoothing for the larger

conditioning set, viz., h2 = o
(
T−1/10

)
. As before, we have to increase the degree of undersmoothing as

the dimensionality of the conditioning set grows: e.g., for q = 3 and qA = 2, the best configuration for the

bandwidths is b = O
(
T−1/5

)
, h2 = O

(
T−1/10

)
, and h3 = o

(
T−9/95

)
.

The next result documents the asymptotic standard normality of the kernel-based test statistic in (8)

under the null as well as the consistency of the resulting test.

Theorem 2: Let the bandwidth conditions (i) to (vi) in Lemmata 4 and 5 hold as well as Assumptions

A2 to A5. It then follows that

(i) Under the null hypothesis H0, Λ̄T
d−→ N(0, 1).

(ii) Under the alternative hypothesis HA, Pr
(
T−1 h

−q/2
q b−1/2

∣∣Λ̄T ∣∣ > ε
)
−→ 1 for any ε > 0.

A nontrivial alternative is to develop the asymptotic theory for higher-order local polynomials with

K of order s (and a second-order kernel W ). For instance, a local polynomial of second or third order

would entail a bias of the same order of magnitude as the kernel-based approach with both K and W of
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order s, thereby meeting the conditions for Theorem 2. However, the order of the local polynomial would

affect the kernel constant in the asymptotic variance of the density estimator even if it does not affect its

order of magnitude (Fan and Gijbels, 1996). For instance, the variance of the second- and third-order local

polynomial estimators is 1.68 times the variance of the local linear polynomial for a Gaussian kernel. Note

also that local polynomial smoothing is only free of boundary bias for polynomials of odd order.

Theorems 1 and 2 form the basis for asymptotically locally strictly unbiased tests for the conditional

independence null H0 in (4) based on local linear and kernel smoothing, respectively. To alleviate the

boundary bias that haunts kernel smoothing, one could always take the log of the daily variances before

testing for conditional independence as an alternative to weighting down by means of π(Yt,X
(q)
t ) any

realized measure close to zero.

4 Accounting for the realized measure estimation

The asymptotic theory so far considers the unfeasible test statistic in (7). In this section, we show the

asymptotic equivalence of the corresponding feasible test statistic that replaces integrated variances by

realized measures. To discuss the impact of estimating the integrated variance, we must first establish

some notation that makes explicit the dependence on the number of intraday observations that we employ

to compute the realized measure. We thus denote the time series of realized measures by Yt,M and X
(d)
t,M ,

where M is the number of intraday observations and d ∈ {q, qA}.

Let β̂
(M)

T (y,x(d)) =
(
β̂

(M)
0T (y,x(d)), . . . , β̂

(M)
dT (y,x(d))

)′
denote the argument that minimizes

1

T

T∑
t=1

[
Kb(Yt,M − y)− β0 − β1(X1t,M − x1)− . . .− βd(Xdt,M − xd)

]2
d∏
j=1

Whd(Xjt,M − xj).

The local linear estimator of the conditional density is f̂
(M)

Y |X(d)(y
∣∣x(d)) = β̂

(M)
0T (y,x(d)), yielding the fol-

lowing feasible test statistic

Λ̂M,T = Ω̂−1
M,T


h
q/2
q b1/2

∑T
t=1

[
f̂

(M)

Y |X(q)
(Yt,M

∣∣X(q)
t,M )−f̂ (M)

Y |X(qA)
(Yt,M

∣∣X(qA)

t,M )

f̂
(M)

Y |X(qA)
(Yt,M

∣∣X(qA)

t,M )

]2

π(Yt,M ,X
(q)
t,M )

− h−q/2q b−1/2 µ̂
(M)
1,T − h

q/2
q h−qAqA b−1/2 µ̂

(M)
2,T + 2h

q/2−qA
q b−1/2 µ̂

(M)
3,T

 , (9)

where µ̂
(M)
·,T differs from µ̂·,T because it employs realized measures rather than the true integrated variance.

Let N0,t,M = Yt−Yt,M and Nj,t,M = Xj,t−Xj,t,M for 1 ≤ j ≤ d ∈ {q, qA} denote the errors stemming from

the estimation of the integrated variance. To ensure the asymptotic equivalence between the unfeasible and

feasible test statistics, we must restrict the rate at which the moments of the estimation errors converge to

zero. We do that by constraining the moments of the drift and diffusive functions as well as of the noise

due to market-microstructure effects.
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Assumption A6: The drift terms of (1) are continuous locally bounded processes with E |µi,t|2k < ∞,

whereas the diffusive functions are càdlàg with E |σij,t|2k < ∞ and the jump components ci(t) are iid

with E |ci(t)|2k < ∞ for some k ≥ 2 and i, j ∈ {A,B}. In addition, the microstructure noise is iid with

symmetric distribution around zero and with finite 2kth moment for some k ≥ 2.

Assumption A6 ensures that the conditions in Corradi et al.’s (2011) Lemma 1 hold and hence that

there exists a sequence aM , with aM →∞ as M →∞, such that E |Nj,t,M |k = O
(
a
−k/2
M

)
for some k ≥ 2

and 1 ≤ j ≤ d ∈ {q, qA}. Note that this establishes a bound to the kth moment of the absolute estimation

error that depends on the realized measure we employ to estimate the integrated variance. In particular,

aM = M for the realized variance (Andersen, Bollerslev, Diebold and Labys, 2001; Barndorff-Nielsen and

Shephard, 2002) and tripower variation (Barndorff-Nielsen and Shephard, 2004), whereas aM = M1/3 for

the two-scale realized variance (Zhang, Mikland and Aı̈t-Sahalia, 2005) and aM =
√
M for the multi-scale

realized variance (Zhang, 2006; Aı̈t-Sahalia, Mykland and Zhang, 2011) and the realized kernel estimator

(Barndorff-Nielsen, Hansen, Lunde and Shephard, 2008).

Theorem 3: Let Assumptions A1 to A4 and A6 hold as well as the bandwidth conditions (i) to (vi) in

Lemmata 1 and 2. Let also T
k+1

2(k−1) (lnT )1/2 a
−1/2
M (h−1

q + h−1
qA

+ b−1)→ 0 as T,M →∞ for k as defined in

Assumption A6. It follows for q ≤ 3 that

(i) Under the null hypothesis H0, Λ̂M,T
d−→ N(0, 1).

(ii) Under the alternative hypothesis HA, Pr
(
T−1 h

−q/2
q b−1/2 | Λ̂M,T | > ε

)
−→ 1 for any ε > 0.

As for the feasible kernel-based statistic, define Λ̄M,T analogously to Λ̄T in (8) but replacing (Yt,X
(q)
t )

with (Yt,M ,X
(q)
t,M ). The next results documents asymptotic equivalence in the context of kernel density

estimation.

Theorem 4: Let Assumptions A2 to A6 hold as well as the bandwidth conditions (i) to (vi) in Lemmata 4

and 5. Also, let T
k+1

2(k−1) (lnT )1/2 a
−1/2
M (h−1

q +h−1
qA

+ b−1)→ 0 as T,M →∞ for k as defined in Assumption

A6. It follows that

(i) Under the null hypothesis H0, Λ̄M,T
d−→ N(0, 1).

(ii) Under the alternative hypothesis HA, Pr
(
T−1 h

−q/2
q b−1/2 | Λ̄M,T | > ε

)
−→ 1 for any ε > 0.

Theorems 3 and 4 establish that the asymptotic equivalence between unfeasible and feasible test statis-

tics necessitates that the number of intraday observations M grows fast enough relative to the number

of days T . As usual, there is a tradeoff between using a non-robust realized measure with aM = M at

a frequency for which microstructure noise is negligible and employing a microstructure-robust realized

measure with aM =
√
M at the highest available frequency.
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5 Bootstrap critical values

It is well known that the asymptotic behavior of nonparametric tests does not always entail a reasonable

approximation in finite samples and that their results may heavily depend on the bandwidth choice (see,

e.g., Fan, 1995; Fan and Linton, 2003). In what follows, we aim to alleviate such concerns by employing

resampling techniques. There are a number of issues that one must bear in mind, though. First, given

the nonparametric nature of the null hypothesis, we cannot rely on standard resampling algorithms based

on either parametric or wild bootstrap methods (Härdle and Mammen, 1993; Andrews, 1997; Aı̈t-Sahalia

et al., 2009). Second, integrated variance does not follow a Markov process, ruling out as well bootstrap

algorithms for Markov sequences (Rajarshi, 1990; Paparoditis and Politis, 2002; Horowitz, 2003).5 Third,

a standard nonparametric bootstrap would also fail to mimic the limiting distribution of our test statistics

for they involve degenerate U-statistics (Bretagnolle, 1983; Arcones and Giné, 1992).

To circumvent the above issues, we resort to a variation of the standard moon bootstrap by Bretagnolle

(1983) and Bickel et al. (1997). We sample T out of T daily realized measures by blocks (rather than

individually) so as to cope with time-series dependence. In addition, for each bootstrap sample, we compute

the test statistics using a bandwidth vector (h∗q, h∗qA , b∗) that shrinks to zero at the same as before rate,

but depending on T (rather than T ). This implies distinct orders of magnitude for the bias terms in the

original and bootstrap statistics and thence they do not cancel out. This is in stark contrast with the

bias cancelation that happens within the context of parametric and wild bootstrap. It nonetheless remains

unnecessary to compute the scaling term corresponding to the asymptotic variance of the test statistic.

The (unscaled) bootstrap counterparts of (7) and (8) then are respectively

Λ̂∗T =


h
q/2
∗q b

1/2
∗
∑T

t=1

[
f̂∗
Y |X(q)

(Y ∗t |X
∗(q)
t )−f̂∗

Y |X(qA)
(Y ∗t |X

∗(qA)
t )

f̂∗
Y |X(qA)

(Y ∗t |X
∗(qA)
t )

]2

π(Y ∗t ,X
∗(q)
t )

− h−q/2∗q b
−1/2
∗ µ̂∗1,T − h

q/2
∗q h−qA∗qA b

−1/2
∗ µ̂∗2,T + 2h

q/2−qA
∗q b

−1/2
∗ µ̂∗3,T

 (10)

and

Λ̄∗T =


h
q/2
∗q b

1/2
∗
∑T

t=1

[
f̄∗
Y |X(q)

(Y ∗t |X
∗(q)
t )−f̄∗

Y |X(qA)
(Y ∗t |X

∗(qA)
t )

f̄∗
Y |X(qA)

(Y ∗t |X
∗(qA)
t )

]2

π(Y ∗t ,X
∗(q)
t )

− h−q/2∗q b
−1/2
∗ µ̄∗1,T − h

q/2
∗q h−qA∗qA b

−1/2
∗ µ̄∗2,T + 2h

q/2−qA
∗q b

−1/2
∗ µ̄∗3,T

 . (11)

As before, we provide in Appendix A the expressions for the bias terms in (10) and (11).

We next establish the first-order validity of the moon bootstrap only for the unfeasible test statistic

given that the asymptotic equivalence between the feasible and unfeasible bootstrap statistics ensues along

the same lines as in Theorem 3 provided that Assumption A6 holds.

5 Restricting attention to the class of eigenfunction stochastic volatility models would actually yield integrated variances
with a finite ARMA representation (Meddahi, 2003) and hence approximately Markov (even if of higher order).
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Theorem 5: Let Assumptions A1 to A4 hold and let the bandwidth conditions (i) to (vi) in Lemmata

1 and 2 hold for (h∗q, h∗qA , b∗) and T in lieu of (hq, hqA , b) and T , respectively. Letting T, T , T/T → ∞

yields, for q ≤ 3 and for any ε > 0, Pr
(

supv∈R

∣∣∣Pr∗(Λ̂
∗
T ≤ v)− Pr(Ω̂T Λ̂T ≤ v)

∣∣∣ > ε
)
−→ 0 under the

null, whereas Pr
(

Pr∗

(∣∣∣T −1 h
−q/2
∗q b

−1/2
∗ Λ̂∗T

∣∣∣ > ε
))
−→ 1 under the alternative. In addition, replacing

Assumption A1 with A5 and letting bandwidth conditions (i) to (vi) in Lemmata 4 and 5 hold ensure the

first-order validity of the moon bootstrap for the kernel-based test statistic in (11) as well.

It is immediate to see that the sample and bootstrap statistics have the same limiting distribution

under the null, whereas they diverge at different rates under the alternative. In particular, (10) and

(11) diverge at a slower rate T hq/2∗q b
1/2
∗ relative to their sample counterparts. In practice, one must deal

with the feasible bootstrap test statistics Λ̂∗M,T and Λ̄∗M,T that replace (Y ∗t ,X
∗(q)
t ) with the corresponding

realized measures (Y ∗M,t,X
∗(q)
M,t ). Assumption A6 ensures that the statement in Theorem 5 also applies if

one substitutes Λ̂∗M,T and Λ̄∗M,T for Λ̂∗T and Λ̄∗T , respectively. The bootstrap critical values for Ω̂M,T Λ̂M,T

are readily available from the empirical distribution of Λ̂∗M,T using a large number, say B, of bootstrap

statistics.

To check whether the moon block-bootstrap indeed entails accurate critical values, we run a limited

Monte Carlo study. In particular, we simulate intraday returns from two independent mean-reverting CIR

processes (Cox, Ingersoll and Ross, 1985) and then examine how the empirical size of our two-step testing

procedure varies according to the bandwidth choice. We employ the CIR process not only because it is

a standard model in finance, but also because it implies a simple ARMA(1,1) process for the integrated

variance (Meddahi, 2003). For each of the 1,000 Monte Carlo replications, we simulate intraday data from

dPAt = κA (µA − PAt) dt+ ςA
√
PAt dWAt

dPBt = κB (µB − PBt) dt+ ςB
√
PBt dWBt,

where WAt and WBt are two independent Brownian motions, using an Euler discretization scheme with a

reflection device to ensure positivity. To entail realistic asset price processes, we fix the parameter vectors

to (κA, µA, ςA) = (0.080, 0.150, 0.011) and (κB, µB, ςB) = (0.120, 0.200, 0.013). After burning the first 200

observations of the sample, we employ the last M T intraday observations, where M and T correspond

respectively to the number of intraday observations within a day and to the number of days. We focus

on the relatively small sample sizes of M = 144 and T ∈ {400, 600} so as to assess how important is the

condition in Theorem 3 that calls for M to grow at a faster rate than T .

From the intraday log-returns, we retrieve the daily realized variances RVAd and RVBd for each day

d = 1, . . . , T and then test for conditional independence of asset A’s daily variance with respect to asset B’s

daily variance by looking at the conditional density of X = lnRVAd given Y = lnRVAd−1 and Z = lnRVBd.

We first standardize the data by their mean and standard deviation and then estimate the conditional

densities using local linear smoothing with Gaussian kernels. To comply with the bandwidth conditions,

we first adjust the rule-of-thumb bandwidths with a Gaussian reference to the appropriate rate, resulting
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in b = h1 = (4/3)1/5 T−1/5 and h2 = T−9/50/ ln lnT . We then multiply these bandwidths by scaling factors

κb ∈ {1/2, 3/4, 1} and κh ∈ {3/4, 1, 3/2, 5/2}, with κb < κh, so as to assess sensitivity. For simplicity, we

employ a weighting scheme relying on a standard multivariate normal density: πXY Z(x, y, z) = φ(x, y, z) =

φ(x)φ(y)φ(z). Given that the distribution of the realized variance logarithm is typically close to normal

(Andersen et al., 2001, 2003), such a weighting function keeps the focus on the bulk of the data rather

than on extreme levels of volatility.

To ensure a reasonable number of daily observations in the bootstrap artificial samples, we consider

T = 100, though further simulations show that the results are quite robust to variations in the bootstrap

sample size. Table 1 reports the results for B = 300 bootstrap samples using a block length of 4 daily

observations (i.e., approximately T 1/4). Despite the fact that M < T , we find that empirical size is close

to nominal as long as κh is not too high relative to κb. All in all, fixing κb = 3/4 and κh = 1 yields very

encouraging results, thereby providing some guidance for the bandwidth choice in practice.

6 Spillovers across international stock markets

We examine whether there are volatility spillovers between China, Japan, UK and US using data from

their main stock market indices. In particular, we collect ultra-high-frequency data for the SSE B share

index, the Topix 100 index, the FTSE 100 index, and the S&P 500 index from Reuters, available at the

Securities Industry Research Centre of Asia-Pacific (www.sirca.org.au).

Before describing the data, it is important to justify our index selection by establishing some back-

ground. We adopt the S&P 500 index to measure the movements in the US stock market because it is one

of the main bellwethers for the US economy. In addition, the CBOE also publishes a volatility index (VIX)

that measures market expectations of the near-term volatility implied by the S&P 500 index options. This

is convenient because it provides an extra control variable to cope with the time-series persistence in the

daily volatility of the S&P 500 index. We also consider the UK stock market, as represented by the FTSE

100 index, because it is the main financial hub in Europe.

As for the Topix 100 index, it is a weighted index gauging the performance of the 100 most liquid stocks

with the largest market capitalization on the Tokyo Stock Exchange (TSE). There are two continuous

trading sessions on the TSE, with a call auction-procedure determining their opening prices. The morning

session runs from 9:00 to 11:00, whereas the afternoon session is from 12:30 to 15:00. In view of the time

difference, there is no overlapping trading hours between Tokyo and the US stock markets. The same

applies to the Shanghai Stock Exchange (SSE), whose morning and afternoon consecutive bidding sessions

run from 9:30 to 11:30 and from 13:00 to 15:00. One of the particular features of the Chinese stock market

is the relative importance of individual investors despite the fact they face substantial trading restrictions,

e.g., a very stringent short-sale constraint (Hertz, 1998; Feng and Seasholes, 2008). In addition, local

investors could not own B shares before March 2001 and, even though they may now purchase them using

foreign currency, capital controls still restrict their ability to do so. See Allen, Qian and Qian (2007) and
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Mei, Scheinkman and Xiong (2009) for more details on the institutional background. Our motivation to

include the SSE B share index in the analysis is twofold. First, because pricing of trading for B shares is

in US dollars, there is no room for exchange rate movements to blur (or to cause spurious) stock market

links. Second, albeit its stock market is relatively young, dating back only to November 1990, China is

becoming a major player in the world economy and hence it is interesting to study the role it plays within

the context of volatility transmission. The fact that B shares are not as liquid as A shares in the Shanghai

Stock Exchange means that controlling for market-microstructure noise is essential for China.

The sample runs from January 3, 2000 to December 30, 2005 with 1,301 common trading days. To

compute the realized measures of daily integrated variance, we first compute continuously compounded

returns over regular time intervals of 1, 5, 15, and 30 minutes. The sample does not include overnight

returns in that the first intraday return refers to the opening price that ensues from the pre-sessional

auction, if any. Similarly, we also exclude returns over the lunch break for China and Japan, though they

do not affect in any way the qualitative results (see Section 6.1).

Table 2 reports the descriptive statistics for the 1-minute and 30-minute returns. The average intraday

return is slightly negative for every stock market, though relative lower for Japan and China. This is to some

extent surprising in view that the Topix 100 and, especially, the Shanghai B share indices exhibit larger

standard deviations. As usual, index returns exhibit substantial excess kurtosis, which rapidly increases

with the sampling frequency. This is especially the case for the FTSE 100 index, which climbs from 21 at the

30-minute frequency to 213 at the 1-minute frequency. As for skewness, it is strongly negative for the S&P

500 at the 1-minute frequency, though slightly positive at the 30-minute frequency. The opposite applies

to the FTSE 100 and Topix 100 indices, namely, skewness is positive at the 1-minute frequency, whereas

negative at the 30-minute frequency. The skewness coefficient increases with the sampling frequency from

nearly zero to 0.91 for the SSE B shares index. The differences between the skewness and kurtosis of the

1-minute and 30-minute returns are possibly due to liquidity issues. The proportion of zero returns is

indeed much higher at the 1-minute frequency, especially for the SSE B share index. Not surprisingly, we

also observe strong first-order autocorrelation for every stock market index at the 1-minute frequency as

well as for the 30-minute returns on the SSE B share indices. Further analysis shows that the liquidity of

the SSE B share index, as measured by the proportion of nonzero returns, increases over time, especially

after March 2001.

In what follows, we carry out an empirical analysis of volatility transmission using daily realized mea-

sures. We consider the realized variance, the tripower variation, the two-scale realized variance, and the

realized kernel based on 1-minute and 5-minute returns. In addition, we also compute the realized variance

and tripower variation using 15-minute and 30-minute returns. As in Aı̈t-Sahalia and Jacod (2010), we

vary the realized measure we employ so as to emphasize different aspects of the quadratic variation of

the index returns. The realized variance based on 1-minute and 5-minute returns essentially gauges the

overall quadratic variation, including not only information about the daily variance but also about price
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jumps and microstructure noise. As the sampling frequency decreases, reducing the market microstructure

effects, the realized variance starts reflecting only the diffusive and jump contributions to the quadratic

variation. The tripower variation excludes the contribution of price jumps to the quadratic variation and

hence provide a reasonable estimator for the daily variance if based on 15-minute and 30-minute returns.

Finally, the two-scale and realized kernel approaches eliminate the contribution of the microstructure noise

to the quadratic variation, capturing only its jump and diffusive components.

Figure 1 plots the time series of the realized variance and tripower variation based on the 1-minute and

30-minute returns as well as the realized kernel estimates at the 1-minute frequency. It is interesting to

observe that controlling for market microstructure noise affects in a substantial manner the estimates of

the daily variance, especially for the SSE B share index.

Tables 3 to 6 report the test results for the null hypothesis of conditional independence using bootstrap

critical values. As the null of conditional independence is invariant to monotonic transformations, we

first standardize the logarithms of the realized measures by their mean and standard deviation and then

estimate the conditional densities using kernel-based smoothing with Gaussian-type kernels.6 In particular,

we consider the standard Gaussian kernel for K and the fourth-order kernel derived from the Gaussian

density for W̄ regardless of the dimension of the conditioning set. The bandwidths are as in the Monte

Carlo study, with scaling factors set to κb = 3/4 and κh = 1, though the results remain qualitatively the

same for virtually every combination between κb ∈ {0.5, 0.75, 1} and κh ∈ {0.75, 1, 1.25} as long as κb < κh.

As before, we employ a weighting scheme based on the standard multivariate normal density. To obtain

bootstrap critical values, we construct B = 500 bootstrap artificial samples of size T = 250 by resampling

blocks of 4 daily observations.

Table 3 documents that there is some strong evidence of volatility spillovers running from the UK to the

US. At the 5% significance level, we reject the null for the realized variance and tripower variation estimates

based on 1-minute returns, and for the two-scale realized variance at the 5-minute frequency. In addition,

we also reject the null at the 10% level of significance for the realized kernel using 1-minute returns as well as

for the tripower variation at the 30-minute frequency. This seems to indicate that the transmission channel

from the UK to the US is mainly through the integrated variance given that accounting for jumps and/or

microstructure noise yields stronger results. The evidence is weaker for Japan. Volatility transmission from

the Topix 100 index to the S&P 500 index is significant at the 5% level only for the realized variance and

tripower variation at the 1-minute frequency. We also observe some borderline results at the 10% level of

significance for the tripower variation and the two-scale realized variance using 5-minute returns. Finally,

we also uncover some weak evidence of volatility transmission from China to the US. In particular, we

reject the null at the 5% level of significance for the realized variance at the 1- and 5-minute frequencies

and for the tripower variation and realized kernel measures based on 5-minute returns.

6 We do not employ local-linear smoothing as in the previous section because we estimate in section 6.1 conditional
densities given three state variables. At any rate, the p-values of the tests based on local linear smoothing are only marginally
different from the p-values of the kernel-based tests.
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We then ask whether the diffusive and jump components of the quadratic variation in the UK, Japan,

or China affect the options-implied market volatility as measured by the VIX index. A positive answer

would mean that investors price these spillovers. This is exactly what happens for the FTSE 100 index.

Table 3 reveals significant volatility transmission to the VIX index for almost every realized measure we

employ. In fact, the UK effect seems stronger on the risk-neutral expected volatility than on the realized

measures of the S&P 500 index, especially if one controls for both jumps and market microstructure noise.

In contrast, we observe no change in the qualitative results as what concerns spillovers from the Topix 100

and SSE B share indices. As per the former, we reject conditional independence for every realized measure

based on 1-minute returns apart from the realized kernel. As for the SSE B share index, we find evidence

of significant spillovers to the VIX index for the realized variance at the 1- and 30-minute frequencies and

for the tripower variation using 5-minute returns.

Table 4 displays the results for the daily volatility transmission to the FTSE 100 index. For the S&P

500 index, we reject the null for every realized measure at the 1-minute frequency as well as for the realized

variances based on 5- and 30-minute returns and for the realized kernel measure at the 5-minute frequency.

We interpret these results as strong evidence of spillovers in the quadratic variation. To identify whether the

transmission is through the diffusive or discontinuous part of the quadratic variation, we turn our attention

to the tests using tripower variation. We take their rejections at the 1-, 5-, and 15-minute frequencies as a

clue that the FTSE 100 integrated variance depends on the past S&P 500 integrated variance. We obtain

similar results for Japan and China in that accounting for jumps and/or microstructure noise seems to

strengthen the evidence of spillovers in the quadratic variation.

Table 5 reveals that the dependence structure between the S&P 500 index and the Topix 100 index is

approximately symmetric in that significant transmission seems to eventuate in both directions for almost

the same realized measures. We indeed reject conditional independence using the tripower variation only at

the 1-minute frequency, whereas we reject the null if we employ either the realized variance using 1-minute

returns or the noise-robust realized measures at the 5-minute frequency. A similar symmetric pattern

arises for the FTSE 100 index. We find significant spillovers from the UK to Japan for essentially the

same realized measures for which we observe significant spillovers in the opposite direction. As before,

this seems to indicate the presence of spillovers in the integrated variance. Finally, volatility shocks in the

SSE B share index also affect the Topix 100 index according to the tests based on the realized variance

at the 1-minute frequency as well as on the tripower variation and realized kernel estimates at the 1- and

5-minute frequencies. Notice that the evidence is stronger once we account for jumps. This suggests that

spillovers are mainly through the integrated variance, with jumps to some extent concealing the volatility

transmission from China to Japan.

Table 6 documents a somewhat different pattern for the volatility transmission to China. We find

significant spillovers from the S&P 500 index only for the realized variance and two-scale realized variance

at the 1-minute frequency and for the tripower variation at the 5-minute frequency. The evidence is much
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stronger for the FTSE 100 index, especially if we control for jumps and/or microstructure effects. As for

the Topix 100 index, we unveil significant spillovers for the realized variance and tripower variation based

on 1-minute returns and for the tripower variation and realized kernel estimates at the 5-minute frequency.

These findings suggest that the main channel of transmission from Japan is also through the diffusive

component of the quadratic variation, given that the evidence becomes stronger for the realized measures

that are robust either to jumps or to microstructure noise.

Altogether, it seems that the links are generally symmetric in that we normally reject the null of con-

ditional independence in both directions for almost exactly the same realized measures. To exemplify the

volatility transmission we uncover, Figure 2 illustrates how the conditional density of the daily tripower

variation of the FTSE 100 index at the 15-minute frequency changes if we also condition on the correspond-

ing realized measure of the SSE B share index. The plot evaluates the conditioning tripower variations at

their first quartile, median, and third quartile. It is apparent that the imprint of the China effect is in every

quartile. Further conditioning on the first quartile of the Shanghai tripower variation shifts the density

to the left, whereas it shifts to the right if evaluated at the third quartile. Finally, it seems to reduce

the spread of the conditional density of the FTSE 100 tripower variation once we evaluate the tripower

variation of the SSE B share index at its median value. This is interesting because we would most likely

fail to capture this sort of nonlinear distributional impacts using the usual parametric approaches in the

literature.

6.1 Robustness analysis

In what follows, we carry out some robustness analysis by conducting three inspections. First, we assess

how pivotal is the assumption that, under the null hypothesis, the past integrated variance suffices to

control for the persistence in the data by also conditioning on the past implied volatility (and vice-versa).

Second, we investigate whether the evidence we find supporting spillovers effects from Japan and China to

the US are robust to further conditioning on realized measures of the FTSE 100 index. Third, we examine

how fast the volatility transmission occurs by looking at the quadratic variation over shorter periods of

time. In particular, we focus on the conditional distribution of the quadratic variation over the first hour

of the trading day given the last hour of previous trading day and the last hour of trading on the other

stock market.

6.1.1 Data persistence

The conditional independence restriction we test does not exactly correspond to a null of noncausality in

variance given the non-Markovian character of the daily integrated variance. In particular, the empirical

analysis in Section 6 controls only for the own integrated variance in the previous day rather than on the

whole history of daily variances. This raises a concern on whether our findings are in fact genuine or just

an artifact due to higher-order dependence in the data.
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To assess robustness against such concerns, we redo our empirical analysis of volatility transmission to

the US including the past VIX index as an additional control. The latter measures the options-implied

volatility of the S&P500 index and hence should provide information about the future integrated variance.7

In addition, Bandi and Perron (2006) find strong evidence of fractional cointegration between implied and

realized variances and so conditioning on the VIX index should effectively control for any high-order

dependence implied by the non-Markovian nature of the integrated variance, regardless of whether the null

of conditional independence is true or not.

Table 7 shows that the spillover effects we uncover are not an artifact due to persistence. Adding the

VIX index to the conditioning set does not alter much the qualitative results. It actually strengthens

the evidence of quadratic variation transmission from the UK and Japan. In contrast, accounting for the

VIX index somewhat affects the results for the SSE B share index. We now reject the null of conditional

independence for the realized variance at every frequency as well as for the two-scale realized variance at

the 1-minute frequency. Interestingly, controlling for jumps by means of the tripower variation measure

actually weakens the evidence of transmission. This seems to indicate that spillovers eventuate from China

to the US mainly through jumps.

Similarly, we revisit the evidence of volatility transmission to the VIX index by further conditioning

on the realized measure of the S&P 500 index in the previous day. Table 7 reveals that, all in all, there is

not much change in the qualitative results. The evidence that the realized measure of the FTSE 100 index

significantly affects on the VIX index is virtually the same regardless of whether we control or not for the

realized measure of the S&P 500 index in the previous day. As for spillovers from the Topix 100 and SSE B

share indices, better accounting for data persistence slightly strengthens the statistical evidence of volatility

transmission. As before, the China effect is weaker for the tripower variation measures, corroborating our

indirect evidence of jump spillovers.

6.1.2 Asia effect given the UK

Most recent episodes of high uncertainty in the global financial markets are mainly due to shocks in Europe

and the US, with little action taking place in China and Japan.8 We thus check whether the evidence of

volatility transmission running from China and Japan to the US is genuinely about shocks in Asia or about

common shocks to the global financial markets. To do this, we further condition the distribution of the

daily realized measures of the S&P 500 index on the corresponding realized measure of the FTSE 100 index

over the same trading day (up to 14:30 London time).

The motivation lies in the fact that the UK stock market should reflect any global shock, but not

necessarily Asia-specific shocks that may affect the US. Examining the volatility transmission from Asia

7 Note that it is not necessary to assume that the VIX index is the best forecast for future realizations of the integrated
variance nor that it is unbiased or efficient (see, among others, Christensen and Prabhala, 1998).

8 We thank an anonymous referee for calling our attention to this issue. Note that, although our sample does not include
the subprime and transatlantic sovereign debt crises, it covers the burst of the dotcom bubble in the US and its aftermath.
This is a period of high volatility in the US stock market due mostly to domestic factors.
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(either China or Japan) to the US given the UK realized measure allows us to better understand the

geographic nature of the volatility spillovers. Finding significant effects regardless of whether we further

condition on the realized measure of the FTSE 100 index indicates that there are Asia-specific shocks that

affect the uncertainty in the US stock markets. Rejecting the null only if disregarding the stock market

volatility in the UK suggests there is no Asia-specific transmission channel. The S&P 500 index realized

measure is then reacting to global (volatility) shocks that are common to the UK and to Asia. Finally,

rejecting the null only if accounting for the FTSE 100 realized measure attests that filtering the global

effect by means of the variation in the FTSE 100 index helps identify as well spillovers due to Asia-specific

shocks.

Table 7 shows that further conditioning on the FTSE 100 realized measure does not change much the

qualitative results concerning spillovers from Japan. We still reject the null of conditional independence

for both realized variance and tripower variation estimates at the 1-minute frequency as well as for the

two-scale realized variance using 5-minute returns. The differences are that we now reject the null also for

the realized variance at the 15-minute frequency and for the tripower variation based on 30-minute returns.

This seems to suggest that the variation in the FTSE 100 index does not suffice to fully capture the Japan

effect on the US stock market volatility. Finally, we observe a very interesting result for the spillovers

running from China. Once we control for the FTSE 100 realized measure, the evidence of a significant

China effect in the US stock market volatility becomes much stronger, especially if we control for jumps

and/or market microstructure noise. All in all, these findings appears to illustrate that accounting for the

realized measure of the FTSE 100 index helps individuate Asia-specific spillovers from global volatility

shocks.

Figure 3 illustrates how accounting for the realized measure of the SSE B share index alters the

conditional density of the S&P 500 realized measure given its past realization and the FTSE 100 realized

measure over the same day. It is striking how the information that the SSE B share realized measure

conveys is almost exclusively about the dispersion in the distribution of the quadratic variation of the S&P

500 index. It does no shift to the right or left depending on the quartile we condition upon as in Figure 2;

we observe across the board only a reduction in the spread of the distribution.

6.1.3 Reaction time

King and Wadhwani (1990) derive an imperfectly revealing equilibrium model to explain contemporaneous

transmission of volatility between stock markets. Their framework posits that price jumps will take place

as soon as a market reopens so as to reflect changes in both idiosyncratic and common factors since last

trade. Given that other stock market indices also depend on the common factors, contagion will result in

immediate spillovers from one market to another as the latter reopens for trading. This is in stark contrast

with our empirical study focusing on daily quadratic variation (rather than over a shorter interval of time)

in that we could well miss the almost instantaneous reaction that King and Wadhwani (1990) predict.
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We thus investigate in this section whether reaction time is indeed an issue. To examine spillovers from

the UK to the US, we condition the realized measure of the S&P 500 index over its first hour of trading

on the realized measures of the FTSE 100 index over the one-hour interval immediately before (i.e., 13:30

and 14:30 London time) and of the S&P 500 index over the last hour of trading in the previous day. For

the transmission from the US to the UK, we look at the conditional distribution of the realized measure

over the first hour of trading on the London Stock Exchange given the realized measures over the previous

day’s last hour of trading on the New York Stock Exchange and on the London Stock Exchange. To test

for spillovers from Asia to the UK and to the US, we check whether the realized measures over the first

hour of trading in the UK/US depends on the corresponding realized measures over the last hour of trading

in China/Japan in that same day given the realized measures over the last hour of trading in the UK/US

in the previous day. To examine spillovers running in the opposite direction, we investigate whether the

realized measures of the FTSE 100 index and of the S&P 500 index over the last hour of trading in the

previous day affects the realized measures over the first hour of trading in Asia even after controlling for

the latter’s realized measures over the last hour of trading in the previous day. The same applies if testing

for transmission from China to Japan given that the former shuts before the opening of the latter. Finally,

given the one-hour difference between Shanghai and Tokyo, we test for spillovers from Japan to China by

looking at whether the realized measure of the SSE B share index over the first hour of trading depends

on the realized measures of the Topix 100 index over the one-hour period immediately before the opening

of the Shanghai Stock Exchange (i.e., from 9:30 to 10:30 Tokyo time) given the realized measures of the

SSE B share index over the last hour of trading in the previous day.

As before, asymptotic equivalence between the feasible and unfeasible statistics allows us to interpret

realized variance results as concerning the total quadratic variation, including the contributions of the

integrated variance, jumps, and market microstructure noise. Tripower variation purges the influence of

price jumps, whereas the realized kernel estimator measures the contributions of the jump and diffusive

components to the quadratic variation. Note that we do not employ the two-scale realized variance in the

hourly transmission study because of the limited number of intra-hour observations. The measurement

error of the two-scale estimator converges at the slower rate aM = M1/3 rather than at aM =
√
M as in

the realized kernel approach. Given that we compute the hourly realized measures using 1-minute returns

(and hence M = 60), the magnitude of the measurement error of the two-scale realized variance could well

compromise inference.

Panel A in Table 8 reveals significant evidence of volatility transmission from the FTSE 100 index to the

S&P 500 index only after controlling for microstructure noise. This suggests that the market microstruc-

ture noise blurs the evidence of spillovers in the tests using the realized variance and tripower variation.

In turn, we find significant spillovers from Japan to the US only if we employ the tripower variation. The

transmission channel seems mainly through the integrated variance, with the jump component only obscur-

ing the volatility spillovers. In addition, we find spillovers running from the SSE B share index to the S&P
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500 index at the 10% level of significance for the realized variance and realized kernel measures. Given that

the transmission at the daily level is via integrated variance, we interpret the failure to reject using the

hourly tripower variation as evidence of jump-in-volatility spillovers (King and Wadhwani, 1990). Panel B

uncovers notable spillovers from China and the US to the UK. In contrast, we cannot reject the absence of

spillovers from Japan to the UK regardless of the realized measure we employ. Panel C makes plain once

more the importance of accounting for the market microstructure imprint when testing for spillovers to

the Topix 100 index. As before, this is somewhat consistent with volatility spillovers through jumps in the

volatility. Finally, Panel D establishes that the quadratic variation transmission to the SSE B share index

is significant at the usual levels for the realized variance and tripower variation estimates for every stock

market.

7 Conclusion

This paper develops formal statistical tools for nonparametric tests of conditional independence between

integrated variances. Under the assumption that asset prices follow a multivariate jump-diffusion processes

with stochastic volatility, we show how to test whether the conditional distribution of asset A’s integrated

variance also depends on information concerning asset B’s integrated variance. Our testing procedure

involves two steps. In the first stage, we estimate the integrated variances using intraday returns data

by means of realized measures so as to avoid misspecification risks. In the second step, we then test for

conditional independence between the resulting realized measures. Although asymptotic critical values are

not very reliable in finite samples, we show how to construct more accurate critical values by means of a

simple bootstrap algorithm.

Our contribution to the literature on nonparametric density-based tests is twofold. First, our asymptotic

theory specifically accounts for the impact of the estimation error in the first step of the testing procedure.

Second, we also consider a more general setup in which the conditional distribution may depend on a state

vector of any dimension. It turns out that such a generalization is not so straightforward as it seems at

first glance. In particular, one must employ kernel-based methods rather than local-linear smoothing if the

dimension of the conditioning set is large enough.

We also contribute to the literature on international market links by investigating volatility transmis-

sion between China, Japan, UK and US. Our empirical findings reveal that these stock markets display

significant interconnection. The evidence is particularly stronger for the realized measures that are robust

to jumps and/or market microstructure noise and hence it seems that the principal channel of transmis-

sion is through the integrated variance. The only exception is for spillovers from China to the US, which

take place predominantly through price jumps. Finally, China and Japan effects on the US stock market

volatility are more pronounced if one further controls for the quadratic variation in the UK. The FTSE

100 realized measure thus helps demarcate Asia-specific effects in the US in the presence of global shocks.
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Appendix

A Bias and scaling terms

Let C1(K) ≡
∫
K(u)2 du and C2(K) ≡

∫ (∫
K(u)K(u+ v) du

)2
dv. Define C1(W ), C2(W ), C1(W̃ ), and C2(W̃ ) analogously. The bias

and scaling terms that appear in (7) are given by
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To estimate the asymptotic bias and variance of the integrated squared relative difference statistic based on kernel smoothing, we
employ similar bias and scaling terms in (8). The only difference is that we replace the second-order univariate kernel W with the s-order
kernel function W̄ . For instance,
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Finally, for the bootstrap test statistics in (10) and (11), we obtain (µ̂∗1,T , µ̂
∗
2,T , µ̂

∗
3,T ) and (µ̄∗1,T , µ̄

∗
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∗
3,T ) by replacing the sample

quantities in (µ̂1,T , µ̂2,T , µ̂3,T ) and in (µ̄1,T , µ̄2,T , µ̄3,T ) with their bootstrap counterparts, that is, we substitute (Y ∗t , X
∗(q)
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B Proofs

B.1 Lemmata
The proof of Theorem 1 relies heavily on Lemmata 1 to 3, whereas we employ the results in Lemmata 4 to 6 in the proof of Theorem 2.

Lemma 1: Assume that there are at most three conditioning variables in the higher dimensional density (q ≤ 3) and that the bandwidths

satisfy the following conditions: (i) T (lnT )−1/2h
qA/2
qA h

q/2
q b→∞, (ii) Th

q/2
q b2s+1/2 → 0, (iii) Th

4+q/2
q b1/2 → 0, (iv) h−qq b2s−1 → 0,

(v) h4−qq b−1 → 0, (vi) Th
3q/2
q b3/2 →∞. It then follows from Assumptions A1 to A4 that, under the null H0,

Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

 f̂Y |X(q) (Yt|X(q)
t )− fY |X(q) (Yt|X(q)

t )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

− h−q/2q b−1/2 µ1

 d−→ N(0, 1)

where Ω2 ≡ 2C2(K)C2(W )
∫
π2(y,x) dy dx and

µ1 = C1(K)C1(W )

∫
π(y,x(q)) dy dx(q) − bC1(W )

∫
E
[
π(Y,X(q))

∣∣X(q) = x(q)
]

dx(q).

24



Lemma 2: Assume that there are at most three conditioning variables in the higher dimensional density (q ≤ 3) and that the bandwidths
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Lemma 3: Let the bandwidth conditions (i) to (vi) in Lemmata 1 and 2 hold. Assumptions A1 to A4 ensure that, under the null H0,

Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

ε̂Y |X(q) (Yt|X(q)
t ) ε̂

Y |X(qA) (Yt|X(qA)
t )

f̂
Y |X(qA) (Yt|X(qA)

t )
− hq/2−qAq b−1/2 µ3

 = op(1),

where ε̂Y |X(·) (Yt|X(·)
t ) ≡ f̂Y |X(·) (Yt|X(·)

t )− fY |X(·) (Yt|X(·)
t ) and

µ3 = C1(K) W̃ (0)

∫
E
[
π(Y,X(q))

∣∣Y = y,X(qA) = x(qA)
]

dy dx(qA)

− b W̃ (0)

∫
E
[
π(Y,X(q))

∣∣X(qA) = x(qA)
]

dx(qA).

Lemma 4: Let Assumptions A2 to A5 hold as well as the following bandwidths conditions: (i) T (lnT )−1/2h
qA/2
qA h

q/2
q b → ∞, (ii)

Th
q/2
q b2s+1/2 → 0, (iii) Th

2s+q/2
q b1/2 → 0, (iv) h−qq b2s−1 → 0, (v) h2s−qq b−1 → 0, (vi) Th

3q/2
q b3/2 →∞. It then follows that, under

the null H0,

Ω̄−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

 f̄Y |X(q) (Yt|X(q)
t )− fY |X(q) (Yt|X(q)

t )

f̄
Y |X(qA) (Yt|X(qA)

t )

2

− h−q/2q b−1/2 µ1

 d−→ N(0, 1),

where Ω̄2 ≡ 2C2(K)C2(W̄ )
∫
π2(y,x) dy dx.

Lemma 5: Let Assumptions A2 to A5 hold as well as the following bandwidths conditions: (i) T (lnT )−1/2h
2qA
qA h−qq b → ∞, (ii)

Th
q/2
q b2s+1/2 → 0, (iii) Th2sqA h

q/2
q b1/2 → 0, (iv) h

−2qA
qA hqq b

2s−1 → 0, (v) h
2s−2qA
qA hqq b

−1 → 0, and (vi) Th
5qA/2
qA h−qq b3/2 → ∞. It

then follows that

Ω̄−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

 f̄Y |X(qA) (Yt|X(qA)
t )− f

Y |X(qA) (Yt|X(qA)
t

f̄
Y |X(qA) (Yt|X(qA)

t )
)

2

− hq/2q h
−qA
qA b−1/2µ2

 = op(1).

Lemma 6: Let the bandwidth conditions (i) to (vi) in Lemmata 4 and 5 hold. It then follows from Assumptions A2 to A5 that, under
the null H0,

Ω̄−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

ε̄Y |X(q) (Yt|X(q)
t ) ε̄

Y |X(qA) (Yt|X(qA)
t )

f̄
Y |X(qA) (Yt|X(qA)

t )
− hq/2−qAq b−1/2µ3

 = op(1),

where ε̄Y |X(·) (Yt|X(·)
t ) ≡ f̄Y |X(·) (Yt|X(·)

t )− fY |X(·) (Yt|X(·)
t ).
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B.2 Proof of Theorem 1
(i) We first observe that

Ω̂2
T − Ω2 = 2C2(K)C2(W )

 1

T

T∑
t=1

π2(Yt,X
(q)
t )

fY,X(q) (Yt,X
(q)
t )
−
∫
π2(y,x(q)) dy dx(q)

+
1

T

T∑
t=1

π2(Yt,X
(q)
t )

fY,X(q) (Yt,X
(q)
t )f̂Y,X(q) (Yt,X

(q)
t )

(
f̂Y,X(q) (Yt,X

(q)
t )− fY,X(q) (Yt,X

(q)
t )
) .

is of order op(1) and hence we treat them as asymptotically equivalent in what follows. Under the null that fY |X(q) (Yt|X(q)
t ) =

f
Y |X(qA) (Yt|X(qA)

t ) almost surely, it follows that, up to a term of order op(1),

ΛT = Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

f2
Y |X(q) (Yt,X

(q)
t )

ε̂ 2
Y |X(q) (Yt|X(q)

t )− h−q/2q b−1/2 µ1



+ Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

f2
Y |X(qA) (Yt,X

(qA)
t )

ε̂ 2

Y |X(qA) (Yt|X(qA)
t )− hq/2q h

−qA
qA b−1/2 µ2


− 2 Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

f2
Y |X(q) (Yt,X

(q)
t )

ε̂Y |X(q) (Yt|X(q)
t ) ε̂

Y |X(qA) (Yt|X(qA)
t )− hq/2−qAq b−1/2 µ3


+ Ω−1 h

q/2
q b1/2

T∑
t=1

π(Yt,X
(q)
t )

[
ε̂Y |X(q) (Yt|X(q)

t )− ε̂
Y |X(qA) (Yt|X(qA)

t )
]2

×

 1

f̂ 2

Y |X(qA) (Yt|X(qA)
t )

−
1

f 2

Y |X(qA) (Yt|X(qA)
t )


− Ω−1

[
h
−q/2
q b−1/2

(
µ̂1,T − µ1

)
− hq/2q h

−qA
qA b−1/2

(
µ̂2,T − µ2

)
+ 2h

q/2−qA
q b−1/2

(
µ̂3,T − µ3

)]
= Λ

(0)
1,T + Λ

(0)
2,T + Λ

(0)
3,T , (12)

where Λ
(0)
1,T is the sum of the first three terms on the right-hand side of (12). Lemmata 1 to 3 yield the asymptotic normality of Λ

(0)
1,T

under the null and ensure that Λ
(0)
2,T = op(1).

It thus remains to show that Λ
(0)
3,T is also of order op(1). We start with

h
−q/2
q b−1/2

(
µ̂1,T − µ1

)
= C1(K)C1(W )h

−q/2
q b−1/2 1

T

T∑
t=1

π(Yt,X
(q)
t )

(
f̂Y,X(q) (Yt,X

(q)
t )− fY,X(q) (Yt,X

(q)
t )
)

f̂Y,X(q) (Yt,X
(q)
t )fY,X(q) (Yt,X

(q)
t )

+ h
−q/2
q b1/2 C1(W )

1

T

T∑
t=1

1

fX(q) (X
(q)
t )

{
E
[
π(Ys,X

(q)
s )|X(q)

s = X
(q)
t

]

−
1
T

∑T
s=1W hq (X

(q)
s −X

(q)
t )π(Ys,X

(q)
s )

1
T

∑T
s=1W hq (X

(q)
s −X

(q)
t )


+ h
−q/2
q b1/2 C1(W )

1

T

T∑
t=1

E
[
π(Ys,X

(q)
s )|X(q)

s = X
(q)
t

] (
f̂X(q) (X

(q)
t )− fX(q) (X

(q)
t )
)

fX(q) (X
(q)
t )f̂X(q) (X

(q)
t )

= op(1).

The last equality follows from the fact that the second and third terms are of smaller order than the first term, whereas the quantity

infC(Y,X(q)) fY,X(q) (Yt,X
(q)
t ) is bounded away from zero in a compact set C(Y,X(q)) ⊂ Rq+1 and the degenerate U-statistic

1

T

T∑
t=1

π(Yt,X
(q)
t )

(
f̂Y,X(q) (Yt,X

(q)
t )− fY,X(q) (Yt,X

(q)
t )
)

f̂Y,X(q) (Yt,X
(q)
t )fY,X(q) (Yt,X

(q)
t )

= op(h
q/2
q b1/2).

In addition, it follows along the same lines that h
q/2
q h

−qA
qA b−1/2

(
µ̂2,T − µ2

)
and h

q/2−qA
q b−1/2

(
µ̂3,T − µ3

)
are also of order op(1).
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(ii) Consider the following expansion under the alternative hypothesis HA

ΛT = Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

f̂ 2

Y |X(qA) (Yt,X
(qA)
t )

ε̂ 2
Y |X(q) (Yt|X(q)

t )− h−q/2q b−1/2 µ̂1,T



+ Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

f̂ 2

Y |X(qA) (Yt,X
(qA)
t )

ε̂ 2

Y |X(qA) (Yt|X(qA)
t )− hq/2q h

−qA
qA b−1/2 µ̂2,T



− 2 Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

f̂ 2

Y |X(qA) (Yt,X
(qA)
t )

ε̂Y |X(q) (Yt|X(q)
t ) ε̂

Y |X(qA) (Yt|X(qA)
t )− hq/2−qAq b−1/2 µ̂3,T


+ Ω−1 h

q/2
q b1/2

T∑
t=1

π(Yt,X
(q)
t )

f̂ 2

Y |X(qA) (Yt,X
(qA)
t )

[
fY |X(q) (Yt|X(q)

t )− f
Y |X(qA) (Yt|X(qA)

t )
]2

= Λ
(1)
1,T + Λ

(1)
2,T + Λ

(1)
3,T + Λ

(1)
4,T .

The asymptotic behavior of Λ
(1)
i,T for i ∈ {1, 2, 3} is the same under both hypotheses. However, under the alternative, fY |X(q) (Yt|X(q)

t )

differs from f
Y |X(qA) (Yt|X(qA)

t ) and thus Λ
(1)
4,T is of order Op

(
T h

q/2
q b1/2

)
, which ensures unit asymptotic power. �

B.3 Proof of Theorem 2
The result ensues from Lemmata 4 to 6 along the same lines as in the proof of Theorem 1. �

B.4 Proof of Theorem 3
(i) The local linear estimator based on realized measures (rather than on integrated variances) reads

β̂
(M)
T (y,x(q)) = β̂T (y,x(q)) +

(
H′

x(q)Wx(q)Hx(q)

)−1
(
H′

x
(q)
M

W
x
(q)
M

YyM −H
′
x(q)Wx(q)Yy

)

+

[(
1

T
H′

x
(q)
M

W
x
(q)
M

H
x
(q)
M

)−1

−
(

1

T
H′

x
(q)
M

Wx(q)Hx(q)

)−1
]

1

T
H′

x(q)Wx(q)Yy

+

[(
1

T
H′

x
(q)
M

W
x
(q)
M

H
x
(q)
M

)−1

−
(

1

T
H′

x(q)Wx(q)Hx(q)

)−1
]

1

T

(
H

x
(q)
M

W
x
(q)
M

YyM −H
′
x(q)Wx(q)Yy

)
,

where the index M denotes reliance on realized measures and 1
T

(
H′

x
(q)
M

W
x
(q)
M

YyM −H′x(q)Wx(q)Yy
)

is a column vector given by



1
T

∑T
t=1

[∏q
j=1Whq (Xjt,M − xj)Kb(Yt,M − y)−

∏q
j=1Whq (Xjt − xj)Kb(Yt − y)

]
1
T

∑T
t=1

[∏q
j=1Whq (Xjt,M − xj)Kb(Yt,M − y)(X1t,M − x1)−

∏q
j=1Whq (Xjt − xj)Kb(Yt − y)(X1t − x1)

]
...

1
T

∑T
t=1

[∏q
j=1Whq (Xjt,M − xj)Kb(Yt,M − y)(Xqt,M − xq)−

∏q
j=1Whq (Xjt − xj)Kb(Yt − y)(Xqt − xq)

]

 (13)

We start by bounding the first term on the right-hand side of (13), namely,

sup
C(Y,X(q))

∣∣∣∣∣∣ 1

T

T∑
t=1

 q∏
j=1

Whq (Xjt,M − xj)Kb(Yt,M − y)−
q∏
j=1

Whq (Xjt − xj)Kb(Yt − y)

∣∣∣∣∣∣
≤ sup
C(Y,X(q))

1

T

T∑
t=1

∣∣∣∣∣∣
q∑
i=1

 ∂

∂X̃jt,M

q∏
j=1

Whq (X̃jt,M − xj)

Kb(Ỹt,M − y)Ni,t,M

∣∣∣∣∣∣
+ sup
C(Y,X(q))

1

T

T∑
t=1

∣∣∣∣∣∣
q∏
j=1

Whq (X̃jt,M − xj)
[

∂

∂Ỹt,M
Kb(Ỹt,M − y)

]
N0,t,M

∣∣∣∣∣∣
+ sup
C(Y,X(q))

1

T

T∑
t=1

∣∣∣∣∣∣
q∑
i=1

q∏
j=1

 ∂

∂X̃jt,M

q∏
j=1

Whq (X̃jt,M − xj)

[ ∂

∂Ỹt,M
Kb(Ỹt,M − y)

]
N0,t,M Ni,t,M

∣∣∣∣∣∣ , (14)
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where X̃jt,M ∈ (Xjt,M , Xjt) and Ỹt,M ∈ (Yt,M , Yt). As for the first term on the right-hand side of (14), it turns out that

sup
C(Y,X(q))

1

T

T∑
t=1

∣∣∣∣∣∣
q∑
i=1

 ∂

∂X̃jt,M

q∏
j=1

Whq (X̃jt,M − xj)

Kb(Ỹt,M − y)Ni,t,M

∣∣∣∣∣∣
≤ q sup

∣∣Ni,t,M ∣∣ sup
C(Y,X(q))

1

T

T∑
t=1

∣∣∣∣∣∣
q∑
i=1

 ∂

∂X̃jt,M

q∏
j=1

Whq (X̃jt,M − xj)

Kb(Ỹt,M − y)Ni,t,M

∣∣∣∣∣∣
= Op(h−1

q ) sup
∣∣Ni,t,M ∣∣

and analogously the second term on the right-hand side of (13) is of order Op(b−1) sup
∣∣Ni,t,M ∣∣. In view of Assumption A6 and Corradi

et al.’s (2011) Lemma 1,

Pr

(
sup

1≤t≤T
T
− 1

k−1 a
1/2
M

∣∣Ni,t,M ∣∣ > ε

)
≤

T∑
t=1

Pr
(
T
− 1

k−1 a
1/2
M

∣∣Ni,t,M ∣∣ > ε
)
≤ ε−k T

1− k
k−1 a

k/2
M E

∣∣Ni,t,M ∣∣k
≤ ε−k T

− 1
k−1 a

k/2
M O(a

−k/2
M )→ 0, as M,T →∞

meaning that sup1≤t≤T
∣∣Ni,t,M ∣∣ = Op

(
T

1
k−1 a

−1/2
M

)
. It is straightforward to show that the third term on the right-hand side of (14) is

of smaller order that the first and third terms. It then follows that

sup
C(Y,X(q))

∣∣∣f̂ (M)

Y |X(q) (y|x(q))− f̂Y |X(q) (y|x(q))
∣∣∣ = Op

(
T

1
k−1 a

−1/2
M (h−1

q + b−1)
)

(15)

and, analogously,

sup
C(Y,X(qA))

∣∣∣∣f̂ (M)

Y |X(qA) (y|x(qA))− f̂
Y |X(qA) (y|x(qA))

∣∣∣∣ = Op
(
T

1
k−1 a

−1/2
M (h−1

qA
+ b−1)

)
. (16)

It is now immediate to see that, given bandwidth condition (vi),

Ω
(

Λ̂
(M)
T − Λ̂T

)
= h

q/2
q b1/2

T∑
t=1


 f̂

(M)

Y |X(q) (Yt,M |X
(q)
t,M )− f̂ (M)

Y |X(qA) (Yt,M |X
(qA)
t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )


2

π(Yt,M ,X
(q)
t,M )

−

 f̂Y |X(q) (Yt|X(q)
t )− f̂

Y |X(qA) (Yt|X(qA)
t )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

π(Yt,X
(q)
t )


+ h

q/2
q b1/2

T∑
t=1

(
f̂

(M)

Y |X(q) (Yt,M |X
(q)
t,M )− f̂ (M)

Y |X(qA) (Yt,M |X
(qA)
t,M )

)2

π(Yt,M ,X
(q)
t,M )

×

 f̂Y |X(qA) (Yt|X(qA)
t )− f̂ (M)

Y |X(qA) (Yt,M |X
(qA)
t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )f̂
(M)

Y |X(qA) (Yt,M |X
(qA)
t,M )


+ Op

(
h
−q/2
q b−1/2 T

1
k−1 a

−1/2
M (h−1

q + h−1
qA

+ b−1)
)

= AT,M +BT,M +Op
(
h
−q/2
q b−1/2 T

1
k−1 a

−1/2
M (h−1

q + h−1
qA

+ b−1)
)

= AT,M +BT,M + op

(
T

k+1
2(k−1) a

−1/2
M (h−1

q + h−1
qA

+ b−1)

)
, (17)

where the last term captures the contribution of the bias terms, namely,
(
µ̂i,T,M − µ̂i,T

)
= Op

(
T

1
k−1 a

−1/2
M (h−1

q + h−1
qA + b−1)

)
for

i ∈ {1, 2, 3}. Now,

∣∣∣π(Yt,M ,X
(q)
t,M )− π(Yt,X

(q)
t )
∣∣∣ ≤ ( sup

C(Y,X(q))

q∑
i=0

∂iπt,M

)(
sup
i,t

∣∣Ni,t,M ∣∣
)

= Op
(
T

1
k−1 a

−1/2
M

)
,

and so letting πt,M ≡ π(Yt,M ,X
(q)
t,M ) and π(Yt,Xt) ≡ π(Yt,X

(q)
t ) yields

h
q/2
q b1/2

T∑
t=1

 f̂Y |X(q) (Yt|X(q)
t )− f̂

Y |X(qA) (Yt|X(qA)
t )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

(πt,M − π(Yt,Xt)) = Op
(
h
−q/2
q b−1/2 T

1
k−1 a

−1/2
M

)
, (18)
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which is of order op(1). It also follows from (15) and (16) that

h
q/2
q b1/2

T∑
t=1

 f̂
(M)

Y |X(q) (Yt,M |X
(q)
t,M )− f̂Y |X(q) (Yt,M |X

(q)
t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

πt,M = Op

(
h
q/2
q b1/2 T

k+1
k−1 a−1

M (h−2
q + b−2)

)
(19)

h
q/2
q b1/2

T∑
t=1

 f̂
(M)

Y |X(qA) (Yt,M |X
(qA)
t,M )− f̂

Y |X(qA) (Yt,M |X
(qA)
t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )


2

πt,M = Op

(
h
q/2
q b1/2 T

k+1
k−1 a−1

M (h−2
qA

+ b−2)

)
, (20)

(21)

whereas

h
q/2
q b1/2

T∑
t=1

 f̂Y |X(q) (Yt,M |X
(q)
t,M )− f̂Y |X(q) (Yt|X(q)

t )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

πt,M

≤
(

sup
i,t

N2
i,t,M

)
h
q/2
q b1/2

T∑
t=1

∑q
i=0 ∂iβ̂0T (Ỹt,M |X̃

(q)

t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

πt,M = Op

(
h
q/2
q b1/2 T

k+1
k−1 a−1

M (h−2
q + b−2)

)
(22)

h
q/2
q b1/2

T∑
t=1

 f̂
Y |X(qA) (Yt,M |X

(qA)
t,M )− f̂

Y |X(qA) (Yt|X(qA)
t )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

πt,M

≤
(

sup
i,t

N2
i,t,M

)
h
q/2
q b1/2

T∑
t=1

∑q
i=0 ∂iβ̂0T (Ỹt,M |X̃

(qA)

t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )

2

πt,M = Op

(
h
q/2
q b1/2 T

k+1
k−1 a−1

M (h−2
qA

+ b−2)

)
, (23)

and hence that

h
q/2
q b1/2

T∑
t=1

 f̂Y |X(q) (Yt|X(q)
t )− f̂

Y |X(qA) (Yt|X(qA)
t )

f̂
Y |X(qA) (Yt|X(qA)

t )

 f̂
(M)

Y |X(d) (Yt,M |X
(d)
t,M )− f̂Y |X(q) (Yt,M |X

(d)
t,M )

f̂
Y |X(qA) (Yt|X(qA)

t )


= Op

(
T

k+1
2(k−1)

√
lnT a

−1/2
M (h−1

q + h−1
qA

+ b−1)

)
. (24)

Altogether, (18) to (24) imply that AT,M = Op

(
T

k+1
2(k−1)

√
lnT a

−1/2
M (h−1

q + h−1
qA + b−1)

)
. Finally, given that BT,M is of smaller

probability order than AT,M , it suffices to follow the same steps as in the proof of Theorem 1(i) to complete the proof of statement (i).

(ii) Under the alternative HA, fY |X(q) (Yt|X(q)
t ) and f

Y |X(qA) (Yt|X(qA)
t ) differ in a subset of nonzero Lebesgue measure. This implies

that the terms in (18) and (24) become of order Op

(
h
q/2
q b1/2 T

k
k−1 a

−1/2
M (h−1

q + h−1
qA + b−1)

)
under the alternative, though there is no

change in the probability orders of (19) to (23). Altogether, this shows that Λ̂
(M)
T −Λ̂T = Op

(
h
q/2
q b1/2 T

k
k−1 a

−1/2
M (h−1

q + h−1
qA + b−1)

)
under HA. This completes the proof due to the fact that a

−1/2
M (h−1

q + h−1
qA + b−1) = op(1). �

B.5 Proof of Theorem 4
The result ensues along the same lines as in the proof of Theorem 3.

B.6 Proof of Lemma 1
Under the null H0, fY |X(q) (y|x(q)) coincides almost surely with f

Y |X(qA) (y|x(qA)) and hence

Λ̂1,T ≡ Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

 ε̂Y |X(q) (Yt
∣∣X(q)

t )

f̂
Y |X(qA) (Yt

∣∣X(qA)
t )

2

− h−q/2q b−1/2 µ1


= Ω−1

hq/2q b1/2
T∑
t=1

π(Yt,X
(q)
t )

 ε̂Y |X(q) (Yt
∣∣X(q)

t )

fY |X(q) (Yt
∣∣X(qA)

t )

2

− h−q/2q b−1/2 µ1


+
h
q/2
q b1/2

Ω

T∑
t=1

π(Yt,X
(q)
t ) ε̂ 2

Y |X(q) (Yt
∣∣X(q)

t )

 1

f̂ 2

Y |X(qA) (Yt
∣∣X(qA)

t )
−

1

f 2

Y |X(qA) (Yt
∣∣X(qA)

t )


= Λ̂11,T + Λ̂12,T .
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As per Λ̂12,T ,

Λ̂12,T =
h
q/2
q b1/2

Ω

T∑
t=1

π(Yt,X
(q)
t ) ε̂ 2

Y |X(q) (Yt
∣∣X(q)

t )

×

(
f̂
Y |X(qA) (Yt

∣∣X(qA)
t )− f

Y |X(qA) (Yt
∣∣X(qA)

t )
)(

f̂
Y |X(qA) (Yt

∣∣X(qA)
t ) + f

Y |X(qA) (Yt
∣∣X(qA)

t )

)
f̂ 2

Y |X(qA) (Yt
∣∣X(qA)

t )f 2

Y |X(qA) (Yt
∣∣X(qA)

t )

≤
Th

q/2
q b1/2

Ω
sup

C(Y,X(q))

∣∣∣∣∣∣∣
f̂
Y |X(qA) (Yt

∣∣X(qA)
t ) + f

Y |X(qA) (Yt
∣∣X(qA)

t )

f̂ 2

Y |X(qA) (Yt
∣∣X(qA)

t )f 2

Y |X(qA) (Yt
∣∣X(qA)

t )

∣∣∣∣∣∣∣
[

1

T

T∑
t=1

π2(Yt,X
(q)
t ) ε̂ 4

Y |X(q) (Yt
∣∣X(q)

t )

]1/2

×
{

1

T

T∑
t=1

[
f̂
Y |X(qA) (Yt

∣∣X(qA)
t )− f

Y |X(qA) (Yt
∣∣X(qA)

t )
]2}1/2

.

Now, in view that

1

T

T∑
t=1

π2(Yt,X
(q)
t ) ε̂ 4

Y |X(q) (Yt
∣∣X(q)

t ) ≤ sup
C(Y,X(q))

ε̂ 2
Y |X(q) (Yt

∣∣X(q)
t )

1

T

T∑
t=1

π2(Yt,X
(q)
t ) ε̂ 2

Y |X(q) (Yt
∣∣X(q)

t )

= Op
(
T−1 lnTh−qq b−1

)
× Op

(
T−1h

−q/2
q b−1/2

)
and that

1

T

T∑
t=1

(
f̂
Y |X(qA) (Yt

∣∣X(qA)
t )− f

Y |X(qA) (Yt
∣∣X(qA)

t )
)2

= Op
(
T−1h

−qA/2
qA b−1/2

)
,

Λ̂12,T = op(1) due to bandwidth condition (i).

As Λ̂11,T concerns only X(q), we hereafter suppress the superscript index from the conditioning state vector and let m(x, y) =
E
[
Kb(Yt − y)

∣∣Xt = x
]
. By the same reasoning as in the proof of Theorem 1 in Fan et al. (1996), the bandwidth conditions (i) to (v)

ensure that

IT = h
q/2
q b1/2

T∑
t=1

π(Yt,X
(q)
t )

 ε̂Y |X(q) (Yt
∣∣X(q)

t )

fY |X(q) (Yt
∣∣X(q)

t )

2

= h
q/2
q b1/2

T∑
t=1

π(Yt,Xt)

f 2
Y,X(Yt,Xt)

(
1

T

T∑
τ=1

W hq (Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xt, Yt)

])2

+Op(T−1/2
√

lnT h
−q/2
q b−1/2)

= ĨT + op(1).

Letting now

φ(t, τ, k) =
1

T 2

π(Yt,Xt)

f 2
Y,X(Yt,Xt)

W hq (Xτ −Xt)
[
Kb(Yτ − Yt)−m(Xτ , Yt)

]
W hq (Xk −Xt)

[
Kb(Yk − Yt)−m(Xk, Yt)

]

and φ̄(t, τ, k) = φ(t, τ, k) + φ(t, k, τ) + φ(τ, t, k) + φ(τ, k, t) + φ(k, t, τ) + φ(k, τ, t) yields

ĨT = h
q/2
q b1/2

T∑
t<τ<k

φ̄(t, τ, k) + h
q/2
q b1/2

T∑
t6=τ

[
φ(t, τ, τ) + φ(τ, t, τ) + φ(τ, τ, t)

]
+ h

q/2
q b1/2

T∑
t=1

φ(t, t, t)

= Ĩ1,T + Ĩ2,T + Ĩ3,T .

As in Aı̈t-Sahalia et al. (2009), we must now demonstrate the following statements to conclude the proof; the only difference is that we
must also account for the higher dimensionality of the conditioning set (q > 1).

(a) Ĩ1,T = (T − 2)h
q/2
q b1/2

∑
t<τ φ̄(t, τ) + op(1), where φ̄(t, τ) =

∫
φ̄(t, τ, k) dF (yk,xk).

(b) Ĩ2,T = 1
2
T (T − 1)h

q/2
q b1/2 φ̃(0) + op(1), where φ̃(0) = E[φ̃(t)], φ̃(t) =

∫
φ̃(t, τ) dF (yτ ,xτ ), and φ̃(t, τ) = φ(t, t, τ) + φ(t, τ, t) +

φ(τ, t, t) + φ(τ, t, τ) + φ(τ, τ, t) + φ(t, τ, τ).

(c) Ĩ3,T = op(1).
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(d) It also holds that

1
2
T (T − 1)h

q/2
q b1/2 φ̃(0) = h

−q/2
q b−1/2 C1(K)C1(W )

∫
π(y,x) dy dx

− h−q/2q b1/2 C1(W )

∫
E
[
π(Y,X)

∣∣X = x
]

dx+ o(1) (25)

and that

Ω2 = lim
T→∞

Var

[
(T − 2)h

q/2
q b1/2

∑
t<τ

φ̄(t, τ)

]
= 2C2(K)C2(W )

∫
π2(y,x) dy dx. (26)

(e) (T − 2)h
q/2
q b1/2

∑
t<τ φ̄(t, τ)

d−→ N(0,Ω2).

B.6.1 Proof of statement (a)

It follows from the Hoeffding decomposition that

Ĩ1,T = h
q/2
q b1/2

∑
t<τ<k

Φ(t, τ, k) + (T − 2)h
q/2
q b1/2

∑
t<τ

φ̄(t, τ), (27)

where Φ(t, τ, k) = φ̄(t, τ, k) − φ̄(t, τ) − φ̄(t, k) − φ̄(τ, k). To show that the first term on the right-hand side of (27) is of order op(1), it

suffices to apply Lemma 5(i) in Aı̈t-Sahalia et al. (2009) with δ = 1/3. This results in E
(
Ĩ 2
1,T

)
= O

(
T−1 h

3q/2
q b−3/2

)
, which is of order

o(1) by condition (vi). �

B.6.2 Proof of statement (b)

As before, applying the Hoeffding decomposition yields

h
q/2
q b1/2 Ĩ2,T = h

q/2
q b1/2

∑
t<τ

φ̃(t, τ)

= h
q/2
q b1/2

∑
t<τ

[
φ̃(t, τ)− φ̃(t)− φ̃(τ)− φ̃(0)

]
+ (T − 1)h

q/2
q b1/2

T∑
t=1

[
φ̃(t)− φ̃(0)

]
+ 1

2
T (T − 1)h

q/2
q b1/2 φ̃(0).

Lemma 5(ii) in Aı̈t-Sahalia et al. (2009) with δ = 1 then dictates that

h
q/2
q b1/2

∑
t<τ

[
φ̃(t, τ)− φ̃(t)− φ̃(τ)− φ̃(0)

]
= Op

(
T−1 h

−5q/4
q b−5/4

)
,

which is of order op(1) due to the bandwidth condition (vi). Under Assumption A4, the central limit for β-mixing processes ensures that

(T − 1)h
q/2
q b1/2

T∑
t=1

[
φ̃(t)− φ̃(0)

]
= Op

(
T−1 h−qq b−1

)
= op(1). �

B.6.3 Proof of statement (c)

It is immediate to see that

Ĩ3,T = h
q/2
q b1/2

T∑
t=1

φ(t, t, t) = Op
(
T h
−3q/2
q b−3/2

)
,

which is of order op(1) by condition (vi). �

B.6.4 Proof of statement (d)

As for (25) and (26), the result follows along similar lines of the proof of claim (d) in Aı̈t-Sahalia et al. (2009). �

B.6.5 Proof of statement (e)

It suffices to apply Fan and Li’s (1999) central limit theorem for degenerate U-statistics of absolutely regular processes to obtain the
desired result (see Amaro de Matos and Fernandes, 2007). See also Aı̈t-Sahalia et al. (2009) and Gao and Hong (2008) for alternative
central limit theorems that deal with degenerate U-statistics of α-mixing processes. �
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B.7 Proof of Lemma 2
Let ψ̄(t, τ) and ψ̃(0) respectively denote the counterparts of φ̄(t, τ) and φ̃(0) once we substitute

ψ(t, τ, k) =
1

T 2

π(Yt,X
(q)
t )

f2
Y,X(qA) (Yt,X

(qA)
t )

{
W̃ hq (X

(qA)
τ −X(qA)

t )
[
Kb(Yτ − Yt)−m(X

(qA)
τ , Yt)

]

× W̃ hq (X
(qA)
k −X(qA)

t )
[
Kb(Yk − Yt)−m(X

(qA)
k , Yt)

]}
for φ(t, τ, k). Applying the same argument we put forth in the proof of Lemma 1 then yields

JT = h
q/2
q b1/2

T∑
t=1

π(Yt,X
(q)
t )

f2
Y,X(qA) (Yt,X

(qA)
t )

[
f̂
Y |X(qA) (Yt|X(qA)

t )− f
Y |X(qA) (Yt|X(qA)

t )
]2

= (T − 2)h
q/2
q b1/2

∑
t<τ

ψ̄(t, τ) + 1
2
T (T − 1)hq/2 b1/2 ψ̃(0) + op(1),

whose first term on the right-hand side satisfies the central limit theorem for U-statistics. In addition,

1
2
ψ̃(0) =

1

T 2

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

W̃
2

hqA
(x

(qA)
j − x(qA)

i )
(
Kb(yj − yi)−m(x

(qA)
j , yi)

)2
dF (yi,x

(q)
i dF (yj ,x

(qA)
j )

=
1

T 2

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

W̃
2

hqA
(x

(qA)
j − x(qA)

i )K2
b (yj − yi) dF (yi,x

(q)
i ) dF (yj ,x

(qA)
j )

−
2

T 2

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

W̃
2

hqA
(x

(qA)
j − x(qA)

i )Kb(yj − yi)m(x
(qA)
j , yi) dF (yi,x

(q)
i ) dF (yj ,x

(qA)
j )

+
1

T 2

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

W̃
2

hqA
(x

(qA)
j − x(qA)

i )m2(x
(qA)
j , yi) dF (yi,x

(q)
i ) dF (x

(qA)
j )

=
1

T 2

1

h
qA
qA b

∫
W̃

2
(u) du

∫
K2(v) dv

∫
π(yi,x

(q)
i )

f(yi,x
(qA)
i )

f(yi,x
(q)
i ) dyi dx

(q)
i

{
1 +O

(
h2qA + bs

)}

−
1

T 2

1

h
qA
qA

∫
W̃

2
(u) du

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

f(yi,x
(q)
i )m2(x

(qA)
i , yi) f(x

(qA)
i ) dyi dx

(q)
i

{
1 +O(h2qA + bs)

}
,

where the last equality follows from a Taylor expansion with u = (x
(qA)
j − x(qA)

i )/hqA and v = (yj − yi)/b given that

E
[
Kb(yj − yi)|Y = yi,X

(qA) = x
(qA)
i

]
= m(x

(qA)
i , yi) = f(yi|x

(qA)
i )

{
1 +O(h2qA + bs)

}
.

In addition, it ensues from

∫
π(yi,x

(q)
i )

f(yi,x
(qA)
i )

f(yi,x
(q)
i ) dyi dx

(q)
i =

∫
π(yi,x

(q)
i ) f(x

(qB)
i |yi,x

(qA)
i ) dyi dx

(q)
i

=

∫
E
[
π(yi,x

(q)
i )|Y = yi,X

(qA) = x
(qA)
i

]
dyi dx

(qA)
i

and

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

f2(yi|x
(qA)
i ) f(yi,x

(q)
i ) f(x

(qA)
i ) dyi dx

(q)
i =

∫
π(yi,x

(q)
i ) f(yi,x

(qB)
i |x(qA)

i ) dyi dx
(q)
i

=

∫
E
[
π(yi,x

(q)
i )|X(qA) = x

(qA)
i

]
dx

(qA)
i ,

that

1
2
T (T − 1)h

q/2
q b1/2 ψ̃(0) = h

q/2
q h

−qA
qA b−1/2 C1(K)C1(W̃ )

∫
E
[
π(yi,x

(q)
i |Y = yi,X

(qA) = x
(qA)
i

]
dx

(qA)
i dyi

+ h
q/2
q h

−qA
qA b1/2 C1(W̃ )

∫
E
[
π(yi,x

(q)
i )|X(qA) = x

(qA)
i

]
dx

(qA)
i + o(1),

completing the proof. �
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B.8 Proof of Lemma 3
Let

ϕ(t, τ, k) =
1

T 2

π(Yt,X
(q)
t )

fY,X(q) (Yt,X
(q)
t ) f

Y,X(qA) (Yt,X
(qA)
t )

W hq (X
(q)
τ −X

(q)
t )
[
Kb(Yτ − Yt)−m(X

(q)
τ , Yt)

]
× W̃ hqA

(X
(qA)
k −X(qA)

t )
[
Kb(Yk − Yt)−m(X

(qA)
k , Yt)

]
.

Proceeding along the same line as in the proof of Lemma 1 then yields

h
q/2
q b1/2

T∑
t=1

π(Yt,X
(q)
t ) ε̂Y |X(q) (Yt|X(q)

t ) ε̂
Y |X(qA) (Yt|X(qA)

t )

fY |X(q) (Yt|X(q)
t ) f

Y |X(qA) (Yt|X(qA)
t )

= (T − 2)h
q/2
q b1/2

∑
t<τ

ϕ̄(t, τ)

+ 1
2
T (T − 1)h

q/2
q b1/2 ϕ̃(0) + op(1).

Let now u = (x
(qA)
j −x(qA)

i )/hqA , v = (yj−yi)/b, and z = (x
(q)
j −x

(q)
i )/hq . Given that under the null H0 E

[
Kb(yj − yi)|Y = yi,X

(q) = x
(q)
i

]
=

m(x
(q)
i , yi) = m(x

(qA)
i , yi), it follows that

1
2
ϕ̃(0) = T−2h

−qA
q b−1 C1(K) W̃ (0)

∫
π(yi,x

(q)
i )

f(yi,x
(qA)
i )

f(yi,x
(q)
i ) dyi dx

(q)
i

{
1 +O

(
h2qA + bs

)}

− T−2h
−qA
q W̃ (0)

∫
π(yi,x

(q)
i )

f2(yi,x
(qA)
i )

f(yi,x
(q)
i )m2(x

(qA)
i , yi) f(x

(qA)
i ) dyi dx

(q)
i

{
1 +O

(
h2qA + bs

)}
= T−2h

−qA
q b−1 C1(K) W̃ (0)
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π(yi,x

(q)
i )|Y = yi,X

(qA) = x
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i

]
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{
1 +O

(
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(q)
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{
1 +O

(
h2qA + bs
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.

This means that

1
2
T (T − 1)h

q/2
q b1/2 ϕ̃(0) = h

q/2−qA
q b−1/2 C1(K) W̃ (0)

∫
E
[
π(yi,x

(q)
i )|Y = yi,X

(qA) = x
(qA)
i

]
dyi dx

(qA)
i

− hq/2−qAq W̃ (0)

∫ [
π(yi,x

(q)
i )|X(qA) = x

(qA)
i

]
dx

(qA)
i ,

which completes the proof. �

B.9 Proofs of Lemmata 4 to 6
We omit the proofs because they are almost exactly the same as the proofs of Lemmata 1 to 3. It indeed suffices to apply the same line
of reasoning to derive the results in a straightforward manner. �

B.10 Proof of Theorem 5
We denote by Pr∗ the probability distribution induced by the bootstrap sampling, with expectation and variance operators given by
E∗ and Var∗, respectively. In addition, we also let O∗p(1) and o∗p(1) denote the orders of magnitude according to the bootstrap-induced
probability law.

Both local-linear and kernel smoothing results follow straightforwardly once we prove the bootstrap versions of Lemmata 1 to 3 and
of Lemmata 4 to 6, respectively. As the proofs are very similar, in what follows, we restrict attention to the bootstrap test based on local
linear smoothing. We start with the bootstrap counterpart of Lemma 1. As in the latter’s proof, it turns out that

Λ̂∗1,T = h
q/2
∗q b

1/2
∗

T∑
t=1

π(Y ∗t ,X
∗(q)
t )

 f̂∗Y |X(q) (Y ∗t
∣∣X∗(q)t )− fY |X(q) (Y ∗t

∣∣X∗(q)t )

f̂∗
Y |X(qA) (Y ∗t

∣∣X∗(qA)
t )


2

− h−q/2∗q b
−1/2
∗ µ1

= h
q/2
∗q b

1/2
∗
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π(Y ∗t ,X
∗(q)
t )

f 2
Y,X(q) (Y ∗t ,X

∗(q)
t )

(
1

T
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W h∗q (X
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[
Kb∗ (Y ∗τ − Y ∗t )−m(X

∗(q)
τ , Y ∗t )

])2

−h−q/2∗q b
−1/2
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Let now

φ∗(k, j, i) = T −2 π(Y ∗k ,X
∗(q)
k )

f 2
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k )

W h∗q (X
∗(q)
j −X∗(q)k )

[
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.
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Taking conditional expectation over bootstrap samples given (Yk,X
(q)
k ) then yields

φ∗(j, i) = E∗
[
φ∗(k, j, i)
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and so
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As in statement (d) in the proof of Lemma 1, it then follows that

1
2
T (T − 1)h

q/2
∗q b

1/2
∗ φ∗(0) = h

−q/2
∗q b

−1/2
∗ µ1 + o∗p(1)

and, as T /T → 0,

(T − 2)h
q/2
∗q b

1/2
∗

T∑
j<i

φ∗(j, i) = (T − 2)h
q/2
∗q b

1/2
∗

T∑
j<i

(
φ∗(j, i)− E∗ [φ∗(j, i)]

)
+ o∗p(1). (28)

In view that Var∗
{

(T − 2)h
q/2
∗q b

1/2
∗
∑
t<τ

(
φ∗(j, i)− E∗[φ∗(j, i)]

)}
= Ω + op(1), the first term on the right-hand side of (28) weakly

converges to N(0,Ω) as both T and T go to infinity, thus mimicking the limiting distribution of (T − 2)h
q/2
∗q b

1/2
∗
∑
j<i φ(j, i).

Define next ψ∗(k, j, i), ψ∗(j, i) and ψ∗(0) analogously to φ∗(k, j, i), φ∗(j, i) and φ∗(0) for X(qA), with W̃ h∗qA
replacing W h∗q . As

T /T → 0, it is possible to show that (T −2)h
q/2
∗q b

1/2
∗
∑T
t<τ ψ∗(j, i) = o∗p(1) and 1

2
T (T −1)h

q/2
∗q b

1/2
∗ ψ∗(0) = h

q/2
∗q h

−qA
∗qA b

−1/2
∗ µ2 +o∗p(1).

It is also straightforward to derive the bootstrap counterpart of Lemma 3 as well. The statement under the null thereby follows by

noting that µ̂∗1,T = µ̂1,T + op(h
−p/2
∗q b

−1/2
∗ ), whereas it is immediate to see that Λ̂∗T diverges at most at rate Op

(
T hq/2∗q b

1/2
∗

)
under the

alternative. �

C Realized measures
According to the data generating process, one may employ different realized measures to estimate the daily integrated variance from a
sample of M intraday regularly-spaced-in-time observations under very mild conditions. Andersen et al. (2001) and Barndorff-Nielsen
and Shephard (2002) propose the realized variance

RVi,t,M ≡
M−1∑
j=1

(
pi,t+(j+1)/M − pi,t+j/M

)2
, (29)

whereas Barndorff-Nielsen and Shephard (2004) suggests the tripower variation

TVi,t,M = µ−3
2/3

M−3∑
j=1

∣∣∆pi,(j+3)/M

∣∣2/3 ∣∣∆pi,(j+2)/M

∣∣2/3 ∣∣∆pi,(j+1)/M

∣∣2/3 , (30)

where µk is the k-th moment of a standard normal distribution. The former is a consistent estimator for the quadratic variation of
the process, and hence it estimates consistently the integrated variance only in the absence of jumps. In contrast, the latter entails a
consistent estimate of the integrated variance even in the presence of jumps.
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The above realized measures implicitly assumes the absence of market frictions. Decomposing the observed asset price pi,t into the
true price p∗i,t and a noise εi,t arising from generic market frictions yields pi,t = p∗i,t + εi,t, i = A,B. The resulting sample of M intraday
regularly-spaced-in-time observations over T days then is

pi,t+j/M = p∗i,t+j/M + εi,t+j/M , i = A,B (31)

where εi,t+j/M is by assumption a zero-mean geometric α−mixing process. It is possible to estimate the integrated variance at day t
from the noisy price data {pi,t+j/M ; j = 1, . . . ,M ; t = 1, . . . , T} using appropriate realized measures. Zhang et al. (2005) introduce the
two-scale realized variance

TSi,t,L,M = RV i,t,L,M −
L

M
RVi,t,M , (32)

where

RV i,t,L,M =
L

M

M/L∑
`=1

L−1∑
j=1

(
p
i,t+

(j+1)M/L+`
M

− p
i,t+

jM/L+`
M

)2

gauges the average realized variance across M/L subsamples of size L = O
(
M1/3

)
. Similarly, the multi-scale realized variance put forth

by Zhang (2006) and Aı̈t-Sahalia et al. (2011) considers a weighted average of realized variances over different sampling frequencies. In
particular,

MSi,t,L,M =

L∑
`=1

a`

 1

L`

M−L`∑
j=1

(
p
i,t+

j+L`
M

− p
i,t+ j

M

)2
+

RVi,t,M

M
, (33)

where a` is such that
∑L
`=1 a` = 1 and

∑L
`=1 a`/` = 0. For instance, if one considers L` = `, then

a` = 12
`

L2

`/L− 1/2− 1/(2L)

1− 1/L2
.

Barndorff-Nielsen et al. (2008) show that both the two- and multi-scale realized volatility estimators are asymptotic equivalent to realized
measures belonging to the class of kernel-based estimators given by

RKi,t,H,M =

L∑
`=1

κ

(
`− 1

L

)(
γi,t,` + γi,t,−`

)
, (34)

where γi,t,` =
∑M−L−1
j=` (pi,t+(j+1)/M − pi,t+j/M )(pi,t+(j+1−`)/M − pi,t+(j−`)/M ), and the kernel is such that κ(0) = 1 and κ(1) =

κ′(0) = κ′(1) = 0. More specifically, the two-scale realized volatility corresponds to a realized kernel estimator with κ(x) = 1 − x and

L = M2/3, whereas the multi-scale realized volatility to a realized kernel measure with κ(x) = 1− 3x2 + 2x3 and L = M1/2.
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Michael McCracken, Nour Meddahi, Chris Neely, Alessio Sancetta, Pedro Santa Clara, Enrique Sentana, Ross Valkanov, and

seminar participants at Banco de Portugal, Cambridge University, Cass Business School, City University, Federal Reserve

Bank of St Louis, Fundação Getulio Vargas, Queen Mary, Università di Padova, University of Bath, University of Bristol, Uni-
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Table 1

Empirical size using bootstrap critical values

To examine empirical size, we simulate intraday returns from two independent CIR

processes and then test for conditional independence in variance using bootstrap

critical values. We consider tests at the 5% and 10% levels of significance for sample

sizes of 400 and 600 daily realized variances based on M = 144 intraday observations.

We set the bandwidth scaling factors to κb ∈ {1/2, 3/4, 1} and κh ∈ {3/4, 1, 3/2, 5/2},

with κb < κh. All results rest on 1,000 Monte Carlo replications and 300 bootstrap

artificial samples of 100 daily observations.

5% 10%
κb

κh 3/4 1 3/2 5/2 3/4 1 3/2 5/2

Panel A: T = 400
1/2 0.065 0.055 0.050 0.047 0.121 0.107 0.134 0.162
3/4 0.052 0.048 0.049 0.128 0.117 0.121
1 0.067 0.063 0.133 0.156

Panel B: T = 600
1/2 0.071 0.065 0.061 0.058 0.124 0.116 0.129 0.142
3/4 0.054 0.057 0.056 0.109 0.114 0.132
1 0.058 0.059 0.120 0.137



Table 2

Descriptive statistics for index returns

We collect transactions data for the S&P 500, FTSE 100, SSE B share, and Topix 100 indices. The

sample spans the period ranging from January 3, 2000 to December 30, 2005. We document the

main descriptive statistics for the index percentage returns with continuously compounding at regular

sampling intervals of 1 and 30 minutes. The sample does not include overnight returns, so that the

first intraday return refers to the opening price that ensues from the pre-sessional auction.

S&P 500 FTSE 100 Topix 100 SSE B share

sampling frequency: 1 minute
mean −0.0001 −0.0001 −0.0003 −0.0004
standard deviation 0.0448 0.0403 0.0531 0.0525
minimum −1.9020 −2.4636 −1.4095 −1.5255
maximum 1.5562 2.4611 1.0710 2.3179
skewness −0.1149 0.2698 0.0429 0.9108
kurtosis 34.4874 212.918 21.4390 58.9127
zero returns 3.58% 5.24% 5.57% 19.39%

sampling frequency: 30 minutes
mean −0.0014 −0.0021 −0.0084 −0.0098
standard deviation 0.2910 0.2691 0.3170 0.5516
minimum −3.3035 −4.1526 −4.8155 −6.4782
maximum 3.9838 2.9476 3.5572 5.0368
skewness 0.0459 −0.2768 −0.2314 0.0450
kurtosis 13.1125 20.8049 14.6988 15.3793
zero returns 1.72% 1.66% 1.04% 2.51%



Table 3

Daily volatility transmission to the US

We report the outcome of the bootstrap test for conditional independence of the S&P 500 index daily
realized measures and of the VIX index with respect to the daily realized measures of the FTSE 100,
Topix 100, and SSE B share indices. We employ the following realized measures based on 1-minute and
5-minute returns: realized variance (RV), tripower variation (TV), two-scale realized variance (TS), and
realized kernel (RK). In addition, we also compute the realized variance and tripower variation using
15-minute and 30-minute returns. We first standardize the logarithm of the data by their mean and
standard deviation and then estimate the conditional densities by means of kernel smoothing. As per
the weighting function, we employ a standard multivariate normal density. To obtain critical values, we
construct B = 500 bootstrap artificial samples of size T = 250 by resampling blocks of 4 daily observations.

S&P 500 index VIX index
RV TV TS RK RV TV TS RK

FTSE 100 index
1 minute 0.024 0.016 0.306 0.084 0.064 0.090 0.002 0.000
5 minutes 0.294 0.274 0.032 0.284 0.044 0.160 0.004 0.002
15 minutes 0.306 0.274 0.086 0.002
30 minutes 0.448 0.068 0.094 0.002

Topix 100 index
1 minute 0.014 0.014 0.190 0.350 0.000 0.004 0.064 0.160
5 minutes 0.354 0.104 0.108 0.168 0.302 0.320 0.136 0.162
15 minutes 0.350 0.956 0.192 0.228
30 minutes 0.124 0.202 0.422 0.410

SSE B share index
1 minute 0.014 0.280 0.210 0.136 0.038 0.178 0.140 0.188
5 minutes 0.070 0.010 0.406 0.052 0.160 0.044 0.384 0.142
15 minutes 0.412 0.240 0.234 0.194
30 minutes 0.194 0.422 0.082 0.184



Table 4

Daily volatility transmission to the UK

We report the outcome of the bootstrap test for conditional independence of the
FTSE 100 index daily realized measures with respect to the daily realized measures
of the S&P 500, Topix 100, and SSE B share indices. The test details are exactly as
in Table 3.

RV TV TS RK

S&P 500 index
1 minute 0.032 0.016 0.082 0.038
5 minutes 0.092 0.084 0.822 0.100
15 minutes 0.190 0.000
30 minutes 0.090 0.200

Topix 100 index
1 minute 0.044 0.078 0.058 0.210
5 minutes 0.132 0.318 0.022 0.014
15 minutes 0.044 0.012
30 minutes 0.256 0.304

SSE B share index
1 minute 0.036 0.094 0.046 0.000
5 minutes 0.342 0.304 0.582 0.122
15 minutes 0.216 0.002
30 minutes 0.120 0.034



Table 5

Daily volatility transmission to Japan

We report the outcome of the bootstrap test for conditional independence of the daily
realized measures of the Topix 100 index with respect to the daily realized measures
of the S&P 500, FTSE 100 and SSE share B indices. The test details are exactly as
in Table 3.

RV TV TS RK

S&P 500 index
1 minute 0.002 0.018 0.474 0.284
5 minutes 0.176 0.178 0.012 0.070
15 minutes 0.842 0.592
30 minutes 0.244 0.342

FTSE 100 index
1 minute 0.002 0.052 0.156 0.182
5 minutes 0.074 0.402 0.050 0.084
15 minutes 0.032 0.010
30 minutes 0.496 0.530

SSE B share index
1 minute 0.018 0.012 0.770 0.290
5 minutes 0.242 0.054 0.366 0.182
15 minutes 0.492 0.442
30 minutes 0.120 0.816



Table 6

Daily volatility transmission to China

We report the outcome of the bootstrap test for conditional independence of the daily
realized measures of the SSE B share index with respect to the daily realized measures
of the S&P 500, FTSE 100 and Topix 100 indices. The test details are exactly as in
Table 3.

RV TV TS RK

S&P 500 index
1 minute 0.018 0.778 0.084 0.232
5 minutes 0.214 0.052 0.232 0.376
15 minutes 0.122 0.140
30 minutes 0.536 0.476

FTSE 100 index
1 minute 0.020 0.002 0.684 0.004
5 minutes 0.140 0.086 0.218 0.282
15 minutes 0.082 0.006
30 minutes 0.112 0.432

Topix 100 index
1 minute 0.012 0.010 0.172 0.130
5 minutes 0.438 0.096 0.266 0.084
15 minutes 0.428 0.674
30 minutes 0.458 0.138



Table 7

Daily volatility transmission to the US using extra controls

We report the outcome of the bootstrap test for conditional independence of the S&P 500 index daily
realized measures and of the VIX index with respect to the daily realized measures of the FTSE 100,
Topix 100, and SSE B share indices. To better account for data persistence, we further condition the
distribution of the S&P 500 realized measure on the VIX index and vice-versa. To filter global volatility
shocks, we also consider tests for which we further condition the distribution of the S&P 500 realized
measure on the FTSE 100 realized measure. The test details are as in Table 3.

S&P 500 index VIX index
RV TV TS RK RV TV TS RK

FTSE 100 index (+ VIX index) (+ S&P 500 index)
1 minute 0.024 0.024 0.044 0.116 0.024 0.014 0.026 0.120
5 minutes 0.072 0.082 0.034 0.002 0.066 0.066 0.028 0.004
15 minutes 0.020 0.016 0.016 0.004
30 minutes 0.090 0.000 0.102 0.000

Topix 100 index (+ VIX index) (+ S&P 500 index)
1 minute 0.002 0.004 0.086 0.084 0.000 0.000 0.072 0.056
5 minutes 0.072 0.056 0.054 0.040 0.152 0.026 0.062 0.028
15 minutes 0.196 0.068 0.162 0.034
30 minutes 0.038 0.042 0.018 0.142

Topix 100 index (+ FTSE 100 index)
1 minute 0.060 0.004 0.130 0.180
5 minutes 0.166 0.298 0.018 0.124
15 minutes 0.040 0.310
30 minutes 0.136 0.024

SSE B share index (+ VIX index) (+ S&P 500 index)
1 minute 0.024 0.284 0.090 0.242 0.040 0.346 0.008 0.274
5 minutes 0.082 0.210 0.176 0.210 0.294 0.382 0.394 0.462
15 minutes 0.014 0.260 0.002 0.352
30 minutes 0.066 0.184 0.040 0.196

SSE B share index (+ FTSE 100 index)
1 minute 0.032 0.000 0.294 0.000
5 minutes 0.258 0.010 0.136 0.102
15 minutes 0.052 0.030
30 minutes 0.772 0.082



Table 8

Hourly volatility transmission

We report the outcome of the bootstrap test for conditional independence using
three hourly realized measures based on 1-minute returns: realized variance
(RV), tripower variation (TV), and realized kernel (RK). The test details are
exactly as in Table 3.

RV TV RK

Panel A: Transmission to the S&P 500 index
FTSE 100 index 0.282 0.766 0.000
Topix 100 index 0.160 0.068 0.268
SSE B share index 0.064 0.148 0.054

Panel B: Transmission to the FTSE 100 index
S&P 500 index 0.040 0.066 0.118
Topix 100 index 0.560 0.722 0.462
SSE B share index 0.086 0.086 0.078

Panel C: Transmission to the Topix 100 index
S&P 500 index 0.138 0.220 0.008
FTSE 100 index 0.058 0.188 0.040
SSE B share index 0.164 0.226 0.006

Panel D: Transmission to the SSE B share index
S&P 500 index 0.014 0.072 0.534
FTSE 100 index 0.022 0.014 0.206
Topix 100 index 0.010 0.042 0.150



Figure 1

Realized measures of the daily variance of the index returns

The plots display the time series of the realized variance and tripower variation based on the 1-

minute and 30-minute index returns as well as the realized kernel estimate of the daily variance

based on 1-minute index returns. Intraday index returns refer to continuously compounded returns

on the SSE B share, Topix 100, S&P 500, and FTSE 100 indices from January 3, 2000 to December

30, 2005.



Figure 2

China spillovers to the UK

The dashed red line plots the conditional density of the log of the quadratic variation of the FTSE 100 index given

its past realization, whereas the solid black line depicts a similar conditional density, but further conditioning

on the log of the quadratic variation of the SSE B share index. We evaluate the conditioning variables at their

(a) first quartile, (b) median, and (c) third quartile values. We measure quadratic variation using the tripower

variation estimator at the 15-minute frequency. The kernel density estimation employs the same bandwidths we

use in the tests; see Table 3 for details.

(a) first quartile

(b) median

(c) third quartile



Figure 3

China spillovers to the US given the UK

The dashed red line portrays the conditional density of the log of the quadratic variation of the S&P 500 index

given its past realization and the log of the quadratic variation of the FTSE 100 index. The solid black line

displays a similar conditional density, but further conditioning on the log of the quadratic variation of the SSE B

share index. We evaluate the conditioning variables at their (a) first quartile, (b) median, and (c) third quartile

values. We measure the daily quadratic variation using the realized kernel estimator at the 1-minute frequency.

The kernel density estimation employs the same bandwidths we use in the tests; see Table 8 for details.

(a) first quartile

(b) median

(c) third quartile
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