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1. Introduction

In most econometric applications there is little theoretical justi"cation for
believing in the correctness of linear speci"cations when modeling economic
variables. In consequence, nonlinear time series models have received increasing
attention during the last few years (for example, see Tong (1990), Granger and
TeraK svirta (1993), Granger (1995), Granger et al. (1997), Anderson and Vahid
(1998), and the references contained therein). Nevertheless, when nonlinear
models are speci"ed, correct inference requires some knowledge as to whether
the underlying data generating processes (DGPs) are stationary and ergodic in
some appropriate sense, or instead have trajectories that explode with positive
probability as the time span approaches in"nity. In the linear case it is common
to test for unit roots in order to check whether a series is integrated of order 1,
denoted I(1), or integrated of order 0, denoted I(0), where a process is said to be
I(d) if the scaled partial sum of its dth di!erence satis"es a functional central
limit theorem (FCLT). If one has two or more I(1) series, it is common to test for
cointegration in order to determine whether there exists a linear combination of
the variables which is I(0). However, the concepts of integratedness and cointeg-
ratedness typically apply to linear DGPs, in the sense that the conditional mean
is assumed to be a linear function of a set of conditioning variables. In contrast,
strictly convex or concave transformations of random walks have a unit root
component, but they are not I(1), in the sense that their "rst di!erences need not
be short memory processes (Corradi, 1995).

In this paper we examine nonlinear DGPs that are "rst-order Markov and
can be represented as the sum of a linear plus a bounded nonlinear component.
For such DGPs, we exploit results by Chan (see Appendix to Tong, 1990) to
obtain simple conditions for distinguishing between processes that are geomet-
ric ergodic (and thus strong mixing) and processes having trajectories that
explode with positive probability as ¹PR. Using these conditions, we replace
the concept of cointegratedness with concept of linear stochastic comovement.
Speci"cally, if X"(X

i,t
, i"1, 2,2, p, t"1, 2,2, ¹) is a nonergodic Markov

process in Rp, in the sense that the trajectories explode with positive probability
as ¹PR, but there exists an r dimensional linear combination, say h@

0
X

t
, with

h
0
a full column rank p]r matrix (r(p) that is ergodic in Rr, then there is linear

stochastic comovement among the components of X. We use the term &Markov
process' to mean a process in which the state space is continuous and time is
discrete. Note that our approach di!ers from that of Granger and Hallman
(1991). According to their terminology, two long memory series, say X

t
and

>
t
have an attractor if there exists a linear combination of nonlinear functions of

X
t
and >

t
, say g(X

t
)!h(>

t
) that is short memory. In contrast, we consider the

case of linear combinations among the components of nonlinear and nonergodic
Markov processes that form nonlinear and ergodic Markov processes. For
our class of nonlinear DGPs, the null hypothesis of ergodicity and the null
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hypothesis of no unit root can be formulated in the same way. Similarly, the null
hypothesis of linear stochastic comovement and the null hypothesis of cointeg-
ration can be formulated in the same way. Thus, the presence of stochastic
comovement implies the presence of cointegration among the linear compo-
nents of our nonlinear models, and vice versa. Given this framework, one of our
main goals is to propose a &nonlinear cointegration' test, for which the null
hypothesis is linear cointegration, and the alternative is nonlinear cointegration.
The test which we propose is consistent against a wide variety of nonlinear
alternative, including neural network models with sigmoidal activation func-
tions (e.g. logistic cumulative distribution functions (cdfs)). We show using a
series of Monte Carlo experiments that our nonlinearity test has the ability to
distinguish between a variety of linear and nonlinear models for moderate
sample sizes.

As we typically do not have information concerning the precise form of the
nonlinear component, we examine the e!ect that neglected nonlinearities have
on tests for the null of stationarity (unit root) and for the null of cointegration
(no cointegration). We note that in the presence of neglected nonlinearities, tests
with a null hypothesis of integratedness, as well as tests with a null hypothesis of
no cointegration, do not have easily determined limiting distributions. This is
because in the presence of neglected non-linearities the innovation terms are no
longer strong mixing and in general do not satisfy standard invariance prin-
ciples. Consequently, standard unit root asymptotics no longer necessarily
apply. Along these lines, we "rst examine the stationarity test proposed by
Kwiatkowski et al. (1992). We show that this test has a well-de"ned limiting
distribution under the null hypothesis of general nonlinear stationary-ergodic
DGPs and has power not only against the alternative of integratedness, but also
against alternatives involving a range of nonlinear-nonergodic processes. Sec-
ond, we show that the Shin (1994) test for the null hypothesis of cointegration
can be used to test for stochastic comovement, although the limiting distribution
of the test is di!erent. Interestingly, the ADF unit root and Johansen cointegra-
tion tests no longer have straightforward limiting distributions in general.
Nevertheless, we show using a series of Monte Carlo experiments that these tests
may still be reliable in practice, in the sense that they exhibit moderate bias and
reasonable power (e.g. the empirical power is more than 0.5 for samples as small as
250 observations when the nonlinear component in our model is a logistic cdf ).

The rest of the paper is organized as follows. In Section 2 we describe our
set-up. In Section 3, we examine stationary-ergodicity and cointegration
(comovement) tests. In Section 4 we propose a test for distinguishing between
linear and nonlinear cointegration. In Section 5 we summarize the results from
a series of Monte Carlo experiments, while Section 6 contains an empirical
illustration. Section 7 concludes. All the proofs are collected in an Appendix.
In the sequel, N denotes weak convergence;= denotes a standard Brownian
motion.
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2. Assumption and preliminary results

We start by considering the following DGP:

X
t
"AX

t~1
#g

0
(h1@

0
X

t~1
,2, hj@

0
X

t~1
)#e

t
, (2.1)

where X
t
: XPRp, t"1, 2,2, ¹ with (X, F, P) an underlying probability

space, and hi
0

denotes the ith-column of h
0
, a full column rank p]r matrix, with

r)p, and 1)j)r(p. Assume also that

A1. e
t
is identically and independently distributed (iid), has a distribution which

is absolutely continuous with respect to the Lebesgue measure in Rp, and
has positive density everywhere.

A2. E(e
t
)"0 and E(e

t
e@
t
)"R where R is positive de"nite and E((e@

t
e
t
)2)(R.

A3. g
0
: RjPRp is bounded, Lipschitz continous, and di!erentiable in the

neighborhood of the origin. Furthermore, g
0

is not everywhere equal to
zero.

Although A3 is a somewhat strong assumption, it should be noted that a wide
variety of nonlinearities are contained within the class of DGPs which we
examine. For example various neural network models with sigmoidal activation
functions satisfy A3. Examples include feedforward arti"cial neural networks
with a single &hidden unit' and either logistic or normal cdfs as activation
functions (see, e.g. Kuan and White, 1994). Other examples of functional forms
for g

0
include modi"ed exponential autoregressive models where g

0
(x)"xe~x

2

(Tong, 1990, p. 129), and symmetric smooth transition autoregressive (STAR)
type models where g

0
(x)"x/(1#ex2). On the other hand, the logistic STAR

g
0
(x)"x/(1#e~x) and the exponential STAR (g

0
(x)"x(1!ex2)) (see, e.g.

TeraK svirta and Anderson, 1992) are ruled out. Furthermore g
0

may contain
a constant term. Higher-order lag structures are allowed by a variant of (2.1), as
a p-dimensional k-order Markov process can be written as a kp-dimensional
"rst-order Markov process with a positive semi-de"nite R of rank p.

Proposition 2.1. For DGP (2.1), suppose that A1}A3 hold. If all of the eigenvalues
of the matrix A are strictly less than one in absolute value, then X"(X

i,t
;

i"1,2, p, t"1, 2,2, ¹) is a geometric ergodic Markov process in Rp, with an
invariant probability measure which is absolutely continuous with respect to the
Lebesgue measure in Rp.

Dexnition 2.2. (Linear stochastic comovement). Assume that X is a nonergodic
Markov process in Rp, in the sense that each component of X approaches
in"nity with positive probability as ¹PR. Assume also that there exists some
full column rank p]r (r(p) matrix, h

0
"(h1

0
,2, hr

0
), such that h@

0
X

t
is an

ergodic Markov process, in the sense that it has an invariant probability
measure which is absolutely continuous with respect to the Lebesgue measure in
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Rr. Then, there exists linear stochastic comovement among the components of X,
and hi

0
is the ith comovement vector, i"1,2, r.

In the sequel we specialize De"nition 2.2. to the DGP given in (2.1). For this
reason, we use h

0
in (2.1). Now let U,A!I, where I is the p]p identity matrix.

We assume either of the following:

A4(i). U"ah@
0
, where a and h

0
are full column rank p]r matrices, r(p. The

eigenvalues of U, say j
i
, are such that !2(j

1
)j

2
2)j

r
(0.

A4(ii). A"I.

Proposition 2.3. Assume that (2.1), and A1}A4(i) hold. Then: (i) X is a nonergodic
Markov process in Rp and P(EX

T
EPR),g'0 as ¹PR.

(ii) h@
0
X

t
is a geometric ergodic Markov process in Rr which has an invariant

probability measure, n, that is absolutely continuous with respect to the Lebesgue
measure (k) in Rr, and which has density l"dn/dk. Further,

h@
0
*X

t
"h@

0
UX

t~1
#h@

0
g
0
(h1@

0
X

t~1
,2, hj@

0
X

t~1
)#h@

0
e
t
.

It follows that there is stochastic comovement among the components of
X (from De"nition 2.2).

Proposition 2.4. Assume that (2.1), A1}A3, and A4(ii) hold. Then both X and h@
0
X

are nonergodic Markov processes in Rp and Rr, respectively. It also follows that

P[EX
T
EPR]'0 and P[Eh@

0
X

T
EPR]'0.

The ergodicity of the process de"ned in (2.1) is implied by the stability of the
associated deterministic dynamical system. This allows us to analyze the er-
godicity of the stochastic system by examining the eigenvalues of A or U. This
means that the same conditions which ensure the ergodicity of the linear part of
our model also ensure the ergodicity of the entire nonlinear process. Thus, for
the processes which we are considering, the existence of stochastic comovement
is equivalent to the existence of cointegration among the linear components in
the model. In particular, the existence of r comovement vectors implies the
existence of r cointegrating vectors in the linear part of the model. For brevity,
we refer to this subsequently as just &cointegration'.

Observe that in the case where A!I"U"ah@
0
there is a clear interpretation

of the argument of g
0

in terms of cointegrating vectors. On the other hand when
A"I, g

0
depends on some generic linear combination of the X 's. Thus under

A4(i), the nonlinear component is a geometric ergodic process, while under
A4(ii), the nonlinear component is a nonlinear nonergodic process. In order to
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keep a &continuous' relationship between the arguments of g
0

and A!I, we
could consider the following variation of (2.1):

*X
t
"ah@

0
X

t~1
#g

0
((h

0
, 0)@X

t~1
)#e

t
,

where h
0

is a p]r (r(p) matrix, 0 is a p](p!r) matrix of zeroes, and h
0
"0

when r"0. Thus, when r"0, X
t
is an I(1) process with a deterministic trend

component. It should be noted that all the theorems below hold for this special
case. (This point was kindly communicated to us by Herman Bierens.)

The following facts will be frequently used in the paper.

Fact 2.5 (From Athreya and Pantula, 1986, Theorem 1). Geometric ergodic
discrete time Markov processes are strong mixing. Further, the speed at which the
mixing coezcient declines to zero is proportional to the speed at which the
transition distribution converges to the invariant probability measure. Thus, when
the transition distribution approaches the invariant probability measure at a geo-
metric rate, the mixing coezcients also decay at a geometric rate.

To ensure the next fact, we add another assumption.

A5. X
0

is a random p-vector and h@
0
X

0
is drawn from a density l, where l is the

density associated with the invariant probability measure, n, as de"ned in
Proposition 2.3(ii).

Fact 2.6 (from Meyn, 1989). For (2.1), if A1}A4(i) and A5 hold, then h@
0
X

t
has

density l for all t"1, 2,2, ¹. Thus X is strictly stationary, in addition to being
a geometric ergodic process (and thus strong mixing).

3. Testing for stationarity}ergodicity and for linear stochastic comovement

We begin by considering the one-dimensional case, (i.e. p"1), and the test
proposed by Kwiatkowski et al. (1992). Without loss of generality assume that
h
0
"1, so that (2.1) can be written as:

X
t
"aX

t~1
#g

0
(X

t~1
)#e

t
(3.1)

The null hypothesis considered by Kwiatkowski et al. (1992) is rather general
and includes (3.1) when a(1, and A5 holds. However, the alternative is
somewhat restrictive, as X

t
is assumed to be an integrated time series character-

ized by the sum of a random walk component, a stationary (short memory)
component, and possibly a time trend component. This alternative does not
include nonlinear nonergodic DGPs such as (3.1), with a"1. For this case the
"rst di!erence of X

t
is not a strong mixing process, in general, as it displays &too

much' memory. Nevertheless, we show below that the statistic proposed by
Kwiatkowski et al. (1992) does have power against (3.1) with a"1.
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Theorem 3.1. Assume that (3.1), and A1}A3 hold.

(i) If DaD(1, and A5 holds, then

S
T
"

1

s2
lT

1

¹2

T
+
t/1
A

t
+
j/1

(X
j
!XM )B

2
NP

1

0

<2
r

dr,

where <
r
"=

r
!r=

1
, =

r
"W(r), 0)r)1, XM "¹~1+T

t/1
X

t
, and

s2
lT
"

1

¹

T
+
t/1

(X
t
!XM )2#

2

¹

lT
+
t/1

lT
+
j/1
A1!

t

l
T
#1B

]
T
+

j/t`1

(X
j
!XM )(X

j~t
!XM ),

with l
T
"o(¹1@2).

(ii) If a"1, then

P[S
T
'C

T
]P1 as ¹PR,

where C
T
PR and

C
T
l
T

¹

P0, as ¹PR.

Part (i) of Theorem 3.1 ensures that the distribution under our null is exactly
the same as the distribution of the Kwiatkowski et al. (1992) test statistic.
Further, part (ii) of Theorem 3.1 ensures that under our alternative, S

T
diverges

at the same rate as does the Kwiatkowski et al. (1992) statistic under their
alternative. However, note that our alternative is more general than their
alternative of integratedness, as it includes DGPs consisting of a unit root
component plus a possibly long memory component. Assumption A5, which
ensures strict stationarity, can be relaxed and replaced by the weaker property of
constancy of the "rst moment (i.e. E(X

t
)"E(X) for all t). If E(X

t
) depends on t,

though, the partial sums of X
t
!XM do not necessarily satisfy a FCLT and so the

numerator of the test statistic may diverge. Recently, Domowitz and El-Gamal
(1993,1997) have proposed a test for the null hypothesis of ergodicity. Their test
is based on the convergence of Cesaro averages of the iterates from di!erent
initial densities, has the correct size under the null, regardless of whether the
process is stationary or not, and has power against the alternative of noner-
godicity given a maintained assumption of stationarity.

Now we turn to the case where p'1, and examine the cointegration test of
Shin (1994). Although our testing framework holds for arbitrary "nite p, for
simplicity we limit ourselves to the case of p"2, r"0, 1. The extension to the
case of p'2 gives no further insight into the e!ect of neglected nonlinearities.
As mentioned in Section 2, the existence of stochastic comovement is equivalent
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to the existence of cointegration, in the current context. Thus, tests that have
(no) stochastic comovement under the null hypothesis are equivalent to tests
that have (no) cointegration under the null. In this section we consider the
following two DGPs:

*X
t
"g

0
(h@

0
X

t~1
)#e

t
(3.2)

and

*X
t
"UX

t~1
#g

0
(h@

0
X

t~1
)#e

t
, (3.3)

where h
0
"(!h

1
, h

2
)@ and U"ah@

0
, such that !2(!a

1
h
1
#a

2
h
2
(0.

From (3.3) we have that

h@
0
*X

t
"(!a

1
h
1
#a

2
h
2
)h@

0
X

t~1
#h@

0
g
0
(h@

0
X

t~1
)#h@

0
e
t
. (3.4)

Let

h~1
2

h@
0
"c@

0
"(!h~1

2
h
1
, 1)"(!b

0
, 1)

and

d"!a
1
h
1
#a

2
h
2
,

so that

c@
0
*X

t
"dc@

0
X

t~1
#c@

0
g
0
(h@

0
X

t~1
)#c@

0
e
t
. (3.5)

As h@
0
X

t
is a geometric ergodic process, c@

0
X

t
is also a geometric ergodic process.

It is convenient to use a triangular representation of (3.3):

X
1, t
"

t
+
j/1

l
1, j

and X
2, t
"b

0
X

1, t
#l

2, t
, (3.6)

where

l
1, t
"a

1
h
2
c@
0
X

t~1
#g

0,1
(h@

0
X

t~1
)#e

1, t
, (3.7)

l
2, t
"(d#1)c@

0
X

t~1
#c@

0
g
0
(h@

0
X

t~1
)#c@

0
e
t
, (3.8)

and g
0,i

, i"1, 2, denotes the ith component of g
0
.

In order to test the null hypothesis of stochastic comovement, we use the
statistic proposed by Shin (1994) for testing the null of cointegration. Although
stochastic comovement and cointegration are equivalent concepts, we show
that, unless E(l

1, t
)"0 for all t, the distribution that we obtain under our null

hypothesis di!ers from that obtained by Shin. The underlying intuition is that
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unless E(l
1, t

)"0, X
1, t

displays a deterministic trend component. In fact, we can
write X

1, t
in (3.6) as

X
1, t
"nt#

t
+
j/1

(l
1,j

!n),

where E(l
1, t

)"n for all t, as under A5, l
1t

is strictly stationary. X
2, t

can be
written in an analogous way. The role of the comovement vector is to &cancel
out' both stochastic and deterministic trends when the linear combination,
X

2, t
!b

0
X

1, t
, is formed. Furthermore, X

2, t
!b

0
X

1, t
is an ergodic process. As

X
1, t

is dominated by its trend component, the estimator of the comovement
vector is ¹3@2-consistent. Also, the asymptotic distribution of ¹3@2(bK

T
!b

0
),

where bK
T

is the coe$cient from the regression of X
2, t

on X
1, t

and a constant
term (as in (3.6)), di!ers from the asymptotic distribution for the driftless case.
Note that the only di!erence between X

2, t
in (3.6) and Eq. (2.1) in Hansen

(1992a) is that E(l
2, t

)"/O0, so that we need to introduce a constant term into
our cointegrating regression.

Theorem 3.2. Assume that (3.3), and A1}A4(i), A5 hold, and that E(l
1, t

)O0. Then

¹3@2(bK
T
!b

0
)N

12

n
pl2AP

1

0

s d=
s
!1/2=

1B,
where p2l2"<ar(l

2, t
), as dexned in (3.8), and =

s
"W(s), 0)s)1.

As in Theorem 3.1(i), we require only that the "rst moment of X
t
is constant,

and A5 ensures this. The same is also true for Theorem 3.3(i) below.
Note that :1

0
s d=

s
!1/2=

1
"1/2=

1
!:1

0
=

s
ds&N(0, 1/12), as :1

0
=

s
ds&

N(0, 1/13) and Cov(1/2=
1
, :1

0
=

s
ds"1/4. Thus, the limiting distribution in

Theorem 3.2 is normal. The representation of the limiting distribution given in
Theorem 3.2 is more convenient for computing the limiting distribution of the
test for the null of stochastic comovement (cointegration). If instead E(l

1, t
)"0

for all t, then

¹(bK
T
!b

0
)NAP

1

0

=2
1,s

dsB
~1

AP
1

0

=
1,s

d=
2, sB#*

12
,

where *
12
"0 and E(=

1, t
,=

2, t
)"0 for all t, only if E(l

1, t
, l

2, s
)"0 for all t, s.

Nevertheless, for a wide class of nonlinearities E(l
1, t

)O0, for all t (see below).
Under the alternative of no stochastic comovement, bK

T
is bounded in probabil-

ity. This holds even though we do not obtain a limiting distribution. (The reason
why we do not obtain a limiting distribution is because the partial sum of the
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nonlinear component, in general, does not satisfy a standard invariance prin-
ciple.)

We now show that the Shin (1994, Eq. (6)) Ck test can be applied to test the
null hypothesis of stochastic comovement, although the limiting distribution
under the null is di!erent. Let mK

t
be the residual from the regression of X

2, t
on

X
1, t

and a constant term.

Theorem 3.3. (i) Assume that (3.3), and A1}A4(i), A5 hold, and that E(l
1, t

)O0.
Then,

1

s( 2
lT

1

¹2

T
+
t/1

A
t
+
j/1

mK
tB

2
NP

1

0

Q2
s

ds

where

Q
s
"(=

s
!s=

1
)!6AP

1

0

s d=
s
!1/2=

1B(s2!s)

and

s( 2
lT
"

1

¹

T
+
t/1

m2
t
#

2

¹

lT
+
t/1
A1!

t

l
T
#1B

T
+

j/t`1

mK
j
mK
j~t

,

where l
T
"o(¹1@2).

(ii) Assume that (3.2), and A1}A3, A4(ii) hold. Then,

PC
1

s( 2
lT

1

¹2

T
+
t/1

A
t
+
j/1

mK
tB

2
'C

TDP1 as ¹PR,

where C
T
PR and C

T
l
T
/¹P0, as ¹PR.

From part (i) of Theorem 3.3 note that the asymptotic distribution under the
null is a functional of only one Brownian motion=, where= is the weak limit,
property rescaled, of the partial sums of l

2, t
!E(l

2, t
)"c@

0
X

t
!E(c@

0
X

t
). Thus,

the asymptotic behavior of the statistic is not a!ected by whether l
1, t

and l
2, t

in
(3.7) and (3.8) are correlated or not. As mentioned above, this is due to the fact
that the asymptotic behavior of X

1, t
is dominated by its trend component. This

di!ers from the linear case, g
0
"0, in which the non-zero correlation between

l
1, t

and l
2, t

results in a nuisance parameter in the limiting distribution
(when b

0
is estimated by OLS). The asymptotic critical values for the distribu-

tion given in Theorem 3.3(i) are reported below. The simulated critical values are
based on sample size n"2000 and 20,000 replications.
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Linear stochastic comovement test critical values

Nominal size

1% 5% 10% 90% 95% 99%

0.219 0.150 0.121 0.028 0.023 0.018

Note that our critical values are smaller than those reported in Shin (1994) for his
Ck test statistic. This di!erence arises because of the nonlinear component in (3.3).

In practice we do not know whether E(l
1, t

)"0 or not. If E(l
1, t

)O0, then the
critical values tabulated above should be used. On the other hand, if E(l

1, t
)"0,

then the asymptotic distribution of our test is the same as that of Ck in Shin (1994,
Theorem 1), provided E(l

1, t
l
2,t

)"0. Given these facts, we suggest applying the
comovement test in the following way. If the test statistic is less than our critical
value, accept the null of (cointegration) comovement. On the other hand if the test
statistic is above Shin's critical value for Ck, we have evidence of the absence of
cointegration (comovement). If the test statistic falls in the region between the two
critical values (say the &intermediate region'), construct the following statistic:
d
T
"¹~1@2+T

t/1
p( ~1
T

*X
1, t

, where p( 2
T

is a consistent estimator of the long run
variance of ¹~1@2+*X

1, t
. Under cointegration (comovement), d

T
NN(0, 1) when

E(l
1, t

)"0, and diverges at rate ¹1@2 when E(l
1, t

)O0. On the other hand, when
there is no cointegration (comovement), we must distinguish between three cases.
First, assume that E(l

1, t
)"0 . Here, there are two cases: (i) E(l

1, t
)"0 because

there is no nonlinear component; or (ii) E(l
1, t

)"0 because there is zero mean
nonlinear component. Under (i), d

T
is normally distributed (as l

1, t
is a zero mean

mixing process). Under (ii), the statistic is not normally distributed in general.
Finally, assume that E(l

1,t
)O0. In this case, the estimator of the variance term in

d
T

diverges at a rate less than or equal to l1@2
T

, while the numerator of d
T

diverges
at a faster rate. These facts suggest a procedure for testing for cointegration
(comovement) when the test statistic is in the &intermediate region'. In particular, if
we reject E(l

1, t
)"0, reject the null of cointegration (comovement). If we fail to

reject E(l
1, t

)"0, then use Shin's critical values. (In order to use Shin's critical
values in this case, an e$cient estimator of the cointegrating vector should
be constructed, as in Shin (1994).) Note that the use of d

1
may result in the false

rejection of E(l
1,t

)"0 when there is no cointegration (comovement) and the
nonlinear component has zero mean. However, in this case we still reject the null
of cointegration (comovement), which is the correct inference.

4. Testing for nonlinear cointegration

In this section we propose a test for the null of linear cointegration (comove-
ment) against the alternative of nonlinear cointegration (comovement).
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A number of papers which examine nonlinear cointegration have recently
appeared. For example, Balke and Fomby (1997) propose a test for threshold
cointegration. Also, Granger (1995) suggests testing for the null of linear cointeg-
ration by regressing the residuals from a standard cointegrating regression on
their lagged values and a nonlinear function, and then performing a Lagrange
Multiplier (LM) type test. A similar approach is examined by Swanson (1999)
who regresses the "rst di!erences of the data on their lagged values and on
a polynomial function of the cointegrating vector. He shows, using Monte Carlo
experiments, that such tests have good power when g

0
is a logistic cdf. Neverthe-

less, this class of tests does not have unit asymptotic power against general
nonlinear alternatives. One reason for this is the LM tests are implemented
using polynomial test functions, and the use of polynomials does not ensure test
consistency.

In our test, cointegration is maintained under both the null and the alterna-
tive hypothesis. Let g(

t
be the residual and tK be the slope coe$cient from the

least squares regression of c( @
T
X

t
on c( @

T
X

t~1
and a constant, where c( @

T
"(!bK

T
, 1)

and bK
T

is the coe$cient from the regression on X
2,t

on X
1,t

and a constant.
Thus,

g(
t
"Ac( @TX

t
!

1

¹

T
+
t/1

c( @
T
X

tB!tK
TAc( @TXt~1

!

1

¹

T
+
t/1

c( @
T
X

t~1B. (4.1)

Under the null of no nonlinearity, we have J¹(tK
T
!t

0
)"O

p
(1) and

¹(bK
T
!b

0
)"O

p
(1). Let

g
t
"Ac@0Xt

!

1

¹

T
+
t/1

c@
0
X

tB!t
0Ac@0Xt~1

!

1

¹

T
+
t/1

c@
0
X

tB, (4.2)

so that g
t
is uncorrelated with any function of c@

0
X

t~1
. Under the alternative of

nonlinearity of the type described in Section 2, J¹(tK
T
!tH)"O

p
(1), where

tHOt
0
, ¹3@2(bK

T
!b

0
)"O

p
(1), and

g
t
"Ac@0Xt

!

1

¹

T
+
q/1

c@
0
XqB!tHAc@0Xt~1

!

1

¹

T
+
q/1

c@
0
XqB.

Under the alternative, g
t

includes the neglected nonlinear term
(g

0
(h@

0
X

t~1
)!E(g

0
(h@

0
X

t~1
))), where h~1

2
h@
0
,c@

0
"(!h~1

2
h
1
, 1). Thus, g

t
is cor-

related with some function of c@
0
X

t~1
. If we use as a test function, call it g, an

exponential, as in Bierens (1990), or any other generically comprehensive test
function, as described in Stinchcombe and White (1998, Section 3, hereafter SW),
then under the alternative

E(g
t
(g

0
(c@

0
X

t~1
q)!E(g

0
(c@

0
X

t~1
q))))O0
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for all q3T, a subset of R whose complement T# has Lebesgue measure zero

and is not dense in R. Given the J¹ consistency of tK
T

and the ¹3@2 consistency
of bK

T
under the alternative, we also have

1

¹

T
+
q/1
Ag( tAg(c( @

T
X

t~1
q)!

1

¹

T
+
q/1

g(c( @
T
X

t~1
q)BBPMq in Prob.

where MqO0, for all q3T.
According to Theorem 3.10 in Stinchcombe and White (1998), if g is a real

analytic function, then g delivers a consistent test, regardless of g
0
, provided that

g is not a polynomial. One natural choice for g is the logistic cdf, as it is a
non-polynomial real analytic function.

As the parameter q is not identi"ed under the null hypothesis, our tests falls
into the class of tests with nuisance parameters present only under the alterna-
tive. Thus, although the asymptotic size of the test statistic is not a!ected by the
actual value of q, the "nite sample size will be a!ected, while the power will be
a!ected both in "nite samples and asymptotically. Consider the following two
DGPs:

*X
t
"UX

t~1
#e

t
(4.3)

and

*X
t
"UX

t~1
#g

0
(h@

0
X

t~1
)#e

t
, (4.4)

where h
0
"h

2
c
0
. Assume that U satis"es A4(i), g

0
satis"es A3, and e

t
satis"es A1

and A2. From (4.3) note that

*c@
0
X

t
"dc@

0
X

t~1
#c@

0
e
t
,

and from (4.4) note that

*c@
0
X

t
"dc@

0
X

t~1
#c@

0
g
0
(h@

0
X

t~1
)#c@

0
e
t
,

where d"!a
1
h
1
#a

2
h
2
. The proposed test is based on the statistic:

1

J¹

T
+
t/2

(g(c( @
T
X

t~1
q)!g(6 )g(

t
, (4.5)

where g(6 "(1/¹)+T
t/2

g(c( @
T
X

t~1
q). It is shown in the proof of Theorem 4.1 that

(4.5) can be written as

1

J¹

0
+
t/2

((g(c@
T
X

t~1
q)!g6 )!M~1

(c@0X)2
Mc@0Xg

(c@
0
X

t~1
!c@

0
XM ))g

t
#o

p
(1), (4.6)
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where M
(c@0X)2

"E((c@
0
X

t
!c@

0
XM )2), Mc@0Xg

"E((c@
0
X

t
!c@

0
XM )(g(c@

0
X

t~1
q)g6 )),

g6 "(1/¹)+T
t/2

g(c@
0
X

t~1
q): From the central limit theorem for strong mixing

processes (e.g. White, 1984, p. 124) and the asymptotic equivalence lemma, note
that the limiting distribution of (4.6), when scaled by p2

T
is a zero mean normal,

where

p2
T
"VarA¹~1@2

T
+
t/2

((g(c@
0
X

t~1
q)!E(g))!M~1

(c@0X)2
Mc@0Xg

(c@
0
X

t~1
!c@

0
XM ))g

tB,
(4.7)

and p2
T
Pp2

0
as ¹PR. A convenient estimator for p2

0
is given by

p( 2
lT
"

1

¹

T
+
t/2

(/K q
t
)2#

2

¹

lT
+
t/2
A1!

t

l
T
#1B

T
+

j/t`1

/K q
j
/K q

j~t
, (4.8)

where

/K q
t
"((g(c( @

T
X

t~1
q)!g(6 ) (4.9)

!A
1

¹

T
+
t/2

(c( @
T
X

t~1
!c( @

T
XM )2B

~1

A
1

¹

T
+
t/2

(c( @
T
X

t~1
!c( @

T
XM )(g(c( @

T
X

t~1
q)!g(6 )B

](c( @
T
X

t~1
!c( @XM ))g(

t
,

with l
T
"o(¹1@2). Assume also that

A6. The test function g is a real nonpolynomial analytic function, with bounded
"rst two derivatives.

Note that various sigmoidal functions (e.g. the logistic cdf) satisfy A6.

Theorem 4.1. (i) Assume that (4.3), A1}A2, A4(i), and A6 hold. Dexne

mq
T
,

1

J¹

1

p(
lT

T
+
t/2

g(
t
(g(c( @

t
X

t~1
q)!g(6 ).

Then

(mq
T
)2Ns2

1

for each q3T, and p( 2
lT

dexned in (4.8). The same result follows when g
0

is
a constant.
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(ii) For DGP (4.4), suppose that A1}A4(ii), A5}A6 hold, and that g
0

is not
a constant. Then for each q3T,

P[Dmq
T
D2'C

T
]P1 as ¹PR,

where C
T
PR and C

T
l
T
/¹P0, as ¹PR.

Note that strict stationarity is required only under the alternative, as the "rst
moment of (4.3) is constant. In fact, in Theorem 4.1(ii), as in Theorems 3.1(i), 3.2
and 3.3(i) above, we impose A5 simply because it implies the constancy of the
"rst moment. Also, note that the case where g

0
is constant is covered by the null

hypothesis.
In the current context we do not provide a &sup' type result, as in Bierens

(1990) and Stinchcombe and White (1998), for example. The intuitive reason for
this is that the o

p
(1) term in (4.6) holds pointwise in q, but not necessarily

uniformly in q. As will become clear in the proof of Theorem 5.1, this is due to
the fact that in the nonstationary case, we cannot invoke the usual uniform law
of large numbers. We appeal instead to invariance principles and to results on
convergence to stochastic integrals that hold pointwise in q, but not necessarily
uniformly.

As mentioned above, although the asymptotic size of the test statistic is not
a!ected by the choice of a particular q, the "nite sample size and power are
a!ected. There are at least two ways of addressing this issue. First, we can
construct the statistic for di!erent q's and apply Bonferroni type bounds as in
Lee et al. (1993), for example. Second, let q

1
,2, q

p
be chosen according to

a particular design (e.g. randomly), and let GK be a consistent estimator of
Cov(/qi

l
, /qk

l
), so that GK is the matrix whose i, k element is given by

1

¹

T
+
t/1

/K qi
t
/K qk
t
#

2

¹

lT
+
t/1
A1!

t

l
T
#1B

T
+

j/t`1

/K qi
j
/K qk
j~t

,

where /K q
t
is de"ned in (4.9), and /q

t
is de"ned as in (4.9), but with c( @

T
replaced with

c@
0
. Then, (mq1

T
,2, mqp

T
)@GK ~1(mq1

T
,2, mqp

T
)Ns2

p
, for arbitrary and "nite p. Whether

the above result also holds for p"p
T
, with p

T
PR at an appropriate rate as

¹PR, is left for future research.

5. Monte Carlo results

In this section, a summary of Monte Carlo experiments based on the above
test, and for samples of 100, 250, and 500 observations, is given. For the sake of
brevity, much of the discussion focuses on the nonlinear cointegration (NLCI)
test.

Before turning to our "nite sample NLCI test results, it is worth reiterating
that unit root and cointegration tests are not generally robust to the inclusion of
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nonlinearities. As noted above, however, it turns out that the Kwiatkowski et al.
(1992) stationarity and the Shin (1994) cointegration tests have well-de"ned
limiting distributions and unit asymptotic power, in our context. The same
cannot be said for the augmented Dickey}Fuller (ADF) unit root test. In
particular, note that under the null hypothesis of a unit root, if we neglect to
account for the nonlinear component, the error term is given by l

t
"e

t
#g

0
( ) ),

where g
0
( ) ) is generally not a strong mixing process. Thus, standard unit root

asymptotics no longer apply, and the usual limiting distribution of the ADF test
statistic is typically no longer valid (see, e.g. Ermini and Granger, 1993). On the
other hand, under the alternative of no unit root, the error term is a strong
mixing process, so that we expect ADF tests to have reasonable power in large
samples.

Table 1 reports the results from a Monte Carlo experiment based on the ADF
test, using data generated according to

X
t
"a#bX

t~1
#cg

0
(X

t~1
)#e

t
,

where X
t
is a scalar, e

t
is a scalar IN(0, 1) random variable, g

0
( ) ) is the logistic

cdf, and a"0 (results for aO0 and for di!erent g
0
( ) ) are qualitatively similar,

and are available upon request from the authors). Notice that in the table,
b varies from !0.9 to 1.0, so that empirical power of a variety of di!erent
parameterizations, and empirical size (b"1) is reported. Also, note that the
parameter c is alternately !0.5, !0.1, 0.1, and 0.5. Here and below, results
based on 5% nominal size tests are reported (results for 10% size tests are
similar, and are not included for the sake of brevity). The "nite sample power of
the ADF test is good (power is always close to or equal to unity, except when
DbD"0.9), as expected. The "nite sample size of the ADF test is between 0.084
and 0.056, even for samples of 100 observations, and improves as we move from
100 to 500 observations, when q( q is used. This suggests that within our context,
the ADF test can still be used to signal the presence of a unit root, even when
a bounded nonlinear component is added to the DGP, as long as q( q is used. This
is perhaps not surprising, as the mean of g

0
( ) ) is not generally zero. In summary,

one might argue in favour of using q( q in our context, as the "nite sample size is
closer to the nominal size than when q( and q( k are used. Further, the "nite sample
power of the q( q test is comparable to the power associated with the use of q( and
q( k, except when b"0.9.

Table 2 reports the results from a Monte Carlo experiment based on the
Johansen cointegration test, using data generated according to

*X
t
"d#eZ

t~1
#fg

0
(Z

t~1
)#e

t
, (5.1)

where X
t
"(X

1, t
, X

2, t
)@ is a 2]1 vector, e

t
is a 2]1 vector whose components

are distributed IN(0,1), Z
t
"!X

2, t
if e

1
"e

2
"0, otherwise Z

t
"X

1, t
!X

2, t
,

g
0
(x)"(2/[1#e~x])!1, d"(d

1
, d

2
)@, d

1
"d

2
"0.2, e"(e

1
, e

2
)@, and

54 V. Corradi et al. / Journal of Econometrics 96 (2000) 39}73



T
ab

le
1

A
u
gm

en
te

d
D

ic
k
ey
}
F
u
lle

r
te

st
p
er

fo
rm

an
ce

u
nd

er
n
eg

le
ct

ed
n
o
n
lin

ea
ri
ty

!

b
c

T"
10

0
T"

25
0

T"
50

0

q(
q( k

q( q
q(

q( k
q( q

q(
q( k

q( q
1.

0
!

0.
5

0.
05

6
0.

08
6

0.
08

4
0.

05
4

0.
10

3
0.

08
6

0.
05

0
0.

11
5

0.
09

8
1.

0
!

0.
1

0.
08

9
0.

06
7

0.
07

1
0.

10
9

0.
06

1
0.

06
1

0.
12

1
0.

06
6

0.
06

7
1.

0
!

0.
5

0.
01

6
0.

05
3

0.
06

7
0.

00
9

0.
03

2
0.

05
7

0.
00

3
0.

02
7

0.
05

4
1.

0
!

0.
5

0.
00

1
0.

01
5

0.
06

7
0.

00
0

0.
00

6
0.

05
6

0.
00

0
0.

00
5

0.
05

7

!
0.

9
!

0.
5

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
!

0.
6

!
0.

5
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

!
0.

3
!

0.
5

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

3
!

0.
5

1.
00

0
0.

99
9

0.
99

6
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

6
!

0.
5

0.
99

6
0.

99
4

0.
98

5
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

9
!

0.
5

0.
73

7
0.

72
7

0.
52

9
0.

99
8

0.
99

9
0.

99
4

1.
00

0
1.

00
0

1.
00

0
!

0.
9

!
0.

1
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

!
0.

6
!

0.
1

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
!

0.
3

!
0.

1
1.

00
0

1.
00

0
0.

99
9

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
3

!
0.

1
1.

00
0

0.
99

9
0.

99
5

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
6

!
0.

1
0.

99
9

0.
98

9
0.

97
9

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
9

!
0.

1
0.

82
1

0.
44

3
0.

28
6

1.
00

0
0.

98
3

0.
91

2
1.

00
0

1.
00

0
1.

00
0

!
0.

9
0.

1
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

!
0.

6
0.

1
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

!
0.

3
0.

1
1.

00
0

1.
00

0
0.

99
9

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
3

0.
1

1.
00

0
0.

99
9

0.
99

3
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

6
0.

1
1.

00
0

0.
98

5
0.

97
3

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
9

0.
1

0.
63

3
0.

28
6

0.
18

5
0.

99
7

0.
90

6
0.

71
2

1.
00

0
1.

00
0

0.
99

7
!

0.
9

0.
5

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
!

0.
6

0.
5

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
!

0.
3

0.
5

1.
00

0
1.

00
0

0.
99

9
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

3
0.

5
0.

99
9

0.
99

8
0.

99
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

0.
6

0.
5

0.
97

2
0.

97
3

0.
94

8
1.

00
0

1.
00

0
1.

00
0

1.
00

0
1.

00
0

1.
00

0
0.

9
0.

5
0.

02
2

0.
28

0
0.

18
4

0.
08

0
0.

78
3

0.
60

6
0.

69
0

0.
99

5
0.

97
8

!B
as

ed
o
n

th
e

au
gm

en
te

d
D

ic
k
ey
}
F
u
lle

r
(A

D
F
)t

es
t,

en
tr

ie
s
co

rr
es

po
n
d

to
th

e
em

pi
ri
ca

lf
re

qu
en

cy
o
fr

ej
ec

ti
o
n

of
th

e
n
u
ll

h
yp

o
th

es
is

o
fa

un
it

ro
ot

.T
hr

ee
ve

rs
io

ns
o
f
th

e
te

st
re

gr
es

si
on

s
ar

e
ru

n:
w

it
h

n
o

co
n
st

an
t

o
r

lin
ea

r
de

te
rm

in
is
ti
c

tr
en

d
(q(

),
w

it
h

a
co

ns
ta

n
t

on
ly

(q(
k),

an
d

w
it
h

a
co

n
st

an
t

an
d

a
li
n
ea

r
d
et

er
m

in
is
it
ic

tr
en

d
(q(

q).
D

at
a

ar
e
ge

ne
ra

te
d

ac
co

rd
in

g
to

th
e
fo

ll
ow

in
g

p
ro

ce
ss

:X
t"

a#
bX

t~
1#

cg
0(X

t~
1)#

e t,w
h
er

e
X

tis
a

sc
al

ar
,e

tis
a

sc
al

ar
IN

(0
,1

)
ra

n
do

m
va

ri
ab

le
,g

0()
)i

s
th

e
lo

gi
st

ic
cd

f,
an

d
a"

0.
0.

T
h
e
"
rs

t
fo

u
r
ro

w
s
of

en
tr

ie
s
in

th
e

ta
bl

e
re

p
o
rt

th
e

em
p
ir
ic

al
si
ze

o
ft

he
te

st
b
as

ed
on

a
5%

n
om

in
al

si
ze

,w
h
ile

th
e

re
m

ai
ni

ng
ro

w
s
re

po
rt

th
e

em
p
ir
ic

al
p
o
w

er
,a

ls
o

fo
r
a

5%
n
o
m

in
al

si
ze

te
st

.A
ll

ex
p
er

im
en

ts
ar

e
re

pe
at

ed
fo

r
sa

m
p
le

s
o
f¹

"
10

0,
25

0,
an

d
50

0
ob

se
rv

at
io

ns
.
R

es
ul

ts
ar

e
ba

se
d

on
50

00
M

on
te

C
ar

lo
re

pl
ic

at
io

n
s.

V. Corradi et al. / Journal of Econometrics 96 (2000) 39}73 55



Table 2
Johansen cointegration test performance under neglected nonlinearity!

e
1

e
2

f
1

f
2

T"100 T"250 T"500

Trace 1 Trace 2 Trace 1 Trace 2 Trace 1 Trace 2

0.0 0.0 !2.0 0.0 0.720 0.086 0.748 0.084 0.743 0.074
0.0 0.0 !5.0 0.0 0.683 0.080 0.744 0.076 0.764 0.075
0.0 0.0 !2.0 2.0 0.287 0.957 0.016 0.935 0.000 0.947
0.0 0.0 !5.0 5.0 0.282 0.955 0.014 0.936 0.000 0.949

!0.2 0.2 !2.0 0.0 0.449 0.967 0.074 0.938 0.003 0.949
!0.2 0.4 !2.0 0.0 0.344 0.959 0.032 0.936 0.000 0.949
!0.2 0.6 !2.0 0.0 0.300 0.956 0.020 0.937 0.000 0.948
!0.2 0.2 !5.0 0.0 0.471 0.969 0.093 0.941 0.004 0.944
!0.2 0.4 !5.0 0.0 0.355 0.956 0.039 0.933 0.001 0.946
!0.2 0.6 !5.0 0.0 0.342 0.960 0.031 0.940 0.000 0.953
!0.2 0.2 !2.0 2.0 0.280 0.955 0.014 0.937 0.000 0.949
!0.2 0.4 !2.0 2.0 0.286 0.955 0.015 0.934 0.000 0.950
!0.2 0.6 !2.0 2.0 0.325 0.961 0.023 0.939 0.001 0.950
!0.2 0.2 !5.0 5.0 0.285 0.895 0.014 0.937 0.000 0.950
!0.2 0.4 !5.0 5.0 0.330 0.957 0.023 0.936 0.000 0.945
!0.2 0.6 !5.0 5.0 0.374 0.958 0.042 0.933 0.001 0.943

!Based on the Johansen trace test statistic, entries correspond to the empirical frequency of rejection
of the null hypothesis no cointegration, in favor of a cointegrating space rank of unity. Two versions
of the test statistic are constructed: with no constant or linear deterministic trend (Trace 1), and with
a drift and linear deterministic trend in the levels, and a drift in the di!erences (Trace 2: this version
of the test corresponds to Case 1 in Osterwald-Lenum (1992)). Data are generated according to the
following process: *X

t
"d#eZ

t`1
#fg

0
(Z

t~1
#e

t
), where X

t
"(X

1, t
, X

2, t
)@ is a 2]1 vector, e

t
is

a 2]1 vector whose components are distributed IN(0, 1), and Z
t
"!X

2, t
if e

1
"e

2
"0, otherwise

Z
t
"X

1, t
!X

2, t
. Also, g

0
(x)"(2/[1#e~x])!1, d"(d

1
, d

2
)@, d

1
"d

2
"0.2, e"(e

1
, e

2
)@, and

f"( f
1
, f

2
)@. The "rst four rows of entries in the table report the empirical size of the test based on

a 5% nominal size, while the remaining rows report the empirical power, also for a 5% nominal size
test. All experiments are repeated for samples of ¹"100, 250, and 500 observations. Results are
based on 5000 Monte Carlo replications.

f"( f
1
, f

2
)@. The values used for e are e

1
"e

2
"0 (empirical size), and

e
1
"!0.2, e

2
"M0.2, 0.4, 0.6N (empirical power). This DGP is the same as that

used in Park and Ogaki (1991), except that we also include a nonlinear compon-
ent. Note that in Table 2 it is clear that the empirical power of the Johansen test
is quite good (always above 0.895, even for samples of only 100 observations)
only for the Trace 2 test, which includes an intercept in the di!erenced vector
autoregression (the intercept in the DGPs is nonzero). However, even for the
Trace 2 test, the empirical size is only relatively close to the nominal size (e.g.
0.086 for ¹"100, and lower for higher values of ¹) when the nonlinear
component enters only one of the equations in the system (i.e. f

2
"0). Thus, the

Johansen test performs more poorly when the complexity of the nonlinearity in
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(5.1) is increased. This is perhaps not too surprising, given that the Johansen test
is not valid in our context.

We now turn to a discussion of our results based on the NLCI test. In order to
illustrate the performance of our test statistic under various scenarios, the results
of three di!erent experiments are reported. In all cases, the nonlinear function
used in the construction of the NLCI test is g(x)"(2/(1#e~x))!1. The data
are generated according to (5.1), with

Table 3: g
0
(x)"g(x), d

1
"d

2
"0.2, f

1
"M0,!2.0,!5.0N, f

2
"M0, 2.0, 5.0N,

Table 4: g
0
(x)"sin(x), d

1
"d

2
"0.2, f

1
"M0,!1.0,!2.0N, f

2
"M0, 1.0, 2.0N,

Table 5: g
0
(x)"sin(x), if DxD)p/2, g

0
(x)"g(x) if DxD)p/2,

d
1
"d

2
"0.1, f

1
"M0, !2.0, !5.0N, f

2
"M0, 2.0, 5.0N.

Note that the experiment reported in Table 5 uses data which are generated
according to two di!erent forms of nonlinear error correction, depending on
how far x is from the origin, and hence the DGP used is a type of threshold error
correction model. However, note that in this case the nonlinear function is
discontinuous at n/2, so that assumption A3 is not satis"ed. Thus, the results in
Table 5 can be interpreted as yielding evidence of the usefulness of the NLCI test
for &modest' departures from A3. Finally, various other parameterizations of the
above DGPs were also examined and are omitted because the Monte Carlo
results are similar. Also, the overall results did not change when q was varied.
Thus, all reported results use q"1. The results presented in Tables 3}5 are
straightforward to interpret. For example, the "nite sample power of the
NLCI test is rather low for samples of 100 observations, and is lower
when nonlinearity enters through only one equation (compare the last
six rows of entries with the previous six rows, in each table). In particular, the
"nite sample power ranges from 0.105 to 0.487 across all DGPs, when f

2
"0 and

l
T
"0. The power of the test increases, though, as the sample size increases, and

for samples of 500 observations, the rejection frequency of the NLCI test has
a lower bound of 0.836, across all parametrizations and DGPs, when l

T
"0. The

empirical size of the test is reported in the "rst four rows of entries in Table 3.
For l

T
"0, the empirical size ranges from 0.038 to 0.050 for 100 observations,

and from 0.051 to 0.053 for 500 observations. Note also that for l
T
3, the

empirical size is low when 100 observations are used (the range is 0.018}0.024),
but is much closer to the nominal size (the range of 0.045}0.047) when 500
observations are used.

6. Empirical illustration

Nonlinear models have been used in empirical studies with varying degrees of
success in recent years. Examples of such models include smooth transition
autoregressive models (TeraK svirta and Anderson, 1992), threshold autoregres-
sive models (Pesaran and Potter, 1997) and Altissimo and Violante (1995),
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nonlinear error correction models (Granger and Swanson, 1996), threshold
error correction models (Balke and Fomby, 1997), and the references contained
therein. In this section, we do not estimate new varieties of nonlinear models, but
rather, we illustrate the use of the nonlinear error-correction test discussed
above. In order to do this, we examine data on the term structure of interest
rates, which have been kindly provided to us by Heather Anderson. The data
consist of monthly nominal yield to maturity "gures from the Fama Twelve
Month Treasury Bill Term Structure File, for the period January 1970}Decem-
ber 1988. Six variables, denoted R1}R6, are examined, and correspond to
Treasury bills with one month to maturity, Treasury bills with two months to
maturity, and so on, up to bills with 6 months to maturity. A detailed discussion
of the data is given in Hall et al. (1992), as well as in Anderson (1997).

We consider three types of tests: (i) For the one-dimensional case, we con-
struct both the ADF statistic for the null hypothesis of a unit root and the
Kwiatkowski et al. (1992) test, described in Section 3, for the null of stationar-
ity/ergodicity. (ii) For the two-dimensional case, we construct the Johansen
&trace' test statistic (1988, 1991) for the null of no cointegration, and the Shin
(1994) test for the null of cointegration (comovement). For the latter cointegra-
tion test, we compare the results using both the critical values in Shin (1994) and
the critical values reported above. (iii) Also for the two-dimensional case, we
perform the test for nonlinear cointegration described in Section 5.

Test results are reported in Table 6. Panel A contains ADF and Kwiatkowski
et al. (1992) test results, where l

T
denotes the number of lags used in the

computation of the estimated variance (see above). For the ADF test, q( k is
reported, although test regressions without a constant were also run for all
variables, and our "ndings did not di!er. Note that the outcomes of the ADF
and the Kwiatkowski et al. (1992) tests agree. In particular, for all maturities, the
unit root null hypothesis is not rejected (using the ADF test) while the null of
stationarity ergodicity is consistently rejected (using the Kwiatkowski et al.
(1992) test), regardless of the value of l

T
.

Panel B reports results based on cointegration and comovement tests. For the
sake of brevity, only bivariate combinations which include R1 are reported on.
Complete results are available from the authors. As mentioned above, the
limiting distribution from Shin (1994) does not apply in the presence of neglected
nonlinearity. Interestingly, even using the smaller critical values reported in
Section 3 above, we fail to reject the null of stochastic comovement for 3 of 5
bivariate combinations, based on statistics constructed using l

T
"4 and 8

(columns 5 and 6 of the table). Furthermore, for the other two bivariate
combinations, use of the standard Shin (1994) critical values leads to a failure
to reject at a 5% level (and in some cases a 1% level). These results agree with
the theory posited by Hall et al. (1992) which suggests that any bivariate
combination of our nominal interest rate series is cointegrated. Given these
"ndings, it may be of interest of test the bivariate combinations for nonlinear
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Table 6
Empirical illustration: the term structure of interest rates!

Panel A: Unit root and stationarity ergodicity tests

Variable Kwiatkowski et al. (1992)
ADF

q( k (lags) l
T
"0 1 2 3 4 5 6 7 8

R1 !1.60 (7)H 4.95H 2.55H 1.73H 1.33H 1.08H 0.92H 0.80H 0.71H 0.64H
R2 !1.61 (6)H 5.25H 2.68H 1.82H 1.39H 1.13H 0.95H 0.83H 0.73H 0.66H
R3 !1.64 (6)H 5.30H 2.71H 1.84H 1.40H 1.14H 0.96H 0.83H 0.74H 0.67H
R4 !1.67 (8)H 5.34H 2.72H 1.85H 1.41H 1.14H 0.97H 0.84H 0.74H 0.67H
R5 !1.68 (7)H 5.42H 2.76H 1.87H 1.43H 1.16H 0.98H 0.85H 0.75H 0.68H
R6 !1.43 (7)H 5.54H 2.82H 1.91H 1.46H 1.18H 1.00H 0.87H 0.77H 0.69H

Panel B: Cointegration and comovement tests

Variables Johansen Shin NLCI

l
T
"0 1 4 8 l

T
"0 1 4 8

R1, R2 20.3H 0.44% 0.41% 0.38% 0.34% 4.16HH 3.78HH 3.52H 2.88H
(0.041) (0.051) (0.060) (0.089)

R1, R3 24.6H 0.37% 0.31$ 0.26% 0.25$ 3.99HH 2.67H 1.90 1.85
(0.045) (0.102) (0.168) (0.173)

R1, R4 25.6H 0.25$ 0.21$ 0.17# 0.16# 3.55H 3.00H 2.61H 2.45
(0.059) (0.083) (0.106) (0.117)

R1, R5 27.8H 0.27$ 0.22# 0.16# 0.15" 2.60H 1.95 1.63 1.68
(0.106) (0.162) (0.201) (0.194)

R1, R6 26.1H 0.40% 0.30$ 0.20# 0.18# 2.50 1.85 1.52 1.62
(0.113) (0.173) (0.217) (0.203)

!The data are monthly Treasury-Bill nominal yield to maturity "gures for the period 1970 : 1}1988 : 12. R1 is the series for bills
with one month to maturity, R2 is the series for bills with two months to maturity, and so on up until R6 which is the series for
bills with 6 months to maturity. Panel A contains augmented Dickey}Fuller (ADF) and Kwiatkowski et al. (1992) test statistics
(as discussed above). For the ADF tests, the &lag augmentations' used is in brackets, chosen based on an examination of residual
autocorrelations. All starred entires in Panel A correspond to evidence of a unit root (nonstationary-ergodicity) at the 5% level
using critical values from Kwiatkowski et al. (1992) or MacKinnon (1991). In Panel B, the second column contains the
Johansen (1988,1991) trace test statistics, where the associated vector autoregressions are estimated with a constant in the
cointegrating relation, a linear determinstic trend in the data (results were the same without the deterministic trend), and 6 lags
of each variable (similar results were found for the 12 lag case). Starred entries indicate rejection of the null hypothesis of no
cointegration (in favor of cointegrating space rank of unity) using the 5% level critical value. The last 8 columns of Panel
B contain Shin (1994) cointegration (comovement) and nonlinear error correction test statistics. For each of these two statistics,
values are tabulated for l

T
"0, 1, 4, 8.

"For the Shin-type tests superscrips &b' and &c' denote failure to reject the null hypothesis of cointegration (comovement) using
the 5% and 1% (respectively) critical values in Section 3 of the paper.
#is the same as footnote &b' above.
$is the same as footnotes &b' and &c', but use the critical values of Shin (1994). For the nonlinear cointegration test (last
4 columns), values of the statistics, (mq

T
)2, which is used in the modi"ed Bonferroni bound of Hochberg (1988) de"ned as

a"min
j/1,2,m

(m!j#1)P
(j)

, where P
(j)

is the p-value of the test statistic, is reported. Here the values used for q are q"M2.0,
5.0, 8.0, 10.0N, so that m"4. Modi"ed Bonferroni bounds are given in brackets below statistic values. Rejection of the null of
linear cointegration in favor of the alternative of nonlinear cointegration at a 5% and 10% size are denoted by superscipts H
and HH, respectively.
%is the same as footnote &d' above.
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error correction. The appropriate test statistics are reported in the last 4 col-
umns of the table, with modi"ed Bonferroni bounds given in brackets below
statistic values (see footnote to Table 6). Entries superscripted H(HH) denote
rejection of the null hypothesis of linear cointegration (comovement) in favor of
nonlinear cointegration at a 5% (10%) level. Thus, for the pair of series
consisting of (R1, R2), some evidence of nonlinear cointegration is found, regard-
less of the value of l

T
. Weaker evidence (i.e. rejections for some of l

T
) of nonlinear

cointegration is also found for (R1, R3), (R1, R4) and (R1, R5). Based on a com-
parison of linear and nonlinear 1-step ahead forecast errors, Anderson (1997)
"nds evidence of nonlinear error correction among the variables considered
here, consistent with our "ndings.

7. Conclusions

In this paper we introduce a class of nonlinear Markov processes character-
ized by the sum of a linear component plus a bounded nonlinear component. In
the one-dimensional case, the ergodicity of the process is equivalent to the
absence of a unitary or explosive root, and in the multidimensional case the
existence of linear stochastic comovement is equivalent to the existence of coin-
tegration.

We show that the statistic proposed by Kwiatkowski et al. (1992) has a well-
de"ned limiting distribution under the null of general stationary-ergodic nonlin-
ear processes, and has power not only against the alternative of integratedness,
but also against the alternative of a more general nonlinear nonergodic process.
We also show that the cointegration test statistic proposed by Shin (1994) is
consistent, in our context, although the critical values of the test are quite
di!erent from those tabulated by Shin (1994) for the linear case. Finally, we
propose a consistent test for the null hypothesis of linear cointegration against
the alternative of nonlinear cointegration (NLCI). In a series of Monte Carlo
experiments, we "nd that the NLCI test has good "nite sample size and power.
Further, in an illustration of the NLCI test in which we examine the term
structure of interest rate, we "nd some evidence that bivariate models of interest
rates of di!erent maturities may be nonlinearly cointegrated.
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Appendix A

Proof of Proposition 2.1. Note "rst that
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The proposition follows from Theroem 4.3 of Tong (1990), once we have shown
that his assumptions B1}B3 are satis"ed. First, note that A1}A3 imply B2}B3. It
remains to show that B1 is satis"ed. As lim
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(g

0
(x)!g

0
(0))/ExE"0 from

Theorem 1.3.5(a) in Kocic and Ladas (1993), it follows that H is asymptotically
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is a linear component, from Johansen (1988) and

from the Granger representation theorem (Engle and Granger, 1987), it follows
that the Wold representation for XI

t
is *XI

t
"C(¸)e
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Nelson (1981) decomposition it follows that XI
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, where B
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is a p-dimensional mean

zero normal with covariance matrix equal to C(1)RC(1)@, and so is a non-
degenerate random variable. If g8
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at rate ¹1@2 (if XI
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is the component of higher order of probability) or at a rate
faster than ¹1@2 (if the nonlinear component is of higher order than the linear
component). Finally, consider the case in which g8

0,T
/¹1@2NG, where G is either

a nondegenerate or a degenerate random variable. As B
1

is a continuously
distributed nondegenerate random variable, P(u: B

1
(u)"!G(u))"0. The

result follows directly.
(ii) The result follows from the fact that h@

0
X

t
satis"es the assumptions of

Proposition 2.1. h

Proof of Proposition 2.4. Using the arguments from the proof of
Proposition 2.3, and by setting A"I, it follows that EX

T
E diverges.
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By comparing M and Q term by term, observe that M&¹2Q. By the same
argument,
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. Note that g"0 is the case in which either the linear component is

dominant or the two components, linear and nonlinear, are of the same order of
probability. We have g'0 in the case in which the nonlinear component is
dominant. h

Proof of Theorem 3.2. First, note that

¹3@2(bK
T
!b

0
)"

(1/¹3@2)+T
t/1

(X
1, t
!XM

1
)u

2, t
(1/¹3)+T

t/1
(X

1, t
!XM

1
)2

where u
2, t

"l
2, t
!/, and E(l

1, t
)"/, for all t. Now,

1

¹3

T
+
t/1

(X
1, t
!XM

1
)2"

1

¹3

T
+
t/1
A

t
+
j/1

u
1,j

!

1

¹

T
+
t/1
A

t
+
j/1

u
1, tB#nAt!

¹#1

2 BB
2

"

1

¹3

T
+
t/1
AnAt!

¹#1

2 BB
2
#o

p
(1),

where u
1, t
"l

1, t
!n, and E(l

1, t
)"n, for all t. Thus (1/¹3)+T

t/1
(X

1, t
!XM

1
)2P

n2/12 in Prob. Further,

1

¹3@2

T
+
t/1

(X
1, t
!XM

1
)u

2, t
"

1

¹3@2

T
+
t/1
A

t
+
j/1

u
1, j

!

1

¹

T
+
t/1
A

t
+
j/1

u
1, jBBu2, t

#

1

¹3@2

T
+
t/1

nAt!
¹#1

2 Bu2, t
"

1

¹3@2

T
+
t/1

nAt!
¹#1

2 Bu2, t#o
p
(1)

Nnpl2P
1

0

s d=
s
!

n
2

pl2=1
.

V. Corradi et al. / Journal of Econometrics 96 (2000) 39}73 67



Thus,
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Proof of Theorem 4.1. (i) Recall that bK
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where Dkg denotes the kth derivative of g with respect to its argument, and
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using the same majorization argument which is used above. By an analogous
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we have that s2
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