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Introduction

Introduction

Why are we interested in dynamic oligopoly?
1. Effects of policy/environmental change on industry

structure and welfare, e.g.
• Mergers and antitrust
• Environmental policy change
• Removal of barriers to trade
• etc.

2. Some parameters can only be inferred through dynamic
equilibrium

3. Study dynamic competition
4. Further understanding of industry dynamics
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Introduction

Why are we interested in dynamic oligopoly?
1. Effects of policy/environmental change on industry

structure and welfare
2. Some parameters can only be inferred through

dynamic equilibrium
• Sunk costs of entry/exit
• Investment/adjustment costs
• Learning by doing spillovers

3. Study dynamic competition
4. Further understanding of industry dynamics
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Why are we interested in dynamic oligopoly?
1. Effects of policy/environmental change on industry

structure and welfare
2. Some parameters can only be inferred through dynamic

equilibrium
3. Study dynamic competition

• Collusion, testing for collusion
• Entry
• Dynamic competition: R&D/investment, learning by doing,

durable goods, network effects, experience goods, etc.

4. Further understanding of industry dynamics
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Introduction

Why are we interested in dynamic oligopoly?
1. Effects of policy/environmental change on industry

structure and welfare
2. Some parameters can only be inferred through dynamic

equilibrium
3. Study dynamic competition
4. Further understanding of industry dynamics

• Why are some industries concentrated and others not?
• How can an industry be highly concentrated and still have

many small firms?
• What explains the stability/instability of industry structure

over time?
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Hurdles in working with dynamic oligopoly models:
1. Computational burden (curse of dimensionality).
2. Multiple equilibria.
3. Other issues:

• Model complexity.
• Heavy computer programming burden.
• Data requirements/Identification
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General Framework
Model and Notation:
Notation of game is discrete state space and discrete action
space:
• Agents: i = 1, ...,N

• Time: t = 1, ...,∞
• States: st ∈ S ⊂ RG, commonly known.
• Actions: ait ∈ Ai , simultaneously chosen.
• Private Information: νit ∼ iid G(·|st ).
• State Transitions: P(st+1|at ,st ).
• Discount Factor: β
• Objective Function: Agent maximizes EDV,

E
∞∑

t=0

βtπi(at ,st , νit ; θ). (1)
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General Framework
Model and Notation:
Notation of game is discrete state space and discrete action
space:
• Agents: i = 1, ...,N
• Time: t = 1, ...,∞
• States: st ∈ S ⊂ RG, commonly known.
• Actions: ait ∈ Ai , simultaneously chosen.
• Private Information: νit ∼ iid G(·|st ).
• State Transitions: P(st+1|at ,st ).
• Discount Factor: β
• Objective Function: Agent maximizes EDV,

E
∞∑

t=0

βtπi(at ,st , νit ; θ). (1)
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General Framework

Equilibrium Concept: Markov Perfect Equilibrium [MPE]

Strategies: σi : S × R→ Ai .

I.e., ai = σi(s, νi) (could be vector valued)
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General Framework

Recursive Formulation:

Vi(s|σ) = Eν
[
πi(σ(s, ν),st , νi ; θ) + β

∫
Vi(s′|σ(s, ν))dP(s′|σ(s, ν),s)

]
.

Equilibrium Definition:
A MPE is given by a Markov profile, σ, such that for all i , s, σ′i ,

Vi(s|σi , σ−i) ≥ Vi(s|σ′i , σ−i). (1)



Introduction

Example

Dynamic Oligopoly w/ Investment, Entry, Exit
(cf. Ericson and Pakes (1995), Pakes and McGuire (1994))
• Period return function:

πi(at ,st , νit ; θ) = qit (st ,pt ; θ1) (pit −mc(sit ,qit ; θ2))−C(Iit , νit ; θ3),

• s is product quality
• I is investment or advertising that improves quality
• q(·) - quantities (demand system),
• p - prices (choice variable),
• mc(·) - marginal cost function,
• C(·) - cost of investment function.
• ν - private shock to cost of investment,
• θ = (θ1, θ2, θ3) - parameters to be estimated,
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Example

• Entry:
• One short-lived potential entrant per period
• Fe(xe) - distribution of privately known entry cost.
• Enter if EDV of entering is greater than entry cost.

• Exit:
• Each incumbent can exit in any period and receive Ψ

Assuming they are not observed directly, need dynamic model
to estimate entry/exit costs as well as cost of investment
function.
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An Incomplete List of Recent Applications
• Advertising (Doraszelski & Markovich 2003).
• Auctions (Jofre-Benet & Pesendorfer 2003).
• Capacity accumulation (Besanko & Doraszelski 2004).
• Collusion (Fershtman & Pakes 2000, de Roos 2004).
• Competitive convergence (Langohr 2003).
• Consumer learning (Ching 2002).
• Environmental Policy (Ryan 2009).
• Firm size and growth (Laincz & Domingues Rodrigues 2004).
• Learning by doing (Benkard 2000, 2004, Besanko, Doraszelski, Kryukov &

Satterthwaite 2004).
• Mergers (Berry & Pakes 1993, Gowrisankaran 1999, Jeziorski (2009), Stahl

(2009), Benkard, Bodoh-Creed and Lazarev (2010)).
• Product Repositioning (Sweeting 2009)
• Network externalities (Markovich 1999, Jenkins, Liu, Matzkin, and McFadden

(2004)).
• R&D (Gowrisankaran & Town 1997, Goettler 2009).
• International trade (Erdem & Tybout 2003).
• Finance (Goettler, Parlour & Rajan 2004).
• Entry/sunk costs (Pesendorfer and Schmidt-Dengler 2003, Aguirregabiria and

Mira 2006, Collard-Wexler 2006, Beresteanu and Ellickson 2007)



Introduction

Estimation (1)

Benkard (2004):
• Observe all costs (production, sunk, fixed) directly.
• Estimate parameters “offline” (without imposing

equilibrium).
• Compute equilibria only to evaluate counterfactuals.
• Rarely feasible.
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Estimation (2)

Rust (1987), Gowrisankaran and Town (1997):
(nested fixed point algorithm)
• For each value of parameters, θ,

1. Compute equilibrium (V (s; θ)).
2. Construct likelihood/GMM objective.
3. Repeat until objective maximized.
4. (Also can do MPEC – Su and Judd (2009).)

• Difficulties:
• computational burden
• programming burden
• multiple equilibria
• essentially infeasible in real world oligopoly problems

(without major modelling compromises)
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Estimation (3)

Bajari, Benkard, Levin (2007) (Hotz and Miller (1993))
• Use data on (a,s) to construct nonparametric estimates of

strategy functions, ai = σi(s, νi).
• Along with the transition probabilities, the strategy

functions can be used to simulate industry sample paths in
observed equilibrium

• For each value of θ,
1. Use simulated paths to estimate EDV at each state, V̂ (s; θ).
2. Construct likelihood/GMM objective.
3. Repeat until objective maximized

• Comments:
• data chooses equilibrium (under some assumptions),
• computationally simple,
• but, stronger data requirements
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Dynamic oligopoly example:
• Estimate (θ1, θ2) using standard techniques (e.g. BLP).
• (Unobserved states could also be recovered here.)
• Project investment onto state variables nonparametrically:

Iit = fI(st , νit ).

Since investment is monotonic in νit this amounts to
recovering F (Ii |s) for each s.

• (Investment is only observed if firm does not exit but that
doesn’t matter because of the monotonicity.)

• Project entry and exit onto state variables:

χe
it = fe(st , νit ), χit = fx (st , νit )

• Estimate state transition function, P : S × A→ ∆(S), using
MLE.
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First Step (cont.):

Construct V̂ (s0, ν0; θ) using “forward simulation”:
1. Policy in initial period is ai0 = σ̂(s0, νi0).

2. Draw st+1 from P̂(st+1|st ,at ), νt+1 from G(νt+1|st+1).
3. Repeat 1 & 2 to obtain one simulated path.
4. Profits at each (at ,st , νt ) are given by πi(at ,st , νit ; θ).
5. Use many simulated paths to construct V̂ (s0, ν0; θ).

Note:
• Under the assumptions, “correct” equilibrium consistently

estimated by σ̂.
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Second Step:

Idea: Find the set of parameters that rationalize the observed
policies. I.e., conditional on P and σ, find the set of parameters
that satisfy the requirements for equilibrium.

Optimality inequalities defining MPE:

For all i , σ′i , and initial state, s0, it must be that

Vi(s|σi , σ−i) ≥ Vi(s|σ′i , σ−i).

This system of inequalities contains all information available
from the definition of equilibrium. To learn θ we simply plug in
the estimated V̂ ’s and find the θ that best satisfies these
inequalities.
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Important computational trick:

Vi(s|σi , σ−i) = Eσi ,σ−i |s0

∞∑
t=0

βtπi(at ,st , νit ; θ)

Suppose period return function is linear in the parameters:

πi(a,s, νi ; θ) := Φi(a,s, νi) · θ.

Let

W (s0;σi , σ−i) := Eσi ,σ−i |s0

∞∑
t=0

βt Φi(at ,st , νit ).

Then the value function can be computed as

Vi(s|σi , σ−i) = W (s0;σi , σ−i) · θ

where W is a function only of things that are known.
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System of inequalities defining equilibrium becomes:

W (s0;σi , σ−i) · θ ≥W (s0;σ′i , σ−i) · θ (6)

for all i , σ′i , s0.
Comments:
• This system contains all information that the model

provides about the unknown parameter vector, θ.
• System is linear in θ.
• Easy to compute/implement.
• Makes no difference if policies are discrete (entry,exit) or

continuous (investment, quantity, price, etc) or both.
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Second Step (cont.):

Given σ and P, let Θ0 be the set of parameters that rationalize
the observed data,

Θ0(σ,P) := {θ : θ, σ,P satisfy (6) for all s0, i , σ′i}.

where (6) is the system of optimality inequalities,

W (s0;σi , σ−i) · θ ≥W (s0;σ′i , σ−i) · θ, (6)

for all i , σ′i , s0.

The goal of estimation is to learn Θ0.
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Implementation:

• Randomly pick a small subset of inequalities denoted {xk}
(so xk refers to an (i ,s0, σ

′) triple).
• We use alternative policies of the form,

σ′(s)k = σ̂(s) + εk ,

where εk ∼ N(0, σ2
ε ).

• Simulate W ’s for these inequalities using forward
simulation.
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Implementation (cont):

• Let gns (x , θ;α) =[
Ŵns (s;σi(α), σ−i(α))− Ŵns (s;σ′i , σ−i(α))

]
· θ,

• and find θ that minimize violations of the inequalities,

Qn(θ̂, α̂n) = inf
θ∈Θ∗

Qn(θ, α̂n).

where

Qn(θ, α) =
1
nI

nI∑
k=1

1{gns (Xk , θ;α) < 0}gns (Xk , θ;α)2.
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Implementation, Identified Case:
• Right now we assume first stage is indexed by a parameter
α.

• In that case, (if ns
n → 0 and nI

n → r ),

θ̂
p−→ θ0

and √
n(θ̂ − θ0)

d−→ N(0,H−1
0 Λ0VαΛ′0H−1

0 ).

where,

H(θ) ≡ −E
∂2{g(Xk , θ0;α0) < 0}g2(Xk , θ0;α0)

∂θ∂θ′
,

H0 = H(θ0), and

Λ0 ≡ E
∂2{g(Xk , θ0;α0) < 0}g2(Xk , θ0;α0)

∂θ∂α′
.
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Implementation (cont):

• Easiest to compute standard errors using subsampling.
• If model is only set-identified:

1. Use same objective function.
2. Compute standard errors via Chernozhukov, Hong, and

Tamer (2004).
3. (Identified set is a convex polyhedron.)
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Dynamic Oligopoly Monte Carlo

States: sj = quality of firm j ’s product.
Demand:

Urj = γh(sj) + α ln(yr − pj) + εrj

Investment: Probability of successful investment is:

aIj/(1 + aIj),

Cost of investment function:

c(I) = θ3,1 ∗ I.

Entry Costs: U[x l , xh].
Scrap Value: Φ.
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Second Stage

For every initial state, s0, and every alternative investment
policy, σ′(s) = (I′(s), χ′(s)),[

Êσi ,σ−i

∑∞
t=0 β

t π̃i(at ,st )− Êσ′i ,σ−i

∑∞
t=0 β

t π̃i(at ,st )
]

+θ3,1

[
Êσi ,σ−i

∑∞
t=0 β

t Iit − Êσ′i ,σ−i

∑∞
t=0 β

t Iit
]

+Ψ
[
Êσi ,σ−i

∑∞
t=0 β

t{χ(st ) = 1} − Êσ′i ,σ−i

∑∞
t=0 β

t{χ′(st ) = 1}
]
≥ 0

where π̃(a, s) represents static profits, q(p −mc).

Use MD to estimate θ3,1 and Ψ.

Also straightforward to estimate sunk cost of entry distribution
(parametrically or nonparametrically) – see paper for details.
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Table: Dynamic Oligopoly Monte Carlo Parameters

Parameter Value Parameter Value
Demand: Investment Cost:
α 1.5 θ3,1 1
γ 0.1
M 5 Marginal Cost:
y 6 mc 3

Investment Evolution Entry Cost Distribution
δ 0.7 x l 7
a 1.25 xh 11

Discount Factor Scrap Value:
β 0.925 Ψ 6
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Table: Dynamic Oligopoly With Nonparametric Entry
Distribution

Mean SE(Real) 5%(Real) 95%(Real) SE(Subsampling)
n = 400, nI = 500
θ3,1 1.01 0.05 0.91 1.10 0.03
Ψ 5.38 0.43 4.70 6.06 0.39
n = 200, nI = 500
θ3,1 1.01 0.08 0.89 1.14 0.05
Ψ 5.32 0.56 4.45 6.33 0.53
n = 100, nI = 300
θ3,1 1.01 0.10 0.84 1.17 0.06
Ψ 5.30 0.72 4.15 6.48 0.72
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Figure: Entry Cost Distribution for n = 400
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Figure: Entry Cost Distribution for n = 200
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Figure: Entry Cost Distribution for n = 100
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Table: Dynamic Oligopoly With Parametric Entry Distribution

Mean SE(Real) 5%(Real) 95%(Real) SE(Subsampling)
n = 400, nI = 500
θ3,1 1.01 0.06 0.92 1.10 0.04
Ψ 5.38 0.42 4.68 6.03 0.41
x l 6.21 1.00 4.22 7.38 0.26
xh 11.2 0.67 10.2 12.4 0.30
n = 200, nI = 500
θ3,1 1.01 0.07 0.89 1.13 0.05
Ψ 5.28 0.66 4.18 6.48 0.53
x l 6.20 1.16 3.73 7.69 0.34
xh 11.2 0.88 9.99 12.9 0.40
n = 100, nI = 300
θ3,1 1.01 0.10 0.84 1.17 0.06
Ψ 5.43 0.81 4.26 6.74 0.75
x l 6.38 1.42 3.65 8.43 0.51
xh 11.4 1.14 9.70 13.3 0.58
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Alternative Second Step Estimators

• The first step estimation, estimating V from the data is the
most important innovation.

• Could do many things in second step: MLE, GMM, etc.
• E.g., can put estimated V ’s on RHS of Bellman equation

and solve for optimal policy at each state, then form
moment conditions based on the expected value of the
policy at each state.
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Alternative Second Step Estimators

• Because the estimated V ’s have sampling error in finite
samples, there could potentially be a large finite sample
bias in the estimators described above.

• One potential solution to this is to aggregate moments
• E.g. Base your moment conditions on expected value of

the policy across all states.
• This is asymptotically inefficient, but in finite samples the

aggregation aggregates out noise in the estimated V ’s at
each state.
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Some Recent Applications of “BBL”

• Collard-Wexler (2009) – Estimating costs of adjustment in
the concrete industry

• Jeziorski (2009) – Estimating merger synergies for radio
stations

• Ryan (2009) – Effect of environmental regulations on
industry structure in cement

• Sweeting (2009) – Estimating the costs of changing a radio
station’s format

• Stahl (2009) – Estimating the incentives to merge in
broadcast television

• Benkard, Bodoh-Creed, and Lazarev (2010) – Estimating
the effects of a particular proposed U.S. airline merger on
industry structure over time
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Unsolved Problems in Estimation

Remaining issues:
1. Main issue: unobserved serially correlated state variables
2. Other technical issues such as efficiency issues
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