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1 Introduction

In many situations arising in Economics it is of interest to compare the forecasting performance

of a competing model to that of a reference or benchmark model. The latter could either be

suggested by economic theory or simply be the reigning champion resulting from past compe-

titions.

This is typically done by performing a test based on comparing the (out-of-sample) loss

functions associated with the benchmark and the competing model. Under the null hypothesis

that the two models have the same forecasting ability, the weighted distance between the two

loss function is small, and asymptotically the test statistic converges to a well behaved, albeit

possibly non-standard distribution (see, e.g., Diebold and Mariano, 1995, West, 1996, 2006,

Clark and McCracken, 2001, Giacomini and White, 2006, Clark and West, 2007, McCracken,

2007). Under the alternative hypothesis, the competing model outperforms the benchmark,

hence the test statistic diverges, giving rise to a consistent test.

As the number of competing models gets large though, this procedure may run into prob-

lems. This is because the null hypothesis is a composite hypothesis, formed by the intersection

of several individual hypothesis. When we estimate and compare a large number of models

using the same data set, there is a problem of data mining or data snooping. The problem of

data snooping is that a model appears to be superior to the benchmark because of luck, not

because of its intrinsic merit.

Indeed, if using the same data set, we compare the benchmark model against a large enough

set of alternative models, eventually we would find some models outperforming the benchmark,

even if none has superior predictive ability. This happens because of a sequential testing bias

problem. If we test each of the hypothesis composing the null separately, at a nominal level α,

then the overall size increases whenever we test a new hypothesis, and eventually reaches one.
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The data snooping problem arises because a composite hypothesis is treated as a sequence of

individual independent hypotheses. For each single test there is a probability (α) that the null

hypothesis will be rejected even when it is true.

In the statistical literature, the event of rejecting the null hypothesis when it is true is often

referred to as a false discovery. In the present context, we define a model for which the null

hypothesis has been rejected despite being true as a “lucky” model.

Suppose that we are testing one hypothesis with a level of confidence equal to α. α gives

us the probability of rejecting the null hypothesis when it is true. It gives us, in other words,

the probability of a false discovery. Suppose, instead, that we are testing K hypotheses, based

on data coming from the same sample. If the K test statistics are independent,

Pr(at least 1 false discovery) = 1− (1−α)K = αK.

For example, when K = 40, α = 0.05, αK = 0.87. Therefore, for a moderate value of K, the

probability of having at least one false rejection is much higher than α, and quickly tends

towards 1.

The literature has proposed different, multiple testing procedures to solve this problem. The

first solution is to use Bonferroni’s one-step procedure, which consists of testing each single

null hypothesis independently from the outcome of the others, fixing a level of confidence

equal to α/K. In this way, the multiple level of significance (also called the family wise error

rate, FWER) is equal to α. In the example given above, this would mean testing each single

hypothesis at α = 0.00125, a very conservative level.1

Another possibility, proposed by Holm (1979), consists of sorting the p-values p j obtained

1Although it is important to distinguish between exact and asymptotic control of the overall level of signif-
icance, this is beyond the scope of the Chapter. We refer the interested reader to Romano, Shaikh and Wolf
(2008b).
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for testing the hypothesis H0, j, p(1) ≤ . . . ≤ p(K) and labeling the corresponding hypotheses

accordingly, H0,(1), . . . ,H0,(K). Then, H0,(k) is rejected at level α if p( j) ≤ α/(K− j + 1), for

j = 1, . . . ,k. This method is called a stepdown method, because it starts with the lowest p-

value. It controls for the FWER and improves on the Bonferroni’s approach, but still produces

conservative inference.

White (2000) introduces a formal approach, named reality check (RC), for testing the hy-

pothesis that the best competing model does not outperform the benchmark. By jointly con-

sidering all competing models, this approach controls the FWER, and circumvents the data

snooping problem. In fact, the reality check procedure ensures that the probability of rejecting

the null when is false is smaller than or equal to α.

Power improvements are obtainable at the cost of relaxing the controlled type I error. Sup-

pose that one is concerned with Pr(at least l false discoveries), with l > 1. Then, methods con-

trolling for l-FWER have been developed, based on modified Bonferroni and Holm procedures

(for a review of these modifications, see Romano, Shaikh and Wolf, 2008b).

A viable alternative is the control of the less conservative false discovery rate (FDR), de-

fined as the expected value of the ratio between the false discoveries and the total number of

rejections. The first successful attempt to control for FDR has been proposed by Benjamini

and Hochberg (1995, 2000). Their approach has been subsequently refined in a series of pa-

pers (see Storey, 2002, 2003, Storey and Tibshirani, 2003, Storey, Taylor and Siegmund, 2004,

Romano, Shaikh and Wolf, 2008a).

Methods for controlling the type I error have already found their way into financial and

economic applications. Barras, Scaillet and Wermers (2005), McCracken and Sapp (2005),

Bajgrowicz and Scaillet (2008) and Avramov, Barras and Kosowski (2009) control for FDR

to evaluate, respectively, the performance of US mutual funds, competing structural models in

predicting exchange rates, technical trading strategies and the forecasting power of economic
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variables for hedge fund returns. Sullivan, Timmermann and White (1999, 2001), Awartani and

Corradi (2005) and Hansen and Lunde (2005), Wolf and Wunderly (2009) control for FWER

in order to evaluate, respectively, different calendar or trading rules against the benchmark

rule of holding cash, the forecasting performance of different GARCH models against the

GARCH(1,1), and to construct a fund of truly outperforming hedge funds.

There may be situations where we do not have a benchmark model, but simply want to

eliminate poor models and keep all models sharing the same predictive accuracy. This is

accomplished by the Model Confidence Set (MCS) approach of Hansen, Lunde and Nason

(2009). We suggest an alternative to the MCS approach which ensures that both the probability

of eliminating a relevant model or failing to eliminate an irrelevant one approach zero.

The focus of this chapter is on recent development in the forecasting literature on how to

simultaneously control both the overall error rate and the contribution of irrelevant models. In

this sense, it begins where West’s (2006) chapter ends. As a novel contribution, we derive a

general class of superior predictive ability tests, which controls for FWER and the contribution

of irrelevant models. This is accomplished by applying the same methodology currently used

to construct confidence intervals for the validity of moment conditions defined by multiple

weak inequalities (see, e.g., Chernozhukov, Hong and Tamer, 2007, Andrews and Jia, 2008,

Bugni, 2008, Rosen, 2008, Andrews and Guggenberger, 2009, Andrews and Soares, 2010 and

Romano and Shaikh, 2010).

The chapter is organized as follows. Section 2 defines the setup. Section 3 reviews the

approaches that control for the conservative FWER. Section 4 considers a general class of tests

characterized by multiple joint inequalities. Section 5 presents results allowing for control of

the less conservative FDR. Finally, Section 6 considers the MCS approach and offers a simple

alternative, which reduces the influence of irrelevant models in the initial set.
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2 Setup

In this section we introduce the notation and the setup we shall use in the sequel. We consider

a collection of K + 1 models, where model 0 is treated as the benchmark or reference model

and models 1, . . . ,K compose the set of competing models. Formally,

yt = gk
(
Xk,t ,βk

)
+uk,t ,

where, in general, Xk,t contains lags of yt and of some other variables used for prediction.

Models i and j are non-nested if gi 6= g j and/or neither Xi,t ⊆X j,t nor Xi,t ⊇X j,t , otherwise

one is nested in the other. As βk is unknown, we don’t observe the prediction error uk,t .

Following the common practice in out-of-sample prediction, we split the total sample made

of T observations in two segments R, P with R + P = T . We use the first R observations to

estimate a candidate model, say model k, and construct the first τ−step ahead prediction error.

Then, we use R+1 observations to re-estimate the model and compute the second τ−step ahead

prediction error, and so on, until we have a sequence of (P− τ + 1) τ−step ahead prediction

errors.2 We define the estimated parameter vector at each step as

β̂k,t = argmax
βk

{
1
t

t

∑
j=1

qk, j
(
Xk,t ,βk

)
}

for t ≥ R,

where qk, j can be thought of as the quasi-likelihood function implied by model k. Analogously,

we can define

β†
k = argmax

βk

{
1
t

t

∑
j=1

E
(
qk, j

(
Xk,t ,βk

))
}

for t ≥ R.

2Here we use a recursive estimation scheme, where data up to time t ≥R are used. West and McCracken (1998)
also consider a rolling estimation scheme, in which a rolling windows of R observations is used for estimation.
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This setup allows a formal analysis of the effect of parameter estimation error on tests for

predictive ability. For clarity of exposition, here we only consider the simple case of pairwise

model comparisons (Diebold and Mariano, 1995). The hypotheses of interest can be stated as

H0 : E
(

f (u0,t)− f
(
uk,t

))
= 0

vs

HA : E
(

f (u0,t)− f
(
uk,t

)) 6= 0,

where f denotes a generic loss function.3 Hence, the null hypothesis implies equal predictive

ability of models 0 (the benchmark) and k. The test statistic for the hypotheses above is given

by

√
Pm̂k,P =

√
P

P− τ+1

T

∑
t=R+τ

m̂k,t =
√

P
P− τ+1

T

∑
t=R+τ

(
f (û0,t)− f

(
ûk,t

))
,

where the prediction error associated with model k is defined as ûk,t+τ = yt+τ−gk

(
Xk,t , β̂k,t

)
.

Assuming that f is twice differentiable in a neighborhood of β†
0 and β†

k , it follows that

√
P

(
m̂k,P−mk,P

)
= E

(
∇β0 f (u0,t)

) √
P

P− τ+1

T

∑
t=R+τ

(
β̂0,t −β†

0

)

−E
(
∇βk f

(
uk,t

)) √
P

P− τ+1

T

∑
t=R+τ

(
β̂k,t −β†

k

)
+op(1), (1)

where, similarly to before, the unfeasible statistic is defined as

√
Pmk,P =

√
P

P− τ+1

T

∑
t=R+τ

mk,t =
√

P
P− τ+1

T

∑
t=R+τ

(
f (u0,t)− f

(
uk,t

))
.

The limiting distribution of the right hand side of (1) has been derived by West (1996). Here it

3Here, we only consider two-sided alternatives. The same methodologies can also be applied to one-sided
alternatives, which are a natural choice when comparing nested models.
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suffices to notice that, as for all t ≥ R, supt≥R

∣∣∣β̂k,t −β†
k

∣∣∣ = Op

(
R−1/2

)
the contribution of pa-

rameter estimation error is negligible if either P/R→ 0, as P,R→ ∞, or/and E
(
∇β0 f (u0,t)

)
=

E
(
∇β0 f

(
uk,t

))
= 0. Otherwise, parameter estimation error matters and affects the asymptotic

variance of
√

Pm̂k,P. Therefore, it has to be taken into account for inference purposes, when

constructing variance estimators and/or bootstrap critical values (see, e.g., West, 1996, West

and McCracken, 1998, Corradi and Swanson, 2006a, 2006b, 2007).

Note that P/R→ 0 is satisfied when the number of observations used for estimation grows

at a faster rate than the number of observations used for out of sample prediction. On the other

hand, because of the first order conditions, E
(
∇β0 f (u0,t)

)
= E

(
∇β0 f

(
uk,t

))
= 0 when the

same loss function is used for estimation and out of sample prediction, i.e. q0 = qk = f . A

typical example is when we estimate parameter by Ordinary Least Squares (using a gaussian

quasi-likelihood function), and choose a quadratic loss function for out of sample forecast

evaluation.

Giacomini and White (2006) suggest an alternative approach, in which parameters are es-

timated using a fixed rolling window of observations, thus preserving the effect of estimation

uncertainty on the relative models performance. To keep notation simpler, in the following

Sections we assume that parameter estimation error is asymptotically negligible.
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3 Methods for controlling the FWER

3.1 Reality Check

As explained in the Introduction, in Economics a frequently used approach controlling the

FWER is the Reality Check of White (2000). Formally, the hypotheses of interest are:

H0 : max
k=1,...,K

mk ≤ 0 (2)

vs

HA : max
k=1,...,K

mk > 0.

Note that the composite hypothesis in (2) is the intersection of the K null hypotheses H0,k : mk ≤

0. Under the alternative, there is at least one competing model outperforming the benchmark.

We have the following result.

Proposition 1 (from Proposition 2.2 in White, 2000) Let mP = (m1,P, . . . ,mK,P)>,

m̂P = (m̂1,P, . . . , m̂K,P)>, and assume that, as P → ∞,
√

P(m̂P−mP) d→ N(0,V ) , with V

positive semi-definite. Then,

max
k=1,...,K

{√
P

(
m̂k,P−mk

)} d→ max
k=1,...,K

Zk, (3)

where Z = ( Z1, . . . , Zk)> is distributed as N(0,V ) and V has typical element

v j,k = lim
P→∞

E

(
1√
P

T

∑
t=R+τ

(
m̂ j,t −m j

) 1√
P

T

∑
t=R+τ

(
m̂k,t −mk

)
)

.
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Notice that, because V has to be positive semi-definite, at least one competitor has to be non-

nested within and non-nesting the benchmark model.4

Proposition 1 establishes the limiting distribution of the test statistic using the least favor-

able distribution to the alternative. This happens when mk = 0 for all k, which means that

all models share the same predictive accuracy. White defines as RC any methodology able to

deliver asymptotically valid p-values for the limiting distribution in (3).

Because the maximum of a Gaussian process is not a Gaussian process, the construction

of p-values for the limiting distribution in (3) is not straightforward. White proposes two

alternatives: (i) a simulation-based approach and (ii) a bootstrap-based approach. The first

approach starts from a consistent estimator of V , say V̂ . Then, for each simulation s = 1, . . . ,S,

we construct

d̂
(s)
P =




d̂(s)
1,P

...

d̂(s)
K,P




=




v̂1,1 · · · v̂1,K

... . . . ...

v̂K,1 · · · v̂K,K




1/2 


η(s)
1

...

η(s)
K




,

where
(

η(s)
1 , . . . ,η(s)

K

)>
is drawn from a N(0,IK). Then, we compute maxk=1,...,K

∣∣∣d̂(s)
P

∣∣∣, and

the (1−α)−percentile of its empirical distribution, say cα,P,S.

The simulation based approach requires the estimation of V . If K is large, and forecasting

errors exhibit a high degree of time dependence, estimators of the long-run variance become

imprecise and ill-conditioned, making inference unreliable, especially in small samples. This

problem can be overcome using bootstrap critical values.

White (2000) outlines the construction of bootstrap critical values when the contribution

of parameter estimation error to the asymptotic covariance matrix vanishes. In this case, we

4To the best of our knowledge, there are no testing procedures for predictive evaluation of multiple nested
models. On the other hand, there are several tests for pairwise comparison of nested models, see e.g. Clark and
McCracken (2001), McCracken (2007), Clark and West (2007).
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resample blocks of m̂k,t and, for each bootstrap replication b = 1, . . . ,B, calculate

m̂∗(b)
k,P =

1√
P

T

∑
t=R+τ

m̂∗(b)
k,t .

Finally, we compute the bootstrap statistic maxk=1,...,K

∣∣∣m̂∗(b)
k,P − m̂k,P

∣∣∣ and the (1−α)-percentile

of its empirical distribution, say cα,P,B. White has shown that, as P,S → ∞, cα,P,S and, as

P,B → ∞, cα,P,B converge to the (1−α)−percentile of the limiting distribution on the right

hand side of (3). The rule is to reject H0 if maxk=1,...,K
√

Pm̂k,P is larger than cα,P,S or cα,P,B

(depending on the chosen method to calculate critical values), and do not reject otherwise.

Because the right hand side of (3) represents the limiting distribution for the least favorable

case under the null, the rules above ensure that the probability of false rejection is at most

α. In particular, if all competitors are as good as the benchmark, mk = 0 for all k, then the

probability of falsely rejecting the null is asymptotically α. However, if some model is worse

than the benchmark, i.e. mk < 0 for some k, then the probability of falsely rejecting the null is

smaller than α.

Suppose the we consider an additional model, which is worse than both the benchmark

and the best competing model, i.e. mK+1 < 0 and mK+1 < maxk=1,...,K mk. The inclusion of

this additional model will not change the asymptotic behavior of the statistic, because trivially

maxk=1,...,K+1
√

Pm̂k,P = maxk=1,...,K
√

Pm̂k,P. However, the percentiles of the limiting distri-

bution of maxk=1,...,K+1
{√

P
(
m̂k,P−mk

)}
will be larger than those of the limiting distribution

of maxk=1,...,K
{√

P
(
m̂k,P−mk

)}
.

Hence, the probability of rejecting the null decreases as a direct consequence of the intro-

duction of a poor model. Stretching this argument, RC p-values may become larger and larger

because of the introduction of more and more irrelevant models. Indeed, the power of the test

can be pushed to zero through the inclusion of a large number of poor models. In this sense,
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RC may become quite conservative.

3.2 Hansen’s SPA Test

Hansen (2005) suggests a variant of RC, the Superior Predictive Ability test, which is much

less sensitive to the inclusion of poor models and thus less conservative. The SPA statistic is

given by

TP = max

{
0, max

k=1,...,K

m̂k,P√
v̂k,k

}
, (4)

where v̂k,k is a consistent estimator of limP→∞var
(√

Pm̂k,P
)
. Hansen considers the case when

parameter estimation error vanishes as P → ∞. Notice that the SPA statistic requires that, for

all k = 1, . . . ,K, v̂k,k
p→ vk,k > 0, which in turn requires that all competing models are neither

nested within nor nesting the benchmark. This is in contrast with RC, which only requires

that vk,k > 0 for at least one k. On the other hand, the SPA approach allows for the case when

some competing models are nested within or nesting other competing models. In particular,

the matrix V does not need to be positive definite, but the elements of its main diagonal must

be strictly positive.

Inspection of (4) reveals that only nonnegative moment conditions contribute to TP and to

its limiting distribution, and that the case of m̂k,P < 0 for all k is considered sufficient evidence

in favor of the null. In order to construct a bootstrap analog, Hansen uses the law of the iterated

logarithm, according to which

Pr
(

lim sup
P→∞

√
P

(
mk,P−mk√vk,k

)
=
√

2ln lnP
)

= 1,

Pr
(

lim inf
P→∞

√
P

(
mk,P−mk√vk,k

)
=−

√
2ln lnP

)
= 1.
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Because for all k, v̂k,k− vk,k = op(1) and m̂k,P−mk,P = op(1), it follows that

lim
P→∞

Pr

(√
P

(
m̂k,P−mk√

v̂k,k

)
=
√

2ln lnP

)
= 1,

lim
P→∞

Pr

(√
P

(
m̂k,P−mk√

v̂k,k

)
=−

√
2ln lnP

)
= 1,

and so one can discard the contribution of m̂k,P when m̂k,P ≤−
√

v̂k,k
√

2ln lnP/P. Hence, the

bootstrap counterpart to TP is given by

T ∗(b)
P = max





0, max
k=1,...,K





√
P

(
m̂∗(b)

k,P − m̂k,P1{
m̂k,P>−v̂k,k

√
2ln lnP/P

}
)

√
v̂k,k









. (5)

Finally, p-values for the SPA statistic are given by 1/B∑B
b=1 1{

T ∗(b)
P >TP

}. The logic underlying

the construction of the SPA p-values is the following. When m̂k,P < −√
v̂k,k

√
2ln lnP/P,

implying that m̂k,P does not contribute to TP, the corresponding bootstrap moment condition is

not recentered. Therefore, also m̂∗(b)
k,P , which is negative, does not contribute to the bootstrap

limiting distribution. The fact that “very” negative moment conditions do not contribute to the

p-values ensures that SPA p-values are less conservative than RC p-values. Nevertheless, it

cannot be established that the SPA test is uniformly more powerful than the RC test.

3.3 Stepwise Multiple testing

A further improvement on the RC procedure is provided by the stepwise multiple testing ap-

proach (stepM) of Romano and Wolf (2005). The idea behind stepM is that, by adopting a

multi-step approach, power improvements are obtained with respect to the single step Reality

Check. Like Holm’s, stepM is a stepdown method. The algorithm for implementing the stepM

methodology is given below:
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1. Relabel the models in descending order of the test statistics m̂k,P: model r1 corresponds

to the largest test statistic and model rK to the smallest.

2. Let the index j and the number R j denote, respectively, the step of the procedure and the

total number of rejections at the end of step j. Set j = 1 and R0 = 0.

3. For R j−1 +1≤ k ≤ K, if 0 /∈ [m̂rk,P± ĉ j], reject the null hypothesis H0,rk . A data depen-

dent algorithm to calculate the critical values ĉ j is explained below.

4. (a) If no (further) null hypotheses are rejected, stop.

(b) Otherwise, let j = j +1 and return to step 3.

The algorithm described above highlights the power improvements achievable by iterating over

j, which are similar in spirit to those enjoyed by the Holm’s methodology over the single step

Bonferroni’s method. Romano and Wolf (2005) also provide a consistent, bootstrap based,

procedure to calculate the critical values, which works as follows:

1. Generate B bootstrap data matrices.

2. From each bootstrapped data matrix, compute the individual test statistics m̂
∗(b)
P .

3. (a) For b = 1, . . . ,B, compute max∗(b)
j = maxR j−1+1≤k≤K

{
m̂∗(b)

rk,P − m̂rk,P

}
.

(b) Compute ĉ j as the (1−α/2)-empirical quantile of the B values max∗(b)
j , b = 1, . . . ,B.

This method is readily generalized to control for l-FWER.

4 A Class of Tests for Superior Predictive Ability

In this Section we introduce a novel approach to testing for superior predictive ability. In par-

ticular, we outline how the methodology currently used to construct confidence intervals for the
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validity of moment conditions defined by weak inequalities can be applied to the construction

of tests for superior predictive ability. The null hypothesis H0 : maxk=1,...,K mk ≤ 0 of Section 3

can be rewritten as

H0 : mk ≤ 0 for k = 1, . . . ,K (6)

and the corresponding alternative HA : maxk=1,...,K mk > 0 can be reformulated as follows

HA : mk > 0 for at least one k ∈ {1, . . . ,K} .

Confidence sets for the null in (6) have recently been investigated by many researchers (see,

e.g., Chernozhukov, Hong and Tamer, 2007, Andrews and Jia, 2008, Bugni, 2008, Rosen,

2008, Andrews and Guggenberger, 2009 and Andrews and Soares, 2010). The literature has

suggested two different approaches for testing the null in (6).

The first uses a Quasi Likelihood Ratio (QLR) statistic (Andrews and Jia, 2008, Rosen,

2008 and Andrews and Soares, 2010), defined as

SP = inf
%∈RK−

(√
Pm̂P−%

)>
V̂ −1

P

(√
Pm̂P−%

)
. (7)

The second statistic (Chernozhukov, Hong and Tamer, 2007 and Bugni, 2008) is defined as

S+
P =

K

∑
k=1

(√
Pm̂+

k,P/
√

v̂k,k

)2
, where x+ =





x, if x > 0

0, if x≤ 0

. (8)

Notice that the construction of the QLR statistic requires V̂P to be invertible, which is a stronger

condition than v̂k,k > 0 for all k. When m̂k,P ≤ 0 for all k, both SP and S+
P are equal to zero

almost surely. In fact, only those models yielding m̂k,P > 0 contribute to the statistic.
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Moreover, under the null, m̂k,P has to tend to zero as P → ∞, to ensure that
√

Pm̂k,P is

bounded in probability and that both SP, S+
P have well definite limiting distributions. Under

the alternative, as P → ∞, at least one m̂k,P does not tend to zero and both statistics diverge.

Both statistics introduced above are developed in the spirit of those for testing the null of a

parameter being on the boundary (see, e.g., Andrews, 1999 and Beg, Silvapulle and Silvapulle,

2001). In fact, the element of the null least favorable to the alternative, i.e. m̂k,P = 0 for each

k is treated as a boundary, and only positive values of the statistics contribute to the limiting

distribution. Notice that the statistics (7) and (8) are a function of m̂P and of V̂P, and therefore

can be written as

ZP = S
(
m̂P, V̂P

)
. (9)

Andrews and Guggenberger (2009) provide a set of sufficient conditions on S (Assumptions

1-4), ensuring that, under the null, as P→ ∞,

S
(
m̂P, V̂P

)
d→ S

(
Ω1/2Z +h,Ω

)
,

where Z ∼N(0,IK), Ω=D−1/2V D−1/2, D = diag(V ), V = plimP→∞ V̂P and h =(h1, . . . ,hK)>

is a vector measuring the slackness of the moment conditions, i.e. hk = limP→∞
√

PE
(
mk,P/

√vk,k
)
.

In particular, SP and S+
P satisfy the Assumptions on S of Andrews and Guggenberger (2009),

and, under H0, as P→ ∞,

SP
d→ inf

%∈RK−

(
Ω1/2Z +h−%

)>
Ω−1

(
Ω1/2Z +h−%

)

and

S+
P

d→
K

∑
i=1

((
K

∑
j=1

ωi, j Z j +hi

)+)2

,
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where ωi, j is the [i, j]−th element of Ω.

The main problem in the computation of the critical values or confidence sets, is that the

vector h cannot be consistently estimated. Intuitively, except for the least favorable case under

the null, E
(
mk,P/

√vk,k
)

< 0 and so limP→∞
√

PE
(
mk,P/

√vk,k
)

tends to minus infinity, and

cannot be consistently estimated. Andrews and Soares (2010) suggest different, asymptotically

valid, rules for approximating the vector h. These include for example,

(i) h j = 0 if ξ j ≥−1, and h j =−∞ if ξ j <−1, where ξ j =
√

P/2ln lnP
(
m̂ j,P/

√
v̂ j, j

)

(ii) h j = 0 if ξ j ≥−1, and h j = ξ j if ξ j <−1.

The intuition behind rule (i) is that if m̂ j,P ≤−
√

v̂ j, j
√

2ln lnP/P, then the j−moment condi-

tion is too slack, i.e. model j is too poor to contribute to the limiting distribution.

In what follows, without loss of generality, we follow rule (i) and suppose that we select the

first K̃ competing models, with K̃ ≤K. Critical values can be computed either via a simulation-

based approach or via a bootstrap-based approach. Bootstrap critical values for SP can be

obtained by computing the percentiles of the empirical distribution of

S∗P

= inf
%∈RK̃−

(√
PD̂∗−1/2

P,(K̃)

(
m̂∗

P,(K̃)−m̂P,(K̃)

)
−%

)>
Ω̂∗−1

P,(K̃)

(√
PD̂∗−1/2

P,(K̃)

(
m̂∗

P,(K̃)−m̂P,(K̃)

)
−%

)
,

where the subscript (K̃) indicates that we are considering only the selected K̃ moment condi-

tions, and the starred quantities are bootstrap analogues of sample counterparts.

Alternatively,
(

m̂∗
P,(K̃)−m̂P,(K̃)

)
, D̂∗−1/2

P,(K̃) and Ω̂∗−1

P,(K̃) can be replaced, respectively, by

draws from a Ω̂−1
P,(K̃)N(0,IK̃), by D̂

−1/2
P,(K̃) and Ω̂−1

P,(K̃). Bootstrap critical values for S+
P can be
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obtained from the percentiles of the empirical distribution of

S∗+P =
K

∑
k=1


√P


m̂∗

k,P− m̂k,P√
v̂∗k,k




+

1{
m̂k,P≥−

√
v̂k,k
√

2ln lnP/P
}




2

.

Let c∗P,α and c∗+P,α be the (1−α)−percentile of empirical distribution of S∗P and S∗+P , respectively.

From Theorem 1 in Andrews and Soares (2010), we have that, under H0,

lim
P→∞

Pr
(
SP ≤ c∗P,α

)≥ 1−α and lim
P→∞

Pr
(

S+
P ≤ c∗+P,α

)
≥ 1−α.

Thus, the asymptotic size is at most α.

By comparing SP against c∗P,α and S+
P against c∗+P,α we have a test for H0 versus HA, where

FWER is controlled for, and the probability is false discovery is at most α. Furthermore, the

selection rule for eliminating slack moment conditions (i.e. poor forecasting models) limits the

risk of driving the power to zero by including weak models.

In principle, any function S in (9) satisfying Assumptions 1-4 in Andrews and Guggen-

berger (2009) delivers a test for superior predictive ability, ensuring a false discovery of at

most α and controlling for irrelevant models. A natural choice is the maximum over the posi-

tive moment conditions, i.e.

SP,Max = max
k=1,...,K

{√
P

(
m̂+

k,P/
√

v̂k,k

)}
,

which satisfies Assumptions 1-4 in Andrews and Guggenberger (2009) and is equivalent to
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Hansen’s TP in (4).5 Under the null, as P→ ∞,

SP,Max
d→ max

k=1,...,k

{(
K

∑
j=1

ωk, jZ j +hk

)+}

and bootstrap critical values can be obtained from the quantiles of the empirical distribution of

S∗P,Max = max
k=1,...,K




√

P


m̂∗

k,P− m̂k,P√
v̂∗k,k




+

1{
m̂k,P≥−

√
v̂k,k
√

2ln lnP/P
}





= max



0, max

k=1,...,K




√

P


m̂∗

k,P− m̂k,P√
v̂∗k,k


1{

m̂k,P≥−
√

v̂k,k
√

2ln lnP/P
}







 .

Note that Hansen’s bootstrap statistic in (5) writes as

T ∗P = max

{
0, max

k=1,...,K

{√
P

(
m̂∗

k,P− m̂k,P√
v̂k,k

)
1{

m̂k,P≥−
√

v̂k,k
√

2ln lnP/P
}
}

,

max
k=1,...,K

{√
P

m̂∗
k,P√
v̂k,k

1{
m̂k,P<−

√
v̂k,k
√

2ln lnP/P
}
}}

. (10)

By comparing S∗P,Max and T ∗P , we note two differences. First, the scaling factor in S∗P,Max is

v̂∗k,k while that in T ∗P is v̂k,k. Second, S∗P,Max is defined as the maximum over two objects, while

T ∗P as the maximum over three objects. More precisely, S∗P,Max does not take into account

maxk=1,...,K

{√
P

m̂∗k,P
v̂k,k

1{
m̂k,P<−

√
v̂k,k
√

2ln lnP/P
}
}

. Nevertheless, S∗P,Max − T ∗P = op∗(1), where

op∗(1) denotes a term converging to zero under P∗, the probability law of the resampled series.

v̂∗k,k− v̂k,k = op∗(1), and the contribution of the term in the second line of (10) is asymptotically

negligible. In fact, up to a vanishing error, E∗
(

m̂∗
k,P

)
= m̂k,P, where E∗ denotes the expectation

under P∗, conditional on the sample. Therefore, if m̂k,P < −√
v̂k,k

√
2ln lnP/P, it is unlikely

5It suffices to note that maxk=1,...,K

{√
P

(
m̂+

k,P/
√

v̂k,k

)}
= max

{
0,maxk=1,...,K

√
P

(
m̂+

k,P/
√

v̂k,k

)}
.
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that m̂∗
k,P > 0. More formally, by the law of the iterated logarithm,

P∗
(

max
k=1,...,K

{√
P

m̂∗
k,P√
v̂k,k

1{
m̂k,P<−

√
v̂k,k
√

2ln lnP/P
}
}

> 0

)

= P∗
(

max
k=1,...,K

{√
P

m̂∗
k,P− m̂k,P√

v̂k,k

}
>
√

2ln lnP

)
→ 0,

and so maxk=1,...,K

{√
P

m̂∗k,P
v̂k,k

1{
m̂k,P<−

√
v̂k,k
√

2ln lnP/P
}
}

does not contribute to the bootstrap

critical values of T ∗P . Hansen’s SPA test can therefore be seen as a member of the class of

superior predictive ability tests.

It is worthwhile to point out that superior predictive ability tests provide a remedy to the

problem of p-values artificially inflated by inclusion of irrelevant models, but they do not com-

pletely solve the issue of having conservative p-values. This is because, as a selection rule to

eliminate irrelevant models, they use the law of iterated logarithm and eliminate only moment

conditions diverging to minus infinity at a slow rate. To have a test of superior predictive ability

with exact asymptotic level α, one should eliminate all models whose moment conditions are

smaller than a given negative constant. Andrews and Jia (2008) show how to find the value for

this constant maximizing the average power of the test, and how to implement a size correction

to obtain a test with asymptotic size equal to α.

5 Controlling for FDR

Table 1 summarizes the different possible outcomes that occur when testing K hypotheses.

Bonferroni’s and Holm’s approaches described in the Introduction controlled for the FWER,

defined as Pr(V ≥ 1) ≤ α. But, since the probability of at least a false discovery increases

very quickly with K, controlling for the FWER entails a loss of power, and the loss of power

increases with K. To cope with this problem, Benjamini and Hochberg (1995) propose to
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Table 1: Outcomes when testing K hypotheses

Do not Reject Reject Total

Null true U V K0

Alternative true T S K1

W R K

control for the ratio of false discoveries to total discoveries, that is to control for

FDR = E
(

V
R

)
= E

(
V
R

∣∣∣∣R
)

Pr(R > 0).

They provide a sequential method, based on the obtained p-values from the individual tests, to

control for this quantity; they prove its validity under the assumption that the p-values are inde-

pendent. After ordering the p-values p(1)≤ . . .≤ p(K), calculate kmax = max
{

1≤ k ≤ K : p(k) ≤ αk/K
}

and reject hypotheses H0,(1), . . . ,H0,(kmax). If no such k exists, reject no hypothesis. FDR cri-

terion is much less strict than FWER and, as a consequence, leads to a substantial increase of

power. FDR can be interpreted as “the expected proportion of false discoveries to total dis-

coveries times the probability of making at least one discovery”. Therefore, when controlling

for FDR ≤ γ and discoveries have occurred, this method really controls for FDR at a level

γ/Pr(R > 0). For small values of α, Pr(R > 0) can be small, and so this is an unfortunate char-

acteristic of the method.6 This observation has lead Storey (2003) to propose an alternative

quantity to control, called “positive FDR”, defined by

pFDR = E
(

V
R

∣∣∣∣R
)

,

6At the same time, as K increases, then Pr(R > 0) tends to 1, so that FDR and pFDR are asymptotically
equivalent.
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which does not suffer from the problem above. pFDR can be interpreted as “the expected

proportion of false discoveries to total discoveries”.

5.1 Estimating FDR

Suppose that all the single hypotheses are tested at the same level of significance, α. Storey

(2002) proposes the following estimators for FDR(α) and pFDR(α)

F̂DRλ(α) =
ŵ0(λ)α

max{R(α),1}/K
, (11)

p̂FDRλ(α) =
ŵ0(λ)α

max{R(α),1}(1− (1−α)K)/K
, (12)

where R(α) denotes the total number of rejections at the confidence level α and is calculated

as R(α) = ∑K
i=1 1{pi≤α}. ŵ0(λ) is an estimator of w0, the percentage of times in which the null

hypothesis is true. For a well chosen tuning parameter λ (within the interval [0,1]), a natural

estimator is given by

ŵ0(λ) =
W (λ)

(1−λ)K
=

K−R(λ)
(1−λ)K

. (13)

The intuition behind equation (13) is the following. Recalling that under the null hypothesis the

p-values are uniformly distributed over the interval [0,1], for any given 0 < λ < 1, as T,K →∞,

(K−R(λ))
K

p−→ (1−λ)w0, hence ŵ0(λ)
p−→ w0.

Note that we need T → ∞ to ensure that the estimated p-values converge to the true ones,

and K → ∞ to ensure that the empirical distribution of the null p-values approaches a uniform

distribution.

Similarly, the denominator of (12) has the following interpretation. Since the null hypoth-

esis is rejected when the p-value is less than or equal to α, we can define the rejection region
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Γ = (0,α]. Given that the denominator of (12) denotes the total number of rejections out of the

K tests with critical region Γ, as T,K → ∞,

max{R(α),1}(1− (1−α)K)
K

p−→ w0(Type I error of Γ)+(1−w0)(1−Type II error of Γ).

Therefore, combining the previous results, for any 0 < λ < 1, as T,K → ∞,

p̂FDRλ(α)
p−→ w0(Type I error of Γ)

w0(Type I error of Γ)+(1−w0)(1−Type II error of Γ)

=
w0(Size(Γ))

w0(Size(Γ))+(1−w0)(Power(Γ))

= Pr(H0 true |H0 rejected) .

Finally, it is useful to introduce a statistical measure, the q-value, which plays the same role to

pFDR as the p-value does to the type I error in testing statistical hypotheses. The q-value gives

us an error measure for each observed test statistic with respect to pFDR. In order to highlight

its meaning, it is useful to define the p-value associated with an observed test statistic s as

p(s) = min
{Γ:s∈Γ}

Pr(s ∈ Γ|H0 true).

Analogously, the q-value associated with s is

q(s) = inf
{Γ:s∈Γ}

pFDR(Γ).

In other words, the q-value is the minimum pFDR that can occur when rejecting a statistic

with value s for a rejection region Γ. McCracken and Sapp (2005) use q-values to evaluate the

out-of-sample performance of exchange rate models.
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5.2 Controlling for FDR with a given λ

Controlling for FDR, following the implementation suggested by Storey, Taylor and Siegmund

(2004), we are able to identify the forecasting models genuinely outperforming the benchmark.

This procedure allows us to fix a priori an acceptable level of false discoveries, that is the

proportion of falsely rejected null hypotheses. The implementation of the method requires the

use of a tuning parameter λ. In this subsection, we outline the procedure for a given λ. The

implementation requires three sequential Steps.

Step 1 Fix γ as the level at which we want to control FDR (i.e. FDR≤ γ).

Step 2 For any rejection region as (0,α], construct F̂DRλ(α).

Step 3 Define

tγ
(

F̂DRλ

)
= sup

α∈[0,1]

{
F̂DRλ(α)≤ γ

}
.

Step 4 Reject the null hypotheses characterized by pi ≤ tγ
(

F̂DRλ

)
.

Notice that, in contrast to some of the methods described in previous Sections, this is an ex-

ample of a stepup method. It starts with the least significant hypothesis and then moves up. If

the p-values associated with the various hypotheses are independent, the rule ensures that the

percentage of falsely rejected null hypotheses is bounded above by (1− λw0K)γ ≤ γ (Storey,

Taylor and Siegmund, 2004). Hence, it controls FDR conservatively at level γ.

Storey, Taylor and Siegmund (2004) prove that this procedure controls the FDR asymptot-

ically, under a weak dependence assumption on the p-values that does not cover the case of

constant cross-sectional correlation. In this case, their procedure can be quite liberal. Romano,

Shaikh and Wolf (2008a) propose resampling techniques, which allow to control asymptoti-

cally for FDR under dependence.7

7They propose both a bootstrap and subsampling solution. The latter works under less restrictive assumptions.
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Finally, note that the FDR is the mean of the false discovery proportion (FDP). Hence,

even if FDR is controlled for at a given level, its realization can be quite different. Most of

the procedures explained in this Chapter can be modified to control for FDP (for details, see

Romano, Shaikh and Wolf, 2008b).

5.3 Optimal choice of λ

Inspection of (13) reveals that, for any 0 < λ < 1, ŵ0(λ) consistently estimates w0. However,

for finite K, the bias of ŵ0(λ) is decreasing in λ, while its variance is increasing in λ. Similarly

to any situation characterized by a bias/variance trade-off, the natural solution is to select λ

using a data-driven approach, in order to minimize the mean squared error of ŵ0(λ).

An adaptive method for choosing λ has been proposed by Storey, Taylor and Siegmund

(2004). The rule they suggest is optimal for the case of independence among p-values. This

is because it involves a standard i.i.d. resampling of the p-values, thus ignoring the possible

correlation among them.

6 The Model Confidence Set Approach

The tests outlined in the previous Sections consider the null hypothesis that no candidate model

outperforms a given benchmark. If the null is rejected, one gets useful information about better

alternative models by looking at the specific moment conditions which contribute most to the

rejection. This is a natural approach when the benchmark model stands out as a clear candidate,

e.g. when the benchmark is the simplest, or the most frequently used model, or embeds the

prediction of some economic model of interest. Notice that failure to reject the null is consistent

with either the fact that the benchmark is a superior model or with the fact that it is performing

as well as (some, or even all) the competing models.
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In the latter case, one may be interested in extracting the subset of models with equal

predictive ability, and may be combine them in order to produce forecasts. Indeed, if two or

more models have the same predictive ability, and we have no particular interest in choosing

one over the other, forecast combination increases efficiency and reduces model risk (see, e.g.,

Timmermann, 2006).

A formal approach for sequentially eliminating the worst performing model and retain best

model(s) is the Model Confidence Set (MCS) approach of Hansen, Lunde and Nason (2009).

Let Mk denote a collection of k out the K available models. Hence, MK ⊃MK−1 ⊃ . . .⊃M1.

Define

m̂i, j,P =
1

P− τ+1

T

∑
t=R+τ

(
f (ûi,t)− f

(
û j,t

))

The Model Confidence Set, M † is defined as

M † =
{

i : there is no j 6= i such that mi, j,P > 0
}

,

where mi, j,P = E
(

f (ui,t)− f
(
u j,t

))
.8 Therefore, no model belonging to M † can be “inferior”

to a model belonging to its complement M †c. Hansen, Lunde and Nason (2009) provide an

estimator of M †, say M̂ †
P , such that, as P→∞, M̂ †

P ⊇M † with probability larger or equal than

1−α. Furthermore, their procedure ensures that, as P → ∞, the probability that M †c ⊆ M̂ †
P

tends to zero.

The MCS methodology is implemented as follows. Each step of the procedure consists of

two parts: a test for equal predictive ability between the k survived models and, if the null is

rejected, elimination of the worst model. The procedure terminates the first time one fails to

reject the null of equal predictive ability among the survived models. The MCS then contains

the final surviving models. More formally, after the initialization M = MK , the MCS algorithm

8We now need two subscripts, i, j to denote that we are comparing model i versus model j.
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is based on two sequential steps:

(i) Test of H0,M : mi, j = 0 for all i, j ∈ M , using the statistic ZP,M = maxi, j∈M ti, j, where

ti, j =
√

P
(

m̂i, j,P/
√

σ̂i, j

)
and σ̂i, j is a consistent estimator of limP→∞ var

(√
Pmi, j,P

)
.

(ii) Let p be the p-value associated with H0,M . If p ≥ α, all models in M are considered to

be equally “good” models and M is the MCS. Otherwise, the worst model is eliminated

from M , and one goes back to (1).

Note that we require σ̂i, j
p→ σi, j > 0 for all i, j. Broadly speaking, we need that no models is

nested with or nesting any other model. The worst model is defined by the rule argmaxi∈Mk
k−1 ∑k

j=1 ti, j,

i.e. it is the model that on average has the worst performance relatively to all other models.

The limiting distribution of the equal predictive ability statistic ZP,M is not nuisance param-

eters free, because it depends on the cross-sectional correlation of m̂i, j,P. A natural solution is

to construct bootstrap p-values. Let m̂∗
i, j,P be the bootstrap counterpart of m̂i, j,P. Hansen, Lunde

and Nason (2009), suggest to compute the following bootstrap analog of ZP,M , for b = 1, . . . ,B

Z∗(b)
P,M = max

i, j∈M




√

P

∣∣∣∣∣∣
m̂∗(b)

i, j,P− m̂i, j,P√
σ̂∗i, j

∣∣∣∣∣∣



 ,

where σ̂∗i, j = P
B ∑B

b=1

(
m̂∗(b)

i, j,P− m̂i, j,P

)2
. Bootstrap p-values are readily obtained by

p∗ =
1
B

B

∑
b=1

1{
Z∗(b)

P,M >ZP,M

}.

Therefore, according to step (2) above, if p∗ < α, the worst model is eliminated and one goes

back to step (1), otherwise M is selected as the MCS, i.e. M̂ †
P = M , and the procedure is

terminated.

Hansen, Lunde and Nason (2009) show that, as P→ ∞, M̂ †
P ⊇M † with probability larger
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than 1−α, and M̂ †
P ⊇M †c with probability approaching zero.

6.1 A Simple Doubly Consistent Alternative to Model Confidence Set

We now outline a simple procedure which provides an estimate of M †, say M̃ †
P , such that

as P → ∞, M̃ †
P ⊇ M † with probability one, M̃ †

P ⊇ M †c with probability zero. This ensures

that both the probabilities of keeping irrelevant models and eliminating relevant models are

asymptotically zero. In this sense, it is a doubly consistent procedure.

We proceed sequentially. First we pick one out of the K models, say model 1, and we

compare all models against 1. All models performing worse than 1 are eliminated. If there is at

least one model beating 1, the latter is eliminated as well. We then repeat the same procedure

between the models survived in the first step, until convergence. As it will become clear below,

ordering of the models for pairwise comparisons is irrelevant.

Suppose we first pick model 1 between the available k models; the rule is to eliminate

model j when

m̂1, j,P/
√

σ̂1, j <−
√

2ln lnP/P

and to eliminate model 1 if there is at least a j 6= 1, such that

m̂1, j,P/
√

σ̂1, j >
√

2ln lnP/P.

Now suppose model 2 survived to the first stage, and is selected for comparison. We repeat the

same procedure outlined above, until either no model is eliminated or we remain with only one

model left. The set of models which survived all the steps form M̃ †
P . For all i, j, by the law of
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the iterated logarithm,

Pr
(

lim sup
P→∞

√
P

(
mi, j,P−mi, j√σi, j

)
=
√

2ln lnP
)

= 1,

and

Pr
(

lim inf
P→∞

√
P

(
mi j,P−mi j√σi, j

)
=−

√
2ln lnP

)
= 1.

Provided σ̂i, j−σi, j = op(1), m̂i, j,P−mi, j,P = op(1), it follows that

lim
P→∞

Pr
(

M̃ †
P ⊇M †

)
= 1, lim

P→∞
Pr

(
M̃ †

P ⊇M †c
)

= 0, (14)

because, at each stage, a model is eliminated only if it is dominated by at least another model.

Note that the order according to which we choose the reference model at each stage is irrele-

vant, in the sense it affects only the order in which models are eliminated, but not which models

are eliminated. This is because a model is eliminated if and only if there is at least a competitor

exhibiting better predictive ability. Importantly, as the asymptotic size is zero at each step,

there is no sequential size distortion, and the order in which the procedure is implemented is

irrelevant. Given the definition of M † and given (14), it is immediate to see that as P gets large

limP→∞ Pr
(

M̃ †
P ⊇ M̂ †

P

)
= 1.
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