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Abstract

In recent years, there has been increasing interest in the problem of testing for the constancy
of factor loadings. Nevertheless, to the best of our knowledge, there is no consistent test for
the structural stability of forecasting models estimated using a vector of factors (i.e. diffusion
indexes). The aim of this paper is to fill this gap, by introducing a test for the null hypothesis of
equality of expected forecast error loss based on (i) full sample estimation of factors and associated
factor augmented forecasting model; and (ii) analogous expected forecast error loss based on rolling
estimation. In certain cases, when parameter estimation error vanishes, the limiting distribution
of the suggested statistic may be degenerate. We overcome this problem via the use of m out of n
(moon) bootstrap critical values. The use of this bootstrap approach ensures that in the degenerate
case the bootstrap statistic approaches zero at a slower rate than the actual statistic. We provide an
empirical illustration by testing for the structural stability of factor augmented forecasting models
for 11 U.S. macroeconomic indicators.
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1 Introduction

The issue of forecast instability arising because of structural instability has received considerable

attention in recent years (see e.g. Clements and Hendry 2002, Hendry and Mizon 2005, and

Castle, Doornik and Hendry 2010). Among the main causes of instability, Hendry and Clements

(2002) point out the importance of intercept shifts, mainly arising because of shifts in the means

of omitted variables. Several ways to cope with forecast failure in regression models have been

suggested in the forecasting literature (see e.g. Clements and Hendry, 2006, and the references

cited therein). Moreover, among the different remedies proposed, there is some consensus that

forecast pooling is one of the most effective, as discussed in Stock and Watson (2004), who provide

empirical evidence supporting this view. The intuition behind pooling is that, if the intercept

shifts are sufficiently uncorrelated across different regressions, then by averaging forecasts we are

also averaging out intercept shifts. Following this intuition, Stock and Watson (2009) argue that a

similar logic should also apply to diffusion index models. If factor loading coefficient instability is

sufficiently independent across the different series, then the use of a large numbers of series in factor

estimation can average out such instability. In this sense, estimated factors can be quite robust

to time varying factor loadings. Indeed, Stock and Watson (2002) formally proved that estimated

factors are consistent even in the presence of moderate time variation in factor loading coefficients.

On the other hand, in the presence of substantial factor loading instability, estimated factors are

in general no longer consistent for the "true" unobservable factors. Breitung and Eickmeier (2011)

propose tests for the null hypothesis of factor loading coefficient stability. A limitation of their

approach is that it requires cross sectional independence among the idiosyncratic shocks. Tests

for constancy of the factor loadings, which allow for some spatial correlation, have been recently

suggested by Chen, Dolado and Gonzalo (2011), and by Han and Inoue (2011).

In this paper, we go one step further by noting that, even if estimated factors are robust to

time varying loading coefficients, there still remains the issue of possible structural instability in

the relation between the diffusion indexes and the variable to be forecasted. Namely, instability

may also appear in the factor augmented forecasting model used to construct predictions. Hence,

the need for a test for the null hypothesis of structural stability.

In related literature, Banerjee, Marcellino and Marsten (2009) provide an extensive Monte Carlo

study of the forecast performance of diffusion index models in the presence of structural instability,

and find evidence in favor of the use of diffusion indexes for forecasting in unstable environments.

Stock and Watson (2009) disentangle instability into three different components, factor loading
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coefficient instability, factor dynamics instability, and factor model idiosyncratic component induced

instability. They suggest using the full sample for factor estimation and instead using susbamples,

or time-varying parameter techniques, for estimating regression coefficients in subsequent diffusion

index models. The use of recursive and rolling techniques for both factor estimation and factor

augmented forecasting model estimation is analyzed in a series of prediction experiments by Kim

and Swanson (2011a).

To the best of our knowledge, there is no consistent test for the null hypothesis of factor

augmented forecasting model structural stability. The aim of this paper is thus to fill this gap

in the literature. For a given loss function, our approach involves testing the equality of expect

forecast error loss based on (i) full sample estimation of factors and associated diffusion index type

forecasting model; and (ii) analogous expected forecast error loss based on rolling estimation. In

this way, we take into account both instability between a set of potential predictors and factors, as

well as instability between the variable to be predicted and the factors. The limiting distribution

of the suggested statistic is degenerate in the case where parameter estimation error vanishes and

both factor loadings and regression coefficients are structurally stable. To circumvent this problem,

we use critical values based on the m out of n (moon) bootstrap, for which we establish first

order asymptotic validity. In particular, use of moon bootstrap critical values ensures correct

asymptotic size in non degenerate cases and an asymptotic size of zero in the degenerate case.

Unitary asymptotic power is ensured in all cases.

It is worth noting that all of our asymptotic results assume only that
√
T/N → 0, where T is

the number of time series observations, and N is the number of variables used to construct factors.

In fact, while in financial applications N is generally larger than T, in macroeconomic applications

we typically have N < T , see e.g. the well known Stock and Watson (2002a,b).

If the null of structural stability is rejected, one can further investigate the cause of forecast

model instability. For example, one may be able to disentangle between factor loading coefficient

instability and instability of the structural relation between the factors and the target variable being

predicted. One would then remain with the issue of selecting the estimation window for either factor

loading coefficient estimation or for factor augmented model regression coefficient estimation, or

for both, along the lines of Pesaran and Timmermann (2007).

In an empirical illustration we test for the structural stability of factor augmented forecasting

models for 11 U.S. macroeconomic variables, including: the unemployment rate, personal income

less transfer payments, the 10 year Treasury-bond yield, the consumer price index, the producer
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price index, non-farm payroll employment, housing starts, industrial production, M2, the S&P 500

index, and gross domestic product, using an extended version of the Stock and Watson macroeco-

nomic dataset first examined in Kim and Swanson (2011a). Our findings suggest that the null of

structural stability is rejected for 2 or 3 of 11 variables, depending upon the forecast horizon, when

an ex ante prediction period of the last 15 years is specified. This result is shown to be robust

across a variety of bootstrap sampling setups, as well as across different loss functions.

The rest of this paper is organized as follows. Section 2 defines the set-up and introduces the

test for diffusion index model structural stability. Section 3 establishes the asymptotic properties of

the suggested statistic. Section 4 establishes the asymptotic first order validity of moon bootstrap

critical values in our context. Finally, Section 5 reports the findings of an empirical illustration

based on the use of a largescale macroeconomic dataset. All proofs are gathered in an Appendix.

2 Set-Up

We begin by outlining the diffusion index model used in the sequel. Let

Xt = μ0,t + Λ0,tF0,t + ut, (1)

where Xt is a N × 1 vector, Λ0,t is a N × r factor loading matrix, μ0,t is a (possibly time varying)

N × 1 intercept vector, F0,t is the unobserved r × 1 factor vector, and ut is an error term.1

Our objective is to predict a scalar target variable, yt+h, where h denotes the forecast horizon.

For sake of simplicity, we develop our methodology in the context of predictive models based on

only factors. Generalization to factor augmented autoregression models follows straightforwardly.

Namely, consider the following forecasting model based on the use of diffusion indexes.

yt+h = α0,t + β0,1,tF0,1,t + ...+ β0,r,tF0,r,t + ²t+h

= α0,t + F
0
0,tβ0,t + ²t+h, (2)

where α0,t is a (possibly time varying) intercept, and ²t is an error term. Needless to say, we can

augment the model in (2) with both additional regressors and lagged factors. As such generalizations

do not change any of our results, we focus our discussion on this simpler model. For a complete

discussion of the usefulness of factor augmented models for forecasting, see e.g. Banerjee, Marcellino

and Masten (2010), Dufour and Stevanovic (2011).

1Note that (1) implies that Xi,t = λiFt + ui,t.
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There are two sources of potential index model structural instability.2 The first potential source

of instability is in the structural relation between the covariates Xt and the factors F0,t, and is

captured by the loading factor matrix Λ0,t and the associated intercept vector, μ0,t. The second

source is in the structural relation between the factors and the variable to be predicted, and it is

captured by α0,t and β0,t.

Turning our attention to testing for forecast model stability, our approach involves comparing

the expected forecast error of a prediction based on full sample estimation of factors and forecast

model regression coefficients and the analogous expected forecast error based on rolling estimation.

To this end, we construct predictions of yt+h using factors and parameters estimated in two different

ways. Namely, we construct factors using both the full sample, and using a sequence of rolling data

windows of length R. Let P = T − R − h, be the forecast period for which ex-ante h−step ahead

predictions are constructed. The forecasting models are specified as follows. First, using full sample

estimation, define:

eyt+h = eα0,T + eβ1,T eF1,t,T,N + ...+ eβr,T eFr,t,T,N , t = R, ..., T − h, (3)

where eα0,T = T−1PT
t=1 yt, and where eFt,T,N is the r × 1 factor vector at time t, estimated using

the entire sample. Namely,

³ eFt,T,N , eΛT,N´ (4)

= argmin
Λ,F

1

NT

NX
i=1

TX
t=1

ÃÃ
Xi,t −

1

T

TX
t=1

Xt

!
− λ0iFt

!2
,

and

eβT = ÃT−hX
t=1

eFt,T,N eF 0t,T,N
!−1

×
T−hX
t=1

ÃeFt,T,N Ãyt+h − 1

T

TX
t=1

yt

!!
. (5)

Second, using rolling estimation, define:

byt+h = bα0,t,R + bβ1,t bF1,t,t−R+1,N + ...+ bβr,t bFr,t,t−R+1,N , t = R, ..., T − h, (6)

where bα0,t,R = R−1Pt
j=t−R+1 yj , and bFt,t−R+1 is the r× 1 factor vector at time t, estimated using

observations from t−R to t, where R is the rolling window length Namely,³ bFj,t−R,N , bΛj,t−R,N´ (7)

2 In principle one could also explicitly model factor dynamics, and this could be an additional source of instability
(see e.g. Stock and Watson (2009)).
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= argmin
Λ,F

1

NR

NX
i=1

tX
j=t−R+1

⎛⎝⎛⎝Xi,j − 1

R

tX
j=t−R+1

Xj

⎞⎠− λ0jFj

⎞⎠2 ,
for t = R, ..., R+ P − h, and

bβt =
⎛⎝ tX
j=t−R+1

bFj,t−R,N bF 0j,t−R,N
⎞⎠−1 (8)

×
tX

j=t−R+1

⎛⎝ bFj,t−R,N
⎛⎝yt+h − 1

R

tX
j=t−R+1

yj

⎞⎠⎞⎠ , t = R, ..., R+ P − h.
More precisely, bFt,t−R+1,N denotes the last observation on the factor vector, where the factors

are constructed using observations from t − R + 1 to t. Moreover, forecasts are constructed for

time periods R + h to T , yielding P − h h−step ahead predictions. This means that the factor

predictors used in the construction of byt+h are taken from a newly estimated rolling vector of factors,
constructed at each point in time. When constructing byt+h, parameters are re-estimated at time t,
using data available at time t, and for the rolling sample period running from t−R+1 to t, prior to

the construction of each new forecast. When constructing eyt+h, parameters are constructed using
the full sample.

Under mild conditions, outlined in Assumption A below, eα0,T , bα0,t,R, eFt,T,N , bFt,t−R+1,N , eβT andbβt have a well defined probability limits, as follows:
α† = plimT eα0,T ,

plimT,R→∞

Ã
sup
t≥R

³bα0,t,R − α‡t

´!
= 0,

Q†β† = plimN,T→∞eβT ,
plimT,R,N→∞

Ã
sup
t≥R

³bβt −Q‡tβ‡t´
!
= 0,

plimT,N→∞
³ eFt,T,N −H†0F †t

´
= 0, for all t,

and

plimT,R,N→∞
³ bFj,t−R+1,N −H‡0

t F
‡
j

´
= 0, for all j = t−R+ 1, ..., t, t ≥ R,

where Q†, Q‡t ,H
†,H‡

t are defined in the Appendix, in the proof of Theorem 1. Further, note that,

as shown in the Appendix, H†0Q† = Ir and H
‡0
t Q

‡
t = Ir.

The estimated parameters in (6) change over time, not only because rolling windows of data

are used to construct the parameters estimators, but also because the factor vectors are estimated
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using a different rolling subset of the original data, at each point in time. This is opposed to the

estimated parameters in (3), which are based on parameter and factor estimates calculated using

the full sample.

Note that in the case of structural factor stability, α‡t = α† = α0, H
‡0
t F

‡
t = H

†0F †t = H
0
0F0,t and

Q‡tβ
‡
t = Q†β† = Q0β0, for all t. By comparing (4) and (7), it is immediate to see that H

‡0
t F

‡
t =

H†0F †t = H 0
0F0,t holds only if μ0,t = μ0 for all t. In this sense, shifts in the intercept terms are

detected as causes of structural instability.

Thus far, we have remained silent on how to choose the number of factors, r. In principle, one

can use either the full sample or rolling samples for the implementation of the information criteria

suggested by Bai and Ng (2002), in order to estimate r. In our empirical illustration, we use the

full sample to determine r. In the case of factor loading instability, this may lead to a possible

overestimate of r, as documented by Breitung and Eickmeier (2011). However, Han and Inoue

(2011) show that the Bai and Ng IC criterion works properly in the case of a single break. For

additional discussion of testing for the number of factors, see Onatski (2009).

We now outline our test for forecast model stability. Let,

²1,t+h = yt+h − α† −
rX
i=1

β†iF
†
i,t

and

²2,t+h = yt+h − α‡t −
rX
i=1

β‡i,tF
‡
i,t.

We test the following hypotheses:

H0 : E (g (²1,t+h)− g (²2,t+h)) = 0, for all t ≥ R (9)

versus

HA : E (g (²1,t+h)− g (²2,t+h)) 6= 0, for all t ∈ T , t ≥ R, T /P → τ 6= 0, (10)

where g is a given loss function. Under the null hypothesis, the expected prediction loss from

a model allowing for possible time variation in the loadings and in the βs, and one allowing no

variation, is the same. It is immediate to see that when α† = α‡t and β†iF
†
i,t = β‡i,tF

‡
i,t, a.s. for all

t, i, then ²1,t+h = ²2,t+h, a.s. for all t, i. This is exactly the same situation arising in the context of

forecast evaluation, when one compares the predictive accuracy of two or more nested models (see

e.g. Diebold and Mariano (1995), White (2000), and Corradi and Swanson (2007)).

In order to test the hypotheses in (9) and (10), we thus suggest using the following statistic:3

3For notational simplicity, herafter we omit the subscript N.
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SP =
1√
P

T−hX
t=R

(g (e²t+h)− g (b²t+h)) , (11)

where eεt+h = yt+h − eαT − eβ0T eFt,T and bεt+h = yt+h − bαt,R − bβ0t,R bFt,t−R+1. Note that although our
asymptotic theory is developed based on examination of SP , we later explain why appropraite

implementation involves use of a squared variant of the proposed test statistic, say S2P (see the end

of Section 4 for complete details).

Giacomini and Rossi (2009) have recently suggested tests for forecast failure in standard re-

gression contexts. Their notion of forecast failure is that expected out of sample loss is larger than

expected in sample loss. In this sense, our test is not a test for predictive failure, but is instead a

test for structural instability. In fact, the statistic in (11), for given loss function, compares average

prediction errors for the out of sample period only. Our test can detect various forms of predictive

failure, however, such as shifts in the mean of omitted variables. This because we are using different

approaches to recentering in (4)-(5) and in (7)-(8). On the other hand, our test may not be able

to detect shifts in the slope of omitted variables.

3 Asymptotics

In order to derive the limiting distribution of SP , we require the following Assumption. Hereafter,

for a matrix B, kBk = (tr (B0B))1/2 , and C denotes a a generic constant

Assumption A:

A1: (i) For i = 1, ...,N,
³
F †t , u

†
it

´
and

³
F ‡t , u

‡
it

´
are α−mixing with size −4 (4 + ψ) /ψ, ψ > 0. (ii)

for i = 1, ..., N and j = 1, ..., r, suptE
µ¯̄̄
F †jt

¯̄̄2k¶
≤ C, suptE

µ¯̄̄
F ‡jt

¯̄̄2k¶
≤ C, suptE

µ¯̄̄
u†it

¯̄̄2k¶
≤ C,

and suptE
µ¯̄̄
u‡it

¯̄̄2k¶
≤ C, with k > 2 (2 + ψ) . (iii) For i = 1, ..., N, j = 1, ..., r, supi,j,t

¯̄̄
λ†ij,t

¯̄̄
≤ C

and supi,j,t
¯̄̄
λ‡ij,t

¯̄̄
≤ C. (iv) E

³
F †t u

†
it

´
=E
³
F ‡t u

‡
it

´
= 0.

A2: Let σ†ij,ts = E
³
u†itu

†
js

´
, σ‡ij,ts = E

³
u‡itu

‡
js

´
, supt,s

¯̄̄
σ†ij,ts

¯̄̄
= τ †ij , and supt,s

¯̄̄
σ‡ij,ts

¯̄̄
= τ ‡ij . (i)

1
N

PN
i=1

PN
j=1 τ

†
ij ≤ C and 1

N

PN
i=1

PN
j=1 τ

‡
ij ≤ C. (ii) supt,s E

µ
N−1/2

PN
i=1

¯̄̄
u†itu

†
is − E

³
u†itu

†
is

´¯̄̄4¶
≤

C; and the same holds with u†itu
†
is replaced by u

‡
itu

‡
is. (iii) For all t,

1√
N

PN
i=1 λ

†
itu

†
it and

1√
N

PN
i=1 λ

‡
itu

‡
it

satisfy a central limit theorem.

A3: (i) yt is α−mixing with size −4 (4 + ψ) /ψ, ψ > 0. (ii) supt E
³
|yt|2k

´
≤ C, with k > 2 (2 + ψ)

and E
³
F †t ²1t

´
=E
³
F ‡t ²2t

´
= 0. (iii) For j = 1, ..., r, ι = 1, 2, supt E

³¯̄
∇gFj (²ιt)

¯̄2k´ ≤ C, with

k > 2 (2 + ψ) , where ∇gFj denotes the derivative of g with respect to factor j. (iv) For i = 1, ..., N,
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E
³
∇gFj (²1t)u

†
it

´
=E
³
∇gFj (²2t)u

‡
it

´
= 0.

Assumption A1(i) requires that the probability limits of the factors estimated either via the

use of the full sample or via rolling windows, are strongly mixing; and likewise, for the idiosyncratic

errors. Note that if Xi,t is strong mixing for all i, and A1(iii) holds, then F
†
t and F

‡
t are strong

mixing by construction. It is worthwhile to also notice that most of the papers on the estimation of

the diffusion index models and factor augmented regressions (see e.g. Stock and Watson (2002a,b)

and Bai and Ng (2006)) do not impose direct assumptions on the memory of the factors. On the

other hand, they assume that the error term in the factor augmented regression is a martingale dif-

ference sequence. We do not require that either ²1,t+h or ²2,t+h, are martingale difference sequences,

as we want to allow for possible dynamic misspecification.4 Assumptions A1(ii) and A1(iv) are

rather standard assumptions, and shall thus not be discussed here. Assumption A2 controls the

degree of cross correlation among the idiosyncratic errors. The degree of time serial correlation

among idiosyncratic errors is already controlled by the strong mixing assumption. Assumption A3

provides primitive sufficient conditions under which Bai (2003) and Bai and Ng (2006) central limit

theorems apply to averages of rolling estimators, based on dependent and heterogeneous series (see

e.g. Corradi and Swanson (2006a)).

Theorem 1: Let Assumption A hold. Also, as N,T, P,R → ∞, N/
√
T → ∞, and P/R → π,

0 < π <∞.

Then, under H0, we distinguish four cases.

Case I: β†0F †t 6= β‡0t F
‡
t , for all t ∈ T , T /T → τ 6= 0, D†δ =E(∇gδ (²1,t+h)) 6= 0, D

‡
δ =E(∇gδ (²2,t+h)) 6=

0, and δ = (α,β) . Then, regardless of whether α† = α‡t ,

Sp
d→ N (0,Ω1) ,

with

Ω1 = lim
P→∞

var

Ã
1√
P

T−hX
t=R

(g (²1,t+h)− g (²2,t+h))
!

+D†0δ lim
P→∞

var
³√
P
³eδT −Q†δδ†´´D†δ +D‡0δ lim

P→∞
var

Ã
1√
P

T−hX
t=R

³bδt −Q‡δ,tδ‡t´
!
D‡δ

− 2D†0δ lim
P→∞

cov

Ã
√
P
³eδT −Q†δη†´ , 1√P

T−hX
t=R

(g (²1,t+h)− g (²2,t+h))
!

4A mixing assumption on factors and idiosyncratic errors is instead used by Fan, Liao and Mincheva (2010).
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+ 2D‡0δ lim
P→∞

cov

Ã
1√
P

T−hX
t=R

³bδt −Q‡δ,tδ‡t´ , 1√P
T−hX
t=R

(g (²1,t+h)− g (²2,t+h))
!

− 2D‡0δ lim
P→∞

cov

Ã
1√
P

T−hX
t=R

³bδt −Q‡δ,tδ‡t´ ,√P ³eδT −Q†δδ†´
!
D†0δ ,

where eδT = ³eαT , eβT´0 , bδt = ³bαt, bβt´0 , Q†δδ† = ¡Q†β†,α†¢0 , and Q‡δ,tδ‡t = ³Q‡tβ‡t ,α‡t´.
Case II: β†0F †t 6= β‡0t F

‡
t for all t ∈ T , T /T → τ 6= 0, D†δ = E(∇gδ (²1,t+h)) = D‡δ =

E(∇gδ (²2,t+h)) = 0. Then, regardless of whether α† = α‡t or not ,

Sp
d→ N (0,Ω2) ,

where

Ω2 = lim
P→∞

var

Ã
1√
P

T−hX
t=R

(g (²1,t+h)− g (²2,t+h))
!

Case III: α† = α‡t , β
†0F †t = β‡0t F

‡
t for all t ∈ T, D

†
δ =E(∇gδ (²1,t+h)) 6= 0 D

‡
δ =E(∇gδ (²1,t+h)) 6=

0. Then5,

Sp
d→ N (0,Ω3) ,

where

Ω3 = D
†0
δ lim
P→∞

var
³√
P
³eδT −Q†δδ†´´D†δ +D‡0δ lim

P→∞
var

Ã
1√
P

T−hX
t=R

³bδt −Q‡δ,tδ‡t´
!
D‡δ

− 2D‡0δ lim
P→∞

cov

Ã
1√
P

T−hX
t=R

³bδt −Q‡δ,tδ‡t´ ,√P ³eδT −Q†δδ†´
!
D†0δ ,

Case IV: α† = α‡t , β
†0F †t = β‡0t F

‡
t for all t ∈ T, and D

†
δ = E(∇gδ (²1,t+h)) = D

‡
δ = E(∇gδ (²2,t+h)) =

0. Then,

Sp = Op

µ
1√
P

¶
+Op

Ã
max

(√
P

N
,

√
P

R

)!
.

Under HA, there exists ε > 0, such that

lim
P→∞

Pr
³
P−1/2 |Sp| ≥ ε

´
= 1.

Note that in all cases, the estimation error due to factor estimation vanishes. This is due to the

assumption that N/
√
T →∞, as shown by Bai and Ng (2006).

Also, as eαT , bαt,R, eβT and bβt,R are OLS estimators, the cases where D†δ = D‡δ = 0 are the

only relevant ones when g is a quadratic loss function (i.e., Cases II and IV). This is because, in

5 If α† 6= α‡t for all t ∈ T , T /T → τ 6= 0, then Ω2 6= 0, and so the statement in cases III and IV should be modified
accordingly.
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these cases the same loss is used for both estimation and prediction, and hence the contribution of

parameter estimation error is negligible.

Finally, when we have structural stability (i.e., α† = α‡t and β†iF
†
i,t = β‡i,tF

‡
i,t, for all t ∈ T ),

and we specify a quadratic loss function, the statistic is degenerate. Also, note that the case of

π = 0 is equivalent to the case of D†δ = D
‡
δ = 0, as in both situations the contribution of parameter

estimation error becomes negligible.

In Cases I-III, the limiting covariance matrix has closed form, which is given in the Appendix,

and can be estimated. Moreover, and as discussed above, whenever g is a quadratic loss function,

there is a possibility that the statistic approaches zero in probability. If g is quadratic and the null

is true, then we are either in Case II or in Case IV. Suppose, we estimate the asymptotic variance as

in Case II, but we are instead in Case IV. The estimator of the standard deviation approaches zero

at rate 1√
P
+max

n√
P
N ,

√
P
R

o
, but SP also approaches zero at rate 1√

P
+max

n√
P
N ,

√
P
R

o
. As a direct

consequence, the statistic, scaled by its standard error, is bounded but does not have a well defined

limiting distribution. Hence, we may not able to distinguish between Case IV and the alternative.

Moreover, even though Case IV resembles the case of forecast comparison of nested models, because

of the interplay between N and P, the techniques used to deal with Diebold-Mariano tests in this

context (e.g. using the methods of McCracken (2007)), are not immediately available. Further,

while one knows whether two models are nested or not, here we do not know whether α† = α‡t and

β†0F †t = β‡0t F
‡
t , for all t ∈ T. The next section establishes the validity of moon bootstrap critical

values in the current context.

4 Moon Bootstrap Critical Values

In order to circumvent the problem of the degeneracy of the statistic in Case IV, we rely on the m

out of n (moon) bootstrap. The idea underlying the moon bootstrap is to resample m observations

out of a sample of n observations, with m/n→ 0. The key difference between the moon bootstrap

and subsampling is that in the former we resample with replacement, while in the latter we resample

without replacement (see e.g. Bickel, Götze and van Zwet, (1997)). One of the advantages of the

m out of n bootstrap over the subsampling is that m can be chosen in a data-driven manner (see

e.g. Bickel and Sakov, (2008)).

In the sequel, we show that moon bootstrap critical values are asymptotically valid for all cases

in Theorem 1.

Let T ∗ = P ∗+R∗, where T ∗/T → 0, and P ∗/R∗ → π (i.e. (P ∗/R∗ − P/R)→ 0).We require three

10



layers of resampling.

(i) Resample for the construction of full sample estimators:

Resample bT ∗ blocks of length lT∗ , bT ∗ × lT∗ = T ∗ − h from
³
yt, eFt−h,T´ , t > h, to obtain³

y∗t , eF ∗t−h,T´ and construct the bootstrap analog of eβT as
eβ∗T∗ =

Ã
T ∗−hX
t=1

eF ∗t,T eF 0∗t,T
!−1 T−hX

t=1

eF ∗t,T
Ã
y∗t+h −

1

T ∗

T∗X
t=1

y∗t

!
.

The bootstrap analog of eαT is constructed in like fashion.
(ii) Resample for the construction of rolling estimators:

Let
³ bF1,1, bF2,1, ..., bFR,1´ be the factor estimates obtained using a window of data, X1, ...,XR

(i.e., using the first R observations). Further, let
³ bFk,k, bFk+1,k, ..., bFk+R−1,k´ be the factor estimates

obtained using a window of data, Xk, ...,Xk+R−1 (i.e. using observations from t = k to t = k+R−1),

and so on.

Resample bR∗ blocks of length lR∗ , bR∗ × lR∗ = R∗ − h from
³
y1+h, ..., yR, bF1,1, bF2,1, ..., bFR−h,1´

to obtain
³
y∗1+h, ..., y

∗
1,R∗ ,

bF ∗1,1, ..., bF ∗R∗−h,1´ , and construct
bβ∗R∗−h =

⎛⎝R∗−hX
j=1

bF ∗j,1 bF 0∗j,1
⎞⎠−1 R∗−hX

j=1

bF ∗j,1
⎛⎝y∗j+1+h − 1

R

R∗−hX
j=1

y∗j+h

⎞⎠ .
The bootstrap analog of bαt is constructed in like fashion.

Analogously, resample bR∗ blocks of length lR∗ , bR∗ × lR∗ = R∗ − h from³
yk+1+h, ..., yR+k, bFk+1,k+1, ..., bFR+k,k+1´ to obtain ³y∗k+1+h, ..., y∗R+k, bF ∗k+1,k+1, ..., bF ∗R∗+k,k+1´ , and
construct

bβ∗R∗+k−h =
⎛⎝R∗+k−hX

j=1+k

bF ∗j,k+1 bF ∗0j,k+1
⎞⎠−1 R∗+k−hX

j=1+k

bF ∗j,k+1
⎛⎝y∗j+h − 1

R

R∗+k−hX
j=1+k

y∗j+h

⎞⎠ ,
and so on, obtaining bβ∗R∗−h, ..., bβ∗R∗+1, ..., bβ∗R∗+P∗−h, and analogous estimators, bα∗R∗ , bα∗R∗+1, ..., bα∗R∗+P∗−h.
(iii) Resample for the construction of the statistics:

Resample bP∗ blocks of length lP∗ , bP∗×lP∗ = P ∗−h from
³
yt+h, eFt,T , bFt,t−R+1´ , t = R, ..., T−h,

to obtain
³
y∗t+h,

eF ∗t,T , bF ∗t,t−R+1´ .
We can now define the bootstrap statistic,

S∗P∗ =
1√
P ∗

T∗−hX
t=R∗

¡
g
¡e²∗t+h¢− g ¡b²∗t+h¢¢ ,

where e²∗t+h = y∗t+h − eα∗T ∗ − eβ∗0T ∗ eF ∗t,T
11



and b²∗t+h = y∗t+h − bα∗t − bβ∗0t bF ∗t,t−R+1.
Note that in order to capture the contribution of parameter estimation error, we resample the

estimated factors using a different resampling scheme for full and rolling samples. Nevertheless, we

do not resample the N variables Xi (i.e., we do not construct factor estimators based on resampled

observations). This is because, as we assume
√
T/N → 0, the contribution of factor estimation

error is asymptotically negligible. However, factor estimation error may matter in finite samples.

For this reason, Goncalves and Perron (2010) suggest a residual-based approach which properly

mimics the contribution of factor estimation error. Their objective is to provide valid bootstrap

standard errors for estimated regression coefficients involving estimated factors.

Importantly, if g is a quadratic function, then we know that the contribution of parameter

estimation error is asymptotically negligible. In this case, it suffices to perform only step (iii)

(i.e., only perform resampling in order to construct the statistic using forecast models parameters

estimated as described in the previous section).

As stated above and in Theorem 1, whenever g is a quadratic loss function and α† = α‡t ,

β†0F †t = β‡0t F
‡
t for all t ∈ T, then the statistic approaches zero in probability. This occurs because

we have assumed that
√
T/N → 0. If, for example,

√
T/N → c 6= 0, then the contribution of the

estimated factors to the asymptotic covariance matrix will never vanish, and the statistic will never

be degenerate on zero. Thus, we would not need to use the m out of n bootstrap, but could rely on

"usual" block bootstrap. However, in this case we would also need to resample the Xi,t, in order to

capture factor estimation error. The difficulty would then center around how to resample in order

to capture cross correlation among the Xi,t. In this context, whether the residual-based bootstrap

of Goncalves and Perron (2010) can be extended to the rolling estimation scheme, and thus applied

in our framework when
√
T/N 9 0, in the presence of cross correlation among idiosyncratic errors,

is left to future research.

We now establish the first order validity of the moon bootstrap procedure outlined above.

Theorem 2: Let Assumption A hold. Also, as N,T, P,R → ∞, N/
√
T → ∞, and P/R → π,

0 < π < ∞. Additionally, as P ∗, R∗, T ∗ → ∞, assume that T ∗/T → 0, P ∗/P → 0, R∗/R → 0,

P ∗/R∗ → π. Finally, as lP∗ , lR∗ , lT∗ →∞, lT ∗/
√
T ∗ → 0, lP∗/

√
P ∗ → 0, and lR∗/

√
R∗ → 0.

Then, under H0, in Cases I-III,

P

µ
ω : sup

v∈R

¯̄̄̄
∗
Pr (S∗P∗ ≤ v)− Pr (Sp ≤ v)

¯̄̄̄
< ε

¶
→ 0,
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and in Case IV, provided that P ∗ = o
¡
N2/P

¢
,

SP
S∗P ∗

= op∗ (1) ,

conditional on the sample, and for all samples except a subset with probability measure approaching

zero.

Under HA, S∗P∗ diverges at rate
√
P ∗.

Finally, we discuss implementation of a squared variant of the proposed test statistic, say S2P .

Let c∗(1−α) be the (1 − α)−percentile of the empirical distribution of S∗2P∗ . If we do not reject H0,

whenever S2P ≤ c∗(1−α), and we reject otherwise, we have a test with asymptotic size equal to α

in Cases I-III, and asymptotic size equal to zero in Case IV. Asymptotic power is equal to 1.

Indeed, from the theorem, we see that under H0, in Cases I-III, SP and S∗P∗ , and thus also S
2
P

and S∗2P∗ , have the same limiting distribution, conditional on sample, while in Case IV, provided

that P ∗ = o
¡
N2/P

¢
, S∗2P∗ approaches zero at a slower rate than S

2
P . Finally, under the alternative,

S2P diverges at a faster rate than S
∗2
P∗ , thus ensuring unit asymptotic power. The reason why we

compare S2P with the percentiles of S
∗2
P ∗ is that in the degenerate case, SP goes to zero at a faster

rate than S∗P∗ , but cases may arise where SP has positive sign, while S
∗
P ∗ has negative sign. It thus

follows that empirical implementation should be based on S2P .

5 Empirical Illustration

We illustrate the implementation of the proposed test statistic, S2P by constructing predictions of

the same 11 macroeconomic variables examined in Armah and Swanson (2010), as summarized in

Table 1. Prediction models are constructed according to the generic specification given in equations

(1) and (2). Namely, we implement forecasting models of the form: yt+h = α0,t + β0,1,tF0,1,t + ...+

β0,r,tF0,r,t + ²t+h, as defined in Section 2 above, and factors are estimated as in (4) and (7). The

number of factors r is selected using the approach of Bai and Ng (2002). Factor are based on

macroeconomic dataset first introduced of Stock and Watson (2002a,b), and extended by and Kim

and Swanson (2011a,b). We have 155 monthly variables for the period 1960:1 - 2009:5, so that

N = 155 and T = 560. As outlined in Section, 2 and 4, values for T , R, P , T ∗, R∗, P ∗, m,

bT ∗ , bR∗ , and bP∗ are required for implementation of the test. Various values for these parameters

were tried, as outlined in Table 2.

A selected subset of our empirical findings are collected in Tables 3-6, based on predictions

constructed 1- and 3-months ahead. Results across all other parameter permutations were quali-

tatively similar, and are available upon request from the authors. In the tables, entries are given
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for (i) the test statistic; (ii) the 95th, 90th, and 50th percentiles of the empirical bootstrap distri-

bution, for given values of bT ∗ , bR∗ ; and bP∗ ; and (iii) the probability of rejection (p-value) under

the null, based on the empirical bootstrap distribution. Tables 3-4 correspond to experiments run

using a quadratic loss function, while Tables 5-6 repeat the same set of experiments, but using

the following linex loss function: g(u) = eau − au − 1, with a = 1. The reason why we compare

outcomes based on quadratic and linex loss functions is that we want to control for the possible

conservativeness of the moon critical values. In the case a quadratic loss function parameter es-

timation error may vanish under the null, while in linex loss it cannot vanish (at least given our

choices of P,R, P ∗, R∗). Broadly speaking, we want to see whether the failure to reject the null is

consistent across the two different loss function. If this is the case, we do not have to be worried

about the possible conservativeness of moon critical values.

A number of conclusions emerge from examination of the results in the tables. First, comparing

results in any individual table, we see that inference is robust across different values of bT ∗ , bR∗ ;

and bP∗ . Second, when comparing results across tables (e.g. compare Tables 3 and 4), empirical

findings are somewhat dependent upon forecast horizon. Namely, at a 10% level, the null of stability

rejected for TB10Y and PPI, when h = 1. On the other hand, when h = 3, the null hypothesis

is rejected for CPI, PPI, and HS. One of the reasons for this finding may be that, in our simple

empirical illustration, we include only factors as regressors, and do not include lags. In order

to properly explore the stability of our variables, it is evident that a much more exhaustive and

detailed empirical analysis is needed. Finally, notice that our inference is robust to choice of loss

function. Namely, the variables for which the null is rejected does not change if a linex loss function

rather than a quadratic loss function is specified.

6 Concluding Remarks

We have developed a simple to implement test for the structural stability of factor augmented

forecasting models. Our null hypothesis involves jointly testing stability of factor loading and

forecast model coefficients via examination on prediction errors. Implementation of the test involves

use of a Diebold-Mariano (1995) type test where sequences of forecast errors are constructed using

both full sample and rolling estimation schemes. Asymptotically valid critical values are constructed

using the m out of n (moon) bootstrap. In an empirical illustration, we show that the test is

convenient to implement, and offers inference that is robust across various parameters of interest,

such as moon bootstraps sample size, block lengths and ex-ante prediction periods, and loss function
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choice.
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7 Appendix

Hereafter, for the sake of simplicity and clarity, we provide all proofs for the case where μ0,t =

α0,t = 0 (i.e. assuming that both Xt and yt have zero mean). As a consequence, we do not estimate

αs, and we estimate factors and βs without recentering.

Proof of Theorem 1: We begin by considering the full sample estimation scheme. Now,

e²1,t+h = ²1,t+h − ³ eFt −H 0
N,TF

†
t

´0
Q†β† + F †0t HN,T

³eβT −Q†β†´
+
³ eFt −H 0

N,TF
†
t

´0 ³eβT −Q†β†´ ,
where Q† = V †1/2Υ†0Σ†−1/2λ , with Σ†λ = p limN→∞

Λ†
0
Λ†

N , V † = diag
³
v†1, ..., v

†
r

´
, where v†1 > v

†
2 >

... > v†r > 0 are the eigenvalues of Σ
†−1/2
λ Σ†FΣ

†−1/2
λ , Σ†F = p limT→∞

F 0F †

T . Also, Υ† is the matrix

of the eigenvectors associated with
³
v†1, ..., v

†
r

´
, such that Υ†0Υ† = Ir, H

†
N,T = Λ†

0
Λ†

N
F †0F
T V −1N,T ,

with VN,T an r × r diagonal matrix whose elements are the largest r eigenvalues of XX0

NT . As

Σ†F = p limT→∞
F 0F †

T = Σ
†−1/2
λ Υ†V †1/2 (see e.g. Bai (2003), p.162), it is immediate to see that

p limN,T→∞H 0
N,TQ

† = Ir.

By taking a Taylor expansion around H 0
N,TF

†
t and Q

†β†, we have that

1√
P

T−hX
t=R+1

g (e²1,t+h)
=

Ã
1√
P

T−hX
t=R+1

g (²1,t+h)−
1√
P

T−hX
t=R+1

³ eFt −H 0
N,TF

†
t

´0
∇gF (²1,t+h)−

1√
P

T−hX
t=R+1

∇gβ (²1,t+h)0
³eβT −Q†β†´

+
1

2
√
P

T−hX
t=R+1

³ eFt −H 0
N,TF

†
t

´0
∇2gF,β (²1,t+h)

³eβT −Q†β†´! (1 + op(1)). (12)

Since we have, from A3(iv), that E
³
∇F g (²1,t+h)u†i,t+h

´
= 0 for all i, t, then by Lemma A.1(ii) in

Bai and Ng (2006), it follows that

1√
P

T−hX
t=R+1

³ eFt −H 0
N,TF

†
t

´0
∇gF (²1,t+h) = Op

Ã
max

(√
P

N
,

√
P

T

)!
.

The last term in the brackets in (12) is of smaller order than the second. As for the second term

in the brackets in (12), since by construction 1
T

PT
t=1

eFt eF 0t = Ir,
eβT = 1

T

T−hX
t=1

eFtyt+h = 1

T

T−hX
t=1

eFtF †0t β† + 1

T

TX
t=1

eFt²1,t+h
=

Ã
Q†β† +

1

T

TX
t=1

eFt²1,t+h! (1 + op(1)) ,
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as 1
T

PT−h
t=1

eFtF †0t p→ Q†, by Proposition 1 in Bai (2003). Hence,

1√
P

T−hX
t=R+1

∇gβ (²1,t+h)0
³eβT −Q†β†´

= D†
0√
P
³eβT −Q†β†´+ 1

P

T−hX
t=R+1

³
∇gβ (²1,t+h)0 −D†

0
´√

P
³eβT −Q†β†´

= D†
0√
P
³eβT −Q†β†´+Opµ 1√

P

¶
as
³
1
P

PT−h
t=R+1∇gβ (²1,t+h)−D†

´
= Op

³
1√
P

´
. Now,

√
P
³eβT −Q†β†´

=

r
π

1 + π

1√
T

TX
t=1

eFt²1,t+1
=

r
π

1 + π

1√
T

TX
t=1

H 0
N,TF

†
t ²1,t+1 +

r
π

1 + π

1√
T

TX
t=1

³ eFt −H 0
N,TF

†
t

´
²1,t+1

=

r
π

1 + π

1√
T

TX
t=1

H 0
N,TF

†
t ²1,t+1 +Op

Ã
max

(√
P

N
,

√
P

T

)!
,

as 1√
T

PT
t=1

³ eFt −H 0
N,TF

†
t

´
²1,t+1 = Op

³
max

n√
T
N ,

1√
T

o´
, by Lemma A1(iv) in Bai and Ng (2006),

with π = P/R. Thus,

1√
P

T−hX
t=R+1

g (e²1,t+h)
=

1√
P

T−hX
t=R+1

g (²1,t+h)−
r

π

1 + π
D†

0 1√
T

TX
t=1

H 0
N,TF

†
t ²1,t+1 +Op

µ
1√
P

¶

+Op

Ã
max

(√
P

N
,

√
P

T

)!
. (13)

We now turn to the rolling estimation scheme. Notice that

b²2,t+h = ²2,t+h − ³ bFt,t−R −H 0
N,R,tF

‡
t

´0
Q‡tβ

‡
t − F

‡0
t HN,R,t

³bβt,R −Q‡tβ‡t´
+
³ bFt,t−R −H 0

N,R,tF
‡
t

´0 ³bβt,R −Q‡tβ‡t´ ,
where Q‡t = V

‡1/2
t Υ‡0t Σ

‡−1/2
λ,t , with Σ‡λ,t = p limN→∞

Λ‡
0
t Λ

‡
t

N , eΛ‡t = F (t)0X(t)

R , X(t) is an R ×N matrix

whose columns are given by (xi,t−R+1, ..., xi,t) , t = R + 1, .., T − h, for i = 1, ..., N, and bF (t) is
the r × R collection of vectors of factors estimated using observations from t − R + 1 to t. Also,

V ‡t = diag
³
v‡1,t, ..., v

‡
r

´
, where v‡1,t > v

‡
2,t > ... > v

‡
r,t > 0 are the eigenvalues of Σ

‡−1/2
λ,t Σ‡F,tΣ

‡−1/2
λ,t ,
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Σ‡F,t = p limN,R→∞
F (t)0F ‡(t)

R , F ‡(t) =
³
F ‡t−R+1, ..., F

‡
t

´
, and Υ‡t is the matrix of the eigenvectors

associated with
³
v‡1,t, ..., v

‡
r,t

´
, such that Υ‡0t Υ

‡
t = Ir, and H

‡
N,R,t =

Λ‡0t Λ
‡
t

N
F ‡0F (t)

T V −1N,R,t, with VN,R,t

a r × r diagonal matrix whose elements are the largest r eigenvalues of X(t)X(t)0

NR . Since, for all

t = R + 1, ..., T, Σ‡F,t = p limN,R→∞
F (t)0F ‡(t)

R = Σ
‡−1/2
λ,t Υ‡tV

‡1/2
t (see e.g. Bai (2003), p.162), it is

immediate to see that p limN,R→∞H 0
N,R,tQ

‡
t = Ir.

By taking a Taylor expansion around H 0
N,TF

†
t and Q

†β†, we have that

1√
P

T−hX
t=R+1

g (b²2,t+h)
=

Ã
1√
P

T−hX
t=R+1

g (²2,t+h)−
1√
P

T−hX
t=R+1

³ bFt,t−R −H 0
N,R,tF

‡
t

´0
∇gF (²2,t+h)

− 1√
P

T−hX
t=R+1

∇gβ (²2,t+h)0
³bβt,R −Q‡tβ‡t´

+
1

2
√
P

T−hX
t=R+1

³ bFt,t−R −H 0
N,R,tF

‡
t

´0
∇2gF,β (²2,t+h)

³bβt,R −Q‡tβ‡t´
!
(1 + op(1)) .

We first need to show that 1√
P

PT−h
t=R+1

³ bFt,t−R −H 0
N,R,tF

‡
t

´0
∇gF (²2,t+h) = Op

³
max

n√
P
N ,

√
P
R

o´
,

in the case in which bFt,t−R, is the factor at time t, and is estimated using observations from t−R+1
up to t. This is accomplished by showing that under assumptions A1-A3, Lemma A1 in Bai and

Ng (2006) holds also for the rolling estimation case. Now, in this case

bFt,t−R −H 0
N,R,tF

‡
t =

bV −1t,R

⎛⎝ 1
R

tX
j=t−R+1

bFj,t−Rγj,t + 1

R

tX
j=t−R+1

bFj,t−Rζj,t
+
1

R

tX
j=t−R+1

bFj,t−Rηj,t + 1

R

tX
j=t−R+1

bFj,t−Rξj,t
⎞⎠ , (14)

where bVt,R is an r × r diagonal matrix containing the largest r eigenvalues of (XX 0)(t−R,t) /NR,

with the superscript denoting the subset of observations used, γj,t = E
³
1
N

PN
i=1 u

‡
i,ju

‡
i,t

´
, ζj,t =

1
N

PN
i=1

³
u‡i,ju

‡
i,t − γj,t

´
, ηj,t =

1
N

PN
i=1 λ

0‡
i F

‡
j,t−Ru

‡
i,t and ξj,t =

1
N

PN
i=1 λ

0‡
i F

‡
t,t−Ru

‡
j,t. Hence, the

only difference with respect to the full sample case is that the summation inside the brackets is

taken from t−R to t, for t > R, instead of over the full sample. Now, for P/R→ π, 0 ≤ π <∞,

Assumption A1(i) ensures that for all i, l 1√
P
1
R

PT
t=R+1

Pt
j=t−R+1 E

³
u‡i,tu

‡
l,j

´
= O

³
1/
√
P
´
. Hence,

Lemma A1(ii) in Bai and Ng (2006) applies also for the rolling estimation case. Now,

bβt,R =
⎛⎝ 1
R

t−hX
j=t+1−R

bFj,t−R bF 0j,t−R
⎞⎠−1 1

R

t−hX
j=t+1−R

bFj,t−Ryj+h
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=
1

R

t−hX
j=t+1−R

bFj,t−Ryj+h = 1

R

t−hX
j=t+1−R

bFj,t−RF ‡0j β‡t + 1

R

t−hX
j=t+1−R

bFj,t−R²2,j+h
= Q‡tβ

‡
t +

1

R

t−hX
j=t+1−R

bFj,t−R²2,j+h.
Thus,

1√
P

T−hX
t=R+1

∇gβ (²2,t+h)0
³bβt,R −Q‡tβ‡t´

= D‡0
1√
PR

T−hX
t=R+1

t−hX
j=t+1−R

³
H 0
N,R,tF

‡
j ²2,j+h +

³ bFj,t−R −H 0
N,R,tF

‡
j

´
²2,j+h

´
+Op

µ
1√
P

¶
,

as 1
P

PT−h
t=R+1∇gβ (²2,t+h)

0 −D‡ = Op
³

1√
P

´
. By Lemma A1(ii) in Bai and Ng (2006),

1√
PR

T−hX
t=R+1

t−hX
j=t+1−R

³ bFj,t−R −H 0
N,R,tF

‡
j

´
²2,j+h = Op

Ã
max

(√
P

N
,

√
P

R

)!
.

Hence,

1√
P

T−hX
t=R+1

g (b²2,t+h)
=

1√
P

T−hX
t=R+1

g (²2,t+h) +D
‡0 1√

PR

T−hX
t=R+1

t−hX
j=t+1−R

H 0
N,R,tF

‡
j ²2,j+h +Op(

1√
P
) +Op

Ã
max

(√
P

N
,

√
P

R

)!
.

(15)

Given (13)-(15), and recalling that R and T grow at the same rate, we have that

1√
P

T−hX
t=R+1

(g (e²1,t+h)− g (b²2,t+h))
=

1√
P

T−hX
t=R+1

(g (²1,t+h)− g (²2,t+h))−
r

π

1 + π
D†

0 1√
T

TX
t=1

H 0
N,TF

†
t ²1,t+1

+D‡0
1√
PR

T−hX
t=R+1

t−hX
j=t+1−R

H 0
N,R,tF

‡
j ²2,j+h +Op

µ
1√
P

¶
+Op

Ã
max

(√
P

N
,

√
P

R

)!
. (16)

Let

V² =
∞X

j=−∞
E((g (²1,1)− g (²2,1))× (g (²1,1+j)− g (²2,1+j))) , (17)

VF † =
∞X

j=−∞
E
³
H†0F †1 ²1,1²1,1+jF

†0
1+jH

†
´
,

and

VF ‡ =
∞X

j=−∞
E
³
H‡0F ‡1 ²2,1²2,1+jF

‡0
1+jH

‡
´
,
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where H† = p limT,N
1
P

PT
t=R+1H

0
N,T , H

‡ = p limT,N
1
P

PT
t=R+1H

0
N,R,t,

C²,F † =
∞X

j=−∞
E
³³
(g (²1,1)− g (²2,1))×H†0F †1 ²1,1

´
×
³
(g (²1,1+j)− g (²2,1+j))×H†0F †1+j²1,1

´´
,

C²,F ‡ =
∞X

j=−∞
E
³³
(g (²1,1)− g (²2,1))×H‡0F ‡1 ²1,1

´
×
³
(g (²1,1+j)− g (²2,1+j))×H‡0F ‡1+j²1,1

´´
,

and

CF †,F ‡ =
∞X

j=−∞
E
³
H†0F †1 ²1,1²2,1+jF

‡0
1+jH

‡
´
.

Note that, for notational simplicity, we have written the expressions for the long-run covariances un-

der the assumption of covariance stationarity. Nevertheless, even under the null of factor structural

stability, F †t , F
‡
t may display some time heterogeneity.

In this case, CF †,F ‡ = limT,lT→∞
PT−lT
j=1+lT

PlT
τ=−lT E

³
H†0F †j ²1,j²2,j+τF

‡0
j+τH

‡
´
, and the same ap-

plies for the definition of the other covariances.

By Lemma 4.1 in West and McCracken (1998), and along the same lines as in the proof of

Proposition 1(a) in Corradi and Swanson (2006b), for P ≤ R,

lim
T,N→∞

var

⎛⎝ 1√
PR

T−hX
t=R+1

t−hX
j=t+1−R

H‡0F ‡j ²2,j+h

⎞⎠ =

µ
π − π2

3

¶
VF ‡ ,

lim
T,N→∞

cov

⎛⎝ 1√
PR

T−hX
t=R+1

t−hX
j=t+1−R

H‡0F ‡j ²2,j+h,
1√
P

T−hX
t=R+1

(g (²1,t+h)− g (²2,t+h))

⎞⎠
=

π

2
C²,F ‡ ,

and

lim
T,N→∞

cov

⎛⎝ 1√
PR

T−hX
t=R+1

t−hX
j=t+1−R

H 0
N,R,tF

‡
j ²2,j+h,

1√
T

TX
t=1

H 0
N,TF

†
t ²1,t+1

⎞⎠
=

π

2
CF †,F ‡ .

Hence, as a straightforward application of the central limit theorem for possibly heterogeneous mix-

ing processes, (see e.g. Wooldridge and White (1988)), under the null of E(g (²1,t+h)− g (²2,t+h)) =

0,

1√
P

T−hX
t=R+1

(g (e²1,t+h)− g (b²2,t+h)) d→ N (0,Ω) ,
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where

Ω = V² +
π

1 + π
D†0VF †D

† +

µ
π − π2

3

¶
D‡0VF ‡D

‡ −
r

π

1 + π
D†0C²,F †

+
π

2

r
π

1 + π
D‡0C²,F ‡ −

π

2

r
π

1 + π
D†0CF †,F ‡D

‡, (18)

and, in the case where P > R, the terms
³
π − π2

3

´
and π

2 in (18) should be replaced by
¡
1− 1

3π

¢
and

¡
1− 1

2π

¢
, respectively.

The statements for Case II and Case III follow in straightforward fashion, given (17) and by

inspection of the asymptotic covariance matrix in (18).

Turning to the statement in Case IV, it follows immediately from (16) that
1√
P

PT−h
t=R+1 (g (e²1,t+h)− g (b²2,t+h)) = Op

³
1√
P

´
+ Op

³
max

n√
P
N ,

√
P
R

o´
. Hence, for N/R → ∞,

this expression is of probability order 1/
√
P, while if R/N2 → 0 but R/N → ∞, it is at most of

probability order
√
P/N. Note that Op

³
max

n√
P
N ,

√
P
R

o´
is an upper bound, rather than an "exact"

order. This is because Lemma A1 in Bai and Ng (2006) follows via a sequence of majorizations.

Finally, the statement under the alternative hypothesis follows immediately, as E((g (²1,t+h)− g (²2,t+h))) 6=

0.¤
Hereafter, Pr∗ denotes the probability law of the bootstrap samples, conditional on the sample,

and , E∗ and var∗ denote the mean and the variance under Pr∗ . Also, Op∗(1) and op∗(1) denote terms

bounded and converging to zero under Pr∗ . Let H 0
N,TF

†∗
t and H 0

N,R,tF
‡∗
t t = R∗, ..., R∗+P ∗−h, be

the series of factors resampled fromH 0
N,TF

†
t and fromH

0
N,R,tF

‡
t , respectively, for t = R, ..., R+P−h.

In the sequel, we rely on the following Lemma.

Lemma 1: Let Assumption A hold. Also, as N,T, P,R → ∞, N/
√
T → ∞, and P/R → π, with

0 ≤ π <∞. Additionally, as P ∗, R∗, T ∗ →∞, assume that T ∗/T → 0, P ∗/P → 0, R∗/R→ 0, and

P ∗/R∗ → π. Finally, as lP∗ , lR∗ , lT ∗ →∞, lT ∗/
√
T ∗ → 0, lP∗/

√
P ∗ → 0, and lR∗/

√
R∗ → 0. Then:

(i)

1√
P ∗

T ∗−hX
t=R∗+1

³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢
= Op∗

Ã
max

(√
P ∗

N
,

√
P ∗

T

)
+

s
l∗P 1/kmax

½
1

T
,
1

N

¾
+ l∗/

√
P ∗

!
= Op∗

³
d
(1)
N,T,P∗

´
.

and (ii)

1√
P ∗

T∗−hX
t=R∗+1

³ bF ∗t,t−R −H 0
N,R,tF

‡∗
t

´0
∇gF

¡
²∗2,t+h

¢
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= Op∗

Ã
max

(√
P ∗

N
,

√
P ∗

R

)
+

s
l∗P 1/kmax

½
1

R
,
1

N

¾
+ l∗/

√
P ∗

!
= Op∗

³
d
(1)
N,R,P∗

´
,

where k is as defined in A1(ii)-(iii).

Proof of Theorem 2: We begin with the case of the full sample estimation scheme. Let e²∗1,t+h =
y∗t+h − eF ∗0t eβ∗T , and ²∗1,t+h = y∗t+h − F †∗0t HN,T eβT , so that

e²∗1,t+h = ²∗1,t+h − ³ eF ∗t −H 0
N,TF

†∗
t

´0 eβT − F †∗0t HN,T

³eβ∗T ∗ − eβT´
+
³ eF ∗t −H 0

N,TF
†∗
t

´0 ³eβ∗T∗ − eβT´ .
By taking a Taylor expansion of g

³e²∗1,t+h´ around eβT and H 0
N,TF

†∗
t , note that, by Lemma 1(i),

1√
P ∗

T ∗−hX
t=R∗+1

³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢
= Op∗

Ã
max

(√
P ∗

N
,

√
P ∗

T

)
+

s
l∗P 1/kmax

½
1

T
,
1

N

¾
+ l∗/

√
P ∗

!
= Op∗

³
d
(1)
N,T,P∗

´
.

Recalling the definition of ²∗1,t+h, eβ∗T ∗ and eβT , note that
√
P ∗
³eβ∗T ∗ − eβT´

=

√
P ∗

T ∗

T ∗−hX
t=1

H 0
N,TF

†∗
t ²

∗
1,t+h +

√
P ∗

T ∗

T∗−hX
t=1

H 0
N,TF

†∗
t ²

∗
1,t+h

⎛⎝Ã 1

T ∗

T ∗−hX
t=R∗+1

eF ∗t eF ∗0t
!−1

− Ir

⎞⎠
+

Ã
1

T ∗

T ∗−hX
t=1

eF ∗t eF ∗0t
!−1 √

P ∗

T ∗

T ∗−hX
t=1

³ eF ∗t −H 0
N,TF

†∗
t

´
²∗1,t+h

=

√
P ∗

T ∗

T ∗−hX
t=R∗+1

H 0
N,TF

†∗
t ²

∗
1,t+h +Op∗

³
d
(1)
N,T,P∗

´
. (19)

Thus,

1√
P ∗

T ∗−hX
t=R∗+1

g
¡e²∗1,t+h¢

=
1√
P ∗

T ∗−hX
t=R∗+1

g
¡
²∗1,t+h

¢
+

1√
P ∗

T∗−hX
t=R∗+1

D†0H 0
N,TF

†∗
t ²

∗
1,t+h +Op∗

µ
1√
P ∗

¶
+Op

µ
1√
P

¶
+Op∗

³
d
(1)
N,P,P∗

´
, (20)

as 1
P∗
PT∗−h
t=R∗+1

µ
∇gβ

³
²∗1,t+h

´0
− E∗

µ
∇gβ

³
²∗1,t+h

´0¶¶
= Op∗

³
1√
P∗

´
, and E∗

µ
∇gβ

³
²∗1,t+h

´0¶
−

D†0 = Op
³

1√
P

´
.
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We now turn to the case of a rolling estimation scheme. Let b²∗2,t+h = y∗t+h − bF ∗0t,t−Rbβ∗t,R∗ , and
²∗2,t+h = y

∗
t+h − F

‡∗0
t HN,R,tbβt,R, so that

b²∗2,t+h = ²∗2,t+h − ³ bF ∗t,t−R −H 0
N,R,tF

‡∗
t

´0 bβ∗t,R∗ − F ‡∗0t HN,R,t

³bβ∗t,R∗ − bβt,R´
+
³ bF ∗t,t−R −H 0

N,R,tF
‡∗
t

´0 ³bβ∗t,R∗ − bβt,R´ .
By taking a Taylor expansion of g

³b²∗2,t+h´ around bβt,R and H 0
N,R,tF

‡∗
t , note that

1√
P ∗

T ∗−hX
t=R∗+1

g
¡b²∗2,t+h¢

=

Ã
1√
P ∗

T ∗−hX
t=R∗+1

g
¡
²∗2,t+h

¢
− 1√

P ∗

T ∗−hX
t=R∗+1

³ bF ∗t,t−R −H 0
N,R,tF

‡∗
t

´0
∇gF

¡
²∗2,t+h

¢
− 1√

P ∗

T ∗−hX
t=R∗+1

∇gβ
¡
²∗2,t+h

¢0 ³bβ∗t,R∗ − bβt,R´

+
1√
P ∗

T ∗−hX
t=R∗+1

³ bF ∗t,t−R −H 0
N,R,tF

‡∗
t

´0
∇2gF,β

¡
²∗2,t+h

¢ ³bβ∗t,R∗ − bβt,R´
!
(1 + op∗(1)) .

Given Lemma 1(ii),

1√
P ∗

T∗−hX
t=R∗+1

³ bF ∗t,t−R −H 0
N,R,tF

‡∗
t

´0
∇gF

¡
²∗2,t+h

¢
= Op∗

Ã
max

(√
P ∗

N
,

√
P ∗

R

)
+

s
l∗P 1/kmax

½
1

R
,
1

N

¾
+ l∗/

√
P ∗

!
= Op∗

³
d
(1)
N,R,P∗

´
.

Now,

1√
P ∗

T∗−hX
t=R∗+1

³bβ∗t,R∗ − bβt,R´

=
1√
P ∗

T ∗−hX
t=R∗+1

1

R∗

tX
j=t−R∗+1

H 0
N,tF

‡∗
j ²

∗
1,j+h

+
1√
P ∗

T ∗−hX
t=R∗+1

⎛⎝⎛⎝ 1

R∗

tX
j=t−R∗+1

bF ∗j,t bF ∗0j,t
⎞⎠−1 − Ir

⎞⎠ 1

R∗

tX
j=t−R∗+1

H 0
N,tF

‡∗
j ²

∗
1,j+h

+
1√
P ∗

T ∗−hX
t=R∗+1

⎛⎝ 1

R∗

tX
j=t−R∗+1

bF ∗j,t bF ∗0j,t
⎞⎠−1 1

R∗

tX
j=t−R∗+1

³ bF ∗j,t −H 0
N,tF

‡∗
j

´
²∗1,j+h

=
1√
P ∗

T ∗−hX
t=R∗+1

1

R∗

tX
j=t−R∗+1

H 0
N,tF

‡∗
j ²

∗
1,j+h +Op∗

³
d
(1)
N,R,P∗

´
. (21)
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Thus,

1√
P ∗

T ∗−hX
t=R∗+1

g
¡b²∗2,t+h¢

=
1√
P ∗

T∗−hX
t=R∗+1

g
¡
²∗2,t+h

¢
+D‡0

1√
P ∗

T ∗−hX
t=R∗+1

1

R∗

tX
j=t−R∗+1

H 0
N,tF

‡∗
j ²

∗
1,j+h+

+Op

µ
1√
P

¶
+Op∗

³
d
(1)
N,P,P ∗

´
+Op∗

µ
1√
P ∗

¶
, (22)

as 1
P∗
PT ∗−h
t=R∗+1

µ
∇gβ

³
²∗2,t+h

´0
− E∗

µ
∇gβ

³
²∗2,t+h

´0¶¶
= Op∗

³
1√
P∗

´
and E∗

µ
∇gβ

³
²∗2,t+h

´0¶
−

D‡0 = Op
³

1√
P

´
.

Given (20) and (22), and recalling that R and T grow at the same rate,

1√
P ∗

T∗−hX
t=R∗+1

¡
g
¡e²∗1,t+h¢− g ¡b²∗2,t+h¢¢

=
1√
P ∗

T ∗−hX
t=R∗+1

¡
g
¡
²∗1,t+h

¢
− g

¡
²∗2,t+h

¢¢
−
√
P ∗

T ∗

T ∗−hX
t=R∗+1

D†0H 0
N,TF

†∗
t ²

∗
1,t+h

+D‡0
1√
P ∗

T∗−hX
t=R∗+1

1

R∗

tX
j=t−R∗+1

H 0
N,tF

‡∗
j ²

∗
1,j+h

+Op

µ
1√
P

¶
+Op∗

³
d
(1)
N,R,P∗

´
+Op∗

µ
1√
P ∗

¶
. (23)

We first need to show that in Cases I-III, the left hand terms in (16) and (23) have the same limiting

distribution, conditional on the sample, and for all samples except a set with probability measure

approaching to zero. Now, note that

1√
P ∗

T ∗−hX
t=R∗+1

¡
g
¡
²∗1,t+h

¢
− g

¡
²∗2,t+h

¢¢
=

1√
P ∗

T ∗−hX
t=R∗+1

³
g
³
y∗t+h − F

†∗0
t β†

´
− g

³
y∗t+h − F

‡∗0
t β‡t

´´
+Op

Ã√
P ∗√
P

!
, (24)

so that in Cases I-III the first term on the RHS of (24) has the same limiting distribution, conditional

on the sample, as 1√
P

PT−h
t=R+1 (g (²1,t+h)− g (²2,t+h)) . Furthermore, by the same argument as in the

proof of Proposition 2 of Corradi and Swanson (2006b), wheneverD† andD‡ are different from zero,
√
P∗
T ∗

PT∗−h
t=R∗+1D

†0H 0
N,TF

†∗
t ²

∗
1,t+h and D

‡0 1√
P∗

PT ∗−h
t=R∗+1

1
R∗
Pt
j=t−R∗+1H

0
N,tF

‡∗
j ²

∗
1,j+h have the same

limiting distribution as
q

π
1+πD

†0 1√
T

PT
t=1H

0
N,TF

†
t ²1,t+1 andD

‡0 1√
PR

PT−h
t=R+1

Pt−h
j=t+1−RH

0
N,R,tF

‡
j ²2,j+h,

respectively, conditional on the sample and for all samples except a set with probability measure

approaching zero.
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We now need to show that in Case IV, 1√
P∗

PT ∗−h
t=R∗+1

³
g
³e²∗1,t+h´− g ³b²∗2,t+h´´ approaches zero

at a slower rate than 1√
P

PT ∗−h
t=R∗+1 (g (e²1,t+h)− g (b²2,t+h)) . By looking at (16) and (23), whenever

N/R → ∞ or N/R → c > 0, the statistic is Op
³
1/
√
P
´
, while the bootstrap statistic cannot go

to zero at a rate faster than 1/
√
P ∗. As P ∗/P → 0, the bootstrap statistic will always approach

zero at a slower rate. On the other hand, when N/R→ 0, the statistic in (16) is at most of order

Op

³√
P
N

´
. Moreover, the statistic in (23) cannot go to zero at a rate faster than 1√

P ∗
. Hence, if

P ∗ < N2

P , then the bootstrap statistic will approach zero at a slower rate than the actual statistic.

This ensures a test with an asymptotic zero size. Finally, under the alternative, SP diverges at rate
√
P, while S∗P∗ diverges at rate

√
P
∗
, thus ensuring unit asymptotic power.

Proof of Lemma 1: (i)

1√
P ∗

T ∗−hX
t=R∗+1

³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢
= E∗

Ã
1√
P ∗

T ∗−hX
t=R∗+1

³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢!

+
1√
P ∗

T ∗−hX
t=R∗+1

µ³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢
− E∗

µ³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢¶¶
. (25)

Now,

E∗
Ã

1√
P ∗

T ∗−hX
t=R∗+1

³ eF ∗t −H 0
N,TF

†∗
t

´0
∇gF

¡
²∗1,t+h

¢!

=
√
P ∗
1

P

TX
t=R

³ eFt −H 0
N,TF

†
t

´0
∇gF (²1,t+h) +Op (l∗/P ∗)

= Op

Ã
max

(√
P ∗

N
,

√
P ∗√
P

)!
+Op (l

∗/P ∗) (26)

by the same argument used in the proof of Theorem 1. Now, by a similar argument as in the proof

of Theorem 3 in Corradi and Swanson (2006c), up to a Op
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As in the proof of Theorem 1,
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Now, from Eq.(A.1) in Bai and Ng (2006),
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where γj,t, ζj,t, ηj,t and ξj,t are defined as below Eq.(14). Now, supt,j |γj,t| < M, by A2(i), for
√
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Hence, given (28) and noting that 1
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given A3(iii). Thus, recalling (27), up to a Op
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Given (26) and (29), it follows that
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(ii) Recalling (14), by a similar argument as that used in the full sample estimation scheme,
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Table 1: Target Forecasting Variables *

Series Abbreviation Yt+h
Unemployment Rate UR Zt+1−Zt
Personal Income less transfer payments PILT ln (Zt+1/Zt)
10-Year Treasury Bond TB10Y Zt+1−Zt
Consumer Price Index CPI ln (Zt+1/Zt)
Producer Price Index PPI ln (Zt+1/Zt)
Nonfarm Payroll Employment NPE ln (Zt+1/Zt)
Housing Starts HS ln (Zt)
Industrial Production IPX ln (Zt+1/Zt)
M2 M2 ln (Zt+1/Zt)
S&P 500 Index SNP ln (Zt+1/Zt)
Gross Domestic Product GNP ln (Zt+1/Zt)

* Notes: The data used in our empirical illustration are monthly U.S. figures for the period 1960:1-2009:5. The
transformation used in forecast model specification and forecast construction is given in the last column of the table.

Table 2: Empirical Setup - Samples Sizes and Various Parameter Settings *

a. Size of Rolling Windows - Statistic Calculations

Case1 Case2
T 560 560
R 260 360
P 300 200

b. Size of Rolling Windows - Critical Value Calculations

Case1 m=0.5 m=0.8 m=0.9
T* 290 460 520
R* 140 220 250
P* 150 240 270

Case2 m=0.5 m=0.8 m=0.9
T* 260 450 500
R* 180 290 320
P* 80 160 180

c. Boostrap Parameter Settings

Permutation bT∗ bR∗ bP ∗
1 10 5 5
2 10 2 2
3 10 10 10
4 5 2 2
5 5 5 5
6 2 2 2

* Notes: This table lists various parameter settings used in our empirical illustration. In some cases, sample sizes are
rounded in order that bootstrap blocks not be truncated when forming bootstrap samples. For complete details, see
Section 5.
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Table 3: Stability Test Results for 11 Macroeconomic Variables - Quadratic Loss *
Results Are Tabulated for the Following Case: R = 360, P=200 m = 0.5 and h = 1

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
Test Statistic 0.0002 0.0005 1.0958 0.1690 0.8130 0.2580 0.0247 0.0030 0.2200 0.2500 0.0271

bT∗ = 10,
bR∗ = bP∗ = 5

95% 0.8034 0.7262 1.3299 0.6669 0.4109* 2.7717 0.1261 2.5246 4.1167 0.5212 1.4919
90% 0.5290 0.5341 0.7161* 0.4556 0.2811 1.9496 0.0909 1.8358 3.5638 0.4244 1.1106
50% 0.1116 0.1048 0.1435 0.0803 0.0741 0.3051 0.0133 0.3991 1.8603 0.1112 0.2060
P-value 0.9760 0.9580 0.0620 0.2940 0.0060 0.5360 0.3540 0.9560 0.9900 0.2620 0.8140

bT∗ = 10,
bR∗ = bP∗ = 2

95% 0.8871 0.7295 1.3702 0.5299 0.4237* 3.0189 0.1329 2.3651 3.6833 0.5687 1.4351
90% 0.6741 0.5516 0.7196* 0.3887 0.3067 1.9173 0.0925 1.8296 3.2013 0.4415 0.9678
50% 0.1168 0.1192 0.1346 0.0753 0.0753 0.3736 0.0164 0.3418 1.8157 0.0991 0.1830
P-value 0.9780 0.9740 0.0600 0.3040 0.0040 0.5660 0.3980 0.9680 0.9880 0.2500 0.7980

bT∗ = 10,
bR∗ = bP∗ =
10

95% 0.6984 0.8243 2.0356 0.5676 0.3686* 2.7881 0.1324 2.7272 4.1229 0.5676 1.6297
90% 0.5026 0.5836 0.8774* 0.3797 0.2944 2.0546 0.0897 1.8669 3.6062 0.4427 0.9770
50% 0.0819 0.1250 0.1246 0.0685 0.0791 0.3877 0.0126 0.3747 2.0349 0.1108 0.2013
P-value 0.9700 0.9600 0.0840 0.3020 0.0020 0.5620 0.3680 0.9680 1.0000 0.2860 0.8080

bT∗ = 5,
bR∗ = bP∗ = 2

95% 0.7253 0.7955 1.7473 0.5327 0.3931* 3.3354 0.1238 2.3776 3.9955 0.5448 1.5213
90% 0.5220 0.5578 0.8543* 0.3526 0.3029 2.3553 0.0897 1.7434 3.5529 0.4271 1.0805
50% 0.0785 0.1058 0.1453 0.0772 0.0828 0.2988 0.0111 0.3026 1.7921 0.1061 0.2268
P-value 0.9820 0.9600 0.0800 0.3000 0.0020 0.5400 0.3620 0.9420 0.9860 0.2600 0.8240

bT∗ = 5,
bR∗ = bP∗ = 5

95% 0.6847 0.6964 1.5341 0.5818 0.4099* 2.4038 0.1364 2.3252 3.9578 0.5570 1.5522
90% 0.5315 0.4994 0.7991* 0.4332 0.3298 1.8779 0.0932 1.7667 3.4933 0.4469 1.0452
50% 0.1020 0.1266 0.1561 0.0897 0.0921 0.2943 0.0137 0.3755 1.9059 0.1176 0.2158
P-value 0.9820 0.9720 0.0620 0.3240 0.0000 0.5260 0.3600 0.9340 0.9880 0.2700 0.8100

bT∗ = 2,
bR∗ = bP∗ = 2

95% 0.8117 0.7206 1.3097 0.6117 0.4274* 3.1398 0.1406 2.6367 4.0293 0.5428 1.6265
90% 0.5783 0.5125 0.6698* 0.4451 0.2936 2.0869 0.0973 1.9786 3.4715 0.4073 1.0895
50% 0.1020 0.1106 0.1286 0.0925 0.0771 0.3336 0.0176 0.3620 1.8662 0.1036 0.2079
P-value 0.9760 0.9620 0.0600 0.3540 0.0040 0.5540 0.4320 0.9480 0.9920 0.2520 0.8360

* Entries in this table are given for (i) the test statistic (first row of numerical entries); (ii) the 95th, 90th, and
50th percentiles of the empirical bootstrap distribution (rows denoted by 95%, 90%, and 50%), for given values of
bT∗ , bR∗ ; and bP∗ ; and (iii) the probability of rejection (p-value) under the null of forecast model stability, based on
the empirical bootstrap distribution. For complete details, see Section 5.

Table 4: Stability Test Results for 11 Macroeconomic Variables - Quadratic Loss *
Results Are Tabulated for the Following Case: R = 360, P=200 m = 0.5 and h = 3

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
Test Statistic 0.0003 0.6030 0.0603 0.4730 0.4900 0.4670 0.0967 0.3270 0.3020 0.0479 0.1440

bT∗ = 10,
bR∗ = bP∗ = 5

95% 0.8128 2.3840 0.2226 0.7575 0.2251* 2.1745 0.1187 2.8616 5.2609 2.4868 3.9066
90% 0.5470 1.0546 0.1666 0.4215* 0.1540 1.3016 0.0653* 1.6194 4.4388 1.1576 2.6222
50% 0.0920 0.1700 0.0379 0.0698 0.0317 0.2347 0.0087 0.2586 1.8612 0.0793 0.3194
P-value 0.9780 0.1940 0.3620 0.0860 0.0100 0.3520 0.0640 0.4480 0.8980 0.5960 0.6540

bT∗ = 10,
bR∗ = bP∗ = 2

95% 0.9370 2.5989 0.2494 0.5668 0.2306* 2.0640 0.1692 2.8054 5.1962 2.3060 2.8934
90% 0.6702 1.0468 0.1646 0.3650* 0.1672 1.5475 0.0841* 1.7164 4.2748 1.1078 1.6962
50% 0.1303 0.1743 0.0309 0.0727 0.0290 0.2460 0.0099 0.3077 1.6455 0.0787 0.2490
P-value 0.9700 0.1760 0.3460 0.0680 0.0120 0.3560 0.0880 0.4900 0.8860 0.5940 0.6080

bT∗ = 10,
bR∗ = bP∗ =
10

95% 0.9025 1.1364 0.2126 0.6903 0.2463* 2.1654 0.1246 2.8938 5.4660 2.1186 3.4521
90% 0.5959 0.6513 0.1554 0.3440* 0.1502 1.5676 0.0643* 1.6593 4.3775 0.8113 2.0482
50% 0.0940 0.1274 0.0243 0.0519 0.0252 0.2591 0.0098 0.2874 2.0113 0.0653 0.2822
P-value 0.9740 0.1180 0.3060 0.0780 0.0080 0.3680 0.0680 0.4800 0.9340 0.5540 0.6320

bT∗ = 5,
bR∗ = bP∗ = 2

95% 0.7943 1.5141 0.2003 0.5538 0.2943* 2.0816 0.1354 3.0554 5.1235 2.7141 3.7543
90% 0.5960 0.9177 0.1439 0.3620* 0.1771 1.6099 0.0837* 2.0773 4.4331 1.6926 2.2328
50% 0.1035 0.1361 0.0288 0.0647 0.0283 0.2905 0.0087 0.2741 1.8168 0.0799 0.3165
P-value 0.9800 0.1540 0.3120 0.0700 0.0260 0.3820 0.0860 0.4720 0.8940 0.6060 0.6420

bT∗ = 5,
bR∗ = bP∗ = 5

95% 0.9270 1.6421 0.2453 0.6327 0.2290* 2.0237 0.1164 2.4935 4.9852 2.1119 3.5494
90% 0.6300 0.9869 0.1758 0.3762* 0.1419 1.3333 0.0683* 1.7219 4.1573 0.9152 2.0072
50% 0.1058 0.1339 0.0322 0.0580 0.0275 0.2572 0.0081 0.2391 1.7096 0.0783 0.3187
P-value 0.9820 0.1780 0.3460 0.0740 0.0160 0.3400 0.0680 0.4420 0.8920 0.5960 0.6560

bT∗ = 2,
bR∗ = bP∗ = 2

95% 0.7992 1.3753 0.2239 0.8336 0.2473* 1.8222 0.1281 2.6364 5.2709 1.9217 3.8909
90% 0.6186 0.8650 0.1634 0.4373* 0.1543 1.4144 0.0883* 1.7826 4.3729 0.7872 2.3220
50% 0.0801 0.1448 0.0286 0.0604 0.0302 0.2595 0.0109 0.2849 1.8905 0.1037 0.2601
P-value 0.9700 0.1460 0.3060 0.0920 0.0100 0.3500 0.0880 0.4620 0.9000 0.6580 0.5900

* See notes to Table 3.
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Table 5: Stability Test Results for 11 Macroeconomic Variables - Linex Loss *
Results Are Tabulated for the Following Case: R = 360, P=200 m = 0.5 and h = 1

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
Test Statistic 0.0007 0.0001 0.5583 0.0431 0.2090 0.0647 0.0036 0.0007 0.0551 0.0694 0.0070

bT∗ = 10,
bR∗ = bP∗ = 5

95% 0.2328 0.1800 0.4931* 0.1678 0.1022* 0.6929 0.0404 0.6299 1.0218 0.1266 0.3729
90% 0.1544 0.1327 0.2781 0.1137 0.0699 0.4889 0.0276 0.4655 0.8862 0.1034 0.2766
50% 0.0292 0.0260 0.0520 0.0201 0.0184 0.0764 0.0039 0.0998 0.4630 0.0289 0.0514
P-value 0.9240 0.9600 0.0460 0.2920 0.0040 0.5360 0.5180 0.9580 0.9900 0.2140 0.8140

bT∗ = 10,
bR∗ = bP∗ = 2

95% 0.2781 0.1814 0.5376* 0.1331 0.1055* 0.7572 0.0359 0.5934 0.9149 0.1402 0.3583
90% 0.2040 0.1374 0.2589 0.0968 0.0762 0.4770 0.0273 0.4646 0.7946 0.1077 0.2409
50% 0.0285 0.0297 0.0487 0.0190 0.0186 0.0934 0.0044 0.0859 0.4515 0.0250 0.0461
P-value 0.9040 0.9760 0.0460 0.3020 0.0040 0.5680 0.5360 0.9680 0.9860 0.2120 0.7900

bT∗ = 10,
bR∗ = bP∗ =
10

95% 0.2143 0.2047 0.8738 0.1430 0.0918* 0.6928 0.0383 0.6858 1.0260 0.1386 0.4057
90% 0.1490 0.1455 0.3149* 0.0950 0.0730 0.5160 0.0240 0.4685 0.8963 0.1069 0.2439
50% 0.0222 0.0309 0.0448 0.0171 0.0196 0.0967 0.0036 0.0937 0.5065 0.0281 0.0502
P-value 0.9220 0.9640 0.0680 0.2980 0.0020 0.5600 0.5040 0.9680 1.0000 0.2300 0.8020

bT∗ = 5,
bR∗ = bP∗ = 2

95% 0.2369 0.1982 0.6974 0.1339 0.0977* 0.8333 0.0397 0.5918 0.9941 0.1345 0.3798
90% 0.1551 0.1388 0.3373* 0.0884 0.0754 0.5895 0.0264 0.4394 0.8807 0.1033 0.2705
50% 0.0214 0.0262 0.0491 0.0190 0.0204 0.0750 0.0034 0.0755 0.4454 0.0266 0.0572
P-value 0.9120 0.9640 0.0580 0.3000 0.0020 0.5400 0.4900 0.9480 0.9860 0.2220 0.8200

bT∗ = 5,
bR∗ = bP∗ = 5

95% 0.2197 0.1729 0.5386* 0.1465 0.1021* 0.6014 0.0413 0.5845 0.9845 0.1395 0.3858
90% 0.1688 0.1239 0.2847 0.1085 0.0820 0.4670 0.0275 0.4433 0.8680 0.1153 0.2604
50% 0.0270 0.0313 0.0547 0.0225 0.0230 0.0737 0.0042 0.0917 0.4737 0.0283 0.0541
P-value 0.9160 0.9740 0.0500 0.3100 0.0000 0.5280 0.5300 0.9340 0.9880 0.2340 0.8080

bT∗ = 2,
bR∗ = bP∗ = 2

95% 0.2665 0.1790 0.4782* 0.1539 0.1064* 0.7877 0.0416 0.6600 1.0023 0.1335 0.4062
90% 0.1703 0.1272 0.2619 0.1120 0.0733 0.5183 0.0261 0.4880 0.8631 0.1005 0.2713
50% 0.0282 0.0274 0.0438 0.0233 0.0192 0.0831 0.0047 0.0909 0.4645 0.0264 0.0518
P-value 0.9300 0.9660 0.0440 0.3460 0.0020 0.5540 0.5620 0.9500 0.9920 0.2160 0.8360

* See notes to Table 3.

Table 6: Stability Test Results for 11 Macroeconomic Variables - Linex Loss *
Results Are Tabulated for the Following Case: R = 360, P=200 m = 0.5 and h = 3

UR PI TB10Y CPI PPI NPE HS IPX M2 SNP GDP
Test Statistic 0.0005 0.1520 0.0259 0.1190 0.1250 0.1170 0.0147 0.0810 0.0754 0.0108 0.0361

bT∗ = 10,
bR∗ = bP∗ = 5

95% 0.2779 0.5898 0.0546 0.1900 0.0563* 0.5421 0.0204 0.7186 1.3091 0.5728 0.9664
90% 0.1800 0.2609 0.0380 0.1062* 0.0386 0.3254 0.0124* 0.4046 1.1042 0.2660 0.6509
50% 0.0270 0.0428 0.0081 0.0173 0.0080 0.0594 0.0019 0.0653 0.4641 0.0191 0.0804
P-value 0.9180 0.1900 0.1800 0.0860 0.0080 0.3520 0.0820 0.4500 0.8980 0.6060 0.6540

bT∗ = 10,
bR∗ = bP∗ = 2

95% 0.3160 0.6442 0.0554 0.1425 0.0581* 0.5192 0.0315 0.6936 1.2944 0.5416 0.7161
90% 0.2131 0.2603 0.0369 0.0907* 0.0419 0.3883 0.0158 0.4313 1.0650 0.2514 0.4204
50% 0.0405 0.0433 0.0068 0.0183 0.0071 0.0785 0.0021 0.0787 0.4102 0.0172 0.0613
P-value 0.9400 0.1700 0.1700 0.0680 0.0100 0.3840 0.1120 0.4900 0.8860 0.6040 0.6080

bT∗ = 10,
bR∗ = bP∗ =
10

95% 0.3020 0.2807 0.0453 0.1737 0.0621* 0.5884 0.0245 0.7139 1.3612 0.4899 0.8575
90% 0.1986 0.1612 0.0351 0.0866* 0.0377 0.3864 0.0139* 0.4162 1.0896 0.1792 0.5073
50% 0.0312 0.0314 0.0059 0.0131 0.0063 0.0789 0.0021 0.0716 0.5008 0.0157 0.0710
P-value 0.9220 0.1120 0.1480 0.0780 0.0060 0.3800 0.0940 0.4760 0.9340 0.5700 0.6320

bT∗ = 5,
bR∗ = bP∗ = 2

95% 0.2872 0.3743 0.0414 0.1393 0.0739* 0.4862 0.0246 0.7454 1.2763 0.6122 0.9261
90% 0.2041 0.2284 0.0312 0.0904* 0.0442 0.3616 0.0160 0.5231 1.1041 0.3796 0.5537
50% 0.0313 0.0341 0.0062 0.0161 0.0071 0.0540 0.0016 0.0700 0.4524 0.0205 0.0784
P-value 0.9300 0.1540 0.1380 0.0700 0.0260 0.3340 0.1120 0.4720 0.8940 0.6040 0.6400

bT∗ = 5,
bR∗ = bP∗ = 5

95% 0.3047 0.4062 0.0558 0.1589 0.0575* 0.5053 0.0236 0.6067 1.2417 0.4874 0.8765
90% 0.2178 0.2450 0.0413 0.0942* 0.0356 0.3330 0.0129* 0.4295 1.0352 0.2035 0.4956
50% 0.0326 0.0333 0.0072 0.0146 0.0070 0.0641 0.0016 0.0619 0.4248 0.0190 0.0791
P-value 0.9380 0.1760 0.1780 0.0740 0.0160 0.3380 0.0860 0.4460 0.8920 0.5940 0.6540

bT∗ = 2,
bR∗ = bP∗ = 2

95% 0.2761 0.3395 0.0530 0.2097 0.0622* 0.4546 0.0232 0.6549 1.3131 0.4395 0.9659
90% 0.1954 0.2147 0.0353 0.1094* 0.0388 0.3539 0.0160 0.4385 1.0885 0.1759 0.5736
50% 0.0261 0.0359 0.0064 0.0151 0.0075 0.0653 0.0022 0.0699 0.4712 0.0250 0.0639
P-value 0.9180 0.1440 0.1580 0.0920 0.0100 0.3500 0.1160 0.4640 0.9000 0.6480 0.5900

* See notes to Table 3.
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