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Abstract4

How does stock market volatility relate to the business cycle? We develop, and estimate, a no-arbitrage5

model to study the cyclical properties of stock volatility and the risk-premiums the market requires to6

bear the risk of 
uctuations in this volatility. The level and 
uctuations of stock market volatility can7

be largely explained by business cycle factors, although some unobserved factor contributes to nearly8

20% to the overall variation in volatility. At the same time, this unobservable factor cannot explain the9

ups and downs volatility experiences over time|the \volatility of volatility." Instead, the volatility of10

volatility relates to the business cycle. Finally, volatility risk-premiums are strongly countercyclical, even11

more so than stock volatility, and are partially responsible for the large swings in the VIX index occurred12

during the 2007-2009 subprime crisis, which our model does capture in out-of-sample experiments.13
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1. Introduction1

Understanding the origins of stock market volatility has long been a topic of considerable2

interest to both policy makers and market practitioners. Policy makers are interested in the main3

determinants of volatility and in its spillover e�ects on real activity. Market practitioners are4

interested in the e�ects volatility exerts on the pricing and hedging of plain vanilla options and5

more exotic derivatives. In both cases, forecasting stock market volatility constitutes a formidable6

challenge but also a fundamental instrument to manage the risks faced by these institutions.7

Many available models use latent factors to explain the dynamics of stock market volatility.8

For example, in the celebrated Heston's (1993) model, stock volatility is exogenously driven by9

some unobservable factor correlated with the asset returns. Yet such an unobservable factor does10

not bear an economic interpretation. Moreover, the model implies, by assumption, that volatility11

cannot be forecasted by macroeconomic factors such as industrial production or in
ation. This12

circumstance is counterfactual. Indeed, there is strong evidence that stock market volatility has13

a very pronounced business cycle pattern, being higher during recessions than during expansions;14

see, e.g., Schwert (1989a,b), Hamilton and Lin (1996), or Brandt and Kang (2004).15

In this paper, we develop a no-arbitrage model where stock market volatility is explicitly16

related to a number of macroeconomic and unobservable factors. The distinctive feature of this17

model is that stock volatility is linked to these factors by no-arbitrage restrictions. The model is18

also analytically convenient: under fairly standard conditions on the dynamics of the factors and19

risk-aversion corrections, our model is solved in closed-form, and is amenable to empirical work.20

We use the model to quantitatively assess how market volatility and volatility-related risk-21

premiums change in response to business cycle conditions. Our model fully captures the procyclical22

nature of aggregate returns and the countercyclical behavior of stock volatility that we have been23

seeing in the data for a long time. It makes a fundamental prediction: macroeconomic factors can24

explain nearly 75% of the variation in the overall stock volatility. At the same time, our model,25

rigorously estimated through simulation-based inference methods, shows that the presence of some26

unobservable and persistent factor is needed to sustain the level of stock volatility that matches its27

empirical counterpart. Moreover, our model reveals that macroeconomic factors substantially help28
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explain the variability of stock volatility around its level|the volatility of volatility. That such a1

\vol-vol" might be related to the business cycle is indeed a plausible hypothesis, although clearly,2

the ups and downs stock volatility experiences over the business cycle are a prediction of the model3

in line with the data, not a restriction imposed while estimating the model. Such a new property4

we uncover, and model, brings practical implications. For example, business cycle forecasters5

might learn that not only does stock market volatility have predicting power, as discussed below;6

\vol-vol" is also a potential predictor of the business cycle.7

Our second set of results relates to volatility-related risk-premiums. The volatility risk-8

premium is the di�erence between the expectation of future market volatility under the risk-9

neutral and the true probability. It quanti�es how a representative agent is willing to pay to be10

ensured against the event that volatility will raise beyond his own expectations. Thus, it is a11

very intuitive and general measure of risk-aversion. We �nd that this volatility risk-premium is12

strongly countercyclical, even more so than stock volatility. Precisely, volatility risk-premiums are13

typically not very volatile, although in bad times, they may increase to extremely high levels, and14

quite quickly. We undertake a stress test of the model over a particularly uncertain period, which15

includes the 2007-2009 subprime turmoil. Ours is a stress test, as (i) we estimate the model using16

post-war data up to 2006, and (ii) feed the previously estimated model with macroeconomic data17

related to the subprime crisis. We compare the model's predictions for the crisis with the actual18

behavior of both stock volatility and the new VIX index, maintained by the Chicago Board Op-19

tions Exchange (CBOE), which is, theoretically, the risk-adjusted expectation of future volatility20

within one month. The model tracks the dramatic movements in this index, and predicts that21

countercyclical volatility risk-premiums are largely responsible for the large swings in the VIX22

occurred during the crisis. In fact, we show that over this crisis, as well as in previous recessions,23

movements in the VIX index are determined by changes in such countercyclical risk-premiums,24

not by changes in the expected volatility.25
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Related literature1

Stock volatility and volatility risk-premiums The cyclical properties of aggregate stock2

market volatility have been the focus of recent empirical research, although early work relating3

stock volatility to macroeconomic variables dates back to King, Sentana and Wadhwani (1994),4

who rely on a no-arbitrage model. In a comprehensive international study, Engle and Rangel (2008)5

�nd that high frequency aggregate stock volatility has both a short-run and long-run component,6

and suggest that the long-run component is related to the business cycle. Adrian and Rosenberg7

(2008) show that the short- and long- run components of aggregate volatility are both priced,8

cross-sectionally. They also relate the long-run component of aggregate volatility to the business9

cycle. Finally, Campbell, Lettau, Malkiel and Xu (2001), Bloom (2009), Bloom, Floetotto and10

Jaimovich (2009) and Fornari and Mele (2010) show that capital market uncertainty helps explain11

future 
uctuations in real economic activity. Our focus on the volatility risk-premiums relates,12

instead, to the seminal work of Dumas (1995), Bakshi and Madan (2000), Britten-Jones and13

Neuberger (2000), and Carr and Madan (2001), which has more recently stimulated an increasing14

interest in the dynamics and determinants of the volatility risk-premium (see, for example, Bakshi15

and Madan (2006) and Carr and Wu (2009)). Notably, in seminal work, Bollerslev and Zhou16

(2006) and Bollerslev, Gibson and Zhou (2011) unveil, empirically, a strong relation between this17

volatility risk-premium and a number of macroeconomic factors.18

Our contribution hinges upon, and expands, over this growing literature, in that we formulate19

and estimate a fully-speci�ed no-arbitrage model relating the dynamics of stock volatility and20

volatility risk-premiums to business cycle, and additional unobservable, factors. With the excep-21

tion of King, Sentana and Wadhwani (1994) and Adrian and Rosenberg (2008), who still have a22

focus di�erent from ours, the predicting relations in the previous papers, while certainly useful,23

are still part of reduced-form statistical models. In our out-of-sample experiments of the subprime24

crisis, we shall show that our no-arbitrage framework is considerably richer than that based on25

predictive linear regressions. We show, for example, that compared to our model's predictions26

about stock volatility and the VIX index, predictions from linear regressions are substantially 
at27

over the subprime crisis.28
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The only antecedent to our paper is Bollerslev, Tauchen and Zhou (2009), who develop a1

consumption-based rationale for volatility risk-premiums, although then, the authors use this2

rationale only as a guidance to the estimation of reduced-form predictability regressions condi-3

tioned on the volatility risk-premium. In recent independent work discussed below, Drechsler and4

Yaron (2011) investigate the properties of the volatility risk-premium, implied by a calibrated5

consumption-based model with long-run risks. The authors, however, are not concerned with6

the cross-equation restrictions relating the volatility risk-premium to state variables driving low7

frequency stock market 
uctuations which, instead, constitute the central topic of our paper.8

No-arbitrage regressions In recent years, there has been a signi�cant surge of interest in9

consumption-based explanations of aggregate stock market volatility (see, for example, Campbell10

and Cochrane (1999), Bansal and Yaron (2004), Tauchen (2005), Mele (2007), or the two surveys11

in Campbell (2003) and Mehra and Prescott (2003)). These explanations are important because12

they highlight the main economic mechanisms through which markets and preferences a�ect equi-13

librium asset prices and, hence, stock volatility. In our framework, cross-equations restrictions14

arise through the weaker requirement of absence of arbitrage opportunities. In this respect, our15

approach is similar in spirit to the \no-arbitrage" vector autoregressions introduced in the term-16

structure literature by Ang and Piazzesi (2003) and Ang, Piazzesi and Wei (2006). Similarly as in17

those papers, we specify an analytically convenient pricing kernel a�ected by some macroeconomic18

factors, although we do not directly relate these to, say, markets, preferences or technology.19

Our model works quite simply. We exogenously specify the joint dynamics of a number of20

macroeconomic and unobservable factors. We assume that the asset payo�s and the risk-premiums21

required by agents to be compensated for the 
uctuations of the factors, are essentially a�ne22

functions of these factors, along the lines of Du�ee (2002). We show that the resulting no-23

arbitrage stock price is a�ne in the factors. Our model does not allow for jumps or other market24

micro-structure e�ects, as our main focus is to model low frequency movements in the aggregate25

stock volatility and volatility risk-premiums, through the use of macroeconomic and unobservable26

factors. Our estimation results, obtained through data sampled at monthly frequency, are unlikely27
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to be a�ected by measurement noise or jumps, say. In related work, Carr and Wu (2009), Todorov1

(2010), Drechsler and Yaron (2011), and Todorov and Tauchen (2011) do allow for the presence of2

jumps, although they do not analyze the relations between macroeconomic variables and aggregate3

volatility or volatility risk-premiums, which we do here.4

Estimation strategy, and plan of the paper5

In standard stochastic volatility models such as that in Heston (1993), volatility is driven6

by factors, which are not necessarily the same as those a�ecting the stock price|volatility is7

exogenous in these models. In our no-arbitrage model, volatility is endogenous, relating to a8

number of risks a�ecting (i) macroeconomic developments, (ii) unobserved factors and (iii) the9

very same asset returns|these risks a�ect both asset returns and volatility. To identify the10

premium required to bear the risk of volatility, we exploit derivative data, related to the new VIX11

index.12

We implement a three-step estimation procedure that relies on simulation-based inference13

methods. In the �rst step, we estimate the parameters underlying the macroeconomic factors. In14

the second step, we use data on a broad stock market index, and the macroeconomic factors, and15

estimate reduced-form parameters linking the stock market index to the macroeconomic factors16

and the third unobservable factor, as well as the parameters underlying the dynamics of the17

unobservable factor. In the third step, we use data on the new VIX index, and the macroeconomic18

factors, and estimate the risk-premiums parameters. We implement these steps by matching19

model-based moments and impulse response functions to their empirical counterparts, relating to20

macroeconomic factors, realized returns, realized volatility and the VIX index. We develop, and21

utilize, a theory to consistently estimate the standard errors through block-bootstrap methods.22

The remainder of the paper is organized as follows. In Section 2 we develop a no-arbitrage23

model for the stock price, stock volatility and volatility-related risk-premiums. Section 3 illustrates24

the estimation strategy. Section 4 presents our empirical results. Section 5 concludes, and the25

Supplemental material contains an appendix with technical details omitted from the main text.26
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2. The model1

We develop a model where aggregate stock returns and volatility are tied up to macroeconomic2

developments and one unobservable factor. It is a three-factor model solved in closed form, a3

special case of a general multifactor model in Appendix A of the Supplemental material.4

2.1. The macroeconomic environment5

We consider a model with one unobservable factor, and two additional factors a�ecting the de-6

velopment of two aggregate macroeconomic variables, in
ation and industrial production growth,7

and the stock market. Let y (t) = (y1 (t) y2 (t) y3 (t)) be a vector-valued process, where y1 (t) and8

y2 (t) denote two observable factors, de�ned as ln (CPIt/CPIt�12) = ln y1 (t) and ln (IPt/ IPt�12) =9

ln y2 (t), where CPIt and IPt are the consumer price index and industrial production as of month10

t, as further explained in Section 4.1. In Section 4.1, we also discuss the role these two macroeco-11

nomic factors have played in asset pricing. We also assume that a third, and unobservable, factor,12

y3 (t), a�ects the stock price, but not the two macroeconomic aggregates, CPIt and IPt. Finally,13

we assume the two macroeconomic factors do not a�ect the unobservable factor y3, although we14

allow for simultaneous feedback e�ects between in
ation and industrial production growth, as15

explained below. The factors yj are solution to,16

dyj (t) =
�
�j
�
�j � yj (t)

�
+ ��j

�
��j � �yj (t)

��
dt+

q
�j + �jyj (t)dWj (t) ; j = 1; 2; 3; (1)17

where Wj (t) are standard Brownian motions, ��1 � �2, �y1 (t) � y2 (t), ��2 � �1, �y2 (t) = y1 (t),18

��3 � ��3 � �y3 (t) � 0 and, �nally, Greek letters denote constant parameters. The two parameters,19

�1 and �2, are the speed of adjustment of in
ation and industrial production growth towards20

their long run means, �1 and �2, and ��1 and ��2 are the feedback parameters. Appendix A of the21

Supplemental material reviews conditions guaranteeing Eq. (1) is well-de�ned, which we use as22

constraints whilst estimating the model.23

We assume that asset prices, (i) respond to movements in the factors a�ecting macroeconomic24

conditions, and (ii) re
ect a long-run trend in the asset payo�s. Precisely, we model the instanta-25

neous dividends paid o� by the asset at time t, Div (t) say, as the product of a stochastic trend,26
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times a stationary component, as follows:1

Div (t) = G (t) � (y (t)) ; (2)2

where � (y) satis�es, for four constants �0 and (�j)
3
j=1,3

� (y) = �0 + �1y1 + �2y2 + �3y3; (3)4

and G (t) is a geometric Brownian motion with drift g and volatility �G,5

dG (t)

G (t)
= gdt+ �GdWG (t) ; G (0) � 1; (4)6

andWG (t) is a Brownian motion uncorrelated with the Brownian motions in Eq. (1). The rationale7

behind the assumption in Eq. (2) is to disentangle secular, yet stochastic, dividend growth,8

captured by G (t), from short-run 
uctuations of the dividend process, arising from business cycles,9

and captured by � (y (t)). This assumption implies the asset price displays a similar property,10

being driven by a secular, growth component, and an additional, short-run component related to11

macroeconomic developments, as we now explain.12

2.2. No-arbitrage13

We model the pricing kernel, or the Arrow-Debreu price density, in the economy. Let F (T ) be14

the sigma-algebra generated by the Brownian motion [W (t)> WG (t)]
>, t � T , where W (t) =15

(y1 (t) y2 (t) y3 (t)), and let P the associated physical probability. The Radon-Nikodym derivative16

of the risk-neutral probability Q with respect to P on F (T ) is,17

�(T ) � dQ

dP
= exp

�
�
Z T

0

� (t)> dW (t)� 1
2

Z T

0

k� (t)k2 dt
�
� exp

�
��GWG (T )�

1

2
�2GT

�
; (5)18

for some risk-premium process � (t) and constant �G. The interpretation of � (t) is that of a19

risk-premium required to compensate for the 
uctuations of the factors y (t). The constant �G is,20

instead, the unit-risk premium for the stochastic 
uctuations of secular growth, G (t). While we21

model � (t) to be time-varying, we assume �G to be constant for analytical convenience.22

We assume the risk-premium process satis�es an \essentially a�ne" speci�cation, viz23

� (y (t)) � � (t) = V (y (t))�1 + V � (y (t))�2y (t) ; (6)24
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where �1 =
�
�1(1) �1(3) �1(3)

�
is a parameter vector, �2 is a diagonal matrix of parameters with1

diagonal elements equal to �2(j), j = 1; 2; 3, V (y) is a diagonal matrix with
p
�j + �jyj on its2

diagonal, and V � (y) : V � (y)V (y) = I3�3, for all y, which it does under regularity conditions3

spelled out in Appendix A of the Supplemental material.4

The functional form for � echoes that suggested by Du�ee (2002) in the term-structure lit-5

erature. If �2 = 03�3, � collapses to the \completely a�ne" speci�cation introduced by Du�e6

and Kan (1996), where the risk-premiums in � are tied up to the volatility of the fundamentals,7

V (y). While it is reasonable to assume that risk-premiums link to the volatility of fundamentals,8

the speci�cation in Eq. (6) also allows risk-premiums to relate to the level of the fundamentals,9

through the additional term �2y. Including this term is, indeed, critical to our empirical results.10

Consider the total risk-premiums process, de�ned as,11

� (y) =

0BBBB@
�1 (y1)

�2 (y2)

�3 (y3)

1CCCCA � V (y)� (y) =

0BBBB@
�1�1(1) +

�
�1�1(1) + �2(1)

�
y1

�2�1(2) +
�
�2�1(2) + �2(2)

�
y2

�3�1(3) +
�
�3�1(3) + �2(3)

�
y3

1CCCCA : (7)12

Each component of � (y), �j (yj), depends on factor yj due to the volatility of this factor (i.e.13

through �j) and, also, due to the additional parameter �2(j). Without �2(j), we could not model14

the level of the risk-premiums separately from their sensitivities to changes in yj|a sensible issue15

we have experienced whilst estimating our model. Consider, for example, the total risk premium16

for growth, �2 (y2). The coe�cient �1(2) a�ects both the intercept and the slope of �2. The17

inclusion of �2(2) allows to achieve 
exibility in modeling the level of �2 (y2) and its sensitivity18

with respect to changes in y2.19

Finally, we assume that the safe asset is elastically supplied such that the short-term rate r20

(say) is constant. Whilst real rates are not as volatile as stock returns in the data, many existing21

models might likely predict rates to be too volatile. For example, models with habit formation22

predict the short-term rate is a function of the state, primarily due to intertemporal substitution23

e�ects. Campbell and Cochrane (1999) mitigate this issue with a well-known trick|they impose24

that intertemporal substitution e�ects are exactly o�set by precautionary savings, thereby making25

the short-term rate constant. Additional models that cope with this challenge include those relying26
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on non-expected utility, as in Bansal and Yaron (2004), or those with heterogeneous agents, as in1

Guvenen (2009), to cite a few. In this paper, we impose r to be constant for the purpose of keeping2

stock volatility tractable, as this facilitates the actual estimation of the model. How important3

is this assumption, quantitatively? Mele (2007) �nds that in realistically calibrated models of4

habit formation, large countercyclical swings of stock volatility mainly arise due to risk-premiums5

e�ects, rather than interest rate volatility. It is an open question, however, whether such a result6

would still hold in the economy we consider in the current paper.17

We are ready to determine the no-arbitrage stock price. As it turns out, the previous assump-8

tion on the pricing kernel and the assumption that � (�) in Eq. (3) is a�ne in y implies that the9

stock price is also a�ne in y. Precisely, we have:10

S (G;y) = G �
�
s0 +

X3

j=1
sjyj

�
; (8)11

where

s0 =
1

r � g + �G�G

h
�0 +

P3
j=1 sj

�
�j�j + ��j��j � �j�1(j)

�i
; (9)

sj =
�j
�
r � g + �G�G + �i + �1(i)�i + �2(i)

�
� �i��iQ2

h=1

�
r � g + �G�G + �h + �1(h)�h + �2(h)

�
� ��1��2

; for j; i 2 f1; 2g and i 6= j; (10)

s3 =
�3

r � g + �G�G + �3 + �1(3)�3 + �2(3)
: (11)

In the standard stochastic volatility literature, the asset price and, hence, its volatility, is12

taken as given, and volatility and volatility risk-premiums are modeled separately, as for example13

in the celebrated Heston's (1993) model, which many empirical studies take as a benchmark (e.g.,14

Chernov and Ghysels (2000), Corradi and Distaso (2006), Garcia, Lewis, Pastorello and Renault15

(2011)). Moreover, a recent focus in this literature is to relate volatility risk-premiums the to16

business cycle (e.g., Bollerslev, Gibson and Zhou (2011)). Yet, while the empirical results in17

these papers are ground breaking, the Heston's model is not meant to capture, theoretically, the18

interplay between stochastic volatility, volatility risk-premiums and the business cycle.19

1Our model has, however, implications for the nominal rate, which is r � lnE
�

CPIt
CPIt+12

���Ft� (for one year, say),
where E is the expectation under Q. Evaluating this expression in steady state, through the estimates we obtain
in Section 4, and assuming r = 1%, yields 4.7%. In the data, the nominal rate for one year is, instead, 5.4%.
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Our model works di�erently, as it places restrictions on the asset price process directly, through1

our assumptions on the fundamentals of the economy, and absence of arbitrage. For our model, it2

is the asset price that determines, endogenously, volatility, which by Eq. (1) and Eq. (8) is:3

� (y (t)) � � (t) =

vuuut�2G + P3
j=1 s

2
j

�
�j + �jyj (t)

��
s0 +

P3
j=1 sjyj (t)

�2 : (12)4

Note that the model predicts that stock volatility embeds information about risk-corrections that5

agents require to invest in the stock market. We shall make use of this observation in the empirical6

part of the paper. We now describe which measure of stock volatility we use to proceed with such7

a critical step of our analysis.8

2.3. Arrow-Debreu adjusted volatility9

In September 2003, the CBOE changed its volatility index VIX, to re
ect recent advances in10

the option pricing literature. Given an asset price process S (t) that is continuous in time (as that11

predicted by our model, in Eq. (8)), and all available information F (t) at time t, consider the12

economic value of the future integrated variance on a given interval [t; t0], IVt;t0 , say, which is the13

sum of the future variances, weighted with the Arrow-Debreu state prices:14

E [IVt;t0 jF (t)] �
Z t0

t

E
��

d

d�
var [ lnS (�)jF (u)]

����
�=u

�����F (t)� du; (13)15

where E is the expectation under Q. The new VIX index relies on the work of Dumas (1995),16

Bakshi and Madan (2000), Britten-Jones and Neuberger (2000), and Carr and Madan (2001), who17

showed that the risk-neutral expectation of the future integrated variance is a functional of put18

and call options written on the asset:19

E [IVt;t0 jF (t)] = 2er(t0�t)
"Z F (t)

0

Pt (t0; K)

K2
dK +

Z 1

F (t)

Ct (t0; K)

K2
dK

#
� (t0 � t) � VIX2t ; (14)20

where F (t) = er(t0�t)S (t) is the forward price, Ct (t0; K) and Pt (t0; K) are the prices as of time21

t of call and put options expiring at t0 and struck at K, and VIXt is the new VIX index. In22

contrast, our model, which relies on the Arrow-Debreu state prices in Eq. (5), predicts that the23

risk-neutral expectation of the integrated variance is:24

E [IVt;t0 jy (t) = y] =
Z t0

t

E
�
�2 (y (u))

��y (t) = y� du � (t0 � t) � VIX2 (y) ; (15)25
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where �2 (y (t)) is given in Eq. (12). We shall estimate the risk-premium parameters in Eq. (7)1

so as to match the VIX index predicted by the model, VIX (y (t)) in Eq. (15), to its empirical2

counterpart, VIXt in Eq. (14). Finally, our model makes predictions about how the volatility3

risk-premium, VRP (y (t)) say, changes with the factors y (t) in Eq. (1)4

VRP (y (t)) �
r

1

t0 � t

�q
E [IVt;t0jy (t) = y]�

q
E [IVt;t0 jy (t) = y]

�
; (16)5

where E denotes the expectation taken under P .6

3. Statistical inference7

We rely on a three-step procedure. In the �rst step, we estimate the parameters of the process8

underlying the dynamics of the two macroeconomic factors, �> =
�
�j; �j; �j; �j; ��j; j = 1; 2

�
.9

In the second step, we estimate the parameters in Eq. (4), �>G = (g; �G), the reduced-form10

parameters that link the asset price to the three factors in Eq. (8), and the parameters of the11

process for the unobserved factor, �> =
�
�3; �3; �3; �3; (sj)

3
j=0

�
, while imposing the identi�ability12

condition that �3 = 1, as explained below. In the third step, we estimate the risk-premiums13

parameters �> =
�
�1(1); �2(1); �1(2); �2(2); �1(3); �2(3)

�
, relying on a simulation-based approximation14

of the model-implied VIX, which we match to the VIX index. At each of these steps, we do15

not have a closed form expression of either the likelihood function or selected sets of moment16

conditions. For this reason, we need to rely on a simulation-based approach. Our estimation17

strategy relies on an hybrid of Indirect Inference (Gouri�eroux, Monfort and Renault (1993)) and18

the Simulated Generalized Method of Moments (Du�e and Singleton (1993)).219

3.1. Moment conditions for the macroeconomic factors20

To simulate the factor dynamics in Eq. (1), we rely on a Milstein approximation scheme, with21

discrete interval �, say. We simulate H paths of length T of the two observable factors, and22

2The estimators we develop are not as e�cient as Maximum Likelihood. Under some conditions, the methods
put forward by Gallant and Tauchen (1996), Fermanian and Salani�e (2004), Carrasco, Chernov, Florens and Ghysels
(2007), A��t-Sahalia (2008), or Altissimo and Mele (2009), are asymptotic equivalent to Maximum Likelihood. In our
context, they deliver asymptotically e�cient estimators for the parameters in the �rst step. However, hinging upon
these approaches in the remaining steps would make the two issues of unobservability of volatility and, especially,
parameter estimation error considerably beyond the scope of this paper.
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sample them at the same frequency as the available data, obtaining y�1;t;�;h and y
�
2;t;�;h, where1

y�j;t;�;h is the value at time t taken by the j-th factor, at the h-th simulation performed with2

�|the parameter vector relating to the process underlying the macroeconomic factors. Then, we3

estimate the following auxiliary models on both historical and simulated data, for i = 1; 2,34

yi;t = a
y
i +

X
j2f12;24g

byi;1;jy1;t�j +
X

j2f12;24g

byi;2;jy2;t�j + �
y
i;t; (17)5

and6

y�i;t;�;h = a
y
i;h +

X
j2f12;24g

byi;1;j;hy
�
1;t�j;�;h +

X
j2f12;24g

byi;2;j;hy
�
2;t�j;�;h + �

y
i;t;h: (18)7

Next, let ~'T =
�
~'1;T ; ~'2;T ; �y1; �y2; �̂1; �̂2

�>
where ~'1;T and ~'2;T denote the ordinary least squares8

(OLS, henceforth) estimators of the parameters in Eq. (17), and �yi and �̂i are the sample mean9

and standard deviation of the macroeconomic factors. Let '̂T;�;h (�) be the simulated counterpart10

to ~'T at simulation h, including the OLS estimator of the parameters in Eq. (18), and the sample11

means and standard deviations of the macroeconomic factors. The estimator of � is:12

�̂T � arg min
�2�0






 1H
HX
h=1

'̂T;�;h (�)� ~'T







2

; (19)13

where �0 is some compact set. Appendix B in the Supplemental material develops the asymptotic14

theory relating to this estimator.15

3.2. Moment conditions for realized returns and volatility16

Data on macroeconomic factors and stock returns do not allow us to identify the structural17

parameters of the model. In particular, there are many combinations of � = (�j)
3
j=0 and � =18 �

�1(j); �2(j)
�3
j=1

in Eqs. (9)-(11), giving rise to the same asset price. In this second step, we19

estimate the parameters �G = (g; �g) in Eq. (4), the reduced-form parameters, (sj)
3
j=0 in Eqs.20

(9)-(11), and the parameters for the unobservable factor, (�3; �3; �3; �3). The parameters � shall21

be estimated in a third and �nal step, described in the next section. Note that, theoretically, it22

might be possible to collapse the second and third steps of our estimation procedure into a single23

3The choice of lags for all the auxiliary models in Section 3 relies on the BIC criterion, and our additional concern
to have non-overlapping regressors|with the exception of a lag 6 in Eq. (23), which was empirically important.
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one, where a combined use of data on dividends and volatility derivatives might help identify �1

and �. We do not pursue this approach because it revealed to be computationally prohibitive.2

Even proceeding in this way, we cannot tell apart the loading on the unobservable factor, s3,3

from the parameters underlying the dynamics of this factor, (�3; �3; �3; �3), as this is independent4

of the observable ones. We impose the normalization �3 � 1. We estimate �G using the time-series5

of the low-frequency component of the real stock price growth, extracted through the Hodrick-6

Prescott �lter with smoothing parameter equal to 14400, given we are using monthly data (Hodrick7

and Prescott (1997)). We simulate H paths of length T of the unobservable factor y3 (t), and the8

secular growth, G (t), using a Milstein approximation with discrete interval �, and sample them9

at the same frequency as the data, obtaining for �u = (�3; �3; �3; s3) and �̂G;T = (ĝT ; �̂G;T ), and10

simulation h, the series y�u3;t;�;h and G
�̂G;T
t;�;h. Likewise, let S

�
t;�;h(�̂G;T ) be the simulated series of the11

stock price, when the parameters are �xed at � = (�u; (sj)
3
j=0) and �̂G;T :12

lnS�t;�;h(�̂G;T ) = lnG
�̂G;T
t;�;h + ln

�
s0 + s1y1;t + s2y2;t + s3y

�u
3;t;�;h

�
; (20)13

where G
�̂G;T
0;�;h � 1, as in Eq. (4). We �x the intercept, s0, so as to make the model-implied average14

of the detrended stock price match its empirical counterpart: s0 = �Sd � s1�y1 � s2�y2 � s3, where15

�Sd denotes the sample mean of the detrended stock price Sdt � e�ĝT tSt, St is the real stock price16

index observed at time t, and �nally, �y1 and �y2 are the sample means of the two macroeconomic17

factors y1;t and y2;t. Note, we simulate the stock price using the observed samples of y1;t and y2;t,18

a feature of the estimation strategy that results in improved e�ciency, as discussed below.19

Following Mele (2007) and Fornari and Mele (2010), we measure the volatility of the monthly20

continuously compounded price changes, as:21

Volt =
p
6� � 1

12

12X
i=1

����ln�St+1�iSt�i

����� : (21)22

Next, de�ne yearly returns as Rt = ln (St=St�12), and let R
�
t;�;h(�̂G;T ) and Vol

�
t;�;h(�̂G;T ) be the23

simulated counterparts to Rt and Volt.24

Our estimator relies on two auxiliary models that capture the main statistical facts about stock25

returns and return volatility in our dataset. The auxiliary model for returns is:26

Rt = a
R + bR1 y1;t�12 + b

R
2 y2;t�12 + �

R
t ; (22)27
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and that for return volatility is:1

Volt = a
V +

X
i2f6;12;18;24;36;48g

bVi Volt�i +
X

i2f12;24;36;48g

bV1;iy1;t�i +
X

i2f12;24;36;48g

bV2;iy2;t�i + �
V
t : (23)2

Let ~#T =
�
~#1;T ; ~#2;T ; �R;Vol

�>
, where �R and Vol are the sample means of stock returns and3

volatility, ~#1;T is the OLS estimate of the parameters in Eq. (22) and ~#2;T is the OLS estimate of4

the parameters in Eq. (23). Let #̂T;�;h(�; �̂G;T ) be the simulated counterpart to ~#T at simulation5

h, using R�t;�;h(�̂G;T ) and Vol
�
t;�;h(�̂G;T ). The estimator of � = (�u; (sj)

3
j=0) is:6

�̂T = arg min
�2�0






 1H
HX
h=1

#̂T;�;h(�; �̂G;T )� ~#T







2

; (24)7

where �0 is a compact set. As shown in detail in Appendix B of the Supplemental material,8

the structure of the asymptotic covariance matrix of this estimator di�ers from that of �̂T in9

Eq. (19), due to two reasons. First, stock price paths are simulated through Eq. (20), with10

secular growth parameters �xed at their estimates, �̂G;T , leading to parameter estimation error,11

which is asymptotically accounted for. Second, ours is, in fact, a conditional simulated inference12

estimator, in that the simulations in Eq. (20) occur conditionally upon the sample realizations13

of the observable factors, y1;t and y2;t. This feature of the method results in a correlation among14

the auxiliary parameter estimates obtained over all the simulations, and leads to an e�ciency15

improvement over unconditional (simulated) inference.16

3.3. Estimation of the risk-premium parameters17

We estimate the risk-premium parameters, �, by matching moments and impulse response18

functions of the model-based VIX, VIX (y (t)) in Eq. (15), to those of the model-free VIX index,19

VIXt in Eq. (14), with t0 � t equal to one month. Since the new VIX index is available only20

since 1990, we use a sample of T observations in this step, with T < T . Whilst VIX (y (t)) is21

not known in closed-form, it can be accurately approximated through simulations, as explained in22

Appendix B of the Supplemental material. Note, also, that in the actual computation of Eq. (15),23

we replace the unknown parameters, s0;
�
sj; �j; �j; �j

�3
j=1
, (��i; �i)

2
i=1 and �G, with their estimated24

counterparts computed in the previous two steps: �̂T , �̂T and �̂G;T . As in the previous step,25
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we use the observed samples of the macroeconomic factors y1;t; y2;t, and simulate samples for the1

latent factor only. We rely on the following auxiliary model:2

VIXt = a
VIX + bVIXVIXt�1 +

X
i2f36;48g

bVIX1;i y1;t�i +
X

i2f36;48g

bVIX2;i y2;t�i + �
VIX
t : (25)3

De�ne, ~ T =
�
~ 1;T ;VIX; �̂VIX

�>
, where ~ 1;T is the OLS estimator of the parameters in Eq.4

(25), and VIX and �̂VIX are the sample mean and standard deviation of the VIX index. Likewise,5

de�ne  ̂T ;�;h(�̂T ; �̂T ; �̂G;T ;�), the simulated counterpart to ~ T at simulation h, obtained through6

simulations of the model-implied index, VIXt;�;h(�̂T ; �̂T ; �̂G;T ;�) say, where the paths of the two7

macroeconomic factors, y1;t and y2;t, are �xed at their sample values. The estimator of � is:8

�̂T = arg min
�2�0






 1H
HX
h=1

 ̂T ;�;h(�̂T ; �̂T ; �̂G;T ;�)� ~ T







2

; (26)9

for some compact set �0. This estimator is, similarly as �̂T in Eq. (24), a�ected by parameter10

estimation error, arising because VIXt;�;h(�̂T ; �̂T ; �̂G;T ;�), the model-implied VIX index, is sim-11

ulated using parameters estimated in the previous two steps, �̂T , �̂T and �̂G;T . At the same time,12

the estimator �̂T in Eq. (24) is a conditionally simulated one, in that it relies on the observations13

of the macroeconomic factors y1;t and y2;t, thereby resulting in e�ciency gains.14

3.4. Bootstrap Standard Errors15

The limiting variance-covariance matrices for �̂T in Eq. (19), �̂T in Eq. (24), and �̂T in Eq.16

(26) are characterized in Appendix B.1 of the Supplemental material. They are not known in17

closed form, and must be estimated through the computation of several numerical derivatives.18

Moreover, our sample sizes are relatively small, compared to those we usually have access to in19

empirical �nance, and in particular such is that available for the estimation of the risk premium20

parameters. We rely on bootstrap standard errors consistent for those implied by the asymptotic21

variance-covariance matrices for �̂T , �̂T and �̂T . Bootstrap standard errors are not only easier22

to compute, but also less prone to numerical errors, and likely to be more accurate than those23

based on asymptotic approximations, in �nite samples. Finally, the auxiliary models we utilize24

are potentially misspeci�ed, and they likely lead to a score that is not a martingale di�erence25
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sequence. We appeal to the \block-bootstrap" to address this technical issue. Appendix B.21

of the Supplemental material develops results and algorithms that allow us to make use of this2

method within the simulation-based estimation procedure of this section.3

4. Empirical analysis4

4.1. Data5

Our security data include the S&P 500 Compounded index, and the VIX index maintained by6

the CBOE. The VIX index is available daily, but only after January 1990. Our macroeconomic7

variables include the consumer price index (CPI), and the seasonally adjusted industrial production8

(IP) index for the US. Information related to the CPI and the IP indexes is made available to9

the market between the 19-th and the 23-th of every month. To possibly avoid overreaction to10

releases of information, we sample the S&P Compounded index and the VIX index every 25-th of11

the month. We compute the real stock price as the ratio between the S&P index and the CPI. Our12

dataset, then, includes (i) monthly observations of the VIX index, from January 1990 to December13

2006, for a total of 204 observations; and (ii) monthly observations of the real stock price, the CPI14

and the IP indexes, from January 1950 to December 2006, for a total of 672 observations.15

Our dataset also includes monthly observations of the University of Michigan Consumer Sen-16

timent index, from January 1978 to December 2006 (for a total of 336 observations), Finally, we17

utilize additional data, from January 2007 to March 2009, to implement a stress test of how the18

previously estimated model would have performed over a particularly critical period. This out-19

of-sample period is critical for at least three reasons: �rst, the NBER determined that the US20

economy entered in a recession in December 2007, which is the third NBER-dated recession since21

the creation of the new VIX index; second, this period includes the quite unique events leading22

to the subprime crisis; third, both realized stock market volatility and the VIX index reached23

record highs, and possibly pose challenges to rational models of asset prices. Our out-of-sample24

experiments are not intended to forecast the market, stock market volatility, and the level of the25

VIX index. Rather, we feed the model estimated up to December 2006, with macroeconomic data26



Macroeconomic Determinants of Stock Market Volatility and Volatility Risk-Premiums 18

(the CPI and IP indexes) available from January 2007, and compare the predictions of the model1

with the actual movements of the market, stock market volatility and the VIX index.2

Many theoretical explanations and, in fact, the empirical evidence, would lead us to expect3

that asset prices are, indeed, related to variables tracking business cycles (see, e.g., Cochrane4

(2005)), such as the CPI and the IP growth. For example, in their seminal article relating stock5

returns to the macroeconomy, Chen, Roll and Ross (1986) �nd that industrial production growth6

and in
ation are among the most prominent priced factors. Theoretically, in standard theories7

of external habit formation, the pricing kernel volatility is driven by the surplus consumption8

ratio, de�ned as the percentage deviation of current consumption, C, from some habit level, H,9

i.e. (C �H) =C, which highly correlates with procyclical variables such as industrial production10

growth. Likewise, standard asset pricing models predict that compensation for in
ation risk relates11

to variables that are highly correlated with in
ation (e.g., Bakshi and Chen (1996), Buraschi and12

Jiltsov (2005)). Mainly for computational reasons, we refrain from considering additional factors13

to model the linkages of the pricing kernel to the business cycle.14

Figure 1 depicts the two series y1;t (year-to-year gross in
ation) and y2;t (year-to-year industrial15

production growth) along with NBER-dated recession events. Gross in
ation is procyclical, al-16

though it peaked up during the 1975 and the 1980 recessions, as a result of the geopolitical driven17

oil crises that occurred in 1973 and 1979. Its volatility during the 1970s was large until the Mone-18

tary experiment of the early 1980s, although it dramatically dropped during the period following19

the experiment, usually referred to as the Great Moderation (e.g., Bernanke (2004)). At the same20

time, in
ation is persistent: a Dickey-Fuller test rejects the null hypothesis of a unit root in y1;t,21

although the rejection is at the marginal 95% level. The inclusion of in
ation as a determinant of22

the pricing kernel displays one attractive feature. An old debate exists upon whether stocks pro-23

vide a hedge against in
ation (see, e.g., Danthine and Donaldson (1986)). While our no-arbitrage24

model is silent about the general equilibrium forces underlying in
ation-hedge properties of asset25

prices, its data-driven structure allows us to assess quite directly the relations between in
ation26

and the stock price, returns, volatility and volatility risk-premiums.27

Figure 1 also shows that while the volatility of industrial production growth dropped during the28
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Great Moderation, growth is still persistent, although less so than gross in
ation: here, a Dickey-1

Fuller test rejects the null hypothesis of a unit root in y2;t at any conventional level. Finally,2

the properties of in
ation and industrial production growth over our out-of-sample period, from3

January 2007 to March 2009, are discussed in Section 4.2.4.4

4.2. Estimation results5

4.2.1. Macroeconomic drivers6

Table 1 reports parameter estimates and block-bootstrap standard errors for the joint process7

of the two macroeconomic variables, y1;t and y2;t, as set forth in Section 3.1. The estimates are8

all largely signi�cant, and con�rm our discussion of Figure 1: in
ation is more persistent than IP9

growth, as both its speed of adjustment in the absence of feedbacks, �1, and its feedback parameter,10

��1, are much lower than the counterparts for IP growth, �2 and ��2. Finally, the estimates of �111

and �2 are both negative, implying that the volatility of these two macroeconomic variables are12

countercyclical, an interesting property, from an asset pricing perspective. However, we note that13

the estimate of �1, albeit statistically signi�cant, is also economically very small.
4

14

4.2.2. Aggregate stock returns and volatility15

Table 2 reports estimates and block-bootstrap standard errors for (i) the parameters a�ecting16

secular growth, (ii) the parameters linking the two macroeconomic factors and the unobservable17

factor to the asset price, and (iii) the parameters for the unobservable factor process, as explained18

in Section 3.1. The estimates are all largely signi�cant and point to two conclusions. First, the19

stock price is positively related to IP growth and negatively related to in
ation. Second, the unob-20

servable factor is quite persistent, displaying high volatility, as the estimate of the speed reversion21

coe�cient, �3 is low. Note, the literature on long run risks started by Bansal and Yaron (2004)22

4It is known since at least Friedman (1977) that high variability of in
ation might link to high in
ation. For
example, Engle (1982) �nds that in
ation volatility increases during the middle 1970s. We have constructed
measures of in
ation volatility similar to that in Eq. (21), relating to the �rst di�erence of in
ation, which con�rm
these �ndings. We also �nd that after the 1970s, in
ation slowdowns tend to occur more rapidly than in
ation
increases although overall, a clear relation between in
ation and in
ation volatility is hard to establish. The
estimate of �1 for our continuous time model is likely to re
ect these facts.
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emphasizes the asset pricing implications of long-run risks a�ecting the expected consumption1

growth rate. Interestingly, the presence of a persistent factor a�ecting stock returns and volatility2

emerges quite neatly from our estimation. Note, however, that in long-run risk models, expected3

consumption growth is unlikely to a�ect the dynamics of stock volatility which, instead, are in-4

herited by those of the volatility of consumption growth. In our model, our unobservable factor5

does, instead, a�ect stock volatility, and substantially, as explained below.6

Figure 2 shows the dynamics of stock returns and volatility predicted by the model, along with7

their sample counterparts, calculated as described in Section 3.2. These predictions are obtained by8

feeding the model with sample data for the two macroeconomic factors, y1;t and y2;t, in conjunction9

with simulations of the third unobservable factor, using all the estimated parameters. For each10

point in time, we average over the cross-section of 1000 simulations, and report returns (in the11

top panel of Figure 2) and volatility (in the bottom panel). Returns are computed as we do with12

the data, and volatility is obtained through Eq. (12).13

The model appears to capture the procyclical nature of stock returns and the countercyclical14

behavior of stock volatility. It generates all the stock market drops occurred during the NBER15

recessions, and all the volatility upward swings occurred during the NBER recessions, including16

the dramatic spike of the 1975 recession. In the data, average stock volatility is about 11.50%,17

with a standard deviation of about 4.0%. The model predicts an average volatility of about 13%,18

with a standard deviation of about 3.1%.19

How much of the variation in volatility can be attributable to macroeconomic factors? It is a20

natural question, as the key innovation of our model is the introduction of these factors for the21

purpose of explaining volatility, on top of a standard unobservable factor. We address this issue22

and calculate: (i) the ratio of the instantaneous return variance due to factor yj, s
2
j

�
�j + �jyj (t)

�
,23

to the total instantaneous variance, �2 (t) in Eq. (12), as well as (ii) the ratio of the instantaneous24

variance of secular growth, �2G, to �
2 (t), as follows,25

Cj (t) �
s2j
�
�j + �jyj (t)

�
�2 (t)

; j = 1; 2; 3; and CG (t) �
�2G
�2 (t)

: (27)26

Figure 3 depicts the time series of Cj (t) and CG (t) implied by our estimated model, obtained,27

as usual, by feeding the model with the observed samples of y1 (t) and y2 (t), and averaging across28
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1000 dynamic simulations of y3 (t). The clear �nding is that industrial production growth makes1

the most important contribution to stock volatility: the time series average of C2 (t) is above 73%,2

more than four times higher than C3 (t), the contribution made by the unobserved factor. Panel3

A of Table 4 reports averages and standard deviations of the contributions made by all factors,4

and secular growth. Variations in industrial production growth and the unobserved factor are5

responsible, alone, for more than 90% of the variation in stock volatility. It is a striking result, as6

one challenge we face is to explain why we have observed a sustained stock market volatility, in7

spite of the Great Moderation. Our estimated model entails two clear conclusions.8

First, as Figure 3 makes clear, the 73% average contribution of industrial production growth to9

stock volatility seems to be rather stable over time, at least once we exclude the 1950s|a period10

of sustained volatility for growth (see Figure 1). Accordingly, the Great Moderation does merely11

appear to have a�ected the variability of the linkages between industrial production growth and12

aggregate stock volatility, not the very same linkages. To illustrate, Panel A of Table 4 shows13

averages and standard deviations of the factors' contributions across di�erent sampling periods.14

We take 1982 to be the year that marks the beginning of the Great Moderation, characterized15

by the inauguration of the Federal Reserve monetary policy turning point and a lower volatility16

of real macroeconomic variables (e.g., Blanchard and Simon (2001)). As is clear, whilst the17

average contributions are stable, the variability of these contributions has decreased over the18

Great Moderation. For example, the average of C2 (t) is between 73% - 75%, across all sampling19

periods, whereas its standard deviation decreases to 3.47% during the 1982-2006 sample, from20

9.65% (1950-1981) and 5.03% (1960-1981).21

Second, the contribution of industrial production growth to volatility, albeit crucial, is not22

exhaustive. Our model predicts that stock volatility cannot be explained by macroeconomic vari-23

ables only, as the unobserved factor accounts for about 17% of the 
uctuations in �2 (t). Equally24

important is the observation that the contribution of industrial production to stock volatility is25

strongly countercyclical, exhibiting large upward swings starting at, and sometimes, anticipating,26

turning points, as in the case of the 1970s recessions and the most recent, 2001 recession. In-27

stead, the contribution of the unobserved factor to stock volatility, C3 (t), is procyclical, for the28
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simple reason that the instantaneous volatility of y3 (t) does not obviously link to the business1

cycle, thereby making the ratio C3 (t) in Eq. (27) procyclical, due to the countercyclical nature2

of its denominator, �2 (t). All in all, our empirical results suggest that while unobserved factors3

are needed to explain the level of stock volatility, industrial production is needed to explain the4

countercyclical swings of stock volatility that we have in the data|the volatility of volatility.5

Finally, the contribution of secular growth to stock volatility is limited, being approximately6

8%, and that of gross in
ation plays an even more marginal role, being less than 1%. Note,7

however, that our model predicts that in
ation links to asset returns and volatility in a manner8

comparable to that in the data. For example, it is well-known since at least Fama (1981) that real9

stock returns are negatively correlated with in
ation, a property that hinders the ability of stocks10

to hedge against in
ation. In our sample, this correlation is -35%, while the correlation our model11

generates is -24%. Finally, the correlation between stock volatility and in
ation is about 20% in12

the data, while that implied by the model is about 25%.13

The predictions of the model discussed so far rely on cross-sectional averages of dynamic14

simulations of the unobserved factor, y3. Yet what is the interpretation of this unobserved factor?15

Let us invert the price function in Eq. (8), for y3, and for each month, as follows:16

�ŷ3;t � �
1

ŝ3

�
st

Ĝt
� ŝ0 � ŝ1y1;t � ŝ2y2;t

�
; (28)17

where (ŝj)
3
j=0 are estimates of the pricing function coe�cients, as reported in Table 2, and Ĝt is18

the cross-sectional average of 1000 dynamic simulations of secular growth.19

Figure 4 (top panel) depicts �ŷ3;t (in bold), along with 100 simulated trajectories of the20

unobserved factor performed with the parameter estimates in Table 2. Reinsuringly, the range of21

variation of the model-implied factor roughly falls within that of the simulated trajectories of this22

factor. Note that the estimate of s3 is negative, such that �ŷ3;t positively a�ects the real stock23

price|higher realizations of �ŷ3;t amount to good pieces of news to the stock market. There are24

episodes where �ŷ3;t comes close to the edges of the realized range of variation experienced by25

the unobserved factors during the simulations. These episodes are interesting, as they correspond26

to: (i) the lows of the late 1970s and the early 1980s, and (ii) the highs of the dotcom bubble27

that occurs in the late 1990s. The extracted factor oscillates between (about) its minimum and28
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its maximum over those approximate twenty years. The rise and fall of this period have, then, a1

clear economic interpretation, with the late 1970s and early 1980s being particularly bad times,2

marked by the occurrence of a double dip recession, and the extraordinary market boom over the3

dotcom bubble being notoriously suspected to be one of exuberance (e.g., Shiller (2005)). These4

observations motivate us to explore the extent to which our extracted factor links to indexes of5

\sentiment," following a recent strand of the literature that attempts to link asset price movements6

to factors such as investors uncertainty (as in David and Veronesi (2006)), con�dence risk (as in7

Bansal and Shaliastovich (2010)), or Knightian uncertainty (as in Drechsler (2010) or Mele and8

Sangiorgi (2011)). The bottom panel of Figure 4 compares the time series behavior of the model-9

implied unobserved factor, �ŷ3;t, with that of an index of consumer con�dence|the University of10

Michigan Consumer Sentiment (UMCSENT) index, available from January 1978.11

Note how the UMCSENT index tracks the lows and the highs of the market that have so12

slowly occurred over the last thirty years: the bad times of the late 1970s and early 1980s, the rise13

occurring over the late 1980s and culminating with the dotcom bubble of the late 1990s and, �nally,14

the drop of the late 2000s, corresponding to the subprime crisis|a period we study in detail in the15

next section. Interestingly, our extracted factor, �ŷ3;t, co-moves positively with the UMCSENT16

index, correlating with it at about 50%. In contrast, its correlation with the macroeconomic17

factors is modest (10% with in
ation and 30% with industrial production growth). Interestingly,18

then, the pattern our extracted factor exhibits is one that mostly tracks long-run movements of19

the market, even more so than the short-term movements relating to business cycles.20

4.2.3. Volatility risk-premiums and the dynamics of the VIX index21

Table 3 reports parameter estimates and block-bootstrap standard errors for the vector of the22

risk-premiums coe�cients � in Eq. (7), as set forth in Section 3.3. The estimates, all signi�cant,23

imply that the risk-premiums processes are all positive, and quite large, especially those relat-24

ing to the two macroeconomic factors. Moreover, the risk compensation for in
ation increases25

with in
ation and that for industrial production is countercyclical, given the sign of the esti-26

mated values for the loadings of in
ation,
�
�1�1(1) + �2(1)

�
(positive), and industrial production,27
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�
�2�1(2) + �2(2)

�
(negative), in the risk-premium process of Eq. (7). While gross in
ation does1

receive compensation, the countercyclical behavior of the risk-premium for industrial production2

growth is even more critical, as we explain below. Our estimated model predicts that in bad3

times, the risk-premium for industrial production growth goes up, and future expected economic4

conditions even worsen, under the risk-neutral probability, which boosts future expected volatility,5

under the same risk-neutral probability. In part because of these e�ects, the VIX index predicted6

by the model is countercyclical. This reasoning is quantitatively sound. Figure 5 (top panel)7

depicts the VIX index, along with the VIX index predicted by the model and the (square root of8

the) model-implied expected integrated variance. The model appears to track the swings the VIX9

index has undergone over the 1991 and the 2001 recession episodes.10

The top panel of Figure 5 also shows the dynamics of volatility expected under the physical11

probability. This expected volatility is certainly countercyclical, although it does not display the12

large variations the model predicts for its risk-neutral counterpart, the VIX index. The VIX index13

predicted by the model is countercyclical because, as explained, the risk-premiums required to14

bear the 
uctuations of the macroeconomic factors are (i) positive and (ii) countercyclical, and,15

also, because (iii) current volatility is countercyclical. Under the physical probability, expected16

volatility is countercyclical only because of the third e�ect. However, quantitatively, movements17

of volatility risk-premiums account for variations in the VIX index sensibly more than those of18

the volatility expected under the physical probability, as clearly summarized by Figure 5.19

Which factors mostly contribute to the dynamics of the VIX? Panel B of Table 4 reports20

averages and standard deviations of the contributions of each factor, as predicted by our estimated21

model. We calculate each of these contributions by evaluating Cj and CG in Eq. (27) under the22

risk-neutral probability and, then, aggregating the average paths of Cj and CG for every month,23

and, �nally, taking cross-sectional averages over 1000 dynamic simulations of the unobserved24

factor. Similarly as for the results in Section 4.2.2 on realized volatility, we �nd, again, our model25

predicts industrial production growth to account for the bulk of variation of the VIX index.26

The unobserved factor accounts for less than 10%, and in
ation and secular growth play a quite27

marginal role, explaining no more than 5%, of the model-implied VIX. Interestingly, Stock and28
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Watson (2003) �nd that the linkages of asset prices to growth are stronger than for in
ation. Our1

results further qualify this �nding: in
ation does not seem to a�ect too much the dynamics of2

neither realized volatility nor future expected volatility under the risk-neutral probability.3

Finally, the bottom panel in Figure 5 plots the volatility risk-premium, de�ned as in Eq. (16).4

This risk-premium is countercyclical, and this property arises for exactly the same reasons we put5

forward to explain the swings the model predicts for the VIX index: positive compensation for6

risk, combined with countercyclical variation of the premiums required to compensate for the risk7

in 
uctuations of the macroeconomic factors.8

4.2.4. Out-of-sample predictions of the model, and the subprime crisis9

We undertake out-of-sample experiments to investigate the model's predictions over a quite10

exceptional period, that from January 2007 to March 2009. This sample covers the subprime11

turmoil, and features unprecedented events, both for the severity of capital markets uncertainty12

and the performance of the US economy. The market witnessed to a spectacular drop accompanied13

by an extraordinary surge in volatility. In March 2009, yearly returns plummeted to -58.30%, a14

performance even worse than that experienced in October 1974 (-58.10%). Furthermore, according15

to our estimates, obtained through Eq. (21), aggregate stock volatility reached 28.20% in March16

2009, the highest level ever experienced in our sample. Finally, the VIX index hit its highest value17

in our sample in November 2008 (72.67%), and remained stubbornly high for several months. The18

time series behavior of stock returns, stock volatility and the VIX index during our out-of-sample19

period are depicted over the shaded areas in Figures 2 and 5.20

Macroeconomic developments over our out-of-sample period (the shaded area in Figure 1)21

were equally extreme, with yearly in
ation rates achieving negative values in 2009, and yearly22

industrial production growth being as low as -13%, in March 2009. Under such macroeconomic23

conditions, we expect our model to produce the following predictions: (i) stock returns drop, (ii)24

stock volatility rises, (iii) the VIX index rises, and more than stock volatility. The mechanism is,25

by now, clear. Asset prices and, hence, returns, plummet, as they are positively related to in
ation26

and growth, which both crashed. Moreover, volatility increases, with the VIX index increasing27
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even more, due to our previous �nding of (i) sizeable macroeconomic risk-premiums and (ii) strong1

countercyclical variation in these premiums.2

Figures 2 and 5 con�rm our reasoning, and reveal that the model is able to trace out the3

dynamics of stock returns and volatility (Figure 2), and the VIX index (Figure 5), over the out-4

of-sample period. The market literally crashes, as in the data, although only less than a half as5

much as in the data: the lowest value for yearly stock returns the model predicts, out-of-sample,6

is -21.77%, which is the second lowest �gure our model produces, since after the quite volatile7

periods occurring over the 1950s and the early 1960s. (The lowest level the model predicts after8

those periods is -29.91%, for March 1975, the last month of the second severe recession of the9

1970s.) Instead, the model predicts that stock volatility and the VIX index surge even more than10

in the data, reaching record highs of 26.68% (volatility) and 61.27% (VIX).11

Figure 6 provide additional details about the period from January 2000 to March 2009. It12

compares stock volatility and the VIX index with the predictions of the model and those of a OLS13

regression. The OLS for volatility is that in Eq. (23), excluding the lag for six months, related14

to the autoregressive term. The OLS for the VIX index is that in Eq. (25). OLS predictions15

are obtained by feeding the OLS predictive part with its regressors, using parameter estimates16

obtained with data up to December 2006. The following table reports Root Mean Squared Errors17

(RMSE) for both our model and OLS, calculated over the out-of-sample period.18

RMSE for the model and OLS

Model OLS

Volatility 0.0478 0.0700

VIX Index 0.1119 0.1319

Overall, OLS predictions do not seem to capture the countercyclical behavior of stock volatility.19

As for the VIX index, the OLS model (in fact, by Eq. (25), an autoregressive, distributed lag20

model) produces predictions that are not as accurate as the model, and generate over�t. The21

model, instead, predicts the swings we see in the data, in both the last two recession episodes.22

The RMSEs clearly favour the model against OLS, although it appears to do so more with realized23

volatility than with the VIX index, as Figure 6 informally reveals.24
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5. Conclusion1

How does aggregate stock market volatility relate to the business cycle? This old question2

has been formulated at least since O�cer (1973) and Schwert (1989a,b). We learnt from recent3

theoretical explanations that the countercyclical behavior of stock volatility can be understood as4

the result of a rational valuation process. However, how much of this countercyclical behavior is5

responsible for the sustained level aggregate volatility has experienced for centuries? This paper6

develops a model where approximately 75% of the variations in stock volatility can be explained7

by macroeconomic factors, and where some unobserved component is also needed to make stock8

volatility consistent with rational asset valuation.9

We show that risk-premiums arising from 
uctuations in this volatility are strongly coun-10

tercyclical, certainly more so than stock volatility alone. In fact, the risk-compensation for the11


uctuation of the macroeconomic factors is large and countercyclical, and helps explain the swings12

in the VIX index that we observe during recessions. We undertake out-of-sample experiments that13

cover the 2007-2009 subprime crisis, when the VIX reached a record high of more than 70%, which14

our model can at least partially track, through a countercyclical variation in the volatility risk-15

premiums. Again, our model predicts that a business cycle factor such as industrial production16

growth can explain more than 85% of the variations of the VIX index.17

The key aspect of our model is that the relations among the market, stock volatility, volatility18

risk-premiums and the macroeconomic factors, are consistent with no-arbitrage. In particular,19

volatility is endogenous in our framework: the same variables driving the payo� process and the20

volatility of the pricing kernel, and hence, the asset price, are those that drive stock volatility21

and volatility-related risk-premiums. A question for future research is to explore whether the22

no-arbitrage framework in this paper can be used to improve forecasts of real economic activity.23

In fact, stock volatility and volatility risk-premiums are driven by business cycle factors, as this24

paper clearly demonstrates. A challenging and fundamental question is to explore the extent to25

which business cycle, stock volatility and volatility risk-premiums do endogenously develop.26
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Tables1

Table 12

Parameter estimates and block-bootstrap standard errors for the joint process of the two

macroeconomic factors, gross in
ation, y1;t � CPIt/CPIt�12 � y1 (t) and gross industrial

production growth, y2;t � IPt/ IPt�12 � y2 (t), where CPIt is the Consumer price index as of
month t, IPt is the real, seasonally adjusted industrial production index as of month t, and:�
dy1 (t)

dy2 (t)

�
=

�
�1 ��1

��2 �2

� �
�1 � y1 (t)
�2 � y2 (t)

�
dt+

� p
�1 + �1y1 (t) 0

0
p
�2 + �2y2 (t)

� �
dW1 (t)

dW2 (t)

�
;

where Wj (t), j = 1; 2, are two independent Brownian motions, and the parameter vector is3

�> =
�
�j ; �j ; �j ; �j ; ��j ; j = 1; 2

�
. Parameter estimates are obtained through the �rst step of4

the estimation procedure set forth in Section 3.1, relying on Indirect Inference and Simulated5

Method of Moments. Matching conditions relate to (i) parameter estimates for the auxiliary6

Vector Autoregressive models in Eq. (17), and (ii) the sample mean and standard deviation of7

y1;t and y2;t. The sample covers monthly data for the period from January 1950 to December8

2006.9

Estimate Std error

�1 0.0231 0.0095

�1 1.0375 0.3784

�1 2.4408�10�4 1.0918�10�4

�1 �1.0005�10�6 0.3374�10�6

�2 0.9025 0.4037

�2 1.0386 0.3962

�2 0.0253 0.0126

�2 �0.0198 0.0084

��1 �0.2995 0.1293

��2 1.3723 0.6423

10
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Table 21

Parameter estimates and block-bootstrap standard errors for stochastic secular growth, the

real stock price and the unobservable factor:

S (t) = G (t)

�
s0 +

3P
i=1
siyi (t)

�
;
dG (t)

G (t)
= gdt+ �GdWG (t) ;

where S (t) is the real stock price, G (t) is stochastic secular growth, WG is a standard Brow-

nian motion, y1 (t) and y2 (t) are the observed gross in
ation and gross industrial production

growth, as de�ned in Table 1, y3 (t) is an unobserved factor, with the following dynamics:

dy3 (t) = �3 (�3 � y3 (t)) dt+
p
�3 + �3y3 (t)dW3 (t) ;

and W3 (t) a standard Brownian motion. The parameter vector to be estimated is2

�> = (g; �G; �3; �3; �3; �3; (�j ; sj)
3
j=0), where the long run mean for the unobservable fac-3

tor, �3, is set equal to one for the purpose of model's identi�cation. Parameter estimates are4

obtained through the second step of the estimation procedure set forth in Section 3.2, relying5

on Indirect Inference and Simulated Method of Moments, with parameters
�
g; �2G

�
estimated6

on the low frequency component of secular growth of the real stock price, extracted through7

the Hodrick-Prescott �lter with smoothing parameter 1600. Matching conditions relate to (i)8

parameter estimates for the auxiliary model for stock returns, Eq. (22), and for the auxiliary9

model for stock volatility, Eq. (23), and (ii) the sample mean and standard deviation of the10

real stock price, the real and return volatility. The sample covers monthly data for the period11

from January 1950 to December 2006.12

Estimate Std error

g 0.0381 0.0171

�2G 0.0012 5.2089�10�4

s0 0.2272 0.1154

s1 �0.8956 0.4426

s2 1.8925 0.8873

s3 �0.0560 0.0292

�3 0.0101 0.0043

�3 1 restricted

�3 1.2009 0.4699

�3 0.0098 0.0106

13
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Table 31

Parameter estimates and block-bootstrap standard errors for the risk-premium parameters2

of the total risk-premium process in Eq. (7):3

�1 (y1 (t)) = �1�1(1) +
�
�1�1(1) + �2(1)

�
y1 (t) (in
ation)

�2 (y2 (t)) = �2�1(2) +
�
�2�1(2) + �2(2)

�
y2 (t) (industrial production)

�3 (y3 (t)) = �3�1(3) +
�
�3�1(3) + �2(3)

�
y3 (t) (unobservable factor)

where y1 (t) and y2 (t) are gross in
ation and gross industrial production growth, as de-4

�ned in Table 1, and y3 (t) is the unobserved factor. The parameter vector is �> =5 �
�1(1); �2(1); �1(2); �2(2); �1(3); �2(3)

�
. Parameter estimates are obtained through the third step6

of the estimation procedure set forth in Section 3.3, relying on Indirect Inference and Sim-7

ulated Method of Moments. Matching conditions relate to (i) parameter estimates for the8

auxiliary model for the VIX index, Eq. (25), and (ii) the sample mean and standard devia-9

tion of the VIX index. The sample covers monthly data for the period from January 1990 to10

December 2006.11

Estimate Std error

In
ation
�1(1)

�2(1)

�2.1533�103

32.0141

0.9683�103

15.5655

Ind. Prod.
�1(2)

�2(2)

5.6760�102

5.5717

2.7643�102

2.7952

Unobs.
�1(3)

�2(3)

0.0019

5.9837�10�4
0.0008

2.9526�10�4

12
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Table 41

Variance decomposition statistics for (i) realized volatility (Panel A) and expected volatility

under the risk-neutral probability (Panel B). Panel A reports averages and standard devi-

ations of the contributions to the total variance, �2 (t) in Eq. (12), made by: (i) the two

macroeconomic factors, gross in
ation, y1 (t), and gross industrial production growth, y2 (t),

as de�ned in Table 1, (ii) the unobserved factor, y3 (t), and (iii) secular growth, de�ned

respectively, as:

Cj (t) �
s2j
�
�j + �jyj (t)

�
�2 (t)

; j = 1; 2; 3; and CG (t) �
�2G
�2 (t)

:

Paths for the contributions Cj (t) and CG (t) are generated by feeding them with the two2

macroeconomic factors y1 (t) and y2 (t) and by averaging over the cross-section of 1000 dy-3

namic simulations of the unobserved factor. The sample covers monthly data for the period4

from January 1950 to December 2006. Panel B reports statistics for the risk-neutral coun-5

terparts to the average paths of Cj (t) and CG (t). The sample covers monthly data for the6

period from January 1990 to December 2006.7

Panel A: Contributions of factors to stock volatility

Averages

1950-2006 1950-1981 1960-1981 1982-2006

Gross in
ation 0.87% 0.92% 0.88% 0.83%

Gross growth 73.47% 71.97% 73.57% 75.10%

Unobserved factor 17.23% 18.10% 17.41% 16.27%

Secular growth 8.43% 9.01% 8.13% 7.78%

Standard deviations

1950-2006 1950-1981 1960-1981 1982-2006

Gross in
ation 0.18% 0.23% 0.12% 0.08%

Gross growth 7.53% 9.65% 5.03% 3.47%

Unobserved factor 3.69% 4.67% 2.46% 1.71%

Secular growth 3.67% 4.75% 2.40% 1.68%
8

Panel B: Contributions of factors to the VIX Index

Averages Standard deviations

Gross in
ation 1.55% 0.03%

Gross growth 86.91% 1.28%

Unobserved factor 8.79% 0.56%

Secular growth 2.75% 0.17%
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Supplemental material: technical appendix1

[Not for publication]2

A. Supplemental material for Section 23

A multifactor model4

The model we consider di�ers from those in Bekaert and Grenadier (2001), Ang and Liu (2004) or Mamaysky5

(2002), for a number of reasons. First, we consider a continuous-time framework, which avoids theoretical challenges6

pointed out by Bekaert and Grenadier (2001). Furthermore, Ang and Liu (2004) consider a discrete-time setting7

in which expected returns are exogenous, while in our model, expected returns are endogenous. Finally, our model8

works di�erently from Mamaysky's because it endogenously determines the price-dividend ratio.9

We consider a multifactor model where a vector-valued process y (t) is solution to a n-dimensional a�ne10

di�usion,11

dy (t) = � (�� y (t)) dt+�V (y (t)) dW (t) ; (29)12

whereW (t) is a d-dimensional Brownian motion (n � d), � is a full rank n� d matrix, and V is a full rank d� d
diagonal matrix with elements,

V (y)(ii) =

q
�i + �

>
i y; i = 1; � � �; d;

for some scalars �i and vectors �i. We assume that the Brownian motion driving secular growth, WG (t) in Eq.13

(4), is uncorrelated with W (t) in Eq. (29). We shall review soon su�cient conditions known to ensure that Eq.14

(29) has a strong solution with V (y (t))(ii) > 0 almost surely for all t.15

The model we estimate, Eq. (1) in Section 2 of the main text, is a special case of Eq. (29), with n = d = 3,
the matrix � given by:

� =

"
�1 ��1 0
��2 �2 0
0 0 �3

#
;

and with � = I3�3 and the vectors �i being such that �j � �jj .16

While one does not necessarily observe every single component of y (t), we do observe discretely sampled17

paths of macroeconomic variables such as industrial production, unemployment or in
ation. Let fMj;tgt=1;2;��� be18

the discretely sampled path of the macroeconomic variable Mj;t where, for example, Mj;t can be the industrial19

production index available for month t, and j = 1; � � �; NM, where NM is the number of observed macroeconomic20

factors. We assume, without loss of generality, that these observed macroeconomic factors are strictly positive, and21

that they are related to the state vector process in Eq. (29) by:22

ln (Mj;t/Mj;t�12) = fj (y (t)) ; j = 1; � � �; NM; (30)23

where the collection of functions ffjg determines how the factors dynamics impinge upon the observed macroeco-24

nomic variables. In terms of the model in the main text, the functions in Eq. (30) are fj (y) � ln yj .25

We now turn to model asset prices. We assume that asset prices are related to the vector of factors y (t) in26

Eq. (29), and that some of these factors a�ect developments in macroeconomic conditions, through Eq. (30). For27

analytical convenience, we rule out that asset prices can feed back the real economy, although we acknowledge that28

the presence of frictions can make capital markets and the macroeconomy intimately related, as in the �nancial29

accelerator hypothesis reviewed by Bernanke, Gertler and Gilchrist (1999), or in the static model analyzed by30

Angeletos, Lorenzoni and Pavan (2008), where feedbacks arise due to asymmetric information and learning between31

agents acting within the real and the �nancial spheres of the economy.32

The Arrow-Debreu density we consider is exactly that in Eq. (5), with the sole exception that the vector
Brownian motion W is the d-dimensional one in Eq. (29). Consider, then, the following \essentially a�ne"
speci�cation for the dynamics of the factors in Eq. (29), and the risk-premiums. Let V � (y) be a d � d diagonal
matrix with elements

V � (y)(ii) =

� 1
V (y)(ii)

if PrfV (y (t))(ii) > 0 all tg = 1
0 otherwise

and set, � (y) = V (y)�1 + V
� (y)�2y, for some d-dimensional vector �1 and some d� n matrix �2.33
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By the de�nition of the dividends in Eq. (2), the stock price follows:1

dS (t)

S (t)
=

�
r � G (t) � (y (t))

S (y (t))

�
dt+

sy (y (t))
>
�V (y (t))

s (y (t))
dŴ (t) + �GdŴG (t) ; (31)2

where Ŵ and ŴG are Brownian motions de�ned under the risk-neutral probability Q. Under regularity conditions3

provided below, and in the absence of bubbles, Eq. (31) implies that the stock price is,4

S (G;y) = E
�Z 1

t

e�r(s�t)G (s) � (y (s)) ds

����G (t) = G;y (t) = y� ; (32)5

where E is the expectation taken under the risk-neutral probability Q.6

We are only left with specifying how the instantaneous dividend relates to the state vector y. Let7

� (y) = �0 + �
>y; (33)8

for some scalar �0 and some vector �.9

We have:10

11

Proposition A1: Let the risk-premiums be as in Eq. (6), and the instantaneous dividend rate be as in Eqs. (2)12

and (33). Then, under a technical regularity condition (condition (38)), we have that: (i) Eq. (32) holds; and (ii)13

the rational stock price function S (G;y) = G � s (y), where s (y) is a�ne in the state vector y, viz14

s (y) =
�0 + �

> (D + (r � g + �G�G) In�n)�1 c
r � g + �G�G

+ �> (D + (r � g + �G�G) In�n)�1 y; (34)15

where

c = ���� ( �1�1(1) � � � �d�1(d) )
>

(35)

D = �+�
h�
�1(1)�

>
1 � � � �1(d)�

>
d

�>
+ I��2

i
; (36)

I� is a d�d diagonal matrix with elements I�(ii) = 1 if PrfV (y (t))(ii) > 0 all tg = 1 and 0 otherwise; and, �nally16

f�1(j)gdj=1 are the components of �1.17

18

Existence of a strong solution to Eq. (29)19

Consider the following conditions: for all i,20

(i) For all y : V (y)(ii) = 0, �
>
i (��y + ��) > 1

2�
>
i ��

>�i21

(ii) For all j, if
�
�>i �

�
j
6= 0, then Vii = Vjj .22

Then, by Du�e and Kan (1996) (unnumbered theorem, p. 388), there exists a unique strong solution to Eq.23

(29) for which V (y (t))(ii) > 0 for all t almost surely.24

We apply these conditions to the di�usion in Eq. (1). Condition (i) collapses to,

For all yi : �i + �iyi = 0; �i
�
�i (�i � yi) + ��i

�
�j � yj

��
>
1

2
�2i ; i 6= j;

with ��3 � 0. That is, ruling out the trivial case �i = 0,25

�i (�i�i + �i) + ��i�i

�
�j +

�j
�j

�
>
1

2
�2i ; i 6= j: (37)26
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Proof of Proposition A11

The technical condition in Proposition A1 is,2

E

"Z T

t





�>�V (y (�))
 + �>y (�)
�� (�)>





2 d�
#
<1; (38)3

for some constants 
 and � in Eq. (47) below.4

We proceed as follows. First, we determine the solution to the stock price, in the absence of secular growth,5

i.e. when6

g = �G � 0: (39)7

Then, we generalize, by elaborating on Eq. (32) of the main text, as in Eq. (48) below.8

When Eq. (39) holds true, de�ne the Arrow-Debreu adjusted asset price process as, s� (t) � e�rt� (t) s (y (t)),9

t > 0. By Itô's lemma, it satis�es,10

ds� (t)

s� (t)
= Dr (y (t)) dt+

�
Q (y (t))

> �� (y (t))>
�
dW (t) ; (40)11

where12

Dr (y) = �r + As (y)
s (y)

�Q (y)>� (y) ;

As (y) = sy (y)
>
� (�� y) + 1

2
Tr
�
[�V (y)] [�V (y)]

>
syy (y)

�
; Q (y)

>
=
sy (y)

>
�V (y)

s (y)
;

and sy and syy denote the gradient and the Hessian of s with respect to y. By absence of arbitrage opportunities,13

for any T <1,14

s� (t) = E

"Z T

t

�� (h) dh

�����F (t)
#
+ E[s� (T ) j F (t)]; (41)15

where �� (t) is the current Arrow-Debreu value of the dividend to be paid o� at time t, viz �� (t) = e�rt� (t) � (t).16

Below, we show that the following transversality condition holds,17

lim
T!1

E[s� (T ) j F (t)] = 0; (42)18

from which Eq. (32) in the main text follows, once we show that
R1
t
E[�� (h)]dh <1.19

Next, by Eq. (41),20

0 =
d

d�
E[s� (�) j F (t)]

����
�=t

+ �� (t) : (43)21

Below, we show that22

E[s� (T ) j F (t)] = s� (t) +
Z T

t

D(y (h)) s� (h) dh: (44)23

Therefore, by the assumptions on �, Eq. (43) can be rearranged to yield the following ordinary di�erential equation,24

For all y, sy (y)
>
(c�Dy) + 1

2
Tr
�
[�V (y)] [�V (y)]

>
syy (y)

�
+ � (y)� rs (y) = 0; (45)25

where c and D are de�ned in the proposition.26

Assume that the price function is a�ne in y,27

s (y) = 
 + �>y; (46)28

for some scalar 
 and some vector �. By plugging this guess back into Eq. (45) we obtain,

For all y, �>c+ �0 � r
 �
h
�> (D + rIn�n)� �>

i
y = 0:
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That is,

�>c+ �0 � r
 = 0 and
h
�> (D + rIn�n)� �>

i
= 01�n:

The solution to this system is,1


 =
�0 + �

>c

r
and �> = �> (D + rIn�n)

�1
: (47)2

We are left to show that Eq. (42) and (44) hold true, when Eq. (39) also holds true.3

As for Eq. (42), we have:

lim
T!1

E[s� (T ) j F (t)] = lim
T!1

E[e�r(T�t)� (T ) s (y (T )) j F (t)]

= 
 lim
T!1

e�r(T�t)E[� (T ) j F (t)] + lim
T!1

e�r(T�t)E[� (T )�>y (T ) j F (t)]

= � (t) lim
T!1

e�r(T�t)E[�>y (T ) j F (t)];

where the second line follows by Eq. (46), and the third line holds because E[� (T ) j F (t)] = 1 for all T , and by a4

change of measure. Eq. (42) follows because y is stationary mean-reverting under the risk-neutral probability.5

To show that Eq. (44) holds, we need to show that the di�usion part of s� in Eq. (40) is a martingale, not
only a local martingale, which it does whenever for all T ,

E

"Z T

t




Q (y (�))> �� (�)>


2 d�# <1;
which is the condition in (38). This ends the proof of Proposition A1, in the case g = �G � 0.6

For the general case of Proposition A1, note that by Eq. (32):

S (G;y)

= G � E
�Z 1

t

e�r(s�t)E
�
G (s)

G
� (y (s)) ds

����G (t) = G�����G (t) = G;y (t) = y�
= G � E

�Z 1

t

e�r(s�t)E
�
e(g�

1
2�

2
G��G�G)(s�t)+�G( ~WG(s)� ~WG(t))

���G (t) = G� � (y (s)) ds����y (t) = y�
= G � E

�Z 1

t

e�(r�g+�G�G)(s�t)� (y (s)) ds

����y (t) = y� ; (48)

where the �rst equality follows by the law of iterated expectations, the second by the independence of G and y,7

and the de�nition of G in Eq. (4) of the main text, and the third from a simple computation. The term in the8

brackets is the same as the RHS of Eq. (32) of the main text, for G (s) � 1, s 2 (t;1). Therefore, the solution for9

the term in the brackets is the same as that provided in the case of absence of secular growth, i.e. when Eq. (39)10

holds true, but with r � g + �G�G replacing r.11

B. Supplemental material for Section 312

Remarks on notation: Hereafter, we let Avar and Acov denote the limits of the variance and covariance operators,13

respectively. Let u be a n� 1 vector, where each element depends on some m� 1 parameter vector �. We de�ne:14

the m� n matrix r�u = @u>

@� ; kuk
p
=
�p
u>u

�p
, for some scalar p > 0; and juj2 = uu>, the outer product of u.15

Finally, for any n�m matrix A, we set jAj =
Pn

i=1

Pm
j=1 jai;j j.16

B.1. Asymptotic theory for the estimators in Section 317

The sets � and � in Sections 3.1 and 3.2 are de�ned as:

� = f� : The inequality in (37) holds, �i > 0; and �i�j � ��i��j > 0; i; j = 1; 2 and i 6= jg ;

and
� = f� : The inequality in (37) holds for i = 3, and �3 > 0g :
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Furthermore, we let �0 and �0 be the solutions to the two limit problems,1

�0 = arg min
�2�0

plim
T!1;�!0






 1H
HX
h=1

'̂T;�;h (�)� ~'T







2

; (49)2

and3

�0 = arg min
�2�0

plim
T!1;�!0






 1H
HX
h=1

#̂T;�;h (�)� ~#T







2

; (50)4

where �0 and �0 are compact sets of � and �, respectively. Finally, we de�ne the limit problem for the estimator5

of the risk-premium parameters,6

�0 = arg min
�2�0

plim
T!1;�!0






 1H
HX
h=1

 ̂T ;�;h(�̂T ; �̂T ;�)� ~ T







2

: (51)7

We are now ready to analyze the asymptotic behavior of these estimators. The following assumption summarizes8

the properties of the data generating mechanism we rely on.9

10

Assumption B1: (i) Conditions (i) and (ii) in Appendix A hold for i = 1; 2; 3; (ii) The sample observations for11

the macroeconomic factors y1(t); y2(t) are generated by Eq. (1) for j = 1; 2; (iii) As for Eq. (1), for i; j = 1; 212

i 6= j; �i�j � ��i��j > 0 and for all i = 1; 2; 3 �i > 0; (iv) The sample observations for the stock market index s(t)13

are generated by Eq. (8); (v) The risk-premium vector � (y) and the dividend vector � (y) are de�ned as in Eqs.14

(7) and (3).15

The estimator of �̂T in Eq. (19)16

We have:17

18

Proposition B1: Under regularity conditions (Assumption B1(i)-(iii) in Appendix B), as T !1 and �
p
T ! 0;

p
T
�
�̂T � �0

�
d�! N(0;V 1) ; V 1 =

�
1 +

1

H

��
D>
1D1

��1
D>
1 J1D1

�
D>
1D1

��1
;

where �0 is as in Eq. (49), and the two matrices, D1 and J1, are de�ned in the proof below.19

20

Proof : By the conditions in Assumptions B1(i) and B1(ii), (y1(t); y2(t)) admits a unique strong solution, and21

has a positive-de�nite covariance matrix with probability one. Assumption B1(iii) ensures that (y1(t); y2(t)) is22

geometrically ergodic and the skeleton (y1;t; y2;t) is geometrically �-mixing. Further, by Glasserman and Kim23

(2010), the stationary distribution of (y1(t); y2(t)) and (y1;t; y2;t) has exponential tails, which ensures that there24

are enough �nite moments for the uniform law of large numbers and the central limit theorem to apply. By25

the same argument, for any � 2 �0, the simulated skeleton (y
�
1;t;�;h; y

�
2;t;�;h) is also geometrically �-mixing,26

with stationary distribution having exponential tails. Finally, given Eq. (1), (y�1;t;�;h; y
�
2;t;�;h) is at least twice27

continuously di�erentiable in any open neighborhood of �0.28

We have that �̂T � �0 = op(1), because of the uniform law of large numbers and unique identi�ability. Next,
by the �rst order conditions and a mean-value expansion around �0,

0 = r�
�
1
H

PH
h=1 '̂T;�;h(�̂T )

�> �
1
H

PH
h=1 '̂T;�;h(�̂T )� ~'T

�
= r�

�
1
H

PH
h=1 '̂T;�;h(�̂T )

�> �
1
H

PH
h=1 '̂T;�;h (�0)� ~'T

�
+r�

�
1
H

PH
h=1 '̂T;�;h(�̂T )

�>
r�
�
1
H

PH
h=1 '̂T;�;h(

��T )
��
�̂T � �0

�
;

where ��T is some convex combination of �̂T and �0. Let

D1 (�0) �D1 = plim r�
�
1
H

PH
h=1 '̂T;�;h (�0)

�
:
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By the uniform law of large numbers, sup�2�0

���r� � 1
H

PH
h=1 '̂T;�;h (�)

�
�D1 (�)

��� = op(1), and as �̂T � �0 =

op(1), r�
�
1
H

PH
h=1 '̂T;�;h(

��T )
�
�D1 = op(1). Hence,

p
T
�
�̂T � �0

�
= �

�
D>
1D1

��1
D>
1

�p
T
�
1
H

PH
h=1 '̂T;�;h (�0)�'0

�
�
p
T (~'T �'0)

�
+ op(1):

Let '̂T;h (�0) be the unfeasible estimator, obtained by simulating continuous paths for yj (t), i.e. y
�0
j;t;h, j = 1; 2.

We claim that for h = 1; � � � ;H, p
T
�
'̂T;�;h (�0)� '̂T;h (�0)

�
= op(1):

Let Y
�0
t;�;h be the vector containing all the regressors in Eq. (18), and let '̂1;T;�;h (�0) be the parameter estimator

of the OLS regression of y
�0
1;t;�;h on Y

�0
t;�;h. We have:

p
T
�
'̂1;T;�;h (�0)� '̂1;T;h (�0)

�
=

 
1

T

TX
t=25

Y
�0
t;hY

�0>
t;h

!�1p
T

 
1

T

TX
t=25

�
Y
�0
t;�;hy

�0
1;t;�;h � Y

�0
t;hy

�0
1;t;h

�!

+
p
T

0@ 1
T

TX
t=25

Y
�0
t;�;hY

�0>
t;�;h

!�1
�
 
1

T

TX
t=25

Y
�0
t;hY

�0>
t;h

!�11A 1
T

TX
t=25

Y
�0
t;�;hy

�0
1;t;�;h

!
: (52)

As for the �rst term on the RHS of (52),
�
1
T

PT
t=25 Y

�0
t;hY

�0>
t;h

��1
= Op(1), and by Theorem 2.3 in Pardoux and

Talay (1985), we have, for " > 0 and
p
T�! 0,

Pr
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����Y �0
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�0
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�0
1;t;h

���� = pTO (�) = o(1):
The second term on the RHS of Eq. (52) can be dealt with similarly. Thus, we have:
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�p
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;

where,
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�p
T
�
1
H
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p
T (~'T �'0)

�
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,
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T (~'T �'0)

�
:

The last term of the RHS of this equality is zero, because the simulated paths are independent of the sample paths.
Moreover, the simulated paths are independent and identically distributed across all simulation replications and,
hence,

Avar
�p
T
�
1
H

PH
h=1 '̂T;h (�0)�'0

��
=
1

H
Avar
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T
�
'̂T;h (�0)�'0

��
, for all h:

Finally, given Assumption B1(ii),

J1 � Avar
�p
T (~'T �'0)

�
= Avar
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�
'̂T;�;h (�0)�'0

��
, for all h,

and so
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�̂T � �0
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=

�
1 +

1

H

��
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��1
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1 J1D1

�
D>
1D1

��1
:

The proposition follows by the central limit theorem for geometrically strong mixing processes.1
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The estimator of �̂T in Eq. (24)1

We have:2

3

Proposition B2: Under regularity conditions (Assumption B1(i)-(iv) in Appendix B), as T !1 and �
p
T ! 0,

p
T
�
�̂T � �0
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d�! N(0;V 2) ; V 2 =
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��1
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��
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H

�
(J2 �K2) + P 2

�
D2

�
D>
2D2

��1
;

where �0 is as in Eq. (50), and the four matrices, D2, J2, K2 and P 2, are de�ned in the proof below.4

5

As discussed in the main text, the matrix P 2 arises due to parameter estimation error, as the stock price6

in Eq. (20), is simulated with parameters � �xed at their estimates, �̂G;T . Moreover, the matrix K2 captures7

the covariance of the structural parameter estimates over all the simulation replications, as well as the covariance8

between actual and simulated paths, thereby resulting in an improved e�ciency, if compared to estimators based9

on unconditional (simulated) inference.10

11

Proof of Proposition B2 : By the same arguments utilized in the proof of Proposition B1,

p
T
�
�̂T � �0

�
= �

�
D>
2D2

��1
D>
2

�p
T
�
1
H

PH
h=1 #̂T;�;h (�0;�G)� #0

�
+C>

2

p
T
�
�̂G;T � �G

�
�
p
T
�
~#T � #0

��
+ op(1);

where for ��G;T 2 (�̂G;T ;�G),
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�
1
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:

Therefore:
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;

where
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�b�G;T � �G� ;pT �~#T � #0�� : (53)

Let #̂T;h (�0;�G) be the infeasible estimator, obtained by simulating continuous paths for the unobservable factor

y3 (t) and for G
�̂G;T (t). By the same arguments as those in the proof of Proposition B1,

Avar
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�
1
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PH
h=1 #̂T;�;h (�0;�G)� #0

��
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��
:

Paths of the model-implied stock price are obtained through the sample paths of the observable factors y1;t and
y2;t. Therefore, simulated paths are not independent across simulations, and are not independent of the actual
sample paths of stock price and volatility. We have:
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where
J2 = Avar
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��
= Avar
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and
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Therefore, using the fact that Avar
�p
T
�
~#T � #0

��
= Avar

�p
T
�
#̂T;1 (�0)� #0

��
= J2, letting P 2 denoting

the sum of the third, fourth and sixth terms in Eq. (53), and exploiting the expression for J0, we obtain:
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and, hence:
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��1
:

Details on the simulations of the VIX index predicted by the model1

We construct a simulated series of length T for the VIX index, at a monthly frequency. Since we do not have
a closed-form formula for the VIX index, we need to resort to numerical methods aiming to approximate it. We
address this issue by simulating the three factors at a daily frequency, which we then use to numerically integrate
the daily volatilities. For each simulation draw h = 1; � � �;H, we initialize each monthly path at the values taken by
the observable macroeconomic factors, i.e. at y1;t, y2;t, t = T�; � � �; T� + T � 1, where T� is the �rst date where the
VIX is available, and at the monthly unconditional mean of the unobservable factor. For i = 1; 2; 3; h = 1; � � �;H;
k = 0; � � �; �̂�1 � 1, let ŷ�

i;t+k�̂;h
be the value of the i-th factor, at time t + k�̂, for the h-th simulation under

the risk-neutral probability, performed with parameter � 2 �0 and remaining parameters �xed at their estimates
obtained in the �rst and second step of our estimation procedure. �̂ will be de�ned in a moment. Simulations are
obtained through a Milstein approximation to the risk-neutral version of Eq. (1),

dyi (t) = [�i (�i � yi (t)) + ��i (��i � �yi (t))� � (yi)] dt+
p
�i + �iyi (t)d ~Wi (t) ; i = 1; 2; 3;

where � (yi) denotes the i-th element of the vector � (y) in Eq. (7), and ~Wi is a standard Brownian motion under2

the risk-neutral probability. We use the discretization step �̂ = �=22, where � is the discretization step used in3

the �rst and the second step of our estimation procedure Given Eqs. (8)-(11), the model-based volatility under the4

risk-neutral measure, at the j-th simulation, is:5

�2
t+k�̂;h

(�̂T ; �̂T ; �̂G;T ;�) = �̂
2
G +

P3
i=1 ŝ

2
i;T

�
�̂i;T + �̂i;T ŷ

�
i;t+k�̂;h

�
~s2
t+k�̂;h

(�̂T ; �̂T ; �̂G;T ;�)
; (54)6

where7

~st+k�̂;h(�̂T ; �̂T ; �̂G;T ;�) = ŝ0;T +
3X
i=1

ŝi;T ŷ
�
i;t+k�̂;h

; (55)8

and �̂G;T and ŝl;T l = 0; � � �; 3 are the standard deviation of stochastic secular growth and the reduced-form9

parameters obtained in the second step of the estimation procedure. Finally, we compute the simulated value of10

the model-based VIX, VIXt;�̂;h(�̂T ; �̂T ;�), by integrating volatility over each month, as follows:11

VIXt;�̂;h(�̂T ; �̂T ; �̂G;T ;�) =

vuut 1

�̂

�̂�1�1X
k=0

�2
t+(k+1)�̂;h

(�̂T ; �̂T ; �̂G;T ;�): (56)12

By repeating the same procedure outlined above H times, we can then generate H paths of length T . From now13

on, we simplify notation and index all parameter estimators and simulated factors by �, rather than �̂.14
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The estimator of �̂T in Eq. (26)1

We have:2

3

Proposition B3: Under regularity conditions (Assumption B1 in Appendix B), if for some � 2 (0; 1), T; T ;
�
p
T ! 0, �T !1; and T =T ! �, then:
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;

where �0 is as in Eq. (51), and the four matrices, D3, J3, K3 and P 3, are de�ned in the proof below.4

5

Proof : Given Assumptions B1(i) and B1(iii), for any � in a compact set �0, y
�
i;t+(k+1)�;h, i = 1; 2; 3, h =6

1; � � �;H, is geometrically �-mixing, and has a stationary distribution with exponential tails. Thus, by Eqs.7

(54), (55) and (56), VIXt;�;h (�0;�0; �G;�0) is also geometrically �-mixing with exponential tails. Therefore,8

VIXt;�;h (�0;�0; �G;�0) has enough �nite moments to satisfy su�cient conditions for the law of large numbers9

and the central limit theorem to apply. Next, note that VIXt;�;h (�;�; �G;�) is continuously di�erentiable in the10

interior of �0��0��G��0 (for some compact set �G) and, hence, the uniform law of large numbers also applies.11

Similarly as in the proof of Propositions B2, we take into account the contribution of parameter estimation error,12

arising because the risk-neutral paths of the factors are generated using �̂T ,�̂T and �̂G;T , instead of the unknown13

�0, �0 and �G.14

By an argument similar to that in the proof of Proposition B1,
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and along the same lines as those in the proof of Proposition B2,
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where � = limT;T!1 T =T , and, with ��T ,��T and ��G;T denoting convex combinations of (�̂T ;�0), (�̂T ;�0) and
(�̂G;T ; �G), respectively,
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with F>
�0
and F>

�G de�ned analogously. Therefore, by the same argument as those in the proofs of Propositions
B1 and B2,
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and
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B.2. Bootstrap estimates of the standard errors1

We develop bootstrap standard errors consistent for V 1, V 2, and V 3 of Propositions B1, B2, and B3. We
draw B overlapping blocks of length l, with T = Bl, of

Xt = (y1;t; � � �; y1;t�k1 ; y2;t; � � �; y2;t�k2;St; � � �; St�k3);

where k1; k2; k3 depend on the lags we use in the auxiliary models. The resampled observations are:

X�
t = (y

�
1;t; � � �; y�1;t�k1 ; y

�
2;t; � � �; y�2;t�k2;S

�
t ; � � �; S�t�k3):

Let P � be the probability measure governing the resampled series, X�
t , and let E

�; var� denote the mean and the2

variance taken with respect to P �, respectively. Further O�p(1) and o
�
p(1) denote, respectively, a term bounded in3

probability, and converging to zero in probability, under P �, conditional on the sample and for all samples but a4

set of probability measure approaching zero.5

For the implementation, we use block sizes of approximately T 1=4 and T 1=3 (see Lahiri (2003)), which give6

similar results. The standard errors reported in the main text are based on block sizes of approximately T 1=4.7

(Note: Whilst S�t does not not necessarily mimic the dependence of St, we just use S
�
t to compute R

�
t and Vol

�
t ,8

which indeed mimic the dependence of Rt and Volt.)9

Bootstrap Standard Errors for �10

The simulated samples for y1;t and y2;t are independent of the actual samples and are also independent across11

simulation replications. Also, as stated in Proposition B1, the estimators of the auxiliary model parameters, based12

on actual and simulated samples, have the same asymptotic variance. Hence, there is no need to resample the13

simulated series.14

Given that the number of auxiliary model parameters and moment conditions is larger than the number of15

parameters to be estimated, we need to use an appropriate re-centering term. In the over-identi�ed case, even if16

the population moment conditions have mean zero, the bootstrap moment conditions do not have mean zero, and17

a hence proper re-centering term is necessary (see, e.g., Hall and Horowitz (1996)).18

Let ~'�T;i be the bootstrap analog to ~'T at draw i, and de�ne:
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�
T;i = arg min

�2�0
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; i = 1; � � �; B:

We compute the bootstrap covariance matrix, as follows:

V̂ 1;T;B =
T

B

BX
i=1

������̂�T;i � 1

B

BX
i=1

�̂
�
T;i

�����
2

:

The next proposition shows that
�
1 + 1

H

�
V̂ 1;T;B , is a consistent estimator of V 1, thereby allowing to compute19

asymptotically valid bootstrap standard errors.20
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Proposition B4: Under the same assumptions of Proposition B1, if l=T 1=2 ! 0 as T;B; l ! 1, then for all
" > 0,
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The Proposition follows, once we show that:1
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Given (59), the statement follows by Theorem 1 in Goncalves and White (2005).6

Let us show (57), (58) and (59). We have,
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counterpart. By the �rst order conditions,

p
T
�
~'�1;T � ~'1;T

�
=

 
1

T

TX
t=25

Y �
tY

�>
t

!�1
1p
T

TX
t=25

Y �
t

�
y�1;t � Y �>

t ~'1;T

�
=
�
E(Y tY

>
t )
��1 1p

T

TX
t=25

Y �
t

�
y�1;t � Y �>

t ~'1;T

�
+ o�p(1);



Macroeconomic Determinants of Stock Market Volatility and Volatility Risk-Premiums 52

as 1
T

PT
t=25 Y

�
tY

�>
t � E�

�
1
T

PT
t=25 Y

�
tY

�>
t

�
= o�p(1), and E

�
�
1
T

PT
t=25 Y

�
tY

�>
t

�
= 1

T

PT
t=25 Y tY

>
t + Op(l=T ) =

E
�
Y tY

>
t

�
+ op(1). We have,

E�
�p
T
�
~'�1;T � ~'1;T

��
= E(Y tY

>
t )
1

T

TX
t=25

Y t

�
y1;t � Y >

t ~'1;T

�
+Op(l=

p
T ) = op(1):

This proves (57). Next,1

var�
�p
T
�
~'�1;T � ~'1;T

��
=

�
E�(Y �

tY
�>
t )
��1

var�

 
1

T

TX
t=25

Y �
t

�
y�1;t � Y �>

t ~'1;T

�!�
E�(Y �

tY
�>
t )
��1

+ op(1)

=
�
E(Y tY

>
t )
��10@ 1

T

lX
j=�l

T�lX
t=25+l

Y tY
>
t�j~�1;t~�1;t�j

1A�E(Y tY
>
t )
��1

+ op(1)

= Avar
�p
T
�
~'1;T �'1;0

��
+ op(1);

where ~�1;t = y1;t�Y >
t ~'1;T : This proves (58). Finally, as

1
T

PT
t=25 Y tY

>
t is full rank, for a generic constant C, and

" > 0,

E�
��p

T


~'�1;T � ~'1;T

�2+"� � CE�






 1p
T

TX
t=25

Y �>
t

�
y�1;t � Y �>

t ~'1;T

�





2+"

:

By Lemma 2.1 in Goncalves and White (2005), E

�
E�



 1p

T

PT
t=25 Y

�>
t

�
y�1;t � Y �>

t ~'1;T

�


2+"� = O(1). Hence,2

(59) follows by Markov inequality.3

Bootstrap Standard Errors for �4

The model-based stock price series is simulated using the actual samples of the observable factors, and simulated

samples for the unobservable factor and secular growth, lnG
�̂G;T
t;�;h. Thus, we need to take into account the contri-

bution of K2, the covariance between simulated and sample paths, as well as the contribution of
p
T
�
�̂G;T � �G

�
.

To construct the resampled simulated stock prices through Eq. (20), we need to resample secular growth, lnG�Gt;�;h

through �̂
�
G;T , the boostrap analog to �̂G;T . As secular growth is a geometric Brownian motion, we cannot use

the block bootstrap to obtain �̂
�
G;T . Instead, we rely on the residual-based bootstrap of Paparoditis and Politis

(2003). Let �̂t =
�
lnGt � lnGt�1 � ĝT + 1

2 �̂
2
G;T

�
=�̂G;T , where Gt is the secular growth, extracted through the

Hodrick-Prescott �lter, as discussed in the main text. Resample from �̂t � 1
T

PT
t=1 �̂t, to obtain �̂

�
1; � � � ; �̂�T . Next,

de�ne

lnG�t =

�
lnG1, for t = 1

lnG�t�1 + ĝT � 1
2 �̂

2
G;T + �̂G;T �̂

�
1, for t = 2; � � � ; T

Use lnG�t to get the bootstrap estimator, �̂
�
G;T =

�
ĝ�T ; �̂

�
G;T

�
. Use Eq. (4), to generate lnG

�̂
�
G;T

t;�;h, and resample5

blocks from it, to obtain lnG
��̂�G;T
t;�;h . Construct the resampled simulated stock price series as:6

lnS��t;�;h(�̂
�
G;T ) = lnG

��̂�G;T
t;�;h + ln

�
s0 + s1y

�
1;t + s2y

�
2;t + Z

�u;�
t;�;h

�
; (60)7

where Z�u;�t;�;h is resampled from the simulated unobservable process Z�ut;�;h, and use S
��
t;�;h(�̂

�
G;T ) to construct

R�t;�;h(�; �̂
�
G;T ) and Vol

�
t;�;h(�; �̂

�
G;T ). De�ne,

~#
�
T =

�
~#
�
1;T ; ~#

�
2;T ; �R

�;Vol
��>

;
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where ~#
�
1;T ; ~#

�
2;T are the estimators of the auxiliary models obtained using resampled observations, and R

�
, Vol

�
are

the sample means of R�t = ln(S
�
t =S

�
t�12) and Vol

�
t =

p
6� � 112

P12
i=1

��ln �S�t+1�i=S�t�i���, with S�t being the resampled
series of the observable stock price process St, and

#̂
�
T;�;h(�; �̂

�
G;T ) =

�
#̂
�
1;T;�;h(�; �̂

�
G;T ); #̂

�
2;T;�;h(�; �̂

�
G;T ); �R

�
�;h(�; �̂

�
G;T );Vol

�
�;h(�; �̂

�
G;T )

�>
;

where #̂
�
1;T;�;h(�; �̂

�
G;T ) and #̂

�
2;T;�;h(�; �̂

�
G;T ) are the parameters of the auxiliary models estimated using resam-

pled simulated observations, and R
�
�;h(�; �̂

�
G;T ), Vol

�
�;h(�; �̂

�
G;T ) are the sample means of R

�
t;�;h(�; �̂

�
G;T ) and

Vol�t;�;h(�; �̂
�
G;T ). De�ne:

�̂
�
T;i = arg min

�2�0






 1H
HX
h=1

�
#̂
�
T;�;h;i(�; �̂

�
G;T;i)� #̂

�

T;h(�̂T ; �̂G;T;i)
�
�
�
~#
�
T;i � ~#T

�





2

; i = 1; � � �; B;

where #̂
�
T;�;h;i(�; �̂

�
G;T;i) and ~#

�
T;i denote the values of #̂

�
T;�;h

�
�; �̂

�
G;T;i

�
and ~#

�
T at the i-th bootstrap replication.

The bootstrap covariance matrix is:

V̂ 2;T;B =
T

B

BX
i=1

������̂�T;i � 1

B

BX
i=1

�̂
�
T;i

�����
2

:

The next proposition shows that V̂ 2;T;B is a consistent estimator of V 2, and can then be used to obtain1

asymptotically valid bootstrap standard errors.2

Proposition B5: Under the same assumptions of Proposition B2, if l=T 1=2 ! 0 as T;B; l ! 1, then, for all
" > 0,

Pr
�
! : P �

����V̂ 2;T;B � V 2

��� > "��! 0:

Proof: By a similar argument as that in the proof of Proposition B4,

p
T
�
�̂
�
T � �̂T

�
= �

�
D>
2D2

��1
D>
2

p
T
�
1
H

PH
h=1

�
#̂
�
T;�;h(�̂T ; �̂

�
G;T )� #̂T;�;h(�̂T ; �̂G;T )

�
�
�
~#
�
T � ~#T

��
+ op�(1)

= �
�
D>
2D2

��1
D>
2

�p
T
�
1
H

PH
h=1

�
#̂
�
T;�;h(�̂T ; �̂G;T )� #̂T;�;h(�̂T ; �̂G;T )

�
�
�
~#
�
T � ~#T

��
+C>

2

p
T
�
�̂
�
G;T � �̂G;T

��
+ op�(1):

Moreover, along the lines of the proof of Proposition B4, we can show that

E�
�p
T
�
�̂
�
T � �̂T

��
= op�(1);

and:3

Var�
�p
T
�
�̂
�
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��
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�
D>
2D2

��1
D>
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�
��p

T 1
H
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�
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�
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p
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�
+C>

2

p
T
�
�̂
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��
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�
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2D2

��1
+ op(1)
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��1
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��p
T 1
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+C>
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p
T
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��
D2

�
D>
2D2

��1
+ op(1):

Hence, Var�
�p
T
�
�̂
�
T � �̂T

��
= Avar

�p
T
�
�̂T � �0

��
+ op(1).4
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Finally, under the parameter restrictions in Assumptions B1(i) and B1(iii), Minkowski's inequality ensures that

E�
��p

T



�̂�T � �̂T


�2+"� = Op(1):

The statement then follows from Theorem 1 in Goncalves and White (2005).1

Bootstrap Standard Errors for �2

As mentioned in the main text, the model free VIX index series is available only from 1990 and so in the third
step we have a sample of length T , instead of length T . Thus, we need to resample y1;t; y2;t; St and VIXt from
the shorter sample, using blocksize l and number of blocks B, so that lB = T . Also, we need to resample the
unobservable factor from a sample of length T , at the parameter estimate of �u obtained in the previous step,
ŷ�u3;t;�;h say. Let VIX

�
t;�;h(y

�
t ; �̂

�
T ; �̂

�
T ; �̂

�
G;T ;�) be the resampled model-based VIX, according to Eq. (55). Finally,

let
~ 
�
T =

�
~ 
�
1;T ;VIX

�
; �̂�VIX

�>
;

where ~ 
�
1;T is the parameter vector for the auxiliary model, estimated using y

�
1;t; y

�
2;t, and VIX

�
t , with VIX

�
t being3

the resampled series of the model-free VIX, and VIX
�
; �̂�VIX are the sample mean and standard deviation of VIX

�
t ,4

and:5

 ̂
�
T ;�;h(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�)

=
�
 ̂
�
1;T ;�;h(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�);VIX

�
�;h(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�); ~�

�
�;h;VIX(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�)

�>
;

where  ̂
�
1;T ;�;h(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�) is the parameter vector for the auxiliary model, estimated using y

�
1;t, y

�
2;t, and

VIX
�
�;h(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�) and ~���;h;VIX(�̂

�
T ; �̂

�
T ; �̂

�
G;T ;�) are the sample mean and standard deviation of

VIX�t;�;h(�̂
�
T ; �̂

�
T ; �̂

�
G;T ;�). De�ne,

�̂
�
T = arg min

�2�0
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�
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�
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2

:

Construct the bootstrap covariance matrix, as

V̂ 3;T ;B =
T
B

BX
i=1

������̂�T ;i � 1

B

BX
i=1

�̂
�
T ;i

�����
2

;

where �̂
�
T ;i denotes the value of �̂

�
T at the i-th bootstrap replication.6

The next proposition is the counterpart to Propositions B4 and B5. It shows that V̂ 3;T ;B is a consistent7

estimator of V 3, and can then provide asymptotically valid bootstrap standard errors.8

9

Proposition B6: Under the same assumptions of Proposition B3, if l=T 1=2 ! 0 as T; T ; B; l!1, then, for all
" > 0,

Pr
�
! : P �

����V̂ 3;T ;B � V 3

��� > "��! 0:

Proof: Follows by arguments nearly identical to those in the proof of Proposition B5.10
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