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Abstract

We propose a theoretical approach to bandwidth choice for continuous-time Markov processes. We
do so in the context of stationary and nonstationary processes of the recurrent kind. The procedure
consists of two steps. In the �rst step, by invoking local gaussianity, we suggest an automated band-
width selection method which maximizes the probability that the standardized data are a collection
of normal draws. In the case of di¤usions, for instance, this procedure selects a bandwidth which
only ensures consistency of the in�nitesimal variance estimator, not of the drift estimator. Addi-
tionally, the procedure does not guarantee that the rate conditions for asymptotic normality of the
in�nitesimal variance estimator are satis�ed. In the second step, we propose tests of the hypothesis
that the bandwidth(s) are either "too small" or "too big" to satisfy all necessary rate conditions for
consistency and asymptotic normality. The suggested statistics rely on a randomized procedure based
on the idea of conditional inference. Importantly, if the null is rejected, then the �rst-stage band-
widths are kept. Otherwise, the outcomes of the tests indicate whether larger or smaller bandwidths
should be selected. We study scalar and multivariate di¤usion processes, jump-di¤usion processes, as
well as processes measured with error as is the case, for instance, for stochastic volatility modelling
by virtue of preliminary high-frequency spot variance estimates. The �nite sample joint behavior of
our proposed automated bandwidth selection method, as well as that of the associated (second-step)
randomized procedure, are studied via Monte Carlo simulation.
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1 Introduction

Following in�uential, early work on fully nonparametric in�nitesimal volatility estimation and testing

for scalar di¤usion processes (e.g., Brugiére, 1991, Corradi and White, 1999, Florens-Zmirou, 1993, and

Jacod 1997), the recent nonparametric literature in continuous time has largely focused on the full

system. Emphasis might, for instance, be also placed on the estimation of the �rst in�nitesimal moment

(the drift) in the di¤usion case (Stanton, 1997, among others) and, in the case of jump-di¤usions, on the

high-order in�nitesimal moments (Johannes, 2004, inter alia).

Motivated by the need to completely characterize the system�s dynamics, Bandi and Phillips (2003,

BP henceforth) have established consistency and asymptotic (mixed) normality for Nadaraya-Watson

kernel estimators of both the drift and the di¤usion function of recurrent (and, hence, possibly non-

stationary) scalar di¤usion processes (see, also, Fan and Zhang, 2003, and Moloche, 2004, for local

polynomial estimates under stationarity and recurrence, respectively). Their results rely on a double

asymptotic design in which the interval between discretely-sampled observations approaches zero, in-�ll

asymptotics, and the time span diverges to in�nity, long-span asymptotics. A signi�cant di¤erence be-

tween a stationary (or positive recurrent) di¤usion and a nonstationary (or null recurrent) one is that

in the former case the local time grows linearly with the time span, while in the latter case it grows at

a slower (and, generally, unknown) rate. Because the rate of divergence of local time a¤ects the rate

of convergence of the functional estimates of the process moments, this observation is theoretically, and

empirically, important. Bandi and Moloche (2004, BM henceforth) have generalized the results in BP

(2003) to the case of multidimensional di¤usion processes. Importantly, in the multidimensional case

a well-de�ned notion of local time no longer exists and one has to rely on the more general notion of

occupation density. In both the scalar and the multidimensional case, consistency and (mixed) normality

of the drift and variance estimator (and, hence, of the full system�s dynamics) rely on the proper choice

of the bandwidth parameters, i.e., on the rate at which the bandwidths approach zero as the interval

between discretely-sampled observations goes to zero and the corresponding occupation densities (or

local times, in the scalar case) diverge to in�nity.

Admittedly, in the context of the functional estimation of continuous-time Markov models, the ap-

propriate choice of window width is a largely unresolved issue. While it is recognized that in�nitesimal

conditional moment estimation in continuous time and conditional moment estimation in discrete time

impose di¤erent requirements on the optimal window width for estimation accuracy (see, e.g., BP, 2003,

and BM, 2004, for discussions), there is an overwhelming tendency in the continuous-time literature

to employ bandwidth selection methods which can only be justi�ed in more traditional set-ups of the

regression type. Cross-validation procedures applied to the estimation of the drift and in�nitesimal vari-

ance of scalar di¤usion processes are typical examples. Yet, to the best of our knowledge, even in the

stationary case, no theoretical discussion has been provided to automatically select the window width

in continuous-time models of the types routinely used in the nonparametric �nance literature. Further-

more, for both discrete and continuous-time processes, bandwidth selection is particularly delicate in

the null recurrent (nonstationary) case since, as said, the bandwidth�s vanishing rate ought to depend

on the divergence rate of the number of visits to open sets in the range of the process but the latter is

unknown, in general. In discrete time, important progress on the issue of bandwidth selection has been
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made by Karlsen and Tjostheim (2001) for �-null recurrent processes and by Guerre (2004) for general

recurrent processes. The continuous-time case poses additional complications in that not only one has

to adapt to the level of recurrence in the estimation domain but, also, to the rate at which the interval

between discretely-sampled observations vanishes asymptotically.

This paper attempts to �ll this important gap in the continuous-time econometrics literature by

proposing a theoretical approach to automated bandwidth choice. The approach is designed for widely-

employed classes of continuous-time Markov processes, such as scalar and multivariate di¤usion processes

and jump-di¤usion processes, and is justi�ed under mild assumptions on their statistical properties,

stationarity not being required. Our solution to the problem is novel and may also be applied to

discrete-time models, as outlined in Section 8.

In the di¤usion case, the intuition of our approach is as follows. Consider kernel estimates of drift and

di¤usion function (b�hdr and b�hdif ). Assume these estimates are obtained by selecting di¤erent smoothing
sequences. Invoking the local Gaussianity property which di¤usion models readily imply as a useful prior

on the distributional feature of the standardized data, we maximize the probability that the standardized

data
�
(Xt+��Xt)�b�hdr (Xt)�b�

hdif
(Xt)

p
�

�
is a collection of draws from a Gaussian distribution by choosing the relevant

smoothing sequences (hdr and hdif ) accordingly. This procedure selects a bandwidth hdif which ensures

the consistency of the in�nitesimal variance estimator but, in spite of its sound empirical performance (see

Section 7), does not select a bandwidth hdr which ensures the theoretical consistency of the drift function.

Also, the automatically-chosen bandwidths do not necessarily satisfy the rate conditions required for

(mean zero) asymptotic normality. To overcome this issue, for each in�nitesimal moment, we propose a

test of the null hypothesis that one or more rate conditions (for consistency and normality) are violated

versus the alternative that all rate conditions are satis�ed. The suggested statistics (separately speci�ed

for drift and di¤usion) rely on a randomized procedure based on the idea of conditional inference, along

the lines of Corradi and Swanson (2006). If the null is rejected, then the selected bandwidth is kept,

otherwise the outcome of the procedure suggests whether we should select a larger or a smaller bandwidth.

We proceed sequentially, until the null is rejected. Because the probability of rejecting the null when

the it is false is asymptotically one at each step, our approach does not su¤er from a sequential bias

problem.

Our emphasis on recurrence is empirically-motivated, theoretical generality being only a by-product.

Under general recurrence properties, the bandwidth�s rate conditions are not a function of T (the time

span or the number of observations) as in stationary time-series analysis. They are a function of the

number of visits to each level at which functional estimation is conducted. Importantly, however, even for

stationary processes (which are, as emphasized, a sub-case of the class of recurrent processes) choosing

the bandwidth rate as a function of the empirical occupation times is bound to provide a more objective

solution to the bandwidth selection problem than choosing it based on a theoretical (and, hence, purely

hypothetical) divergence rate of the occupation times equal to T . This point is, of course, particularly

compelling when dealing with highly dependent, but possibly stationary, time-series of the type routinely

encountered in �elds such as �nance. These processes return to values in their range very slowly and, thus,

even though they may be stationary, have occupation densities which hardly diverge at the "theoretical"

T rate.
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We begin by considering the case of bandwidth selection for scalar di¤usion models (Section 2). We

then extend our analysis to scalar jump-di¤usion processes (Section 3). The case of a di¤usion observed

with error is presented in Section 4. Stochastic variance processes �ltered from high-frequency �nancial

data may, of course, be regarded as processes observed with error. We evaluate the case of stochastic

volatility explicitly and discuss bandwidth selection for di¤usion models applied to market microstructure

noise-contaminated spot variance estimates in Section 5. In Section 6 we study the multivariate di¤usion

case. Section 7 provides a Monte Carlo study. Section 8 contains �nal remarks. All proofs are collected

in the Appendix.

2 Scalar di¤usion processes

2.1 The framework

We consider the following class of one-factor models,

dXt = �(Xt)dt+ �(Xt)dWt;

where fWt : t = 1; :::; Tg is a standard Brownian motion. Our objective is to provide suitable nonpara-
metric estimates of the drift term �(a) and of the in�nitesimal variance �2(a): To this extent, we assume

availability of a sample of N equidistant observations and denote the discrete interval between two

successive observations as �N;T = T=N , where T de�nes the time span. Speci�cally, we observe the

di¤usion skeleton X�N;T ; X2�N;T ; :::; XN�N;T : In what follows, we require N;T ! 1; �N;T ! 0 (in-�ll

asymptotics), and T = �N;TN !1 (long-span asymptotics) for consistency of the moment estimates.

As in Stanton (1997), BP (2003), and Johannes (2004), inter alia, we construct the following estimators

of the drift and in�nitesimal variance, respectively:

b�N;T (a) = 1

�N;T

PN�1
j=1 K

�
Xj�N;T�a
hdrN;T

��
X(j+1)�N;T �Xj�N;T

�
PN
j=1K

�
Xj�N;T�a
hdrN;T

� ; (1)

and

b�2N;T (a) = 1

�N;T

PN�1
j=1 K

�
Xj�N;T�a

hdifn;T

��
X(j+1)�N;T �Xj�N;T

�2
PN
j=1K

�
Xj�N;T�a
hdifN;T

� : (2)

We denote by h =
�
hdrN;T ; h

dif
N;T

�
2 H � R2+ a bivariate vector bandwidth belonging to the setH contained

in the positive plane R2+. This vector is our object of econometric interest. Assumption 1 guarantees

existence of a unique, recurrent solution to X. Assumption 2 outlines the conditions imposed on the

kernel function K(:) in Eqs. (1) and (2). The same conditions on the kernel function are also employed

in the following sections.
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Assumption 1.

(i) �(:) and �(:) are time-homogeneous, B-measurable functions on D = (l; u) with �1 � l < u � 1;
where B is the �-�eld generated by Borel sets on D. Both functions are at least twice continuously

di¤erentiable. Hence, they satisfy local Lipschitz and growth conditions. Thus, for every compact

subset J of the range of the process, there exist constants CJ1 and C
J
2 so that, for all x and y in

J ,

j�(x)� �(y)j+ j�(x)� �(y)j � CJ1 jx� yj;

and

j�(x)j+ j�(x)j � CJ2 f1 + jxjg.

(ii) �2(:) > 0 on D.

(iii) We de�ne S(�), the natural scale function, as

S(�) =

Z �

c
exp

�Z y

c

�
�2�(x)
�2(x)

�
dx

�
dy;

where c is a generic �xed number belonging to D. We require S(�) to satisfy

lim
�!l

S(�) = �1:

and

lim
�!u

S(�) =1:

Assumption 2. The kernel K(:) is a continuously di¤erentiable, symmetric and nonnegative function

whose derivative K 0(:) is absolutely integrable and for whichZ 1

�1
K(s)ds = 1; K2 =

Z 1

�1
K2(s)ds <1; sup

s
K(s) < C3;

and Z 1

�1
s2K(s)ds <1:

In what follows, the symbol LX(T; a) denotes the chronological local time of X at T and a, i.e., the

number of calendar time units spent by the process around a in the time interval [0; T ].

Proposition 1 (BP, 2003): Let Assumptions 1 and 2 hold.

(i) Let �N;T = T=N with T �xed. If limN!1 1
hN;T

�
�N;T log

1
�N;T

�1=2
! 0, then

bLX(T ; a)� LX(T ; a) = oa:s:(1);
where bLX(T ; a) = �N;T

hN;T

PN
j=1K

�
Xj�

N;T
�a

hN;T

�
:
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� The drift estimator

Let (ii) hdrN;TLX(T; a)
a:s:! 1 and (iii) LX(T;a)

hdrN;T

�
�N;T log

1
�N;T

�1=2 a:s:! 0; then:

b�N;T (a)� �(a) = oa:s:(1):
Further, if (iv) hdr;5N;TLX(T; a)

a:s:! 0; then:r
hdrN;T

bLX(T; a) �b�N;T (a)� �(a)�) N
�
0;K2�

2(a)
�
:

� The di¤usion estimator

If (iii) holds with hdrN;T replaced by h
dif
N;T , then:

1

b�2N;T (a)� �2(a) = oa:s:(1):
Further, if (iv�)

hdif;5N;T LX(T;a)

�N;T

a:s:! 0; then:vuuthdifN;T
bLX(T; a)
�N;T

�b�2N;T (a)� �2(a)�) N
�
0; 2K2�

4(a)
�
:

It is evident from the proposition above (as well as classical logic based on nonparametric moment

estimation in discrete time) that consistency and asymptotic normality of the drift and variance estimator

crucially rely on appropriate choice of the smoothing parameter(s). To this extent, two issues ought to be

addressed. First, usual data-driven methods often employed in empirical work in continuous-time �nance,

such as cross-validation, are not theoretically justi�ed and may not necessarily work in the presence of in-

�ll asymptotics and nonstationarity. Second, while in the positive recurrent case LX(T; a)=T
p! fX(a);

where fX(a) denotes the stationary probability density at a of the process X; in the null recurrent

case LX(T; a)=T
p! 0. Under null recurrence, as emphasized earlier, LX(T; a) grows at a (generally

unknown) rate which is slower than T .2 Since the bandwidth�s vanishing rate depends on this unknown

rate, appropriate bandwidth selection in the null recurrent case is particularly delicate.

We shall proceed in two steps. In the �rst step, we introduce an adaptive bandwidth selection

method which ensures consistency of the di¤usion estimator but only guarantees that b�N;T (a)� �(a) =
op

�
�
�1=2
N;T

�
: In the second step, we employ a randomized procedure to test whether the bandwidth

selected in the �rst stage violate any of the rate conditions (ii)-(iii)-(iv) for the drift and (iii)-(iv�) for

the di¤usion. This second step is conducted separately for drift and di¤usion. Should we reject the

null, then we would rely on the previously-chosen bandwidth. Alternatively, because the outcome of

the procedure gives us information about whether the selected bandwidth is too small or too large, we

iterate until the null is rejected.

1Note that (iii) ensures that
h
dif
N;T

bLX (T;a)
�N;T

!1:
2The Brownian motion case is an exception for which the rate is known and LX(T; a)=

p
T = Op(1):
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2.2 First step: A residual-based procedure

Consider the estimated residual series(b"i�N;T = Xi�N;T �X(i�1)�N;T � b�N;T (X(i�1)�N;T )�N;Tb�N;T (X(i�1)�N;T )p�N;T : i = 2; :::;��1N;TT

)
;

assuming, for notational simplicity, that ��1N;T is an integer. In light of the normality of the driving

Brownian motion, over small time intervals �N;T the residual series is roughly standard normally dis-

tributed. Our minimization problem requires �nding

bhN;T 2H � R2+ : �
�
F
bhN;T
N

;�

�
= �N (3)

with �N # 0 as N = ��1N;TT ! 1, where F
bhN;T
N

denotes the empirical cumulative distribution of the

estimated residuals b"i�N;T , � is the cumulative distribution of the standard normal random variable,

and � (:; :) is a distance metric.

It is noted that the criterion is de�ned over a �xed time span T whereas the estimators, mainly

for consistency of the drift, are de�ned over an enlarging span of time T: We de�ne the criterion over

a �xed time span to avoid theoretical imbalances in the case of nonstationary di¤usions. This point

is discussed in Bandi and Phillips (2007). From an empirical standpoint, �xing the sample span over

which the criterion is minimized and enlarging the time span over which the nonparametric estimators

are computed is immaterial. It simply amounts to splitting the sample into two parts, i.e. (0; T ] and

(T ; T ]. The entire sample (from 0 to T ) is used to compute b�N;T (:) and b�N;T (:). The �rst part of the
sample (from 0 to T ) is used to de�ne the minimization problem.3

We focus on the Kolmogorov-Smirnov distance, but a di¤erent distance measure may, of course, be

employed. We de�ne the target bandwidth sequence h�N;T = (hdrN;T ; h
dif
N;T )

� as the bandwidth sequence

which guarantees that the empirical distribution function of the standardized data converges uniformly

to the standard normal distribution function as N;T ! 1 with T
N ! 0 (and, of course, with N =

T��1N;T !1). We will �rst characterize its properties (in Theorem 1). Subsequently, we will show that

it exists and that bhN;T is asymptotically equivalent to it (in Theorem 2).

Theorem 1. A vector bandwidth h�N;T = (h
dr
N;T ; h

dif
N;T )

� satis�es

h�N;T = h 2 H : sup
x

���FhN (x)� �(x)��� p!
N;T!1;�N;T!0

0 (4)

if and only if

3This statement can easily be reconciled with our theoretical framework. Assume T =
p
N , for instance. Then,

the observations are equispaced at
n

1p
N
; 2p

N
; :::; 1; 1 + 1p

N
; :::;

p
N
o
since T

N
= 1p

N
. We can now split the sample in

two parts, namely observations in (0; T ] and observations in (T ; T ]: Assume, without loss of generality, that T = 1.
Also, assume that there are N equispaced observations in the �rst part of the sample. Then, 1

N
= 1p

N
. This

implies that the number of observations in the �rst part of the sample, which is de�ned over a �xed time span T ,
grows with

p
N , whereas the number of observations in the second part of the sample grows with N . In practice

one can choose T relatively large.
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sup
a2D

���b�N;T �a; hdrN;T�� �(a)��� = op
 

1p
�N;T

!
; (5)

and

sup
a2D

���b�N;T �a; hdifN;T�� �(a)��� = op (1) : (6)

�

Theorem 2. (i) There exists a vector bandwidth h�N;T = (h
dr
N;T ; h

dif
N;T )

� so that

h�N;T = h 2 H : sup
x

���FhN (x)� �(x)��� p!
N;T!1;�N;T!0

0 (7)

and

h�N;T =
�
hdrN;T ; h

dif
N;T

��
!

N;T!1;�N;T!0
0:

(ii) If bhN;T = h 2H : sup
x

���FhN (x)� �(x)��� = �N (8)

with �N # 0 as N !1, then

bhN;T =h�N;T p!
N;T!1;�N;T!0

1:

�

Theorem 2 guarantees the existence of a bandwidth vector bhN;T ensuring that our proposed criterion
has a solution. This solution guarantees uniform consistency (in probability) of the variance estimator

but, despite being empirically very sensible as we show below through simulations (see Section 7), fails

to guarantee theoretical consistency of the drift estimator. In addition, the selected di¤usion bandwidth

does not ensure asymptotic normality of the di¤usion estimator. A second procedure is therefore needed

in order to verify whether the resulting bandwidths satisfy all rate conditions needed for consistency

and asymptotic normality of both estimators.

Given Proposition 1, we now need to check whether hdrN;T is small enough as to satisfy h
dr;5
N;TLX(T; a)

a:s:!

0 8a 2 D and large enough as to satisfy min
�
hdrN;TLX(T; a);

hdrN;T
(�N;T log(1=�N;T ))1=2LX(T;a)

�
a:s:! 1 8a 2 D:

Similarly, we need to check whether hdifN;T is small enough as to satisfy
hdif;5N;T LX(T;a)

�N;T

a:s:! 0 8a 2 D and

large enough as to satisfy
hdifN;T

(�N;T log(1=�N;T ))1=2LX(T;a)

a:s:! 1 8a 2 D:
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2.3 Second step: A randomized procedure

Let bhN;T = �bhdrN;T ;bhdifN;T� be de�ned as bhN;T = argminh ���FhN (x)� �(x)��� :We begin by verifying whetherbhdrN;T satis�es conditions (ii), (iii), and (iv) in Proposition 1. Next, we will turn to bhdifN;T , whose require-
ments are slightly di¤erent.

It is immediate to see that (ii) and (iii) require the bandwidth not to approach zero too fast, thus

only one of the two is binding. Condition (iv) instead requires the bandwidth to approach zero fast

enough. It is important to rule out the possibility of a bandwidth which is too large to satisfy (iv) and

too small to satisfy the most stringent between (ii) and (iii). To this extent, we only ought to provide

primitive conditions on N and T . If (iv) is violated, then hdrN;T goes to zero not faster than LX(T; a)
�1=5:

This ensures that (ii) is satis�ed, but does not ensure that (iii) is satis�ed. For (iii) to be satis�ed when

(iv) is not, we need LX(T; a)6=5�
1=2
N;T log(1=�N;T )! 0: Because LX(T; a) can grow at most at rate T; a

su¢ cient condition is therefore N=T 17=5 !1.
Provided N=T 17=5 !1; there are three possibilities (see Figure 1). First, we have chosen the right

bandwidth and thus bhdrN;T satis�es (ii), (iii), and (iv). Second, we have chosen too large a bandwidth, so
that (ii) and (iii) hold, but (iv) is violated. Third, we have chosen too small a bandwidth, so that either

(ii) or (iii) is violated (or both) but (iv) holds. Hence, at most one set of conditions can be violated,

namely either (iv) or the most stringent between (ii) and (iii). To this extent, we consider the following

hypotheses:

Hdr
0 : bhdr;5N;T

bLX(T; a) a:s:! 1 or max

8<: 1bhdrN;T bLX(T; a) ;
bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdrN;T

9=; a:s:! 1,

Hdr
A : bhdr;5N;T

bLX(T; a) a:s:! 0 and max

8<: 1bhdrN;T bLX(T; a) ;
bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdrN;T

9=; a:s:! 0.

The null is that either bhdr;5N;T
bLX(T; a) a:s:! 1; (iv) is violated, ormin

�bhdrN;T bLX(T; a); bhdrN;TbLX(T;a)�1=2N;T log
1=2(1=�N;T )

�
a:s:!

0; (ii)^(iii) is violated. Since it is impossible that neither (ii)^(iii) nor (iv) hold, the alternative is that
both (ii)^(iii) and (iv) hold. Thus, if we reject the null, we can rely on bhdrN;T for drift estimation.

If, instead, we fail to reject the null, depending on which condition we fail to reject, we know whether

we have chosen a bandwidth which is too small or one which is too large. Suppose that the selected

bandwidth is too large, we proceed sequentially by choosing a smaller bandwidth until we reject the

null. Because at all steps the probability of rejecting the null when it is wrong is asymptotically one,

the procedure does not su¤er from the well-known sequential bias issue.

Importantly, rejection of the null, as stated above, does not rule out the possibility that bhdr;5N;T
bLX(T; a) =

Op(1) (if bhdrN;T / bLX(T; a)�1=5) or min�bhdrN;T bLX(T; a); bhdrN;TbLX(T;a)�1=2N;T log
1=2(1=�N;T )

�
= Op(1) (if bhdrN;T /bLX(T; a)�(1=5+�=2) with � > 0 and N / T 17=5+� or if bhdrN;T / bLX(T; a)�1): Also, it does not ensure

that conditions (ii), (iii), and (iv) hold for all evaluation points a 2 D. Hence, we re-formulate the
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Figure 1: Graphical representation of the drift bandwidth test

hypotheses as follows:

H 0;dr
0 :

Z
A
bhdr;(5�")N;T

bLX(T; a)da a:s:! 1

or max

8<: 1R
A
bhdr;(1+")N;T

bLX(T; a)da;
Z
A

bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdr;(1+")N;T

da

9=; a:s:! 1

for A �D; and " > 0 arbitrarily small, versus

H 0;dr
A : negation of H 0;dr

0 .

The role of the integral over A, and of " > 0, is to ensure that rejection of the null implies
min

�R
A
bhdrN;T bLX(T; a)da; bhdrN;TR

A
bLX(T;a)�1=2N;T log(1=�N;T )da

�
a:s:! 1 and

R
A
bhdr;5N;T

bLX(T; a)da a:s:! 0. However, of

course, if we choose an " which is not small enough, we run the risk of not having a bandwidth sequence

for which H 0;dr
0 is rejected. Hereafter, we consider the following statistic:

VR;N;T = min
neV1;R;N;T ; minneV2;R;N;T ; eV3;R;N;Too ;

where for i = 1; 2; 3 eVi;R;N;T = Z
U
V 2i;R;N;T (u)�(u)du,

with U = [u; u] being a compact set,
R
U �(u)du = 1; �(u) � 0 for all u 2 U; and

Vi;R;N;T (u) =
2p
R

RX
j=1

�
1 fvi;j;N;T � ug �

1

2

�

10



and

v1;j;N;T =

�
exp

Z
A

�bhdr;(5�")N;T
bLX(T; a)da��1=2 �1;j ;

v2;j;N;T =

 
exp

 �Z
A
bhdr;(1+")N;T

bLX(T; a)da��1!!1=2 �2;j ;
v3;j;N;T =

0@exp
0@Z

A

bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdr;(1+")N;T

da

1A1A1=2 �3;j ; (9)

with (�1;�2;�3)
| �iidN(0; I3R):

In what follows, let the symbols P � and d� denote convergence in probability and in distribution under

P �; which is the probability law governing the simulated random variables �1;�2;�3, i.e., a standard

normal, conditional on the sample. Also, let E� and V ar� denote the mean and variance operators under

P �. Furthermore, with the notation a:s:� P we mean: for all samples but a set of measure 0:
Suppose that

R
A
bhdr;(5�")N;T

bLX(T; a)da a:s:! 1. Then, conditionally on the sample and a:s:� P , v1;j;N;T
diverges to 1 with probability 1=2 and to �1 with probability 1=2: Thus, as N;T ! 1; for any
u 2 U; 1 fv1;j;N;T � ug will be distributed as a Bernoulli random variable with parameter 1=2: Fur-

ther note that as N;T ! 1; for any u 2 U; 1 fv1;j;N;T � ug is equal to either 1 or 0; regardless of
the evaluation point u; and so as N;T;R ! 1; for all u; u0 2 U; 2p

R

PR
j=1

�
1 fv1;j;N;T � ug � 1

2

�
and

2p
R

PR
j=1

�
1 fv1;j;N;T � u0g � 1

2

�
will converge in d��distribution to the same standard normal random

variable. Hence, eV1;R;N;T d�! �21 a:s:�P: It is now immediate to notice that for all u 2 U; V1;R;N;T (u) andeV1;R;N;T have the same limiting distribution. The reason why we are averaging over U is simply because
the �nite sample type I and type II errors may indeed depend on the particular evaluation point. As for

the alternative, if
R
A
bhdr;(5�")N;T

bLX(T; a)da a:s:! 0; (or, if
R
A
bhdr;(5�")N;T

bLX(T; a)da = Oa:s:(1)), then v1;j;N;T ,

as N;T ! 1, conditionally on the sample and a:s: � P , will converge to a (mixed) zero mean normal
random variable. Thus, 2p

R

PR
j=1

�
1 fv1;j;N;T � ug � 1

2

�
will diverge to in�nity at speed

p
R if u 6= 0

a:s:� P .
Importantly, the two conditions stated in the null hypothesis are the negation of (ii), (iii), and

(iv) in Proposition 1, respectively.4 As mentioned, only one of the conditions stated under the null

is false, simply because the criterion cannot select a bandwidth which is too small (for the most

stringent between (ii) and (iii) to be satis�ed) and, at the same time, too large (for (iv) to be

satis�ed). Hence, either eV1;R;N;T or min
neV2;R;N;T ; eV3;R;N;To has to diverge under the null. Thus,

min
neV1;R;N;T ; minneV2;R;N;T ; eV3;R;N;Too ; conditional on the sample, and for all samples but a set of

measure zero, is asymptotically �21 under the null and diverges under the alternative. If we reject the

null, then conditions (ii), (iii), and (iv) in Proposition 1 are satis�ed. Otherwise, if, for instance,eV1;R;N;T = minneV1;R;N;T ; minneV2;R;N;T ; eV3;R;N;Too � 3:84 and we fail to reject the null, then bhdrN;T is
4 It should be noted that the rate conditions in Proposition 1 are stated in terms of LX(T; a) instead of

bLX(T; a):
However,

bLX (T;a)�1=2
N;T

log1=2(1=�N;T )bhdr
N;T

a:s:! 0 if, and only if,
LX (T;a)�

1=2
N;T

log1=2(1=�N;T )bhdr
N;T

a:s:! 0; but this ensures that bLX(T; a)�
LX (sup ft : Xt = ag ; a) = oa:s:(1) (BP, 2003, Corollary 1).
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too large (and condition (iv) is violated). The same testing procedure should therefore be repeated until

ehdrN;T = maxnh < bhdrN;T : s.t. H 0
0 is rejected

o
:

In other words, the proposed procedure gives us a way to learn whether the conditions for consistency

and (mean zero) mixed normality of the drift are satis�ed. If they are not, it gives us a way to understand

which condition is not satis�ed and modify the bandwidth accordingly.

Theorem 3. Let Assumption 1 and 2 hold. Assume T;N;R!1; N=T 17=5 !1, and R=T ! 0.5

(i) Under H 0;dr
0 ;

VR;N;T
d�! �21 a:s:� P:

(ii) Under H 0;dr
A ; there are �; � > 0 so that

P �
�
R�1+�VR;N;T > �

�
! 1 a:s:� P:

�
The test has appealing features. Speci�cation tests generally assume correct speci�cation under the

null. In our case, the bandwidth is correctly speci�ed under the alternative. This is helpful in that, in

theory, rejection of the null at the 5% level gives us 95% con�dence that the alternative is true and the

assumed bandwidth is correctly speci�ed. Since we stop as soon as we reject the null, we do not have

a sequential bias problem. Further, the critical values (those of a chi-squared random variable with 1

degree of freedom) are readily tabulated. Reliance on a classical distribution makes testing, as well as

adaptation of the bandwidth in either direction should the null not be rejected, rather straightforward.

It should be stressed that the limiting distribution in Theorem 3 is driven by the added randomness

�; conditional on the sample and for all samples but a set of measure zero. Nonetheless, whenever we

reject the null, for all samples and for 95% of random draws �; the alternative is true, and so keeping

the selected bandwidth is the right choice.

We now turn to hdifN;T . We will ensure that h
dif
N;T is small enough as to satisfy

hdif;5N;T LX(T;a)

�N;T

a:s:! 0 8a 2 D;

and large enough as to satisfy
hdifN;T

(�N;T log(1=�N;T ))1=2LX(T;a)
! 1: In order to rule out the possibility that

any bandwidth rate is either too slow to satisfy the former condition or too fast to satisfy the latter, it

su¢ ces to require that N=T 5 !1.
We can now state the hypothesis of interest as:

Hdif
0 :

Z
A

bhdif;(5�")N;T
bLX(T; a)

�N;T
da

a:s:! 1 or
Z
A

bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdif;(1+")N;T

da
a:s:! 1

for A �D; and " > 0 arbitrarily small, versus

H 0
A : negation of H

0
0.

5The condition R=T ! 0 is necessary only for the case in which the local time diverges at a logarithmic rate. If the
local time diverges at rate T a a > 0; then R can grow as fast as, or faster than, T: Thus, we drop it in the statement of
Theorem 4.

12



Figure 2: Graphical representation of the di¤usion bandwidth test

Remark 1. We note that, contrary to the drift case, we are not writing the second condition in the null
hypothesis as

max

8<: �N;TR
A
bhdif;(1+")N;T

bLX(T; a)da;
Z
A

bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdif;(1+")N;T

da

9=; a:s:! 1: (10)

In fact, in spite of the fact that
bhdifN;T bLX(T;a)

�N;T
is the rate of convergence of the di¤usion estimator, we do

not need to explicitly require its divergence (in Proposition 1, for example). If (iii) is satis�ed for the

di¤usion estimator, then
bhdifN;T bLX(T;a)

�N;T
is guaranteed to diverge. In other words, the maximum in Eq. (10)

is always the second term and the �rst term can be dropped. The graphical manifestation of this result

is the fact that, in Figure 2, f(a) < 1
2 : In the case of the drift, the maximum may vary depending on �

(see Figure 1). For instance, if � is larger than 8
5 , then the maximum condition is always

1R
A
bhdrN;T bLX(T;a)da

since 1
5 +

�
2 > 1.

Consider the following statistic:

V DR;N;T = min
ngV D1;R;N;T ; gV D2;R;N;To ;

where for i = 1; 2 gV Di;R;N;T = Z
U
V D2i;R;N;T (u)�(u)du,

U and � de�ned as above, and

V Di;R;N;T (u) =
2p
R

RX
j=1

�
1 fvdi;j;N;T � ug �

1

2

�
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with

vd1;j;N;T =

0@expZ
A

0@bhdif;(5�")N;T
bLX(T; a)

�N;T
da

1A1A1=2 �1;j ;
vd2;j;N;T =

0@exp
0@Z

A

bLX(T; a)�1=2N;T log1=2(1=�N;T )bhdif;(1+")N;T

da

1A1A1=2 �2;j ;
with (�1;�2)

| �iidN(0; I2R):

Theorem 4. Let Assumption 1 and 2 hold. Assume T;N;R!1 and N=T 5 !1.
(i) Under Hdif

0 ;

V DR;N;T
d�! �21 a:s:� P:

(ii) Under Hdif
A ; there are �; � > 0 such that

P �
�
R�1+�V DR;N;T > �

�
! 1 a:s:� P:

�

Remark 2 (The local polynomial and local linear case). Our discussion has focused on classical
Nadaraya-Watson kernel estimates. We will continue to do so throughout this paper. This said, the

methods readily apply to alternative kernel estimators when appropriately modi�ed, if needed. For

example, they apply (unchanged) to the local linear estimates studied by Fan and Zhang (2003) and

Moloche (2004).

3 Jump-di¤usion processes

We now study the problem of bandwidth selection in the context of processes with discontinuous sample

paths. Consider the class of jump-di¤usion models

dXt = �(Xt)dt+ �(Xt)dWt + dJt;

where fJt : t = 1; :::; Tg is a Poisson jump process with in�nitesimal intensity �(Xt)dt and jump size c.
Let c = c(Xt; y), where y is a random variable with stationary distribution fy(:).

We begin by assuming existence of consistent estimates of �(:) and �(:) in the presence of jumps

(b�N;T (:) and b�2N;T (:)). Later we show how these estimates can be de�ned. Write, as earlier,
b"i�N;T = Xi�N;T �X(i�1)�N;T � b�N;T (X(i�1)�N;T )�N;Tb�N;T (X(i�1)�N;T )p�N;T

for i = 2; :::;��1N;TT . We note that

14



b"i�N;T =
Xi�N;T �X(i�1)�N;T � b�N;T (X(i�1)�N;T )�N;Tb�N;T (X(i�1)�N;T )p�N;T

=
Xi�N;T �X(i�1)�N;T � �(X(i�1)�N;T )�N;T�

�(X(i�1)�N;T ) + op(1)
�p

�N;T
+ op(1)

�
�(X(i�1)�N;T )

�
Wi�N;T �W(i�1)�N;T

�
�
�(X(i�1)�N;T ) + op(1)

�p
�N;T

+
Ji�N;T � J(i�1)�N;T�

�(X(i�1)�N;T ) + op(1)
�p

�N;T
+ op(1)

� N(0; 1) +
Ji�N;T � J(i�1)�N;T
�(X(i�1)�N;T )

p
�N;T

+ op(1): (11)

If there is a jump at i�N;T ;
�
Ji�N;T � J(i�1)�N;T

�
= Op(1). However, over a �nite time span T ; there

will only be a �nite number of times in which 1fb"i�N;T � xg is 1 instead of 0 or viceversa, because of
jumps. Thus,

1

N � 1

NX
i=2

1fb"i�N;T � xg = 1

N � 1

NX
i=2

1fb"ci�N;T � xg+ Op(1)N
;

where b"ci�N;T is the residual that would prevail in the continuous case. Hence, the same criterion as in
Subsection 2.2 can be applied to the case with jumps.

It still remains to establish conditions under which we have consistent estimates of the in�nitesimal

moments in the presence of jumps. Hereafter, we rely on the following assumption:

Assumption 3.

(i) �(:); �(:); c(:; y); and �(:) are time-homogeneous, B-measurable functions on D = (l; u) with �1 �
l < u � 1; where B is the �-�eld generated by Borel sets on D. All functions are at least twice

continuously di¤erentiable. They satisfy local Lipschitz and growth conditions. Thus, for every

compact subset J of the range of the process, there exist constants CJ4 ; C
J
5 , and C

J
6 so that, for all

x and z in J ,

j�(x)� �(z)j+ j�(x)� �(z)j+ �(x)
Z
Y
jc(x; y)� c(z; y)j�(dy) � CJ4 jx� zj;

and

j�(x)j+ j�(x)j+ �(x)
Z
Y
jc(x; y))j�(dy) � CJ5 f1 + jxjg;

and for � > 2;

�(x)

Z
Y
jc(x; y))j��(dy) � CJ6 f1 + jxj�g;

(ii) �(:) > 0 and �2(:) > 0 on D.
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(iii) �(:); �(:); c(:; y); and �(:) are such that the solution is recurrent.

In what follows, we consider two alternative scenarios. First, we establish the validity of our band-

width selection procedure for all in�nitesimal moments under parametric assumptions on the jump

component. Second, without making parametric assumptions on the jump component, we discuss band-

width selection for the purpose of consistent (and asymptotically normal) estimation of the system�s

drift and in�nitesimal variance. In the former case, we incur the risk of incorrectly specifying the jump

distribution but completely identify the system�s dynamics. The procedure is, in spirit, semiparametric.

In the latter case, we are agnostic about the jump distribution, but can only identify the process�drift

(possibly inclusive of the �rst conditional jump moment) and the process�in�nitesimal volatility, while

remaining fully nonparametric. If interest is on the full system�s dynamics, one should employ the proce-

dure in Subsection 3.1. If interest is solely on the volatility of the continuous component of the process,

then the methods in Subsection 3.2 are arguably preferable. As we will show, in fact, the di¤usion�s

kernel estimator converges at a faster rate in this second case.

3.1 Consistent estimation of all in�nitesimal moments

In order to separate the moments of the continuous component from those of the jump component, we

ought to properly correct the kernel estimators considered in the previous section. Following Bandi and

Nguyen (2003), BN hereafter, and Johannes (2004), de�ne

b�N;T (a) = 1

�N;T

PN�1
j=1 K

�
Xj�N;T�a
hn;T;1

��
X(j+1)�N;T �Xj�N;T

�
PN
j=1K

�
Xj�N;T�a
hN;T;1

� � b�hn;T (Xt)bEy;hn;T (c(Xt; y)) (12)

and

b�2N;T (a) = 1

�N;T

PN�1
j=1 K

�
Xj�N;T�a
hn;T;2

��
X(j+1)�N;T �Xj�N;T

�2
PN
j=1K

�
Xj�N;T�a
hN;T;2

� � b�hn;T (Xt)bEy;hn;T �c(Xt; y)2� : (13)

Since the intensity estimator b�(:); as well as the jump size moment estimator, bEy �c(:; y)j� with j = 1; 2
depend, in general, on higher-order in�nitesimal moment estimates, we make explicit their dependence

on a (vector-)bandwidth hn;T and write b�hn;T (:) and bEy;hn;T �c(:; y)2�, as above.
We are now more speci�c. Identi�cation of �(:) and the moments of the jumps may hinge on

parametric assumptions on fy(:), i.e., the probability distribution of the jump size. Assume, for instance,

c(Xt; y) = y and fy(:) = N(0; �2y), but alternative speci�cations may, of course, be invoked along the

lines of, e.g., Bandi and Renò (2008), BR henceforth. Then, from BN (2003) and Johannes (2004), one

can write
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bEy;hn;T �c(Xt; y)2� =
�b�2y�N;T = 1

N

NX
j=1

cM6
N;T;h6

(Xj�n;T )

5cM4
N;T;h4

(Xj�n;T )
;

b�hn;T (a) =
cM4
N;T;h4

(a)

3
�b�4y�N;T ;

with

cM j
N;T;hk

(a) =
1

�N;T

PN�1
j=1 K

�
Xj�N;T�a
hn;T;k

��
X(j+1)�N;T �Xj�N;T

�j
PN
j=1K

�
Xj�N;T�a
hN;T;k

� j = 1; :::

Since the mean of the jump size is zero, Eq. (12) and Eq. (13) become, in this case:

b�N;T (a) = cM1
N;T;h1(a); (14)

b�2N;T (a) = cM2
N;T;h2(a)�

cM4
N;T;h4

(a)

3

�
1
N

PN
i=1

cM6
N;T;h6

(Xi�n;T )

5cM4
N;T;h4

(Xi�n;T )

�2
0@ 1

N

NX
i=1

cM6
N;T;h6

(Xi�n;T )

5cM4
N;T;h4

(Xi�n;T )

1A ; (15)

with hn;T = (h6; h4). In other words, optimization of the criterion in Subsection 2.2 will now depend on

four bandwidths whose properties are laid out below.

Proposition 2 (BN, 2003): Let Assumption 3 hold.

(i) Let �N;T = T=N with T �xed. If limN!1 1
hN;T

�
�N;T log

1
�N;T

�1=2
! 0, then

bLX(T ; a)� LX(T ; a) = oa:s:(1);
where bLX(T ; a) = �N;T

hN;T

PN
j=1K

�
Xj�

N;T
�a

hN;T

�
:

� The in�nitesimal moments

If (ii) hN;T;kLX(T; a)
a:s:! 1 and (iii) LX(T;a)hN;T;k

�
�N;T log

1
�N;T

�1=2 a:s:! 0; then:

cMk
N;T;hk

(a)�Mk(a) = oa:s:(1):

If, in addition, (iv) hdr;5N;T;kLX(T; a)
a:s:! 0; then:q

hN;T;k
bLX(T; a)�cMk

N;T;hk
(a)�Mk(a)

�
) N

�
0;K2M

2k(a)
�
:

From the proposition above, we note that all moments estimators converge to their limit at the

same rate,
q
hN;T;k

bLX(T; a): Importantly, it is theoretically sound to employ the same rate condition
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for all moments. This is in sharp contrast with the continuous semimartingale case in which the drift

estimator converges at a slower rate than the in�nitesimal variance estimator. In the continuous case, in

fact, one ought to use di¤erent bandwidth rates, since, from the conditions in Proposition 1, we require

hdrN;TLX(T; a)
a:s:! 1 (for the drift bandwidth) and hdifN;TLX(T; a)

a:s:! 0 (for the di¤usion bandwidth).6

Let b�N;T;h(a) and b�2N;T;h(a) be de�ned as in Eq. (14) and Eq. (15) with h1 = h2 = h4 = h6 = h: We
can now select h in such a way as to minimize supx jFN;T;h(x)� �(x)j ; where FN;T;h(x) is the empirical
distribution of b" (as de�ned in (11)) evaluated at x: Given the nature of the bandwidth requirements from
Proposition 2, the second-step procedure can be carried out as in the continuous drift case. Similarly,

the asymptotic behavior of the second-step procedure is as established in Theorem 3.7

Needless to say, misspeci�cation of the parametric distribution of the jump component will, in general,

result in failure of the statement in Theorem 2 since, in this case, there might not exist a bandwidth for

which supx jFN;T;h(x)� �(x)j = op(1): We now turn to a procedure which does not impose parametric
assumptions on the process�discontinuities at the cost of solely identifying the moments of the process�

continuous component.

3.2 Consistent estimation of the drift and in�nitesimal variance

Should we be unwilling to make parametric assumptions on the distribution of the jump component, we

may still consistently estimate the in�nitesimal variance term. The only maintained assumption about

the jump component in this subsection is that Jt is a process of �nite activity. De�ne b�2J;N;T (a) as:
b�2J;N;T (a) = ��p2=p

�N;T

PN�p
j=1 K

�
Xj�N;T�a
hdifN;T

�
�pi=1

���X(j+i)�N;T �X(j+i�1)�N;T ��� 2pPN
j=1K

�
Xj�N;T�a
hdifN;T

� ; (16)

where �k = E
�
jZjk

�
; with Z denoting a standard normal random variable, and 2 < p < p <1:

Corradi and Distaso (2008) have studied the properties of this class of estimators for the case �N;T =
T
N with T �nite. They have shown that, under mild conditions, b�2J;N;T (a) identi�es �2(a) consistently in
the presence of �nite activity jumps. Since we are also dealing with �nite activity jumps, with probability

one we can have at most a �nite number of jumps over a �nite time span. As the time span increases

inde�nitely, the number of jumps increases roughly at the same rate. Provided p > 2; asymptotic mixed

normality follows under the same rate conditions as in the continuous semimartingale case. Theorem 5

states the relevant result.
6Consider conditions (iii) and (iv�) in Proposition 1. From (iv�), we notice that �N;T has to vanish at a slower rate

than hdif;5N;T LX(T; a): Set �N;T = O
�
hdif;5��N;T LX(T; a)

�
with � > 0 arbitrarily small. Now, plugging this condition into (iii)

and ignoring the logarithm, we obtain

LX(T; a)

hdifN;T

q
hdif;5�"N;T LX(T; a) = L

3=2
X (T; a)h

dif;3=2�"=2
N;T

a:s:! 0;

which implies hdifN;TLX(T; a)
a:s:! 0 but, of course, this is in contraddiction with (ii) in the drift case (see Proposition 1).

7Simulations suggest that it is sometimes very bene�cial to select a smaller bandwidth for the in�nitesimal second
moment than for the �rst and higher-order moments (see, e.g., BR, 2008). One may therefore set h1 = h4 = h6 with h2
left unrestricted. In this case our criterion results in the choice of two bandwidths like in the continuous case.

18



Theorem 5. Let Assumption 3 hold and let p > 2. If (i) LX(T;a)

hdifN;T

�
�N;T log

1
�N;T

�1=2 a:s:! 0 and (ii)

hdif;5N;T LX(T;a)

�N;T

a:s:! 0, thenvuuthdifN;T
bLX(T; a)
�N;T

�b�2J;N;T (a)� �2(a)�) N
�
0; 
pK2�

4(a)
�
;

where


p =
�p4=p � (2p� 1)�

2p
2=p + 2

�
�p�14=p �

2
2=p + �

p�2
4=p �

4
2=p + :::+ �

p�(p�1)
4=p �

2(p�1)
2=p

�
�2p2=p

:

�
Let b"i�N;T = Xi�N;T �X(i�1)�N;T � b�N;T (X(i�1)�N;T )�N;Tb�J;N;T (X(i�1)�N;T )p�N;T ;

where b�N;T is de�ned as in (14) and b�2J;N;T (a) is as in (16) above with p > 2:We may now select hN;T =
(hdrN;T ; h

dif
N;T ) so as to minimize supx jFN;T;h(x)� �(x)j ; where FN;T;h(x) is the empirical distribution ofb". Subsequently, we can verify the rate conditions as in the continuous semimartingale drift and di¤usion

case. In other words, Theorems 3 and 4 apply.

Of course, if the jump size does not have mean zero, the procedure only identi�es the sum of the drift

component and the compensator (see, e.g., Eq. 12) while remaining consistent for the di¤usive volatility.

Should this be the case, then one has to resort to parametric assumptions, as in the previous subsection,

to identify the continuous drift component, if needed.

4 Di¤usions observed with error (or microstructure noise)

We now assume that the process Xt is contaminated by measurement error and write observations from

the observable process Yt as

Yi�N;T = Xi�N;T + �i�N;T ; (17)

where a�1=2N;T �i�N;T is an i.i.d. sequence with mean zero, variance 1, and such that E
�
�ki�N;T

�
= O

�
a
k=2
N;T

�
(k � 2) for aN;T ! 0 as N;T !1:

We provide estimates of the �rst two in�nitesimal moments which are robust to this type of mea-

surement error. In this context, we establish conditions for consistency and asymptotic normality. We

then turn to the issue of automatic bandwidth choice. Write

b�N;l;T (a) =
PB
b=1

Pl�1
j=1K

�
Y((j�1)B+b)�N;T�a

hdrN;l;T

�
��1l;T

�
Y(jB+b)�N;T � Y((j�1)B+b)�N;T

�
PB
b=1

Pl�1
j=1K

�
Y((j�1)B+b)�N;T�a

hdrN;l;T

� ; (18)
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where Bl = N and �l;T = T=l. As for the di¤usion:

b�2N;l;T (a) =
PB
b=1

Pl�1
j=1K

�
Y((j�1)B+b)�N;T�a

hdifN;l;T

�
��1l;T

�
Y(jB+b)�N;T � Y((j�1)B+b)�N;T

�2
PB
b=1

Pl�1
j=1K

�
Y((j�1)B+b)�N;T�a

hdifN;l;T

� ���1l;TRVT;N�N;T ;

(19)

where RVT;N�N;T = �N;T
PN
j=1

�
Yj�N;T � Y(j�1)�N;T

�2
: In the case of a �xed time span, the estimator

in Eq. (19) has been studied by Corradi and Distaso (2008). Here, we also consider estimation of the

�rst in�nitesimal moment as in Eq. (18). In both cases, letting the time span increase without bound

(which is, as always, necessary in the drift case for consistency) raises additional technical issues which

ought to be dealt with.

Remark 3 (market microstructure). When Yi�N;T is an observable logarithmic price process (i.e.,
a transaction price or a mid-quote, for example), Xi�N;T generally denotes the underlying, unobservable

equilibrium price and "i�N;T de�nes market microstructure noise. If econometric interest is placed on the

drift and di¤usion function of the equilibrium price process, as is generally the case, then b�N;l;T (a) andb�2N;l;T (a) will provide consistent and asymptotically normal estimates of its true in�nitesimal moments
(as we show below) even when contaminated price observations Yi�N;T are employed.

Remark 4. We note that the form of b�N;l;T (a) and b�2N;l;T (a) requires the use of an appropriately-chosen
lower frequency l. In agreement with the two-scale estimator of Zhang, Mykland, and Aït-Sahalia (2005),

ZMA henceforth, the di¤usion case also requires a bias-correction term based on the higher frequency

N (see, also, Aït-Sahalia, Mykland, and Zhang, 2006).

Theorem 6

� The in�nitesimal �rst moment

Let Assumption 1 hold and let � be de�ned as in Eq. (17). Also assume that l = O(BT ): If

(i) hdrN;l;TLX(T; a)
a:s:! 1; (ii) LX(T;a)

hdrN;l;T

�
�l;T log

1
�l;T

�1=2 a:s:! 0; (iii) hdr;5N;l;TLX(T; a)
a:s:! 0, and (iv)

N1=ka
1=2
N;T

p
LX(T;a)q

hdrN;l;T

a:s:! 0; then

r
hdrN;l;T

bLX(T; a) �b�N;l;T (a)� �(a)�) N

�
0;
2

3
K2�

2(a)

�
:

� The in�nitesimal second moment

Let Assumption 1 hold and let � be de�ned as in Eq. (17). Also assume that l = O(BT ): If (i)

LX(T;a)

hdifN;l;T

�
�l;T log

1
�l;T

�1=2 a:s:! 0; (ii)
hdif;5N;l;TLX(T;a)

�l;T

a:s:! 0; (iii)
a2N;T l

�2l;T
! 0; and (iv)

N1=ka
1=2
N;T l

1=2

r
h
dif
N;l;T

LX (T;a)

T

hdifN;l;T

a:s:!
0; then vuuthdifN;l;T

bLX(T; a)
�l;T

�b�2N;l;T (a)� �2(a)�) N
�
0;K2�

4(a)
�
:
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�
Both in the drift and in the di¤usion case, the averaging over sub-grids reduces the constant of propor-

tionality in the estimators�asymptotic variance (from 1 to 2
3 in the drift case, from 2 to 1 in the di¤usion

case). The rates of convergence are also a¤ected. In the di¤usion case, since �N;T
�l;T

! 0, the rate is

slower. In the drift case, the new bandwidth condition (ii) requires larger bandwidth choices and thus,

compatibly with condition (iii), the actual rate may be faster. Since N = Bl; by choosing a smaller l,

and hence a larger B, we may allow for a larger variance of the error term. This choice will in general

not come at a price (in terms of convergence rate) as far as the drift is concerned, but could come at a

price in the case of di¤usion estimation if
hdifN;l1;T
�l1;T

= o

�
hdifN;l2;T
�l2;T

�
with l1 < l2.

Turning to bandwidth selection, we note that our local Gaussian criterion ought to be re-adjusted in

this new framework. We �rst propose a heuristic argument to provide intuition. Let

bui�N;T =
Yi�N;T � Y(i�1)�N;T � b�N;l;T (Y(i�1)�N;T )�N;Tb�N;l;T (Y(i�1)�N;T )p�N;T

=
Yi�N;T � Y(i�1)�N;T � �(Y(i�1)�N;T )�N;T�

�(Y(i�1)�N;T ) + op(1)
�p

�N;T
+ op(1)

=
Xi�N;T �X(i�1)�N;T � �(X(i�1)�N;T )�N;T + �i�N;T � �(i�1)�N;T � �0(X(i�1)�N;T )�(i�1)�N;T�N;T�

�(X(i�1)�N;T ) + �
0(X(i�1)�N;T )�(i�1)�N;T + op(1)

�p
�N;T

+op(1)

= ui�N;T + op(1);

where X(i�1)�N;T 2
�
X(i�1)�N;T ; Y(i�1)�N;T

�
: In spite of the consistency of the drift and in�nitesimal

variance estimator, ui�N;T is in general non-Gaussian since the presence of measurement error a¤ects

Yi�N;T � Y(i�1)�N;T and, of course, the evaluation point.
A natural solution to this issue is to use di¤erent frequencies for in�nitesimal moment estimation

and for bandwidth selection. For the latter, one may use a (lower) frequency at which the contamination

error is expected to have little or no e¤ect, say �H;T ; with H=N ! 0: Provided aN;T = o(�H;T ); we

de�ne

bui�H;T =
Yi�H;T � Y(i�1)�H;T � b�N;l;T (Y(i�1)�H;T )�H;Tb�N;l;T (Y(i�1)�H;T )p�H;T

=
Xi�H;T �X(i�1)�H;T � �(X(i�1)�H;T )�H;T�

�(X(i�1)�H;T ) + op(1)
�p

�H;T
+ op(1)

= ui�H;T + op(1):

It is now clear that ui�H;T is approximately Gaussian. The criterion de�ned in Section 2.2 is therefore

still valid and the statements in Theorem 1 and 2 continue to apply. In �nite samples, of course, the

approximation is best the smallest the interval �H;T . From a practical standpoint, therefore, one has

to balance the size of the implied measurement error with the accuracy of the Gaussian approximation.

The highest frequency at which the measurement error appears negligible is therefore the preferable

frequency.
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Remark 5. In the case of high-frequency logarithmic asset prices and market microstructure noise,

an appropriate frequency may be chosen in a data-driven manner, either by looking at signature plots

(Andersen, Bollerslev, Diebold, and Labys 2000) or via the statistics suggested by Awartani, Corradi

and Distaso (2009).

In the second stage one needs to verify whether the bandwidths selected by the procedure in Theorem

1, say bhdrN;l;T and bhdifN;l;T , satisfy all of the rate conditions in Theorem 6. We begin with the drift. Notice

that N;T and the size of the measurement error aN;T are given. While aN;T is unknown in general, it may

be estimated by using (RVT;N�N;T ) =2 as de�ned in Eq. (19). Given N , we �x l and B, using the fact

that N = lB: If we choose l = O
�
a�1N;TT

�
; it is immediate to see that (ii) implies (iv). Summarizing, if

T 17=5=l ! 0 and l = O
�
a�1N;TT

�
; there is a bandwidth satisfying (i)-(iv) and we can proceed along the

lines of Theorem 2 by testing the hypothesis:

Hdr
0 :

Z
A
bhdr;5�"N;l;T

bLX(T; a)da a:s:! 1

or max

8<: 1R
A
bhdr;(1+")N;l;T

bLX(T; a)da;
Z
A

bLX(T; a)�1=2l;T log1=2(1=�l;T )bhdr;(1+")N;l;T

da

9=; a:s:! 1

for A � D; and " > 0 arbitrarily small, versus its alternative.
We now turn to the variance estimator. If we set l = O

�
a
�2=3+"
N;T T 2=3

�
; (iii) is always satis�ed.

Further, if T 5=l! 0; there is a bandwidth satisfying (i) and (ii). We now test the following hypothesis:

Hdif
0 :

Z
A

bhdif;5�"N;l;T
bLX(T; a)
�l;T

da
a:s:! 1 or

max

8>><>>:
Z
A

N1=ka
1=2
N;T l

1=2

r
hdifN;l;T

bLX(T;a)
T

h
dif;(1+")
N;l;T

da;

Z
A

bLX(T; a)�1=2l;T log1=2(1=�l;T )bhdif;(1+")N;l;T

da;

9>>=>>; a:s:! 1

for A � D; and " > 0 arbitrarily small, versus its alternative.

5 Stochastic volatility

Consider now the model

dXt = �Xt dt+ vtdW
X
t

df(v2t ) = �(v2t )dt+ �(v
2
t )dW

�
t ;

where
�
WX
t : t = 1; :::; T

	
and fW �

t : t = 1; :::; Tg are potentially correlated Brownian motions. The
function f(x) may be equal to log(x) as in Jaquier, Polson, and Rossi (1994) or x as in Eraker, Johannes,

and Polson (2003), for instance. Our interest is in �(v2t ) and �
2(v2t ), the drift and the di¤usion function

of the spot variance process.
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Volatility is latent. However, it may be �ltered from prices Xt sampled at high frequency as suggested

by Kristensen (2008) and BR (2008). To this extent, assume, as earlier, availability of N equidistant

price observations with �N;T = T=N denoting the time distance between successive data points and T

denoting the time span. We again observe the price skeleton X�N;T ; X2�N;T ; :::; XT�N;T . These price

observations may be employed to (1) �lter spot volatility (or spot variance) nonparametrically for the

purpose of (2) identifying �(:) and �2(:). Using preliminary spot variance estimates bv2t , the latter may
be done by virtue of the functional estimators in Eq. (1) and (2) (BR, 2008, and Kanaya and Kristensen,

2008). Importantly, however, selection of the smoothing sequences hdr and hdif now also depends on the

need to eliminate the impact of the estimation error induced by the �rst-step spot variance estimates.

To present the main ideas, consider spot variance estimates obtained by virtue of the classical realized

variance estimator (Andersen et al., 2003, and Barndor¤-Nielsen and Shephard, 2002). Speci�cally, write

bv2� = �+T��N��1N;TX
i=��T��N��1N;T

T �N
�
X(i+1)�N;T �Xi�N;T

�2
: (20)

The estimator averages 2T��N��1N;T squared price di¤erences in a local neighborhood of � determined

by the localizing factor T��N .

BR (2008) introduce four additional conditions (with respect to those in Proposition 1 above) which

the drift bandwidth hdr and the di¤usion bandwidth hdif ought to satisfy for asymptotic normality

of the drift and the di¤usion function estimates to hold. These conditions (two for each in�nitesimal

moment) are su¢ cient to eliminate, asymptotically, the in�uence of the estimation error induced by bv2�
(when used in place of the unobservable v2� ). Intuitively, the conditions imply that one needs to use a

larger discrete interval, say �M;T = T
M with M=N ! 0, than is used for estimating the preliminary spot

variance estimates. In other words, one needs to use high-frequency data to identify spot variance bv2
and M lower frequency observations (on bv2) to identify the dynamics (through �(:) and �2(:)). To this
extent, call the relevant bandwidths hdrM;T and h

dif
M;T .

In what follows, for conciseness, we will not discuss the origin and form of these four conditions. We

refer the reader to BR (2008) and Appendix B to this paper for details. However, consistently with our

stated goal, we discuss the implications of the four conditions for bandwidth choice. When dealing with

this choice, the main technical issue is now that the rate of growth ofM depends on hdrM;T ; which is what

one needs to �nd optimally, as well as on Lv(T; a) which is unknown and whose estimates depend on

hdrM;T : This is an important di¤erence from the observable case in which all N observations are used. In

the drift case, one may consider optimizing over both Mdr and hdrM;T . Similarly, in the di¤usion case one

might wish to optimize over Mdif and hdifM;T . We leave this issue for future work and take the following

approach to the problem.

As said, it is natural for applied researchers to employ N high-frequency observations to identify spot

variance before using M lower frequency data (on bv2) to evaluate the dynamics. To this extent, assume
M and N are �xed (with M < N). It can be shown (see Appendix B) that, for the drift, the implied
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bandwidth condition becomes:

hdrM;TLv(T; a)

0@N2
�

�
2�+1

�
T
�2
�

�
2�+1

�
M2

1A
| {z }

�N;T;M

a:s:! 1: (21)

where � � 1
2 .
8 As for the di¤usion:

hdifM;TLv(T; a)

�T;M

0@NN�
�

2�
1+2�

�
1
2� T

�
2�

1+2�

�
1
2� T

M4

1A
| {z }


N;T;M

a:s:! 1: (22)

In general (i.e., for empirically reasonable values of N;M; T ), it is easy to see that �N;T;M < 1 and


N;T;M < 1. Hence, Eq. (21) and Eq. (22) are more stringent conditions that hdrM;TLv(T; a)
a:s:! 1 and

hdifM;TLv(T;a)

�T;M

a:s:! 1 with probability one. This observation leads to the following tests.

If M
T 17=5

!1 and N;M; T are such that �N;T;M ! 0 and T [1�(
1
5
+c)]��N;T;M !1 (with c > 0; where

T � is the local time�s divergence rate), then

Hdr
0 : bhdr;5M;T

bLv(T; a) a:s:! 1 or max

8<: 1

�N;T;MbhdrM;T bLv(T; a) ;
bLv(T; a)�1=2M;T log1=2(1=�M;T )bhdrM;T

9=; a:s:! 1:

If M
T 5
!1 and N;M; T are such that 
N;T;M ! 0 and

M [1�( 1
5
+c)]T [1�(

1
5
+c)](��1)
N;T;M !1 (with c > 0, where T � is the local time�s divergence rate), then

Hdif
0 :

bhdif;5M;T
bLv(T; a)
�M;T

a:s:! 1 or max

8<: �M;T


N;T;M
bhdifM;T bLv(T; a) ;

bLv(T; a)�1=2M;T log1=2(1=�M;T )bhdifM;T
9=; a:s:! 1:

6 Multivariate di¤usion processes

We now turn to multidimensional di¤usions. Let Xt = (X1;t; :::; Xd;t)
| and consider the stochastic

di¤erential equation

dXt = �(Xt)dt+ �(Xt)dWt;

where �(:) and �(:) are matrix functions satisfying the regularity conditions for the existence of a

recurrent solution in BM (2004) and fWt : t = 1; :::; Tg is a (conformable) standard Brownian vector.
Let the di¤usion matrix �(a) be de�ned as �(a) = �(a)�(a)| for x = (a1; :::; ad):

8These conditions allow for the use of market microstructure noise-robust spot variance estimators. BR (2008) propose
noise-robust spot variance estimators with a rate of convergence equal to k� = T���N���

N;T for some � � 1
2
. As in the

case of realized variance (above), these estimators may be derived from robust integrated variance estimators (such as the
two-scale estimator of Zhang et al., 2005, and the class of kernel estimates suggested by Barndor¤-Nielsen et al., 2008b) by
localizing the integrated estimates in time. Their asymptotic properties (studied in BR, 2008) reveal that � is, for instance,
equal to 1=10 (in the case of the two-scale estimator) or 1=6 in the case of �at-top kernel estimates obtained by virtue of
kernels g(:) satisfying g0(1) = 0 and g0(0) = 0. For realized variance in Eq. (20) � = 1

2
.
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Suppose we observe X�N;T ; X2�N;T ; :::; XN�N;T with �N;T =
T
N : Speci�cally, assume there is a fre-

quency at which synchronized observations may be observed for all processes. This is standard for

estimation methods relying on low-frequency observations. In principle, however, we could allow for

observations recorded at random, asynchronous times and, therefore, use high-frequency data for es-

timation. This could be done, for example, by employing the refresh time approach advocated by

Barndor¤-Nielsen, Hansen, Lunde and Shephard (2008a). The use of refresh times, however, would

require important, additional technicalities due to their randomness, and is beyond the scope of the

present paper. In particular, it would require an extension of existing asymptotic (mixed) normal results

for drift and in�nitesimal variance estimators (in Proposition 3 below) to the case of random times.

We de�ne Nadaraya-Watson estimators of the drift vector and covariance matrix by writing

b�N;T (a) = 1

�N;T

PN�1
j=1 K

�
Xj�N;T�a
hdrN;T

��
X(j+1)�N;T �Xj�N;T

�
PN
j=1K

�
Xj�N;T�a
hdrN;T

�
and

b�N;T (a) = 1

�N;T

PN�1
j=1 K

�
Xj�N;T�a
hdifN;T

��
X(j+1)�N;T �Xj�N:T

��
X(j+1)�N;T �Xj�N:T

�|
PN
j=1K

�
Xj�N;T�a
hdifN;T

� ;

where the kernel K
�
Xj�N;T�x
hN;T

�
= �di=1K

�
Xi;j�N;T�xi

hi;N;T

�
is a product kernel and K (:) is de�ned in the

same manner as in Assumption 2. We denote by hN;T the matrix bandwidth
�
hdr1;N;T ; :::; h

dr
d;N;T ; h

dif
1;N;T ; :::; h

dif
d;N;T

�
belonging to the set H � R2d+ :

In the multivariate case, local time is not de�ned. However, the averaged kernel

bLX(T; x) = �N;T

�di=1hi;N;T

N�1X
j=1

K

�
Xj�N;T � a
hN;T

�
will still provide an estimate of the occupation density of the process (while, at the same time, inheriting

its divergence rate) as discussed in BM (2004). Naturally, the divergence rate of the occupation density

plays a role in the characterization of the bandwidth conditions for both the drift and the di¤usion

matrix.

Proposition 3 (BM, 2004): Let Assumption 1 and 2 in BM (2004) hold.

Assume T;N !1 and �N;T ! 0: Assume, for all i, hi;N;T ! 0 and

(�n;T log(1=�n;T ))
1=2 =�di=1hi;N;T ! 0:

Then, bLX(T; a)
v(1=T )

) CXe� (a) g�;
where the function v(1=T ) is regularly-varying at in�nity with process-speci�c parameter � satisfying

0 � � � 1, g� is used here to denote the Mittag-Le­ er random variable with the same process-speci�c

parameter �, and CX is a process-speci�c constant.
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� The drift estimator

If, for all i; hdri;N;T ! 0, �di=1h
dr
i;N;T v(1=T )!1; and

v(1=T )

�di=1h
dr
i;N;T

�
�N;T log

1

�N;T

�1=2
! 0;

then b�N;T (a)� �(a) a:s:! 0:

If, in addition, for all j, hdr;5j;N;T�
d
i6=jh

dr
i;N;T v(1=T )! 0;r

�di=1h
dr
i;N;T

bLdrX (T; a) �b�N;T (a)� �(a)�) �1=2(a)N
�
0;Kd

2Id

�
;

where Id is a d� d identity matrix.

� The di¤usion estimator

If, for all i; hdifi;N;T ! 0;
�di=1h

dif
i;N;T v(1=T )

�N;T
!1; and

v(1=T )

�di=1h
dif
i;N;T

�
�N;T log

1

�N;T

�1=2
! 0;

then b�N;T (a)��(a) a:s:! 0:

If, in addition, for all j;

�
h5;difj;N;T�

d
i6=jh

dif
i;N;T

�
v(1=T )

�N;T
! 0;vuut�di=1h

dif
i;N;T

bLdifX (T; a)

�N;T
vech

�b�N;T (a)��(a)�) V (a)1=2N
�
0;Kd

2Id

�
;

with V (a) = PD (2�(a)
�(a))P 0D; where PD is so that vech�(a) = PDvec�(a):

We now turn to the �rst step of our bandwidth selection procedure. For i = 2; :::;��1N;TT de�ne the

inner product of the residual process:

b"|i�N;Tb"i�N;T =
n
��1N;T

�
�X(j+1)�N;T � b�N;T (X(j+1)�N;T )�N;T�|b�N;T (X(j+1)�N;T )�1 ��X(j+1)�N;T � b�N;T (X(j+1)�N;T )�N;T�o ;

where �X(j+1)�N;T = X(j+1)�N;T �X(j+1)�N;T : Now write:

bhN;T = argmin
h

1

N � 1
sup
u2D+

NX
i=2

�
1
nb"|i�N;Tb"i�N;T � uo�	(u)�

and

h�N;T = h 2 H � R2d+ : sup
x

���FhN (x)�	(x)��� p!
N;T!1;�N;T!0

0;
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where 	(u) = Pr
�
�2d � u

�
, i.e., the cumulative distribution function of a Chi-squared random variable

with d degrees of freedoms. Note that

b"i�N;T
= "i�N;T +

�b�N;T (X(j+1)�N;T )�1=2 ��(X(j+1)�N;T )�1=2���1=2N;T �X(j+1)�N;T

+�(X(j+1)�N;T )
�1=2

�b�N;T (X(j+1)�N;T )� �(X(j+1)�N;T �p�N;T
+
�b�N;T (X(j+1)�N;T )�1=2 ��(X(j+1)�N;T )�1=2��b�N;T (X(j+1)�N;T )� �(X(j+1)�N;T �p�N;T ;

where "i�N;T = �(X(j+1)�N;T )
�1=2

�
�
�1=2
N;T �X(j+1)�N;T � �(X(j+1)�N;T )

p
�N;T

�
; and so "|i�N;T "i�N;T

is i.i.d. �2d: Hence, as N;T ! 1 and �N;T ! 0; by the same arguments as in Theorem 1 and 2,bhN;T � h�N;T p! 0 if, and only if,

sup
a2Dd

���b�N;T �a;hdrN;T�� �(a)��� = op
 

1p
�N;T

!
; (23)

and

sup
a2Dd

vech
��� b�N;T �a;hdifN;T���(a)��� = op (1) : (24)

In the second step, we need to check whether hdrN;T is small enough as to satisfy

(i) maxj h
5;dr
j;N;T�

d
i6=jh

dr
i;N;T

bLdrX (T; a) a:s:! 0 8a 2 Dd and large enough as to satisfy

min

�
(ii) �di=1h

dr
i;N;T

bLdrX (T; a); (iii) �di=1h
dr
i;N;T

(�N;T log(1=�N;T ))1=2
bLdrX (T;a)

�
a:s:! 1 8a 2 Dd: Similarly, we need to

check whether hdifN;T is small enough as to satisfy
maxj h

5;dif
j;N;T�

d
i6=jh

dif
i;N;T

bLdrX (T;a)
�N;T

a:s:! 0 8a 2 Dd and large

enough as to satisfy
�di=1h

dif
i;N;T

(�N;T log(1=�N;T ))1=2
bLdifX (T;a)

a:s:! 1: Let us begin with the drift estimator. Without

any restriction on the relative (almost-sure) order of the various bandwidths, we cannot ensure that

there is a vector hN;T so that whenever (i) is violated, (ii)-(iii) cannot be violated. This may happen

when maxj h
5;dr
j;N;T�

d
i6=jh

dr
i;N;T

bLdrX (T; a) a:s:! 1 but minj h
5;dr
j;N;T�

d
i6=jh

dr
i;N;T

bLdrX (T; a) a:s:! 0: Broadly speaking,

(ii)-(iii) only depend on the product on the bandwidths, while (i) depends both on the product and

on the individual bandwidths. Therefore, in order to ensure the existence of bandwidths satisfying all

conditions, we need to impose some restrictions on the degree of "heterogeneity" of their almost-sure

order. We require that, for all j; hdrj;N;T = Oa:s:

��
�di6=jh

dr
i;N;T

�1=(d�1)�
; so that the bandwidths can

di¤er from each other but are of the same almost-sure order. Given that, whenever (i) is violated,

�di6=jh
dr
i;N;T approaches zero almost surely at a rate equal or slower than

bLdrX (T; a)� d�1
d+4 ; and �di=1h

dr
i;N;T

cannot approach zero at a rate faster than bLdrX (T; a)� d
d+4 ; it is immediate to see that (ii) is trivially

satis�ed, while (iii) writes as�
(�N;T log(1=�N;T ))

1=2bLdr; 2d+4d+4

X (T; a)

��1
�
�
(�N;T log(1=�N;T ))

1=2T
2d+4
d+4

��1
!1 providedN=T

5d+12
d+4 !

1: Imposing the restriction hdifj;N;T = Oa:s:

��
�di6=jh

dif
i;N;T

�1=(d�1)�
; by an analogous argument, we see
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that, whenever
maxj h

5;dif
j;N;T�

d
i6=jh

dif
i;N;T

bLdrX (T;a)
�N;T

a:s:! 0 is violated, (iii) is satis�ed provided N=T
3d+12
4�d ! 0:

Thus, if we wished to allow for d > 3; we would need to rely on higher-order kernels.

Testing can now be conducted as in the scalar case. However, should we reject, contrary to the scalar

case, we would not have a clear-cut indication of which particular bandwidth should be made larger or

smaller. In spite of this, we do have information about whether we need to increase or decrease �di=1h
dif
i;N;T

and/or �di=1h
dr
i;N;T : Future work should focus on methods to adjust iteratively individual bandwidths.

7 Simulations

The goal of this simulation study is to illustrate absolute and relative performance of our methods (as

compared to existing methods in the literature, such as cross-validation) as well as fundamental issues

having to do with sample frequency in the fully nonparametric estimation of continuous-time processes.

To this extent, we consider two data-generating processes, namely

(1) dXt = (0:1320� 1:5918Xt)dt+ 2X1:49
t dWt; X0 = 0:08;

(2) dXt = (0:02� 0:025Xt)dt+ 0:14X1=2
t dWt; X0 = 0:6:

The parameters associated with the �rst process may derive from the estimation of a short-term interest

rate di¤usion model (see, e.g., Chan et al., 1992). The parameters associated with the second process

may be used to model the dynamics of stochastic variance (see, e.g., BR, 2008). Both processes are

highly persistent.

In what follows, the standard normal density �(u) is chosen as the kernel function for all estimates.

The remaining choice variables are set as follows: �(u) = �(u), U = [�1:5; 2:5]; " = 0:001, R = 30;

T = 22; and N = 5; 500. In other words, �N;T = T=N = 22=5; 500 = 1=250, thereby implying that the

simulated data points can be interpreted as being daily observations over 22 years. The resulting sample

size is empirically sensible and relates to much applied work in which nonparametric continuous-time

models are estimated by virtue of daily data (see, e.g., Stanton, 1997, and the references therein). As we

will show, while daily data may deliver accurate estimates, the very nature of continuous-time models

leads to (bandwidth) conditions which may not be easily satis�ed with daily sample sizes. Finally, the

number of replications is equal to 1; 000.

Fig. 1 and Fig. 2 report the (average) shape of the eV statistics for both models along with the

95% critical value of the �nal min-min test (3:84). We recall that the feasible bandwidth set is the one

for which the eV statistics are above the critical value. For both models, eV2 (which only plays a role
in the drift case) is never binding. Thus, the bandwidth we select is always large enough as to satisfy

hdrN;TLX(T; a)
a:s:! 1: Importantly, while for the drift estimator the set of bandwidths for which both eV1

and eV3 are rejected (and, hence, all rate conditions are satis�ed) is generally non-empty, for the di¤usion
estimator such a set is empty (model 2) or "almost empty" (model 1), on average. This is because the

bandwidth conditions for di¤usion estimation are considerably more stringent. In e¤ect, eV3 is the same
for both the drift and the di¤usion. However, one needs hdr;5N;TLX(T; a)

a:s:! 0 for drift estimation and
hdif;5N;T LX(T;a)

�N;T

a:s:! 0 for di¤usion estimation. The latter requirement implies that the di¤usion bandwidth
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ought to be smaller than the drift bandwidth. It may therefore be the case that the bandwidth condition

which is required for a vanishing di¤usion bias
�
hdif;5N;T LX(T;a)

�N;T

a:s:! 0

�
is too small for the almost-sure

requirement

 
LX(T;a)

q
�N;T log(1=�N;T )
hdifN;T�N;T

a:s:! 0

!
to be satis�ed.9 This outcome is entirely a function of

the discretization interval �N;T . The smaller the interval, the more likely it is for di¤usion estimator�s

feasible bandwidth set to be non-empty and, hence, for the almost-sure condition to be satis�ed along

with the vanishing-bias conditions.

This discussion illustrates a fundamental di¢ culty with estimating continuous-time models with

discretely-sampled data. When the data frequency is not high enough (as may be the case with daily

data), and the relevant convergence mode is almost-sure convergence, the discrete sample path of the

process might not be a "su¢ ciently good" approximation for its continuous counterpart. Barring com-

plications induced by the presence of market microstructure noise, the use of high-frequency data lead-

ing to smaller �N;T values will help drastically. Alternatively, one could envision relaxing the mode

of convergence. We conjecture that weaker modes would not require the rather stringent condition
LX(T;a)

q
�N;T log(1=�N;T )
hdifN;T�N;T

a:s:! 0, thereby leading to well-posed bandwidth sets, in general (even for di¤u-

sion estimation). Work on this issue is warranted.

We now turn to drift and di¤usion estimation (Fig. 3 through 10). The bandwidth selection mech-

anism works as follows. We begin with the �rst stage. If the �rst-stage bandwidth falls into the set in

which all rate conditions are satis�ed, we stop. Otherwise, we proceed until we reach a bandwidth in

the interval for which eV1; eV2; and eV3 (or eV1 and eV3 for the di¤usion estimator) are all above the rejection
line. If such a set is empty for our chosen daily frequency (see our discussion above), we use the following

stopping rule. Suppose we choose a bandwidth which is too small, as it is generally the case. Thus, eV1
lies above the 95% rejection line whereas eV3 is below. We select a larger bandwidth and stop whenevereV1 reaches the 95% critical value line. The reverse applies if we start with a bandwidth which is too

large. Importantly, in both cases (too small or too large a bandwidth) we stop at a bandwidth value

such that eV1 reaches the 95% critical value (or is closest to it, from the left). The justi�cation for this

choice is simple. Whenever the discretization interval is so that we cannot satisfy min
neV1; eV3o > 3:84,

we sacri�ce eV3 and, consequently, the conditions for almost-sure convergence (which is, as pointed out
above, speci�c to continuous-time models and might not be "necessary" for other modes of convergence

to apply, in general).

There is an overwhelming tendency in empirical work conducted using continuous-time models to

employ cross-validated bandwidths. While this procedure has a well-known theoretical rationale in

discrete time, to our knowledge it has not been justi�ed in continuous time. One of the objectives of

this Monte Carlo experiment is, therefore, to evaluate the relative performance of bandwidths chosen via

cross-validation and bandwidths selected by means of local Gaussianity, as is the case for our �rst stage

smoothing sequences. We will also compare cross-validated bandwidths to our full procedure, inclusive

of the second stage.

9Recall that the condition
LX (T;a)

q
�N;T log(1=�N;T )
h
dif
N;T

�N;T

a:s:! 0 ensures the almost sure convergence of the local time estimator

as well as almost sure convergence of the drift and variance estimators.
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We observe that, for both models, cross-validation leads to the selection of excessively large band-

widths, thereby yielding substantial oversmoothing (see Figs. 3-4 and 7-8). Cross-validation works well

only if the function to estimate is very �at, as is the case for the drift function in model 2.

The �rst-stage bandwidth chosen via local Gaussianity is substantially smaller than that chosen via

cross-validation, and leads to more accurate, i.e., less-biased, estimates, in general (see, e.g., Figs. 3, 4,

and 8). Put di¤erently, exploiting the local Gaussianity that di¤usion models imply is empirically useful.

Turning to the second stage, we �nd that the bandwidth chosen via local Gaussianity is, in general,

smaller than the second-step bandwidth (see Tables 1-4). Figs. 1 and 2 provide a complete justi�cation

for this �nding. The �rst-stage bandwidth is likely to ensure that eV1 lies above the rejection line and
the estimators�bias is negligible. It is, however, too small for eV3 to lie above the rejection line as well.
Thus, in the second stage, we select a larger bandwidth. As emphasized earlier, this outcome is not due

to the nature of our methods but is solely a by-product of the �ne grain features of continuous-time

modelling and estimation and our employed sample frequency. Indeed, the condition underlying eV3; i.e.,
LX(T;a)

q
�N;T log(1=�N;T )
hN;T�N;T

a:s:! 0 is hard to satisfy for small and medium sample sizes N or, alternatively, for

relatively large discrete-time intervals �N;T : In other words, if we were endowed with an N su¢ ciently

large with respect to T; then all relevant conditions would be satis�ed for reasonably small bandwidths,

and our criterion would capture this e¤ect. To see this, refer to Fig. 1. For a decreasing �N;T (i.e.,

going from daily data, as in our case, to high-frequency data, for instance), the eV3 curve would move to
the left thereby (1) increasing the likelihood of a non-empty feasible set and (2) decreasing the size of

the feasible bandwidths.

Importantly, overall, the second stage bandwidths are smaller than the bandwidths chosen via cross-

validation. Hence, while our full-blown procedure may lead to oversmoothing for insu¢ ciently small�N;T
(model 1, for instance), the degree of oversmoothing is still smaller than that delivered by cross-validated

bandwidths.

It is also worthwhile to point out that, in spite of the fact that the bandwidth rate conditions for

almost-sure convergence and zero asymptotic bias are more stringent in the di¤usion case than in the

drift case, the full procedure leads to nonparametric di¤usion estimates which are more accurate than the

corresponding drift estimates (see, e.g., Fig.5 vs. Fig.6 and Fig. 9 vs. Fig.10). Indeed, the set of (small)

bandwidths for which eV1 is rejected is very limited (see Fig. 1 and 2). Hence, even if in the second stage
we move to a larger bandwidth, given our stopping rule we still select a rather small bandwidth which

is not too far from the one chosen in the �rst stage.

In sum:

1. The existence of a feasible bandwidth set guaranteeing a zero asymptotic bias and almost-sure

convergence crucially depends on the discretization interval �N;T . We show that daily frequencies

are generally not problematic as far as drift estimation is concerned (provided T is large enough,

of course) but may lead to empty feasible sets in the case of di¤usion estimation. The reason

for this is that, in the presence of a daily �N;T , the bandwidths for which the condition in eV1 is
rejected may be too small to be compatible with the larger bandwidths required for almost-sure

convergence. Consistent with our theory, increasing the sampling frequency improves matters in

that it leads to smaller required bandwidths for the conditions underlying eV3 to be satis�ed.
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2. Our �rst-stage method performs drastically better than cross-validation. Cross-validation leads to

substantial oversmoothing (unless, of course, the relevant functions are rather �at).

3. In the presence of daily frequencies, our full method may lead to oversmoothing (model 1, for

example) but performs better than cross-validation, in general.

4. Importantly, there is a clear theoretical justi�cation for the oversmoothing which might be induced

by our two-step procedure (i.e., an excessively large discretization interval for almost-sure con-

sistency to be satis�ed, thereby leading to the need for a larger bandwidth - see point 1 above).

Hence, in our case, sub-optimal performance (as implied by some oversmoothing in certain cases)

is a by-product of the very nature of our employed (daily) discrete data, as shown theoretically and

by simulation. We cannot exclude that, in the case of cross-validation, sub-optimal performance

may be due to fundamental limitations of the procedure itself.

8 Conclusions and further discussions

This paper provides an automated procedure to jointly select all bandwidths needed to identify the

dynamics of popular classes of continuous-time Markov processes. It also proposes a randomized method

designed to test whether the rate conditions for almost-sure consistency and (zero mean) asymptotic

normality of the moment estimates are satis�ed in sample. We study applicability of our theory in scalar

and multivariate models allowing for jumps, microstructure noise, and stochastic volatility.

We also illustrate (theoretically and by virtue of simulations) issues of identi�cations in �nite sam-

ple. Our discussion highlights potential problems which might arise when estimating nonparametrically

continuous-time models by virtue of discretely-sampled observations. In particular, we emphasize that

the classical use of daily data may prevent the bandwidth conditions for almost-sure consistency and

zero-mean asymptotic normality from being satis�ed. In light of the widespread use of daily data in

applied work, we view this observation as being empirically very important.

The methods proposed in this paper are of general interest. Analogous ideas may be applied to

bandwidth selection for recurrent discrete-time Markov processes. Our randomized second-step pro-

cedure may also prove useful in a variety of alternative nonparametric estimation settings. Below we

provide brief discussions of both issues and refer the reader to future work for complete treatments.

8.1 The discrete-time case

Consider the recurrent discrete-time kernel case. Although �t = (yt � �(Xt)) =�(Xt) is not locally
Gaussian in general, it is immediate to see that, e.g., E(�t) = 0; E

�
�2t
�
= 1; E(�tg(Xt)) = 0; and

E
�
�2t g(Xt)

�
=E(g(Xt)) for any FX�measurable function g(:). Thus, one may select the bandwidth(s)

in such a way as to minimize an appropriately-de�ned distance metric between sample moments of

the residuals and their theoretical counterparts. Interestingly, the problem is easier than in continuous

time. First, the initial criterion would yield uniform consistency of both conditional moments since,

di¤erently from our assumed continuous-time framework, the two moments would converge at the same

rate (i.e.,
q
hT bLT (x); where bLT (x) is, as earlier, the empirical occupation density of the underlying
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discrete-time process). Second, the bandwidth conditions needed to be tested would closely resemble

those for the drift (in Proposition 1). Importantly, however, the conditions on the modulus of continuity

of Brownian motion (i.e., the condition for almost-sure consistency in the continuous-time case) would

not be needed. Hence, the second-step procedure would simply amount to testing whether, in-sample,

the selected bandwidths are proportional to bL��T (x) with 1
5 < � < 1. Also, issues of identi�cation having

to do with the coarseness of the sampling frequency (as in the continuous-time case) would not arise.

8.2 More on the second-step method

In both the stationary and the nonstationary case, irrespective of whether we operate in continuous

time or in discrete time, the bandwidth conditions needed for consistency and (zero mean) asymptotic

normality of kernel estimators can be expressed as functions of the process�occupation density (and its

divergence rate). Even in cases for which the divergence rate of the occupation density can be quanti�ed

in closed-form (the stationary case, for example, for which it is T ), relying on an in-sample assessment of

the process�occupation density, rather than on purely-hypothetical divergence rates, is bound to provide

a more objective evaluation of the accuracy of bandwidth choices (particularly for persistent processes).

Our second-step procedure is designed to explicitly achieve this goal.

Importantly, however, our testing method may be disconnected from the �rst-stage method and

applied to smoothing sequences selected by virtue of alternative, possibly more classical, methods of the

kind routinely used in applied work. More generally, our test (and its logic) may, in principle, be extended

to evaluate any choices in functional econometrics requiring the balancing of an asymptotic (and �nite

sample) trade-o¤ between bias and variance. The number of sieves or the number of autocovariances in

HAC estimation are possible examples. In these contexts, a test (like the one proposed in this paper)

which, under the null, implies that the assumed choice is either too small or too large and provides, if

the null is not rejected, an easy automated rule to adjust the initial selection in either direction appears

to be very appealing.

9 Appendix A

Proof of Theorem 1. Assume h�N;T 2 H exists and satis�es

sup
x

��Fh
N
(x)� �(x)

�� p!
N;T!1;�N;T!0

0: (25)

Using the triangular inequality, write

sup
x

��Fh
N
(x)� �(x)

�� � sup
x

��Fh
N
(x)� FN (x)

��� sup
x
jFN (x)� �(x)j ;

where FN (x) is the empirical distribution function of(
"i�N;T

=
Xi�N;T

�X(i�1)�N;T
� �(X(i�1)�N;T

)�N;T

�(X(i�1)�N;T
)
p
�N;T

: i = 2; :::; N

)
:

An application of the Law of Iterated Logarithm implies sup
x
jFN (x)� �(x)j = op(1). The result in Eq. (25)

combined with sup
x
jFN (x)� �(x)j = op(1) yields
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sup
x

��Fh
N
(x)� FN (x)

�� = op(1):
But,

sup
x

��Fh
N
(x)� FN (x)

��
= sup

x
j 1

N � 1

NX
i=2

1

 
Xi�N;T

�X(i�1)�N;T
� �(X(i�1)�N;T

)�N;T

�(X(i�1)�N;T
)
p
�N;T

� x
b�N;T (X(i�1)�N;T

)

�(X(i�1)�N;T
)

�
�
�(X(i�1)�N;T

)� b�N;T (X(i�1)�N;T
)
�
�N;T

�(X(i�1)�N;T
)
p
�N;T

!

� 1

N � 1

NX
i=2

1

 
Xi�N;T

�X(i�1)�N;T
� �(X(i�1)�N;T

)�N;T

�(X(i�1)�N;T
)
p
�N;T

� x
!
j

= op(1)

gives

sup
a2D

���� b�N;T (a)�(a)
� 1
���� = op(1)

and

sup
a2D

�����
�
�(a)� b�N;T (a)�p�N;T

�(a)

����� = op(1):
The converse follows from

sup
x

��Fh
N
(x)� �(x)

�� � sup
x

��Fh
N
(x)� FN (x)

��+ sup
x
jFN (x)� �(x)j :

�

Proof of Theorem 2. Assume h�N;T 2 H exists. Let �(:; ") � H be an open ball of radius ". Then, from Eq.
(8) and Eq. (7), 8" > 0;9� > 0 :

P
�bhN;T =2 �(h�N;T ; ")� � P ��N + sup

x

����(x)� Fh�N;T
N

(x)
��� � � > 0� !

N;T!1;�N;T!0
0:

This proves the second part of the theorem. Now we need to show that

9h�N;T = h 2 H : sup
x

��Fh
N
(x)� �(x)

�� p!
N;T!1;�N;T!0

0:

As supx jFN (x)� �(x)j = op(1); and given the triangular inequality, it su¢ ces to show that

9h�N;T = h 2 H : sup
x

��Fh
N
(x)� FN (x)

�� p!
N;N;T!1

0:

Recalling the de�nition of Fh
N
(x) in the proof of Theorem 1, note that

sup
x

��Fh
N
(x)� FN (x)

�� = sup
x
jZN (x;h)j+ sup

x
jHN (x;h)j

where
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ZN (x;h) =
1

N � 1

NX
i=2

n
1
�
"i�N;T

� �(i�1)�N;T
(x)
�
� �(�(i�1)�N;T

(x))� 1
�
"i�N;T

� x
�
+�(x)

o
;

HN (x;h) =
1

N � 1

NX
i=2

n
�(�(i�1)�N;T

(x))� �(x)
o
:

and

�(i�1)�N;T
(x) = x

�b�N;T (X(i�1)�N;T
)

�(X(i�1)�N;T
)

�
�
�
�(X(i�1)�N;T

)� b�N;T (X(i�1)�N;T
)
�
�N;T

�N;T (X(i�1)�N;T
)
p
�N;T

:

We start by bounding sup
x
jHN (x;h)j. By the mean-value theorem, letting �(i�1)�N;T

(x) be a value on the line

segment connecting x and �(i�1)�N;T
(x),

sup
x

1

N � 1

������
NX
i=2

n
�
0
(�(i�1)�N;T

(x))
�
�(i�1)�N;T

(x)� x
�o������

� sup
x
max
i

���x�0
(�(i�1)�N;T

)
���
������ 1

N � 1

NX
i=2

�b�N;T (X(i�1)�N;T
)� �(X(i�1)�N;T

)

�(X(i�1)�N;T
)

�������
+sup

x
max
i

����0
(�(i�1)�N;T

)
���
������
p
�N;T

N � 1

NX
i=2

�
�(X(i�1)�N;T

)� b�N;T (X(i�1)�N;T
)

�(X(i�1)�N;T
)

�������
= sup

x
max
i

���x�0
(�(i�1)�N;T

)
��� IN;T + sup

x
max
i

����0
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We now turn to a bound for sup
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Proof of Theorem 3. We begin with (i). Suppose that VR;N;T = eV1;R;N;T : Without loss of generality, we
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where the Op(T�1=2) holds uniformly in u: Note that the asymptotic variance is equal to 1=4 regardless of the
evaluation point u: This is an immediate consequence of that fact that, as N;T ! 1; 1 fv1;j;N;T � ug takes the
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Note that F (u) = 1
2 if, and only if, u = 0: Thus, R
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the same arguments used in the proof of Theorem 1(ii) in Corradi and Swanson (2006).

Proof of Theorem 4 Similar to that of Theorem 3.
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Hence, the statement in Eq. (28) follows as
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where the order of the �rst term can be derived as in the case of Eq. (31) and the order of the second term can
be obtained as in the case of Eq. (34) below (in both cases with the indicator kernel in place of a smooth kernel).
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the numerator is op(1): Write

var

0@ �N;Tq
hdrN;l;T

bLX(T; x)
BX
b=1

l�1X
j=1

K

 
X((j�1)B+b)�N;T

� x
hdrN;l;T

!
��1l;T

�
�(jB+b)�N;T

� �((j�1)B+b)�N;T

�1A
' O

0@ �2N;T

hdrN;l;T
bLX(T; x)hdrN;l;T bLX(T; x)��1N;T��2l;TaN;T

1A = O

 
�N;TaN;T
�2l;T

!
= o(1) (31)

since aN;T ! 0 and l = O(BT ). Now note that

�N;TaN;T
�2l;T

! 0 and
N1=ka

1=2
N;T

hdrN;l;T
! 0)

a
3=2
N;TN

1=k�N;T

hdrN;l;T�
2
l;T

! 0:

As for AN;l;T ,

AN;l;T =
�N;Tq

hdrN;l;T
bLX(T; x)

BX
b=1

l�1X
j=1

K

 
X((j�1)B+b)�N;T

� x
hdrN;l;T

!

�
��1l;T

��
X(jB+b)�N;T

�X((j�1)B+b)�N;T

�
� �

�
X((j�1)B+b)�N;T

�
�l;T

�
�N;T

hdrN;l;T
bLX(T;x)

PB
b=1

Pl�1
j=1K

�
X((j�1)B+b)�N;T�x

hdrN;l;T

�

+

�N;Tr
hdrN;l;T

bLX(T;x)
PB

b=1

Pl�1
j=1K

�
X((j�1)B+b)�N;T�x

hdrN;l;T

� �
�
�
X((j�1)B+b)�N;T

�
� �(x)

�
�N;T

hdrN;l;T
bLX(T;x)

PB
b=1

Pl�1
j=1K

�
X((j�1)B+b)�N;T�x

hdrN;l;T

� : (32)

By the same argument used in the proof of Theorem 3 in BP (2003) the second term on the right-hand side of

Eq. (32) is Op
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The �rst term in Eq. (33) is Op
�
�
1=2
l;T log

1=2 (1=�l;T )
q
hdrN;l;TLX(T; x)

�
: De�ne the second term on the right-hand

40



side of Eq. (33) as AN;T;l(x) and express its quadratic variation as
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Finally, the limiting distribution in the statement derives from a similar argument as that in the proof of Theorem
3 in Corradi and Distaso (2008).
We now turn to the di¤usion function estimator in (ii). Write the estimation error decomposition as:vuuthdifN;l;T
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Expressing the kernel function as in part (i):
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where, again, the order of the �rst term is analogous to that of Eq. (38), the order of the third term is analogous
to that of Eq. (36), and the order of the cross-product term is analogous to that of Eq. (37) below (in all cases
with the indicator kernel in place of a smooth kernel). Note that
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= IN;l;T + IIN;l;T + IIIN;l;T + op(1):
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The stated result now follows. �

10 Appendix B

Let �N;T = T=N and �M;T = T=M; with M < N; be the discrete intervals used in the estimation of spot
volatility (by virtue of high-frequency data) and in the estimation of the volatility drift and di¤usion (by virtue
of low-frequency data), respectively. BR (2008) have established rate conditions under which the estimation error
introduced by the preliminary spot variance estimates is asymptotically negligible when estimating the variance
drift and di¤usion. More precisely, they present four additional conditions, two for the drift and two for the
variance. The �rst drift condition reads:
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where � < 1
2 in the case of spot variance estimators robust to market microstructure noise and � =

1
2 in the case

of realized variance. This requires

M < N�h
dr;1=2
M;T T��(1+�N )L1=2v (T; a): (39)

The second drift condition reads:
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which requires
M < L1=2v (T; a)T �N=2h

dr;1=2
M;T log(T��N=2): (40)

By equating the right-hand sides of the inequalities in Eq. (39) and Eq. (40), as earlier, we set �N in such a way
as to guarantee that
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Ignoring now log(T��N=2); and plugging (41) into (39), one may write
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which is indeed condition (21) in Section 5. We now turn to asymptotic normality of the spot volatility�s di¤usion.
The �rst condition, reads
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By equating the right-hand sides of Eq. (42) and Eq. (43), we can set �N in such a way that
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Thus, plugging Eq. (44) into Eq. (42), and neglecting the logarithm, we obtain:

M < L1=3v (T; a)N1=3T�
�N
6� h

dif;1=3
M;T log(T��N=3)

� L1=3v (T; a)N1=3N�( 2�
1+2� )

1
6� T (

2�
1+2� )

1
6� h

dif;1=3
M;T :

which amounts to condition (22) in Section 5.
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drift diffusion
bw (1st stage) 0.0746 (0.0452) 0.0053 (0.0013)
bw (2nd stage) 0.7130 (0.7956) 0.1858 (0.3592)

Table 1: Model 1: The table shows the residual-based average bandwidths
(bw) and their standard deviations (in parentheses).

drift diffusion
bw (1st stage) 0.6950 (0.3420) 0.0935 (0.0733)
bw (2nd stage) 0.7896 (0.9028) 0.1746 (0.1062)

Table 2: Model 1: The table shows the cross-validated average bandwidths
(bw) and their standard deviations (in parentheses).

drift diffusion
bw (1st stage) 0.6320 (0.5373) 0.1200 (0.1061)
bw (2nd stage) 0.5900 (0.4775) 0.1703 (0.5036)

Table 3: Model 2: The table shows the residual-based average bandwidths
(bw) and their standard deviations (in parentheses).



drift diffusion
bw (1st stage) 1.2867 (0.7191) 0.7339 (0.5375)
bw (2nd stage) 0.6148 (0.5815) 0.1597 (0.4946)

Table 4: Model 2: The table shows the cross-validated average bandwidths
(bw) and their standard deviations (in parentheses).
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Figure 1: Model 1: The V statistics as a function of the bandwidth.



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

model 2  drift

h

 

 
V1
V2
V3
95% CV

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

5

10

15

20

h

model 2  diffusion

 

 
V1
V3
95% CV

Figure 2: Model 2: The V statistics as a function of the bandwidth.
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Figure 3: Model 1: drift, 1st stage
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Figure 4: Model 1: diffusion, 1st stage
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Figure 5: Model 1: drift, 2nd stage
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Figure 6: Model 1: diffusion, 2nd stage
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Figure 7: Model 2: drift, 1st stage
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Figure 8: Model 2: diffusion, 1st stage
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Figure 9: Model 2: drift, 2nd stage
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Figure 10: Model 2: diffusion, 2nd stage


