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Abstract

This paper provides a nonparametric testing procedure for continuous time
volatility models, under minimal assumptions. In particular, apart from
standard regularity conditions, no assumptions are made on the functional
forms of either the drift or the variance term. Our test is constructed by
comparing two estimators of integrated volatility: one is a kernel estimator of
the instantaneous variance, averaged over the sample realization; the other is
a localized version of realized volatility. Under the hypothesis of the class of
endogenous volatility model, the test statistic has a standard normal limiting
distribution, while under the alternative hypothesis of stochastic volatility
it diverges at an appropriate rate. The findings from a Monte Carlo study
indicate that the suggested tests have good finite sample properties.
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1 Introduction

Continuous time diffusion models are nowadays an accepted paradigm in finance.

Since the introduction of the simple homoskedastic diffusion:

dXt = µdt+ σdWt (1)

in the 1970s through the work of Merton, they have been an extremely popular

choice to characterize the behaviour of financial assets and have formed the basic

infrastructure for pricing contingent claims.

A lot of work has been done in the past twenty years in order to make more

realistic and empirically plausible assumptions on the data generating process.

Particular attention has been put on the volatility coefficient σ, which is a key

input in any derivative pricing formula and is of crucial importance in financial

risk management.

The first important departure from the basic diffusion described in (1) has been

the introduction of time varying volatility models; this has been accomplished by

modeling volatility as a known measurable function of the underlying asset. No-

table examples are the popular models by Cox, Ingersoll and Ross (1985) and Black,

Derman and Toy (1990). In the paper, we refer to this class as either endogenous

volatility or one factor models, since there is only one source of randomness driving

the underlying variable.

A second strand of literature has treated volatility as an additional state vari-

able (albeit latent), driven by random shocks which can be correlated with those

driving the asset. These models, labeled stochastic volatility models, have been

introduced by Hull and White (1987); further important contributions to this

literature include Stein and Stein (1991) and Heston (1993). More recently, an

interesting literature has used stochastic volatility models to study the variation

of the yield curve and of the stock market as a function of multiple macroeco-

nomic and unobservable factors. See, for example, the work by Ang and Piazzesi

(2003), Piazzesi (2005), Bibkov and Chernov (2006), Buraschi and Jiltsov (2006)

and Corradi, Distaso and Mele (2009).

Overall, the correct choice between the class of one factor models and of stochas-

tic volatility models is important for the pricing of derivative securities. In fact,

when there is only one source of randomness driving the traded asset, derivative

securities can be priced by no arbitrage, via a pure replication argument, without

the need to specify the behavior of the risk premium. However, in the presence
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of stochastic volatility, one needs to specify a risk premium, in order to recover a

pricing function.

This paper provides a testing procedure which allows to discriminate between

the classes of one factor and stochastic volatility models, under minimal assump-

tions. Apart from standard regularity conditions, no assumptions are made on the

functional forms of either the drift or the diffusion term. Being able to choose

between classes of models, our testing procedure is nonparametric in nature.

We derive our testing procedure by comparing two estimators of the spot volatil-

ity of the underlying asset. One is a kernel estimator of the instantaneous variance,

the other is a localized version of realized volatility. Under the null hypothesis of a

one factor model, both estimators are consistent. Under the alternative hypothe-

sis, the kernel type estimator is not consistent, while realized volatility retains the

consistency property. We show that the test statistic converges to a standard nor-

mal distribution under the null hypothesis and diverges under the alternative. The

derived asymptotic theory is based on both the time interval between successive

observations approaching zero, and the time span increasing. Because the limiting

distribution of the statistic is standard normal, our test is very easy to implement.

Tests for the null hypothesis of one factor models have been already suggested

in the financial literature. In fact, one factor models have three important impli-

cations for options: (i) monotonicity. Call (put) option prices are monotonically

increasing (decreasing) in the price of the underlying asset; (ii) perfect correla-

tion. As there is only one Brownian motion driving the behaviour of the asset

price, option prices are perfectly correlated with the underlying asset prices; (iii)

redundancy. Option payoffs can be perfectly replicated with the risk free asset

and the underlying asset, and so are redundant securities. Bakshi, Cao and Chen

(2000) have derived testable implications of the monotonicity and perfect corre-

lation properties, while Buraschi and Jackwerth (2001) have suggested a test for

redundancy.

However, there are important differences between the hypotheses tested in the

two papers mentioned above and our procedure.

First, as Bergman, Grundy and Wiener (1996) pointed out, there are coun-

terexamples to the monotonicity and redundancy properties. Second, in the papers

cited above, the construction of the tests requires the use of option data. There-

fore, one has to choose both the moneyness and the maturity of the options, and

the outcome of the test may be rather sensitive to that. On the contrary, the test
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suggested here simply requires the availability of high frequency observations on

the price of the underlying asset. We believe this is an important advantage of our

procedure.

The rest of this paper is organized as follows. In Section 2, the testing procedure

is outlined and the relevant limit theory is derived. Section 3 reports the findings

from a Monte Carlo exercise, in order to assess the finite sample behavior of the

proposed tests. Concluding remarks are given in Section 4. All the proofs are

gathered in the Appendix.

In the paper,
d−→ denotes convergence in in distribution. We write 1{·} for the

indicator function, ⌊ϖ⌋ for the integer part of ϖ and N (·, ·) to indicate a normal

distribution.

2 The testing procedure

We consider the following class of endogenous volatility models:

dXt = µ(Xt)dt+ σtdWt

σ2
t = σ2 (Xt) (2)

and the following class of stochastic volatility models:

dXt = µtdt+ σtdWt

σ2
t = σ2 (Vt) ,

where Vt is a diffusion process not perfectly correlated with Xt, so that possible

leverage effects are allowed.

We state the hypotheses of interest as:

H0 : σ
2
t = σ2 (Xt) ∈ FX

t a.s.,

versus the alternative:

HA : σ2
t = σ2(Vt) /∈ FX

t −measurable, a.s.,

where FX
t = σ(Xs, s ≤ t). Under the null hypothesis, the volatility process is

a measurable function of the observable Xt. Under the alternative, the volatility

process is a measurable function of Vt, hence is not FX
t -measurable. The derivation

of the limiting distribution relies on the notion of local time for homogeneous
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univariate diffusions. In this sense, we require the drift to be FX
t -measurable.

The test is constructed for discriminating between classes of models for financial

volatility and, because the contribution of the drift term is asympotically negligible,

has no power against the case of a drift depending on some latent factor, provided

it satisfies the Lipschitz conditions stated in A1.

We have a sample of n observations on the underlying process, i.e. we observe

Xj∆n,T
, j = 1, . . . , n, and ∆n,T = T/n. We assume that, as n → ∞, the time

span T increases and the discrete interval ∆n,T decreases, i.e. we consider both

long-span and in-fill asymptotics. Define the following estimators:

σ̂2
n,T (Xt) =

1
nξn,T

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)
∆−1

n,T

(
X(j+1)∆n,T

−Xj∆n,T

)2
1

nξn,T

∑n−1
i=1 K

(
Xt−Xi∆n,T

ξn,T

) , (3)

and:

σ̃2
n,T,t =

⌊T−γ∆−1
n,T ⌋−1∑

j=0

T γ
(
Xt+(j+1)∆n,T

−Xt+j∆n,T

)2
.

Here, σ̂2
n,T (Xt) is a nonparametric estimator of the volatility process evaluated at

Xt. Florens-Zmirou (1993) has established consistency and the asymptotic distri-

bution of a scaled version of (3) when the variance process follows (2), for the case

of a uniform kernel function. σ̂2
n,T (Xt) has been used by Bandi and Phillips (2003,

2007), in the context of fully nonparametric and parametric estimation of diffusion

processes, respectively. The estimator σ̃2
n,T,t averages ⌊T−γ∆−1

n,T ⌋− 1 squared price

differences in a local neighborhood of t, determined by the localizing factor T−γ. It

can be interpreted as a localized version of the usual realized volatility estimator.

Our test statistic is based on the difference:

Zn,T =
√

T/2

 2

T

T/2∑
t=1

(
σ̂2
n,T (Xt)

)2
It −

2

T

T∑
t=T/2+1

(
σ̃2
n,T,t

)2
It

 ,

where It = 1{Xt∈B} and B is a bounded set in R.
The statistic is based on the scaled difference between the average of the squared

kernel estimator and the average of the squared localized realized volatility. Under

the null hypothesis, σ̂2
n,T (Xt) = σ2(Xt) + op(1) and σ̃2

n,T,t = σ2(Xt) + op(1), where

the op(1) holds uniformly in t. Thus, we split the sample to avoid the degeneracy

of the statistic. In principle we can split the sample into ⌊Tr⌋ and T − ⌊Tr⌋
observations, based on a generic fraction of the data r. However, because the

limiting distribution does not depend on r, the most natural choice is to split
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the sample into halves. The reason why we are averaging only over Xt ∈ B, is

that we need to control the denominator in the construction of σ̂2
n,T (Xt). Basically,

this is the usual trimming device used when averaging nonparametric estimators

of conditional moments. Under the alternative, σ̃2
n,T,t is consistent for σ2

t , while

σ̂2
n,T (Xt) is not. However, while for any given Xt, we have a non vanishing bias, by

averaging over the evaluation points the bias becomes negligible. This is why we

base the statistic on the difference between
(
σ̂2
n,T (Xt)

)2
and

(
σ̃2
n,T,t

)2
, rather than

on the difference between σ̂2
n,T (Xt) and σ̃2

n,T,t. Next, we define the scaling factor:

V̂n,T (4)

=
2

T

lT∑
τ=−lT

T/2−lT∑
t=lT+1

ωτ

(σ̂2
n,T (Xt)

)2
It −

2

T

T/2∑
t=1

(
σ̂2
n,T (Xt)

)2
It


×

(σ̂2
n,T (Xt−τ )

)2
It−τ −

2

T

T/2∑
t=1

(
σ̂2
n,T (Xt)

)2
It


+
2

T

lT∑
τ=−lT

T−T/2−lT∑
t=T/2+lT+1

ωτ

(σ̃2
n,T,t

)2
It −

2

T

T∑
t=T/2+1

(
σ̃2
n,T,t

)2
It


×

(σ̃2
n,T,t−τ

)2
It−τ −

2

T

T∑
t=T/2+1

(
σ̃2
n,T,t

)2
It


− 4

T

T/2∑
t=T/2−lT+1

T/2+lT∑
s=T/2+1

ωt,s

(σ̂2
n,T (Xt)

)2
It −

2

T

T/2∑
t=1

(
σ̂2
n,T (Xt)

)2
It


×

(σ̃2
n,T,s

)2
Is −

2

T

T∑
t=T/2+1

(
σ̃2
n,T,t

)2
It

 ,

where ωτ = 1− τ/(lT − 1), ωt,s = 1− (s− t)/(lT − 1). Note the variance estimator

in (4) is composed of three pieces. The first two terms are HAC estimators of the

variances of 1√
T/2

∑T/2
t=1

(
σ̂2
n,T (Xt)

)2
It and

1√
T/2

∑T
t=T/2+1

(
σ̃2
n,T,t

)2
It, respectively,

while the third term is an estimator of the covariance between the two. Given

the memory conditions in A2 and in A5, the covariance between the two terms is

asymptotically negligible. Nevertheless, the inclusion of the covariance estimator

may improve the finite sample performance of the statistic. Under the null, the first

two terms converge to the same probability limit, as they are both consistent for the

“true” variance. Under the alternative, the first term in (4) is no longer a consistent

estimator of the true variance, but nevertheless it is bounded in probability, thus

ensuring the proper divergence of the statistic.
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Finally, the test statistic is just a scaled version of Zn,T , namely:

Ẑn,T = V̂
−1/2
n,T Zn,T .

Before stating our main result, we need the following assumptions.

Assumption A1:

(i) µ(.) and σ(.) are time-homogeneous, at least twice continuously differentiable.

and satisfy local Lipschitz and growth conditions. Thus, for every compact subset

B of the range of the process, there exist constants CB
1 and CB

2 so that, for all x

and y in B:

|µ(x)− µ(y)|+ |σ(x)− σ(y)| ≤ CB
1 |x− y|,

and:

|µ(x)|+ |σ(x)| ≤ CB
2 {1 + |x|}.

(ii) σ2(.) > 0 on D.

Assumption A2:

(i) Tξn,T log (T−1) → ∞, (ii)
√
Tξ2n,T → 0, (iii) T 2n−1 log n → 0, (iv) n−1ξ−2

n,TT log(n) →
0, (v) T γ∆n,T → 0, (vi) T 1−γ log(T γ) → 0, (vii) lT = o(T 1/2).

Assumption A3:

(i)Xt is strictly stationary, geometrically strong mixing, (ii) the stationary density

of Xt (denoted by f) is ultimately decreasing (i.e. limu→∞ |u| f(u) = 0), (iii)

supt∈[0,T ] |Xt| is measurable for each T, (iv) E
(
supt∈[0,1] |Xt|a

)
< ∞, for a > 0, (v)

f(x) ≥ ε > 0, for all x ∈ B.

Assumption A4:

The kernel function K(·) is a second-order, symmetric and nonnegative function

with bounded support, continuously differentiable in the interior of its support,

with bounded first derivative, which satisfies
∫∞
−∞K(u)du = 1.

Assumption A5:

(i) Vt is a strictly stationary ergodic process, geometrically strong mixing, (ii)

E
(
(σ2 (Vt))

2k
)
< ∞ and E

(
(σ2′ (Vt))

2k
)
< ∞, with k > 1/δ and δ < 1/2, (iii)

n−1ξ−2
n,TT

1+2δ → 0, (iv) T 2(1+δ)n−1 log n → 0, (v) T 1+δ−γ log(T γ+δ) → 0.

Assumptions 1 ensures the existence of a unique strong solution under both

hypotheses (see e.g. Karatzas and Shreve, 1991, Chapter 5). These assumptions

are standard in the literature (see Aı̈t-Sahalia, 1996), because global Lipschitz

and growth conditions fail to be met by a lot of models of interest in financial

applications.
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Assumption A2 states rates conditions sufficient for asymptotic normality un-

der the null. Assumption A5(iii)-(v) are a strengthened version of A2(iv),(iii),(v)

respectively, required under the alternative. Such a strengthening is due to the

fact that under the alternative σ2
t It is not necessarily bounded. Overall, we need

to jointly control three sequences, the discrete interval ∆N,T , the time span T

and the bandwidth ξn,T . It is natural to define ξn,T as a function of both ∆n,T

and T. Then, it is immediate to note that all rate condition, but A2(i), are satis-

fied provided n grows faster enough with respect to T. On the other hand, A2(i)

requires that T grows sufficiently fast with respect to n. For example, if we set

ξn,T = ∆
1/5
n,TT

−1/5, then all rate conditions in A2 and A5 are satisfied provided

T 5/n → ∞ and max
{
T 1+γ/n, T 2(1+δ)/n

}
→ 0, where γ > 1 + δ and δ < 1/2.

Assumption A3 impose memory and regularity conditions onXt, while A5(i)(ii)

imposes memory and moment conditions on σ2
t , under the alternative of stochastic

volatility. Finally, A4 states standard conditions on the kernel function.

We have the following result.

Theorem 1.

(i) Let A1-A4 hold. Then, under H0:

Z̃n,T
d−→ N(0, 1).

(ii) Let Let A1-A5 hold. Then, under HA, there exists ϵ, ε > 0, such that:

Pr
(
T 1/2−ϵ

∣∣∣Z̃n,T

∣∣∣ > ε
)
→ 1.

It is immediate to see that under the null, the statistic converges to a standard

normal, while under the alternative it diverges at rate
√
T . Hence, the test provides

a simple way of discriminating between one factor and stochastic volatility classes

of models.

3 Monte Carlo results

In this section, the small sample performance of the testing procedure proposed

in the previous section is assessed through a Monte-Carlo experiment. Under the

null hypothesis, we consider a data generating process process given by the Cox,

Ingersoll and Ross (1985) model:

dXt = κ(µ−Xt)dt+ η
√

XtdW1,t. (5)
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We simulate a discretized version of the continuous trajectory of Xt under (5). We

use a Milstein scheme in order to approximate the trajectory, following Pardoux

and Talay (1985). The initial value is fixed to the unconditional mean of Xt, and

the first 1000 observations are then discarded. The process is executed for for

κ = 0.2, η = .01, µ = 0.05, ensuring positivity of the process, and is repeated for

S = 10, 000 replications.

We consider T ∈ (200, 300, 400) and n ≈ T b, b ∈ (2.5, 2.75, 3). We set the

bandwidth parameters for the kernel estimator ξn,T = (4/3)1/5SD(Xs)n
−1/5 (where

SD(·) is standard deviation and Xs is the path obtained at the s-th simulation),

and for the variance estimator of our test statistic lT = (T/2)1/3. Finally, we

set γ = 1.25 and choose It such that we discard those estimators for which Xt

lies either in the lower 10% (resp. 5%) tail or in the upper 10% (resp. 5%) tail

distribution.

The empirical sizes of the test are reported in Table 1, columns 2 to 5. Inspec-

tion of the Table reveals an overall good small sample behaviour of the considered

test statistics. The reported empirical sizes are everywhere very close to the nomi-

nal ones, with the exception of the case where n ≈ T 2.5, which leads to substantial

over-rejection. Therefore, because of the implied size distortion, we do not report

those results.

Trimming plays an important role for the size of the test. In fact, in the

absence of trimming the statistic becomes highly oversized, mainly because we

fail to control the denominator in σ̂2
n,T (Xt). Nevertheless, a too “heavy” trimming

further reduces the effective sample size. From Table 1, it appears that by simply

trimming the smallest and largest 5% of observations we have a size very close to

the nominal one, even for very sample samples. Not surprisingly, for a given T , a

smaller discrete interval, as implied by a larger n, has a slight positive effect on

size. In fact, the smaller the interval, the faster the estimation error vanishes.

Under the alternative hypothesis, the following model has been considered,

dXt = κ(µ−Xt)dt+ exp
(
β0 + β1σ

2
t

) (√
1− ρ2dW1,t + ρdW2,t

)
dσ2

t = κ1σ
2
t dt+ dW2,t. (6)

A discretized version of (6) has been simulated using a Milstein scheme as above,

with κ1 = −0.1, β0 = 0, β1 = 0.125. Then, using the obtained values of σ2
t , the

series for Xt has been generated for different values of ρ. Notice that we keep the

values of the drift used to generate the observable Xt equal under both hypotheses,
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hence the difference is only about how volatility is generated.

The results are reported in Table 2. The experiment reveals that the proposed

test has overall good power properties. Note that the power is driven by the bias

term in (A.9), which makes the statistic diverge at rate
√
T/2. On the other hand,

the rate conditions in A5(iii)-(v) control the order of magnitude of the other terms,

and ensure that σ̃2
n,T,t converges fast enough to the “true” spot volatility, under

both hypotheses, but has no direct effect on the divergence of the statistic. Hence,

it is not surprising that choosing a larger n for large T , and therefore a smaller

discrete interval, has an unambiguously positive effect on the power.

Also, the presence of leverage does not reduce the power. This is because, when

Xt and Vt are independent, only the second term in (A.9) contributes to the power,

as the first one has mean zero. On the other hand, when Xt and Vt are correlated,

both terms in (A.9) can contribute to the power. Heuristically, we might expect a

nonlinear effect of the degree of leverage on the power, first increasing for nonzero

leverage and then decreasing for ρ close to one.

Finally, it appears that at least for smaller values of n, the power in some cases

is not monotonic. This can be possibly attributed to the trimming. In fact, it is

possible that observations which potentially most contribute to the divergence of

the statistic are trimmed away, and also that the scaling factor is “inflated” by the

presence of zeroes. In this sense, the effect of a “small” increase in T may be offset

by the trimming device. If we choose a larger value for n, power is everywhere

monotonically increasing in T .

4 Concluding remarks

This paper provides a testing procedure which allows to discriminate between one

factor and stochastic volatility models, under minimal assumptions. Apart from

standard regularity conditions, no assumptions are made on the functional forms

of either the drift or the diffusion term.

The suggested test statistic compares two different estimators of the spot

volatility. Both of them are consistent under the null hypothesis, while under

the alternative only the localized version of realized volatility is. This ensures

consistency of the associated test.

As the Monte carlo experiment shows, the tests perform well in finite samples.
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Table 1: Size of the test based on Ẑn,T for different values of n and T

10% trimming 5% trimming

5% level 10% level 5% level 10% level

T = 200

n ≈ T 2.75 0.04 0.07 0.07 0.12

n ≈ T 3 0.02 0.04 0.06 0.09

T = 300

n ≈ T 2.75 0.04 0.08 0.07 0.11

n ≈ T 3 0.03 0.06 0.06 0.10

T = 400

n ≈ T 2.75 0.04 0.09 0.06 0.11

n ≈ T 3 0.04 0.08 0.05 0.11
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Table 2: Power of the test based on Ẑn,T for different values of n, T and ρ

10% trimming 5% trimming

5% level 10% level 5% level 10% level

ρ = −0.3, T = 200

n ≈ T 2.75 0.30 0.39 0.33 0.47

n ≈ T 3 0.29 0.42 0.32 0.42

ρ = −0.3, T = 300

n ≈ T 2.75 0.30 0.49 0.39 0.52

n ≈ T 3 0.32 0.44 0.36 0.42

ρ = −0.3, T = 400

n ≈ T 2.75 0.18 0.36 0.22 0.36

n ≈ T 3 0.36 0.45 0.37 0.47

ρ = 0, T = 200

n ≈ T 2.75 0.19 0.31 0.26 0.37

n ≈ T 3 0.13 0.24 0.16 0.32

ρ = 0, T = 300

n ≈ T 2.75 0.21 0.32 0.22 0.38

n ≈ T 3 0.27 0.38 0.30 0.36

ρ = 0, T = 400

n ≈ T 2.75 0.19 0.28 0.20 0.32

n ≈ T 3 0.31 0.47 0.37 0.49

ρ = 0.3, T = 200

n ≈ T 2.75 0.23 0.31 0.26 0.41

n ≈ T 3 0.31 0.39 0.35 0.39

ρ = 0.3, T = 300

n ≈ T 2.75 0.21 0.25 0.20 0.30

n ≈ T 3 0.33 0.42 0.33 0.44

ρ = 0.3, T = 400

n ≈ T 2.75 0.15 0.24 0.17 0.28

n ≈ T 3 0.35 0.43 0.34 0.46
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Appendix

The proof of Theorem 1 requires the following Lemma.

Lemma 1. Let Assumption A1(i) hold.

(i) Under H0:

sup
0≤t,s≤T ;|t−s|≤∆n,T

|Xt −Xs| It = Oa.s.

(√
∆n,T log(∆−1

n,T )

)
.

(ii) Under HA:

sup
0≤t,s≤T ;|t−s|≤∆n,T

|Xt −Xs| It = Oa.s.

(
T δ
√

∆n,T log(∆−1
n,T )

)
.

Proof of Theorem 1:

(i) First, we want to show that:

1√
T

T/2∑
t=1

(
σ̂2
n,T (Xt)

)2
It =

1√
T

T/2∑
t=1

(
σ2(Xt)

)2
It + op(1). (A.1)

It suffices to show that:

sup
t

√
T
∣∣∣(σ̂2

n,T (Xt)
)2

It −
(
σ2(Xt)

)2
It

∣∣∣ = op(1).

We know that:

sup
t

√
T
∣∣∣(σ̂2

n,T (Xt)
)2

It −
(
σ2(Xt)

)2
It

∣∣∣
≤ sup

t

∣∣σ̂2
n,T (Xt)It + σ2(Xt)It

∣∣ sup
t

√
T
∣∣σ̂2

n,T (Xt)It − σ2(Xt)It
∣∣ .

By Itô’s formula, for each t:

√
TIt

(
σ̂2
n,T (Xt)− σ2(Xt)

)
=

√
T

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs∑n−1

i=1 K
(

Xt−Xi∆n,T

ξn,T

)


︸ ︷︷ ︸
A

(1)
n,T

+
√
T

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
µ(Xs)ds∑n−1

i=1 K
(

Xt−Xi∆n,T

ξn,T

)


︸ ︷︷ ︸
A

(2)
n,T

13



+
√
T

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)
∆−1

n,T

(∫ (j+1)∆n,T

j∆n,T

(
σ2(Xs)− σ2(Xj∆n,T

)
)
ds
)

∑n−1
i=1 K

(
Xt−Xi∆n,T

ξn,T

)


︸ ︷︷ ︸
A

(3)
n,T

+
√
T

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

) (
σ2(Xj∆n,T

)− σ2(Xt)
)

∑n−1
i=1 K

(
Xt−Xi∆n,T

ξn,T

)


︸ ︷︷ ︸
A

(4)
n,T

.

As for A
(4)
n,T , given A1 and A4:

1√
T
A

(4)
n,T ≤ sup

x∈B

∣∣∣∣∣∣
∑n−1

j=1 K
(

x−Xj∆n,T

ξn,T

) (
σ2(Xj∆n,T

)− σ2(x)
)

∑n−1
i=1 K

(
x−Xi∆n,T

ξn,T

)
∣∣∣∣∣∣

= sup
x∈B

∣∣∣∣∣∣
1
T

∫ T

0
1

ξn,T
K
(

Xt−x
ξn,T

)
σ2(Xt)dt− σ2(x) + oa.s.(1)

1
T

∫ T

0
1

ξn,T
K
(

Xt−x
ξn,T

)
dt+ oa.s.(1)

∣∣∣∣∣∣
= sup

x∈B

∣∣∣∣∣∣
∫∞
−∞

1
ξn,T

K
(

x−a
ξn,T

)
(σ2(a)− σ2(x)) f(a)da+ oa.s.(1)∫∞

−∞
1

ξn,T
K
(

x−a
ξn,T

)
f(a)da+ oa.s.(1)

∣∣∣∣∣∣
= sup

x∈B

∣∣∣∣∣
∫∞
−∞K (u) (σ2(x+ uξn,T )− σ2(x)) f(x+ uξn,T )du+ oa.s.(1)∫∞

−∞K (u) f(x+ uξn,T )du+ oa.s.(1)

∣∣∣∣∣
= sup

x∈B

∣∣∣∣ξ2n,T ∫ u2K(u)du

(
1

2
σ2′′(x) + σ2′(x)

f ′(x)

f(x)

)∣∣∣∣+ oa.s.
(
ξ2n,T

)
+ oa.s. (1) ,

where the order of the oa.s.(1) terms above is oa.s.

(
ξ−1
n,T

√
log
(
∆−1

n,T

)
∆n,T

)
be-

cause of (A.3) below, and the second equality follows from the proof of The-

orem 3 in Bandi and Phillips (2003), by noting that in the stationary ergodic

case the speed density coincides with the stationary density. Hence, A
(4)
n,T =

O
(√

Tξ2n

)
+ oa.s.

(√
Tξ−1

n,T

√
log
(
∆−1

n,T

)
∆n,T

)
= oa.s.(1), given A2(ii) and A2(iv).

Because of Lemma 1(i), A
(3)
n,T = Oa.s.

(√
T∆n,T log

(
1

∆n,T

))
= oa.s.(1), given

A2(iii). Finally, A
(2)
n,T is of a smaller order of probability than A

(1)
n,T .

We now want to show that A
(1)
n,T = op(1). For this, it suffices to show that:

sup
x∈B

∣∣∣∣∣∣
√
T

nξn,T

n−1∑
j=1

It
K
(

x−Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

1
nξn,T

∑n−1
j=1 K

(
x−Xj∆n,T

ξn,T

)
∣∣∣∣∣∣ = op(1).

We first need to bound the denominator. Hereafter, let f̂n,T (x) = 1/(nξn,T )
∑n−1

j=1 K
(

x−Xj∆n,T

ξn,T

)
14



and f̃T (x) = 1/(Tξn,T )
∫ T

0
K
(

Xt−x
ξn,T

)
dt. We can write:

sup
x∈B

∣∣∣f̂n,T (x)− f(x)
∣∣∣ ≤ sup

x∈B

∣∣∣f̂n,T (x)− f̃T (x)
∣∣∣+ sup

x∈B

∣∣∣f̃n,T (x)− f(x)
∣∣∣ . (A.2)

We begin with the first term on the right hand side (rhs) of (A.2):∣∣∣∣∣ 1

nξn,T

n−1∑
j=1

K

(
Xj∆n,T

− x

ξn,T

)
− 1

T

∫ T

0

1

ξn,T
K

(
Xt − x

ξn,T

)
dt

∣∣∣∣∣
=

∣∣∣∣∣ 1

Tξn,T

n−1∑
j=1

∫ (j+1)∆n,T

j∆n,T

(
K

(
Xj∆n,T

− x

ξn,T

)
−K

(
Xt − x

ξn,T

))
dt

∣∣∣∣∣
≤ 1

Tξn,T

n−1∑
j=1

∫ (j+1)∆n,T

j∆n,T

∣∣∣∣∣K ′

(
X̃j,t − x

ξn,T

)∣∣∣∣∣ dt
(

max
j=1,...,n

sup
j∆n,T≤t≤(j+1)∆n,T

∣∣Xj∆n,T
−Xt

∣∣
ξn,T

)

≤ 1

Tξn,T

n−1∑
j=1

∫ (j+1)∆n,T

j∆n,T

∣∣∣∣K ′
(
Xt − x

ξn,T
+ oa.s

(
ξ−1
n,T

√
log
(
∆−1

n,T

)
∆n,T

))∣∣∣∣ dt
×oa.s.

(
ξ−1
n,T

√
log
(
∆−1

n,T

)
∆n,T

)
(A.3)

=
1

T

∫ ∞

−∞
|K ′ (q + oa.s (1))|LX (T, qξn,T + x) dq × oa.s.

(
ξ−1
n,T

√
log
(
∆−1

n,T

)
∆n,T

)
(A.4)

= Oa.s.(1)oa.s.(1) = oa.s.(1),

given A2(iv). Note that (A.3) follows from Lemma 1(i), and (A.4) follows from the

occupation density formula (p.267 in Bandi and Phillips, 2003). LX (T, qξn,T + x)

denotes the local time of the diffusion, i.e. how much time, between 0 and T has

been spent around qξn,T + x, and in the stationary ergodic case, LX (T, x) /T =

Oa.s.(1). As for the second term on the rhs of (A.2), given A3(i)-(iv), from Corollary

4.6 in Bosq (1998):

sup
x∈B

∣∣∣∣ 1T
∫ T

0

1

ξn,T
K

(
Xt − x

ξn,T

)
dt− f(x)

∣∣∣∣ = Oa.s.

(√
log T

Tξn,T

)
+O

(
ξ2n,T

)
= os.s.(1),

given A2(i). Hence, given A3(v), plimn,T→∞

∣∣∣f̂n,T (x)∣∣∣ < εn,T = 0, where:

εn,T = ε−

(
ξ−1
n,T

√
log
(
∆−1

n,T

)
∆n,T + ξ2n,T +

√
log T

Tξn,T

)
.

Then, it suffices to show that, for n, T → ∞:

Pr

(
sup
x∈B

∣∣∣∣∣
√
T

nξn,T

n−1∑
j=1

K

(
x−Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

∣∣∣∣∣ > ε

)
→ 0.
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Without loss of generality, let B = [−D,D] . We cover the interval [−D,D] with

Qn,T = 2DT 2/3ξ−2
n,T balls Si, centered at si, of radius ξ

2
n,T/T

2/3. We can bound the

term as follows:

sup
x∈B

∣∣∣∣∣
√
T

nξn,T

n−1∑
j=1

K

(
x−Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

∣∣∣∣∣
≤ max

i=1,...,Qn,T

∣∣∣∣∣
√
T

nξn,T

n−1∑
j=1

K

(
si −Xj∆n,T

ξn,T

)

×2∆−1
n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

∣∣∣∣∣ (A.5)

+ max
i=1,...,Qn,T

sup
x∈Si

∣∣∣∣∣
√
T

nξn,T

n−1∑
j=1

2∆−1
n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

×
(
K

(
x−Xj∆n,T

ξn,T

)
−K

(
si −Xj∆n,T

ξn,T

))∣∣∣∣ . (A.6)

First, notice that, given A4 and because of Lemma 1(i):

max
j

sup
j∆n,T≤s≤(j+1)∆n,T

∣∣∣∣(K (x−Xj∆n,T

ξn,T

)
−K

(
sj −Xj∆n,T

ξn,T

))
×2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

∣∣∣∣∣
≤ Cξ−1

n,T max
j

|x− sj|∆−1
n,T sup

j∆n,T≤s≤(j+1)∆n,T

∣∣Xs −Xj∆n,T

∣∣
×max

j
sup

j∆n,T≤s≤(j+1)∆n,T

∣∣Ws −Wj∆n,T

∣∣ sup
j∆n,T≤s≤(j+1)∆n,T

|σ(Xs)|

= Oa.s.

(
log∆−1

n,T

)
T−2/3ξn,T .

Hence, (A.6) is Op

(
T 1/2

ξn,T

ξn,T

T 2/3

)
= op (1) . Note that supj∆n,T≤s≤(j+1)∆n,T

|σ(Xs)| is
bounded, because Xs is close to Xj∆n,T

, which in turn is close to the evaluation

point x, which belongs to a bounded set.

For j = 1, . . . , n, K
(

si−Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs is a zero

mean martingale difference sequence, with respect to FX
j∆n,T

= σ
(
Xi∆n,T

, i = 1, . . . , j
)
,

and:

E

(K (si −Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

)2
∣∣∣∣∣∣FX

j∆n,T


= K

(
si −Xj∆n,T

ξn,T

)2

σ2(Xj∆n,T
) (1 + oa.s.(1)) .

Because - for all i - si belongs to a bounded set, and - for all j - Xj∆n,T
is in a

16



neighborhood of si, it follows that for some finite generic constant C:

Pr

(
lim
n→∞

1

n

n−1∑
j=1

K

(
si −Xj∆n,T

ξn,T

)2

σ2(Xj∆n,T
) > C

)
= 0. (A.7)

Also, given A1, A4 and Lemma 1(i):

max
j

sup
j∆n,T≤s≤(j+1)∆n,T

∣∣∣∣∣K
(
si −Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dW1,s

∣∣∣∣∣
≤ max

j
K

(
si −Xj∆n,T

ξn,T

)
2∆−1

n,T sup
j∆n,T≤s≤(j+1)∆n,T

∣∣Xs −Xj∆n,T

∣∣
×max

j
sup

j∆n,T≤s≤(j+1)∆n,T

∣∣Ws −Wj∆n,T

∣∣ sup
j∆n,T≤s≤(j+1)∆n,T

|σ(Xs)|

≤ C
(
log∆−1

n,T

)
a.s.. (A.8)

Let η = C
√

T log(n)

nξ2n,T
, and note that given A2(iv), η → 0 as n, T → ∞. Then, given

the bounds in (A.7) and (A.8), using an exponential inequality for martingale

difference sequences (e.g. Theorem 1.2A in De La Pena, 1999) on (A.5), for 0 <

∆1,∆2 < ∞:

Pr

(
max

i=1,...,Qn,T

∣∣∣∣∣
√
T

nξn,T

n−1∑
j=1

K

(
si −Xj∆n,T

ξn,T

)

×2∆−1
n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

∣∣∣∣∣ > η

)

≤ Qn,T Pr

(∣∣∣∣∣
n−1∑
j=1

K

(
si −Xj∆n,T

ξn,T

)
2∆−1

n,T

∫ (j+1)∆n,T

j∆n,T

(
Xs −Xj∆n,T

)
σ(Xs)dWs

∣∣∣∣∣ > η
nξn,T√

T

)

≤ Qn,T exp

(
−

η2n2ξ2n,TT
−1

∆1n+ η∆2nξn,TT−1/2 log
(
∆−1

n,T

)) = Qn,T exp

(
−

η2n2ξ2n,TT
−1

∆1n(1 + o(1))

)
= Qn,T exp (−C log(n)) ≤ 2DT 2/3ξ−2

n,Tn
−C → 0,

for C sufficiently large. This concludes the proof of (A.1).

Moving to the second estimator of spot volatility, we need to show that:

1√
T

T∑
t=T/2+1

σ̃2
n,T,tIt =

1√
T

T∑
t=T/2+1

σ2
t It + op(1),

with σ2
t = σ2(Xt). Because:

sup
t

√
T
∣∣∣(σ̃2

n,T,t

)2
It −

(
σ2
t

)2
It

∣∣∣
≤ sup

t

∣∣σ̃2
n,T,tIt + σ2

t It
∣∣ sup

t

√
T
∣∣σ̃2

n,T,tIt − σ2
t It
∣∣ ,

17



it suffices to show that supt

√
T
∣∣σ̃2

n,T,tIt − σ2
t It
∣∣ = op(1). By Itô’s Lemma, for each

t:

√
T
(
σ̃2
n,T,t − σ2

t

)
It

=
√
TIt

⌊T−γ∆−1
n,T ⌋−1∑

j=0

2T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
σsdWs︸ ︷︷ ︸

B
(1)
n,T

+
√
TIt

⌊T−γ∆−1
n,T ⌋−1∑

j=0

2T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
µsds︸ ︷︷ ︸

B
(2)
n,T

+
√
TIt

(
T γ

∫ t+T−γ

t

(
σ2
s − σ2

t

)
ds

)
︸ ︷︷ ︸

B
(3)
n,T

.

By Lemma 1(i):

B
(3)
n,T ≤ C

√
T sup

t,s≤T,|t−s|≤T−γ

∣∣σ2
s − σ2

t

∣∣ = Oa.s.

(√
T
√
T−γ log (T γ)

)
= oa.s.(1),

because of A2(vi). Because B
(2)
n,T is of a smaller order of probability than B

(1)
n,T , it

suffices to show that B
(1)
n,T = op(1). First, note that for all t < τ :

E

It

⌊T−γ∆−1
n,T ⌋−1∑

j=0

T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
σsdWs

×Iτ

⌊T−γ∆−1
n,T ⌋−1∑

j=0

T γ

∫ τ+(j+1)∆n,T

τ+j∆n,T

(
Xs −Xτ+j∆n,T

)
σsdWs


= E

It

⌊T−γ∆−1
n,T ⌋−1∑

j=0

T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
σsdWs

×IτE

⌊T−γ∆−1
n,T ⌋−1∑

j=0

T γ

∫ τ+(j+1)∆n,T

τ+j∆n,T

(
Xs −Xτ+j∆n,T

)
σsdWs

∣∣∣∣∣∣FX
τ+j∆n,T


= 0,

with FX
τ = σ(Xτ+j∆n,T

, j = 0, . . . , ⌊T−γ∆−1
n,T ⌋ − 1). Thus:

E

 1√
T

T∑
t=T/2+1

It

⌊T−γ∆−1
n,T ⌋−1∑

j=0

2T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
σsdWs

2
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=
1

T

T∑
t=T/2+1

E

It

⌊T−γ∆−1
n,T ⌋−1∑

j=0

(
2T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
σsdWs

)2


=
1

T

T∑
t=T/2+1

E

It

⌊T−γ∆−1
n,T ⌋−1∑

j=0

E

(2T γ

∫ t+(j+1)∆n,T

t+j∆n,T

(
Xs −Xt+j∆n,T

)
σsdWs

)2
∣∣∣∣∣∣FX

t+j∆n,T


=

1

T

T∑
t=T/2+1

E

It2T
2γ∆2

n,T

⌊T−γ∆−1
n,T ⌋−1∑

j=0

σ4
t+j∆n,T

 (1 + o(1))

= O (T γ∆n,T ) + o(1) = o(1),

given A2(v). Hence:

Z̃n,T = V̂
−1/2
n,T

√
T

 1

T

T/2∑
t=1

σ2(Xt)

2

It −
1

T

T∑
t=T/2+1

(
σ2(Xt)

)2
It

+ op(1).

Let ṼT be the infeasible version of (4), constructed replacing both σ̂2
n,T (Xt) and

σ̃2
n,T,t by σ2(Xt). Given A1-A4, as n, T → ∞:

V̂n,T − ṼT = op(1).

Finally, given A3(i) and A2(vii), ṼT − V = op(1), where:

V = avar

√
T

 1

T

T/2∑
t=1

(
σ2(Xt)

)2
It −

1

T

T∑
t=T/2+1

(
σ2(Xt)

)2
It

 .

The statement in the theorem then follows straightforwardly from the central limit

theorem for geometric ergodic processes.

(ii) By a similar argument as in Part (i):

2√
T

T∑
t=T/2+1

(
σ̃2
n,T,t

)2
It =

2√
T

T∑
t=T/2+1

(
σ2
t

)2
It + op(1).

The difference here is that σ2
t It is not necessarily bounded. This affects the order of

probability ofB
(3)
n,T .However, given Lemma 1(ii), B

(3)
n,T = Oa.s.

(√
T
√
T−γ+δ log (T γ+δ)

)
=

oa.s.(1), because of A5(v).

Hence, we need to show that:

plim
n,T→∞

1

T

T/2∑
t=1

((
σ̂2
n,T (Xt)

)2 − (σ2
t

)2)
It ̸= 0.

By Lemma 1(ii), A
(3)
n,T = Oa.s.

(
T δ
√

T∆n,T log
(
∆−1

n,T

))
= oa.s.(1), given A5(iv).

A
(2)
n,T is of smaller probability order than A

(1)
n,T . A

(1)
n,T = op(1) by a similar argument
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as in part (i), by simply setting η = C
√

log(n)T 1+2δ

nξ2n,T
, which is o(1), by A5(iii). Thus,

we need to show that:

plim
n,T→∞

1

T

T/2∑
t=1

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)(
σ2
j∆n,T

− σ2
t

)
∑n−1

i=1 K
(

Xt−X∆n,T

ξn,T

)
2

̸= 0.

We can rearrange terms as follows:

1

T

T/2∑
t=1

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)(
σ2
j∆n,T

− σ2
t

)
∑n−1

i=1 K
(

Xt−X∆n,T

ξn,T

)
2

=
1

T

T/2∑
t=1

It

∑n−1
j=1 K

(
Xt−Xj∆n,T

ξn,T

)(
σ2
j∆n,T

− σ2
)

∑n−1
i=1 K

(
Xt−X∆n,T

ξn,T

) − It
(
σ2
t − σ2

)2

, (A.9)

where σ2 = E(σ2(Vt)). The statement of the theorem follows straightforwardly by

the law of large numbers. �

Proof of Lemma 1:

(i) Given A1(i),

sup
0≤t,s≤T ;|t−s|≤∆n,T

|Xt −Xs| It

≤ sup
u∈(t,s),|t−s|≤∆n,T

|µ′(Xu)| It∆n,T + sup
u∈(t,s),|t−s|≤∆n,T

|σ′(Xu)| It sup
0≤t,s≤T ;|t−s|≤∆n,T

|Wt −Ws| .

Because of the modulus of continuity of the Brownian motion, for a finite T < T :

sup
0≤t,s≤T ;|t−s|≤∆n,T

|Wt −Ws| = Oa.s.

(
∆

1/2
n,T log

(
∆−1

n,T

))
,

see e.g. Karatzas and Shreve (1991, p.114). We now have to take into account the

case of T ≤ t, s ≤ T , for T → ∞. Define W̃t = tW1/t and W̃s = sW1/s and note

that W̃t and W̃s are also Brownian motions (e.g. Corollary 9.4 in Karatzas and

Shreve 1991). Hence:

sup
T≤t,s≤T ;|t−s|≤∆n,T

∣∣∣W̃t − W̃s

∣∣∣
= sup

1/T≤1/t,1/s≤1/T ;ts| 1t− 1
s |≤∆n,T

∣∣∣tW 1
t
− sW 1

s

∣∣∣
≤ sup

1/T≤1/t,1/s≤1/T ;ts| 1t− 1
s |≤∆n,T

t
∣∣∣(W 1

t
−W 1

s

)∣∣∣+∆n,T sup
1/T≤1/s≤1/T

∣∣∣W 1
s

∣∣∣
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= Oa.s

(√
∆n,T log

(
∆−1

n,T

))
+Oa.s.

(
∆1−ε

n,T

)
= Oa.s

(√
∆n,T log

(
∆−1

n,T

))
.

It remains to consider supu∈(t,s),|t−s|≤∆n,T
|σ′(Xu)| It. For a finite constant C:

sup
t≤T

|σ′(Xt)| It = sup
x∈B

|σ′(x)| ≤ C,

because a continuous function over a bounded set has a maximum. Because u ∈
(t, s) , and |t− s| ≤ ∆n,T , Xu also belongs to a compact set, so that supu∈(t,s),|t−s|≤∆n,T

|σ′(Xu)| It
is bounded, almost surely.

(ii) Given A1(i):

sup
0≤t,s≤T ;|t−s|≤∆n,T

|Xt −Xs| It

≤ sup
u∈(t,s),|t−s|≤∆n,T

|µ′(Xu)| It∆n,T + sup
u∈(t,s),|t−s|≤∆n,T

|σ′(Vu)| It sup
0≤t,s≤T ;|t−s|≤∆n,T

|Wt −Ws| .

While Xt is constrained to lie in a bounded set B, Vt is not. Hence, we can’t as-

sume that supu∈(t,s),|t−s|≤∆n,T
|σ′(Vu)| is bounded. However, given A5(ii), it follows

immediately, using Markov inequalities, that supt |σ′(Vu)| = Oa.s.(T
δ). �
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