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Abstract 

 

This paper develops a parsimonious descriptive model of individual choice and 

valuation in the kinds of experiments that constitute a substantial part of the literature 

relating to decision making under risk and uncertainty. It suggests that many of the 

best-known ‘regularities’ observed in those experiments may arise from a tendency 

for participants to perceive probabilities and payoffs in a particular way. This model 

organises more of the data than any other extant model and generates a number of 

novel testable implications which are examined with new data. 87 words 
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Introduction 

This paper develops a parsimonious descriptive model of risky choice – the 

perceived relative argument model (PRAM) – that can organise a good deal of the 

most influential experimental evidence of systematic departures from conventional 

decision theory. Focusing on the kind of tasks which constitute much of the evidence 

– that is, choices between pairs of lotteries involving no more than three outcomes, 

and/or valuations of such lotteries – it will be shown that individuals who behave 

according to PRAM are liable to violate all but one of the key axioms of rational 

choice, the only exception being transparent dominance.  

The paper is organised as follows. Section 1 sets up the basic framework. 

Section 2 models the perception of probabilities and shows that one simple 

proposition about the way that probabilities are handled is enough to ensure that the 

axioms of independence, betweenness and transitivity are all bound to fail in one way 

or another. This section identifies a number of predicted regularities which are at odds 

with those rank-dependent models that are currently regarded as offering the best 

alternative to standard expected utility theory. Section 3 models an analogous 

proposition about the way that payoffs are perceived, and this allows the model to 

explain a number of other regularities which cannot be accommodated by expected 

utility theory or any of its main rivals. Section 4 discusses the relationship between 

PRAM and a number of other axiomatic or behavioural models which have attempted 

to organise various subsets of regularities. Section 5 considers results from a fresh 

experiment designed specifically to examine various ways in which PRAM differs 

from the models which currently dominate the literature. Section 6 concludes.  
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1. The Modelling Framework 

Before outlining the particular framework for this model, two remarks.  

First, PRAM is essentially a descriptive model, intended to show how some 

very simple propositions about perception and judgment can explain many well-

known systematic departures from standard theory – and predict some new ones. To 

this end, the model is specified in a particular form from which various implications 

are derived. However, it is important to keep in mind that this is a model of decisions 

often made quite quickly1 and on the basis of perceptions rather than after long 

deliberation involving complex calculation. The structure of the model is therefore 

intended to capture tendencies in the ways perceptions are formed and judgments are 

made: it is not suggested that people actually make calculations strictly according to 

the formulae, but rather that the formulae capture key features of the ways in which 

decision parameters are perceived and processed.  

Second, the exposition makes several simplifying assumptions. In particular, 

although actual responses are susceptible to ‘noise’ and error, the exposition abstracts 

from that and presents a deterministic model2. It also abstracts from failures of 

procedure invariance and framing effects (Tversky and Kahneman, 1986). Such 

effects undoubtedly influence behaviour, but the claim being made in this paper is that 

we can explain many regularities without needing to invoke those additional effects. 

On the other hand, the model rests on just two basic propositions involving just two 

free parameters and it would be surprising if this were sufficient to account for all of 

the many regularities observed in the relevant class of decision experiments. But that 

is not the claim. This is not a theory of everything. And as will become clear in due 

course, there is at least one seemingly systematic effect not accounted for by this two-

parameter model. Nevertheless, the two basic components of the present model 

combine to organise many more of the known regularities than any other single model 

                                                 
1 Many experiments ask participants to make numerous decisions within single sessions, and once they 
become familiar with the tasks, many participants spend only a few seconds on each one: for example, 
Moffatt (2005) analysed a pairwise choice dataset where mean decision times mostly ranged between 3 
and 8 seconds per choice. This may be a somewhat extreme case, but it would not be uncommon to 
find the great majority of participants taking no more than 15 or 20 seconds to process most of the 
kinds of decisions presented in many choice / valuation experiments. 
2 Sections 4 and 6 will discuss (briefly) the question of extending the model to allow for the stochastic 
nature of decision behaviour. As noted above, we are dealing with data generated quite quickly and 
somewhat impressionistically and it would be surprising if there were not some stochastic component 
in such data; but the model abstracts from that and focuses on what may be regarded as ‘central 
tendencies’. 
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currently available, and in the course of doing so, help us to identify where – and 

more importantly, perhaps, why – those other models are liable to fall short. 

Having made those preliminary points, let us now turn to the formulation of 

the model. The bulk of the experimental data used to test theories of risk come from 

decisions that can be represented in terms of pairs of alternative lotteries, each 

involving no more than three monetary payoffs. Figure 1 shows a basic template for 

such cases. Payoffs3 are x3 > x2 > x1 ≥ 0 and the probabilities of each payoff under the 

(safer) lottery S are, respectively, p3, p2 and p1, while the corresponding probabilities 

for the (riskier) lottery R are q3, q2 and q1, with q3 > p3, q2 < p2 and q1 > p1.  

 

Figure 1: The Basic Pairwise Choice Format 

 p3 p2 p1 

 

S 

 

x3 

 

x2 

 

x1 

 

R 

 

x3 

 

x2 

 

x1 

  

q3 

 

q2 

 

q1 

 

Although this template is broad enough to accommodate any pairwise choice 

involving up to three payoffs, the great majority of experimental tasks involve simpler 

formats – most commonly, those where S is a sure thing (i.e. where p2 = 1) or else 

where S is a two-payoff lottery being compared with a two-payoff R lottery. As we 

shall see later, it is also possible to analyse various simple equivalence tasks within 

this framework. But the initial focus is upon pairwise choice. 

Any such choice can be seen as a judgment between two arguments pulling in 

opposite directions. The argument in favour of R is that it offers some greater chance 

– the difference between q3 and p3 – of getting x3 rather than x2. Against that, the 

argument in favour of S is that it offers a greater chance – in this case, the difference 

between q1 and p1 – of getting x2 rather than x1. 

 Most decision theories propose, in effect, that choice depends on the relative 

force of those competing arguments. For example, under expected utility theory 

                                                 
3 The great majority of experiments involve non-negative payoffs. The framework can accommodate 
negative amounts (i.e. losses); but to avoid complicating the exposition unnecessarily, the initial focus 
will be upon non-negative payoffs, and the issue of losses will be addressed later. 
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(EUT), the advantage that R offers over S on the payoff dimension is given by the 

subjective difference between x3 and x2 – that is, u(x3)-u(x2), where u(.) is a von 

Neumann-Morgenstern utility function – which is weighted by the q3-p3 probability 

associated with that advantage. Correspondingly, the advantage that S offers over R is 

the utility difference u(x2)-u(x1), weighted by the q1-p1 probability associated with 

that difference. Denoting strict preference by f  and indifference by ~, EUT entails:   

 

      f                     >       

 S  ~  R  ⇔  (q1-p1).[u(x2)-u(x1)]  =  (q3-p3).[u(x3)-u(x2)]   (1) 

      p                     <  

 

 Alternatively, Tversky and Kahneman’s (1992) cumulative prospect theory 

(CPT), modifies this expression in two ways: it draws the subjective values of payoffs 

from a value function v(.) rather than a standard utility function u(.); and it involves 

the nonlinear transformation of probabilities into decision weights, here denoted 

by π(.). Thus for CPT we have: 

 

     f                       >      

 S  ~  R  ⇔  [π(q1)-π(p1)].[v(x2)-v(x1)]  =  [π(q3)-π(p3)].[v(x3)-v(x2)] (2) 

      p                      <  

 

Under both EUT and CPT, it is as if an individual maps each payoff to some 

subjective utility/value, weights each of these by (some function of) its probability, 

and thereby arrives at an overall evaluation or ‘score’ for each lottery. Both (1) and 

(2) entail choosing whichever lottery is assigned the higher score. Since each lottery’s 

score is determined entirely by the interaction between the decision maker’s 

preferences and the characteristics of that particular lottery (that is, each lottery’s 

score is independent of any other lotteries in the available choice set), such models 

guarantee respect for transitivity. Moreover, the functions which map payoffs to 

subjective values and map probabilities to decision weights may be specified in ways 

which guarantee respect for monotonicity and first order stochastic dominance4.  

                                                 
4 The original form of prospect theory – Kahneman and Tversky (1979) – involved a method of 
transforming probabilities into decision weights which allowed violations of first order stochastic 
dominance – an implication to which some commentators were averse. Quiggin (1982) proposed a 
more complex ‘rank-dependent’ method of transforming probabilities into decision weights which 
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However, for any theory to perform well descriptively, its structure needs to 

correspond with the way participants perceive stimuli and act on those perceptions. If 

judgmental processes run counter to some feature(s) of a theory, the observed data are 

liable to diverge systematically from the implications of that theory. It is a central 

proposition of this paper that participants’ perceptions and judgments are liable to 

operate in ways which run counter to the assumptions underpinning most decision 

theories, including EUT and CPT. In particular, there is much psychological evidence 

suggesting that many people do not evaluate alternatives entirely independently of one 

another and purely on the basis of the ‘absolute’ levels of their attributes, but that their 

judgments and choices may also be influenced to some extent by ‘relative’ 

considerations – see, for example, Stewart et al. (2003). In the context of pairwise 

choices between lotteries, this may entail individuals having their perceptions of both 

probabilities and payoffs systematically affected by such considerations.  

To help bridge from a conventional theory such as EUT to a model such as 

PRAM which allows for between-lottery relative considerations, rearrange Expression 

(1) as follows: 

 

      f                         >       

 S  ~  R  ⇔  (q1-p1)/(q3-p3)  =  [u(x3)-u(x2)]/[u(x2)-u(x1)]   (3) 

      p                        <  

 

 A verbal interpretation of this is: “S is judged preferable to / indifferent to / 

less preferable than R according to whether the perceived relative argument for S 

versus R on the probability dimension – that is, for EUT, (q1-p1)/(q3-p3) – is greater 

than / equal to / less than the perceived relative argument for R versus S on the payoff 

dimension – in the case of EUT, [u(x3)-u(x2)]/[u(x2)-u(x1)].  

However, suppose we rewrite that expression in more general terms as follows 

 

     f     > 

 S  ~  R   ⇔   φ(bS, bR) = ξ(yR, yS)                 (4) 

     p     < 

 

                                                                                                                                            
seemed to preserve the broad spirit of the original while ensuring respect for first order stochastic 
dominance. CPT uses a version of this method. 
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  where φ(bS, bR) is some function representing the perceived relative argument 

for S versus R on the probability dimension while ξ(yR, yS) is a function giving the 

perceived relative argument for R versus S on the payoff dimension.  

Expression (4) is the key to the analysis in this paper. What distinguishes any 

particular decision theory from any other(s) is either the assumptions it makes about 

φ(bS, bR) or else the assumptions it makes about ξ(yR, yS), or possibly both.  

For example, under EUT, bS is (q1-p1) while bR is (q3-p3) and the functional 

relationship between them is given by φ(bS, bR) = bS/bR – that is, by the ratio of those 

two probability differences. On the payoff dimension under EUT, yR =  [u(x3)-u(x2)] 

and yS = [u(x2)-u(x1)] and ξ(yR, yS) is the ratio between those two differences, i.e. 

yR/yS. EUT’s general decision rule can thus be written as: 

 

     f            > 

 S  ~  R   ⇔   bS/bR = yR/yS                  (5) 

     p            < 

 

 CPT uses the ratio format as in (5) but makes somewhat different assumptions 

about the b’s and y’s. In the case of EUT, each u(xi) value is determined 

independently of any other payoff and purely by the interaction between the nature of 

the particular xi and a decision maker’s tastes as represented by his utility function 

u(.). The same is true for CPT, except that u(.) is replaced by v(.), where v(.) measures 

the subjective value of each payoff expressed as a gain or loss relative to some 

reference point. In the absence of any guidance about how reference points may 

change from one decision to another, each v(xi) is also determined independently of 

any other payoff or lottery and purely on the basis of the interaction between the 

particular xi and the decision maker’s tastes5. In this respect, CPT is not materially 

different from EUT.  

The key distinction between CPT and EUT relates to the way the two models 

deal with the probability dimension. Under EUT, each probability takes its face value, 

so that bS is (q1-p1) while bR is (q3-p3), whereas under CPT the probabilities are 

transformed nonlinearly to give bS = [π(q1)-π(p1)] and bR = [π(q3)-π(p3)], allowing the 

                                                 
5 A recent variant of CPT – see Schmidt et al (2008) – shows how certain changes in reference point 
may help explain a particular form of preference reversal which cannot otherwise be reconciled with 
CPT.  
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ratio bS/bR to vary in ways that are disallowed by EUT’s independence axiom and 

thereby permitting certain systematic ‘violations’ of independence.  

Since all of the π(.)’s in CPT are derived via an algorithm that operates 

entirely within their respective lotteries on the basis of the rank of the payoff with 

which they are associated, CPT shares with EUT the implication that each lottery can 

be assigned an overall subjective value reflecting the interaction of that lottery’s 

characteristics with the decision maker’s tastes. This being the case, transitivity is 

entailed by both theories.  

However, if either φ(bS, bR) or ξ(yR, yS) – or both – were to be specified in 

some way which allowed interactions between lotteries, systematic departures from 

transitivity could result. In particular, if participants in experiments make comparisons 

between two alternatives, and if such comparisons affect their evaluations of 

probabilities or payoffs or both, this is liable to entail patterns of response that deviate 

systematically from those allowed by EUT or CPT or any other transitive model. The 

essential idea behind PRAM is that many respondents do make such comparisons and 

that their evaluations are thereby affected in certain systematic ways that are not 

compatible with EUT or CPT – or, indeed, any other single model in the existing 

literature.   

 The strategy behind the rest of the paper is as follows. For expositional ease, 

we start by considering probability and payoff dimensions separately, initially 

focusing just upon the probability dimension. Thus the next section discusses how we 

might modify φ(bS, bR) to allow for between-lottery comparisons on the probability 

dimension, and identifies the possible implications for a variety of decision scenarios 

involving the same three payoffs. Section 3 will then consider an analogous 

modification of ξ(yR, yS) to allow for between-lottery interactions on the payoff 

dimension. PRAM is no more than Expression (4) with both φ(bS, bR) and ξ(yR, yS) 

specified in forms that allow for the possibility of such between-lottery interactions. 

Section 4 will then discuss how the particular specifications proposed by PRAM 

relate to the ways in which a variety of other theories have modelled one or other or 

both dimensions, before considering in Section 5 some recent data relating to certain 

of PRAM’s distinctive implications. 

First, the probability dimension.  
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2. Modelling Probability Judgments 

2.1 The Common Ratio Effect 

 We start with one of the most widely replicated of all experimental 

regularities: the form of ‘Allais paradox’ that has come to be known as the ‘common 

ratio effect’ (CRE) – see Allais (1953) and Kahneman and Tversky (1979). 

Consider the two pairwise choices shown in Figure 2. 

 

Figure 2: An Example of a Pair of ‘Common Ratio Effect’ Choices 

Choice #1 1 

S1 30 

R1 40 0 

 0.8 0.2 

 

Choice #2 0.25 0.75 

S2 30 0 

R2 40 0 

 0.2 0.8 

 

 In terms of the template in Figure 1, x3 = 40, x2 = 30 and x1 = 0. In Choice #1, 

p2 = 1 (so that p3 = p1 = 0) while q3 = 0.8, q2 = 0 and q1 = 0.2. Substituting these 

values into Expression (3), the implication of EUT is that 

 

       f               >       

 S1  ~  R1   ⇔   0.2/0.8   =   [u(40)-u(30)]/[u(30)-u(0)]   (6) 

       p                 <  

 

 Choice #2 can be derived from Choice #1 by scaling down the probabilities of 

x3 and x2 by the same factor – in this example, by a quarter – and increasing the 

probabilities of x1 accordingly. Applying EUT as above gives 

 

       f                  >       

 S2  ~  R2   ⇔   0.05/0.2   =   [u(40)-u(30)]/[u(30)-u(0)]   (7) 

       p                   <  
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 The expression for the relative weight of argument for R versus S on the 

payoff dimension is the same for both (6) and (7) – i.e. [u(40)-u(30)]/[u(30)-u(0)]. 

Meanwhile, the expression for the relative weight of argument for S versus R on the 

probability dimension changes from 0.2/0.8 in (6) to 0.05/0.2 in (7). Since these two 

ratios are equal, the implication of EUT is that the balance of relative arguments is 

exactly the same for both choices: an EU maximiser should either pick S in both 

choices, or else pick R on both occasions 

However, very many experiments using CRE pairs like those in Figure 2 find 

otherwise: many individuals violate EUT by choosing S1 in Choice #1 and R2 in 

Choice #2, while the opposite departure – choosing R1 and S2 – is relatively rarely 

observed. CPT can accommodate this asymmetry. To see how, consider the CPT 

versions of (6) and (7): 

 

       f                                  >       

 S1  ~  R1   ⇔   [1-π(0.8)]/π(0.8)   =   [v(40)-v(30)]/[v(30)-v(0)]           (8) 

       p                        <  

   

       f             >    

 S2  ~  R2   ⇔   [π(0.25)-π(0.2)]/π(0.2)   =   [v(40)-v(30)]/[v(30)-v(0)]      (9) 

       p                       <  

 

 As with EUT, the relative argument on the payoff dimension (the right hand 

side of each expression) is the same for both (8) and (9). But the nonlinear 

transformation of probabilities means that the relative strength of the argument for S 

versus R on the probability dimension decreases as we move from (8) to (9). Using 

the parameters estimated in Tversky and Kahneman (1992), [1-π(0.8)]/π(0.8) ≈ 0.65 

in (8) and [π(0.25)-π(0.2)]/π(0.2) ≈ 0.12 in (9). So any individual for whom  

[v(40)-v(30)]/[v(30)-v(0)] is less than 0.65 but greater than 0.12 will choose S1 in 

Choice #1 and R2 in Choice #2, thereby exhibiting the ‘usual’ form of CRE violation 

of EUT. Thus this pattern of response is entirely compatible with CPT. 

 However, there may be other ways of explaining that pattern. This paper 

proposes an alternative account which gives much the same result in this scenario but 

which has quite different implications from CPT for some other cases.  
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 To help set up the intuition behind this model, we start with Rubinstein’s 

(1988) idea that some notion of similarity might explain the CRE, as follows6. In 

Choice #1, the two lotteries differ substantially on both the probability and the payoff 

dimensions; and although the expected value of 32 offered by R1 is higher than the 

certainty of 30 offered by S1, the majority of respondents choose S1, a result which 

Rubinstein ascribed to risk aversion operating in such cases. However, the effect of 

scaling down the probabilities of the positive payoffs in Choice #2 may be to cause 

many respondents to consider those scaled-down probabilities to be so similar that 

they pay less attention to them and give decisive weight instead to the dimension 

which remains dissimilar – namely, the payoff dimension, which favours R2 over S2. 

 Such a similarity notion can be deployed to explain a number of other 

regularities besides the CRE (see, for example, Leland (1994), (1998)). However, a 

limitation of this formulation of similarity is the dichotomous nature of the judgment: 

that is, above some (not very clearly specified) threshold, two stimuli are considered 

dissimilar and are processed as under EUT; but below that threshold, they become so 

similar that the difference between them is then regarded as inconsequential.  

Nevertheless, the similarity notion entails two important insights: first, that the 

individual is liable to make between-lottery comparisons of probabilities; and second, 

that although the objective ratio of the relevant probabilities remains the same as both 

are scaled down, the smaller difference between them in Choice #2 affects the 

perception of that ratio in a way which reduces the relative strength of the argument 

favouring the safer alternative. The model in this paper incorporates those two ideas 

in a way that not only accommodates the CRE but also generates a number of new 

implications.  

 In Choice #1, the probabilities are as scaled-up as it is possible for them to be: 

that is, bS+bR = 1. In this choice the bS/bR ratio is 0.2/0.8 and for many respondents – 

in most CRE experiments, typically a considerable majority – this relative probability 

argument for S1 outweighs the relative payoff argument for R1. In Choice #2, p2 and 

q3 are scaled down to a quarter of their Choice #1 values – as reflected by the fact that 

here bS+bR = 0.25. With both p2 and q3 scaled down to the same extent, the objective 

value of bS/bR remains constant; but the perceived force of the relative argument on 

the probability dimension is reduced, so that many respondents switch to the riskier 

                                                 
6 Tversky (1969) used a notion of similarity to account for violations of transitivity: these will be 
discussed in Section 3.  
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option, choosing R2 over S2. To capture this, we need to specify φ(bS, bR) as a 

function of bS/bR such that φ(bS, bR) falls as bS+bR falls while bS/bR remains constant 

at some ratio less than 1. There may be various functional forms that meet these 

requirements, but a straightforward one is: 

 

 ( ) ( )
( )α

φ
R

b
S

b

R
/b

S
b

R
b ,

S
b

+
=        (10) 

  

where α is a person-specific parameter whose value may vary from one individual to 

another, as discussed shortly. 

To repeat a point made at the beginning of Section 1, it is not being claimed 

that individuals consciously calculate the modified ratio according to (10), any more 

than proponents of CPT claim that individuals actually set about calculating decision 

weights according to the somewhat complex rank-dependent algorithm in that model. 

What the CPT algorithm is intended to capture is the idea of some probabilities being 

underweighted and others being overweighted when individual lotteries are being 

evaluated, with this underweighting and overweighting tending to be systematically 

associated with payoffs according to their rank within the lottery. Likewise, what the 

formulation in (10) aims to capture is the idea that differences interact with ratios in a 

way which is consistent with perceptions of the relative force of a ratio being 

influenced by between-lottery considerations. 

The idea that α is a person-specific variable is intended to allow for different 

individuals having different perceptual propensities. Notice that when α = 0, (bS+bR)
α

 

= 1, so that φ(bS, bR) reduces to bS/bR: that is, the perceived relative argument 

coincides with the objective ratio at every level of scaling down. On this reading, 

someone for whom α = 0 is someone who takes probabilities and their ratios exactly 

as they are, just as EUT supposes. However, anyone for whom α takes a value other 

than 0 is liable to have their judgment of ratios influenced to some extent by the 

degree of similarity. In particular, setting α < 0 means that (bS+bR)
α

 increases as 

(bS+bR) falls. So whenever bS/bR < 1 – which is the case in the example in Figure 2 

and in the great majority of CRE experiments – the effect of scaling probabilities 

down and reducing (bS+bR) is to progressively reduce φ(bS, bR), which is what is 
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required to accommodate someone choosing S1 in Choice #1 and R2 in Choice #2, 

which is the predominant violation of independence observed in standard CRE 

experiments. The opposite violation – choosing R1 and S2 – requires α > 0. Thus one 

way of accounting for the widely-replicated result whereby the great majority of 

deviations from EUT are in the form of S1 & R2 but a minority take the form of R1 & 

S2 is to suppose that different individuals are characterised by different values of α, 

with the majority processing probabilities on the basis of α < 0 while a minority 

behave as if α > 07. 

Notice also that when bS+bR = 1 (which means that probabilities of x3 and x2 

are scaled up to their maximum extent), all individuals (whatever their α) perceive the 

ratio as it objectively is. This should not be taken too literally. The intention is not to 

insist that there is no divergence between perceived and objective ratios when the 

decision problem is as scaled-up as it can be. At this point, for at least some people, 

there might even be some divergence in the opposite direction8. However, it is 

analytically convenient to normalise the φ(bS, bR) values on the basis that when bS+bR 

= 1, the perceived relative argument for S versus R takes the objective ratio as its 

baseline value. On this basis, together with the assumption that the (great) majority of 

participants in experiments behave as if a ≤ 0, PRAM accommodates the standard 

CRE where violations of independence are frequent and where the S1 & R2 

combination is observed much more often than R1 & S2. 

 However, although PRAM and CPT have much the same implications for 

pairs of choices like those in Figure 2, there are other common ratio scenarios for 

which they make opposing predictions. To see this, consider a ‘scaled-up’ Choice #3 

which involves S3 offering 25 for sure – written (25, 1) – and R3 offering a 0.2 chance 

of 100 and a 0.8 chance of 0, written (100, 0.2; 0, 0.8). Scaling down q3 and p2 by a 

quarter produces Choice #4 with S4 = (25, 0.25; 0, 0.75) and R4 = (100, 0.05; 0, 0.95).  

                                                 
7 Of course, there will be some – possibly many – individuals for whom α may be non-zero but may be 
close enough to zero that on many occasions no switch between S and R is observed unless the balance 
of arguments in Choice #1 is fairly finely balanced. Moreover, in a world where preferences are not 
purely deterministic and where responses are to some extent noisy, some switching – in both directions 
– may occur as a result of such ‘noise’. However, as stated earlier, this paper is focusing on the 
deterministic component. 
8 In the original version of prospect theory, Kahneman and Tversky (1979) proposed that p2 = 1 might 
involve an extra element – the ‘certainty effect’ – reflecting the idea that certainty might be especially 
attractive; but CPT does not require any special extra weight to be attached to certainty and weights it 
as 1.  
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 Under CPT,  the counterpart of φ(bS, bR) is [1-π(0.2)]/π(0.2) in Choice #3, 

while in Choice #4 it is [π(0.25)-π(0.05)]/π(0.05). Using the transformation function 

from Tversky and Kahneman (1992), the value of [1-π(0.2)]/π(0.2) in Choice #3 is 

approximately 2.85 while the value of [π(0.25)-π(0.05)]/π(0.05) in Choice #4 is 

roughly 1.23. So individuals for whom [v(x3)-v(x2)]/[v(x2)-v(x1)] lies between those 

two figures are liable to choose S3 in Choice #3 and R4 in Choice #4, thereby entailing 

much the same form of departure from EUT as in Choices #1 and #2. 

However, in this case PRAM has the opposite implication. In the maximally 

scaled-up Choice #3, φ(bS, bR) = bS/bR = 0.8/0.2 = 4. In Choice #4, the same bS/bR 

ratio is raised to the power of (bS+bR)
α

 where bS+bR = 0.25 and where, for the 

majority of individuals, α < 0, so that reducing bS+bR increases the exponent on bS/bR 

above 1. So in scenarios such as the one in Figure 3, where bS/bR > 1, the effect of 

scaling down the probabilities is to give relatively more weight to bS and relatively 

less to bR, thereby increasing φ(bS, bR). This allows the possibility that any member of 

the majority for whom α < 0 may choose R3 and S4, while only those in the minority 

for whom α > 0 are liable to choose S3 and R4.  The intuition here is that under these 

circumstances where bR is smaller than bS, it is bR that becomes progressively more 

inconsequential as it tends towards zero. This is in contrast with the assumption made 

by CPT, where the probability transformation function entails that low probabilities 

associated with high payoffs will generally be substantially overweighted.  

This suggests a straightforward test to discriminate between CPT and PRAM: 

namely, we can present experimental participants with scenarios involving choices 

like #3 and #4 which have bS/bR > 1 as well as giving them choices like #1 and #2 

where bS/bR < 1. Indeed, one might have supposed that such tests have already been 

conducted. But in fact, common ratio scenarios where bS/bR > 1 are thin on the 

ground. Such limited evidence as there is gives tentative encouragement to the PRAM 

prediction: for example, Battalio et al. (1990) report a study where their Set 2 (in their 

Table 7) involved choices where (x3–x2) = $14 and (x2–x1) = $6 with bS/bR = 2.33. 

Scaling down by one-fifth resulted in 16 departures from EUT (out of a sample of 33), 

with 10 of those switching from R in the scaled-up pair to S in the scaled-down pair 

(in keeping with PRAM) while only 6 exhibited the ‘usual’ common ratio pattern. 

Another instance can be found in Bateman et al. (2006). In their Experiment 3, 100 

participants were presented with two series of choices involving different sets of 



 15 

payoffs. In each set there were CRE questions where bS/bR was 0.25, and in both sets 

a clear pattern of the usual kind was observed: the ratio of S1&R2 : S2&R1 was 37:16 

in Set 1 and 29:5 in Set 2. In each set there were also CRE questions where bS/bR was 

1.5, and in these cases the same participants generated S1&R2 : S2&R1 ratios of 13:21 

in Set 1 and 10:16 in Set 2 – that is, asymmetries, albeit modest, in the opposite 

direction to the standard CRE.  

However, although the existing evidence in this respect is suggestive, it is 

arguably too sparse to be conclusive. The same is true of a number of other respects in 

which PRAM diverges from CPT and other extant models. The remainder of this 

section will therefore identify a set of such divergent implications within an analytical 

framework that underpins the experimental investigation that will be reported in 

Section 5.  

2.2 Other Effects Within the Marschak-Machina Triangle 

When considering the implications of different decision theories for the kinds 

of choices that fit the Figure 1 template, many authors have found it helpful to 

represent such choices visually by using a Marschak-Machina (M-M) triangle – see 

Machina (1982) – as shown in Figure 3. The vertical edge of this triangle shows the 

probability of the highest payoff, x3, and the horizontal edge shows the probability of 

the lowest payoff, x1. Any residual probability is the probability of the intermediate 

payoff, x2. The fourteen lotteries labelled A through P (letter I omitted) represent 

different combinations of the same set of {x3, x2, x1}. So, for example, if those 

payoffs were, respectively, 40, 30 and 0, then F would offer the certainty of 30 while J 

would represent (40, 0.8; 0, 0.2): that is, F and J would be, respectively, S1 and R1 

from Choice #1 above. Likewise, N = (30, 0.25; 0, 0.75) is S2 in Choice #2, while P = 

(40, 0.2; 0, 0.8) is R2 in that choice. 

An EU maximiser’s indifference curves in any triangle are all straight lines 

with gradient [u(x2)-u(x1)]/[u(x3)-u(x2)] – i.e. the inverse of yR/yS in the notation used 

above. So she will either always prefer the more south-westerly of any pair on the 

same line (if bS/bR > yR/yS) or else always prefer the more north-easterly of any such 

pair, with this applying to any pair of lotteries in the triangle connected by a line with 

that same gradient. 
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Figure 3: A Marschak-Machina Triangle 

 

 
 

CPT also entails each individual having a well-behaved indifference map (i.e. 

all indifference curves with a positive slope at every point, no curves intersecting) but 

CPT allows these curves to be nonlinear. Although the details of any particular map 

will vary with the degree of curvature of the value function and the weighting 

function9, the usual configuration can be summarised broadly as follows: indifference 

curves fan out as if from somewhere to the south-west of the right-angle of the 

triangle, tending to be convex in the more south-easterly region of the triangle but 

more concave to the north-west, and particularly flat close to the bottom edge of the 

triangle while being rather steeper near to the top of the vertical edge.  

 PRAM generates some implications which appear broadly compatible with 

that CPT configuration; but there are other implications which are quite different. To 

show this, Table 1 takes a number of pairs from Figure 3 and lists them according to 

                                                 
9 In Tversky and Kahneman (1992), their Figure 3.4(a) shows an indifference map for the payoff set 
{x3 = 200, x2 = 100, x1 = 0} on the assumption that v(xi) = xi

0.88 and on the supposition that the 
weighting function estimated in that paper is applied. 
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the value of φ(bS, bR) that applies to each pair. The particular value of each φ(bS, bR) 

will depend on the value of α for the individual in question; but so long as α < 0, we 

can be sure that the pairs will be ordered from highest to lowest φ(bS, bR) as in Table 

1. This allows us to say how any such individual will choose, depending on where his 

ξ(yR, yS) stands in comparison with φ(bS, bR). We do not yet need to know more 

precisely how ξ(yR, yS) is specified by PRAM, except to know that it is a function of 

the three payoffs and is the same for all choices involving just those three payoffs10. 

 

Table 1: Values of φφφφ(bS, bR) for Different Pairs of Lotteries from Figure 3 

 

Value of φφφφ(bS, bR) Pair 

( )α1
25.0  

 

F vs J   

( )α0.75
25.0  

 

F vs H,  G vs J   

( )α0.50
25.0  

 

C vs E, G vs H, K vs M  

( )α0.25
25.0  

 

A vs B,  C vs D,  D vs E, F vs G, H vs J,  K vs L, L vs M, N vs P   

 

 So if an individual’s ξ(yR, yS) is lower than even the lowest value of φ(bS, bR) 

in the table – that is, lower than ( )α0.25
25.0  – the implication is that φ(bS, bR) > ξ(yR, yS) 

for all pairs in that table, meaning that in every case the safer alternative – the one 

listed first in each pair – will be chosen. In such a case, the observed pattern of choice 

will be indistinguishable from that of a risk averse EU maximiser. 

 However, consider an individual for whom ξ(yR, yS) is higher than the lowest 

value of φ(bS, bR) but lower than the next value up on the list: i.e. the individual’s 

evaluation of the payoffs is such that ξ(yR, yS) is greater than ( )α0.25
25.0  but less than 

( )α0.50
25.0 . Such an individual will choose the safer (first-named) alternative in all of 

the pairs in the top three rows of the table; but he will choose the riskier (second-

                                                 
10 This requirement is met by EUT, where ξ(yR, yS) = [u(x3)-u(x2)]/[u(x2)-u(x1)], and by CPT, where 

ξ(yR, yS) = [v(x3)-v(x2)]/[v(x2)-v(x1)]. Although the functional form for ξ(yR, yS) proposed by PRAM is 

different from these, it will be seen in the next Section that the PRAM specification of ξ(yR, yS) also 
gives a single value of that function for any individual facing any choices involving {x3, x2, x1}. 
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named) alternative in all of the pairs in the bottom row. This results in a number of 

patterns of choice which violate EUT; and although some of these are compatible with 

CPT, others are not. 

 First, ξ(yR, yS) now lies in the range which produces the usual form of CRE – 

choosing F = (30, 1) over J = (40, 0.8; 0, 0.2) in the top row of Table 1, but choosing 

P = (40, 0.2; 0, 0.8) over N = (30, 0.75; 0, 0.25) in the bottom row. (In fact, a ξ(yR, yS) 

which lies anywhere between ( )α0.25
25.0  and ( )α1

25.0  will produce this pattern.) As seen 

in the previous subsection, this form of CRE is compatible with both PRAM and CPT. 

 Second, this individual is now liable to violate betweenness. Betweenness is a 

corollary of linear indifference curves which means that any lottery which is some 

linear combination of two other lotteries will be ordered between them. For example, 

consider F, G and J in Figure 3. G = (40, 0.2; 30, 0.75; 0, 0.05) is a linear combination 

of F and J – it is the reduced form of a two-stage lottery offering a 0.75 chance of F 

and a 0.25 chance of J. With linear indifference curves, as entailed by EUT, G cannot 

be preferred to both F and J, and nor can it be less preferred than both of them: under 

EUT, if F f  J, then F f  G and G f  J; or else if J f  F, then J f  G and G f  F. The 

same goes for any other linear combination of F and J, such as H = (40, 0.6; 30, 0.25; 

0, 0.15). But PRAM entails violations of betweenness. In this case, the individual 

whose ξ(yR, yS) lies anywhere above ( )α0.25
25.0  and below ( )α0.75

25.0  will choose the 

safer lottery from every pair in the top two rows of Table 1 but will choose the safer 

lottery from every pair in the bottom row. Thus she will a) choose G over both F and J 

(i.e. G over F in the bottom row and G over J in the second row) and b) will choose 

both F and J over H (i.e. F over H in the second row and J over H in the bottom row). 

All these choices between those various pairings of F, G, H and J might be 

accommodated by CPT, although it would require the interaction of v(.) and π(.) to be 

such as to generate an S-shaped indifference curve in the relevant region of the 

triangle. However, to date CPT has not been under much pressure to consider how to 

produce such curves: as with common ratio scenarios where bS/bR > 1, there is a 

paucity of experimental data looking for violations of betweenness in the vicinity of 

the hypotenuse – although one notable exception is a study by Bernasconi (1994) who 

looked at lotteries along something akin to the F-J line and found precisely the pattern 

entailed by the PRAM analysis. 
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A third implication of PRAM relates to ‘fanning out’ and ‘fanning in’. As 

noted earlier, CPT indifference maps are usually characterised as generally fanning 

out across the whole triangle, tending to be particularly flat close to the right hand end 

of the bottom edge while being much steeper near to the top of the vertical edge. 

However, steep indifference curves near to the top of the vertical edge would entail 

choosing A over B, whereas PRAM suggests that any value of ξ(yR, yS) greater than 

( )α0.25
25.0  will cause B to be chosen over A. In conjunction with the choice of F over J, 

this would be more in keeping with fanning out in more south-easterly part of the 

triangle but fanning in in the more north-westerly area. Again, there is rather less 

evidence about choices in the north-west of the triangle than in the south-east, but 

Camerer (1995) refers to some evidence consistent with fanning in towards that top 

corner, and in response to this kind of evidence, some other non-EU models – for 

example, Gul (1991) – were developed to have this ‘mixed fanning’ property11.  

Thus far, however, it might seem that the implications of PRAM are not 

radically different from what might be implied by CPT and other non-EU variants 

which, between them, could offer accounts of each of the regularities discussed above 

– although, as Bernasconi (1994, p.69) noted, it is difficult for any particular variant 

to accommodate all of these patterns via the same nonlinear transformation of 

probabilities into decision weights.  

However, there is a further implication of PRAM which does represent a much 

more radical departure. Although the particular configurations may vary, what CPT 

and most of the other non-EU variants have in common is that preferences over the 

lottery space can be represented by indifference maps of some kind. Thus transitivity 

is intrinsic to all of these models. But what Table 1 allows us to see is that PRAM 

entails violations of transitivity.  

As mentioned above, when an individual’s ξ(yR, yS) lies above ( )α0.25
25.0  and 

below ( )α0.50
25.0 , the safer lotteries will be chosen in all pairs in the top three rows but 

the riskier lotteries will be chosen in all pairs in the bottom row. Consider what this 

means for the three pairwise choices involving C, D and E. From the bottom row, we 

see that E f  D and D f  C; but from the third row we have C f  E, so that the three 

                                                 
11 However, a limitation of Gul’s (1991) ‘disappointment aversion’ model is that it entails linear 
indifference curves and therefore cannot accommodate the failures of betweenness that are now well-
documented. 
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choices constitute a cycle. Since this involves three lotteries on the same line, with 

one being a linear combination of the other two, let this be called a ‘betweenness 

cycle’. It is easy to see from Table 1 that for any individual whose ξ(yR, yS) lies above 

( )α0.25
25.0  and below ( )α0.50

25.0 , PRAM entails another betweenness cycle: from the 

bottom row, M f  L and L f  K; but from the third row, K f  M.  

 Nor are such cycles confined to that case and that range of values for ξ(yR, yS). 

For example, if there are other individuals for whom ξ(yR, yS) lies between ( )α0.5
25.0  

and ( )α0.75
25.0 , PRAM entails the riskier lotteries being chosen from all of the pairs in 

the bottom two rows while the safer option will be chosen in all cases in the top two 

rows. This allows, for example, H f  G (from the third row) and G f  F (from the 

bottom row) but F f  H (from the second row).  

 Indeed, if PRAM is modelling perceptions appropriately, it is easy to show 

that, for any triple of pairwise choices derived from three lotteries on the same straight 

line, there will always be some range of ξ(yR, yS) that will produce a violation of 

transitivity in the form of a ‘betweenness cycle’.  

 To see this, set x3, x2, x1 and q3 such that a particular individual is indifferent 

between S = (x2, 1) and R = (x3, q3; x1, 1-q3). Denoting bS/bR by b, indifference entails 

φ(bS, bR) = ξ(yR, yS) = ( )α1
b = b. Since the value of ξ( yR, yS) is determined by the set 

of the three payoffs, ξ( yR, yS) = b for all pairs of lotteries defined over this particular 

set {x3, x2, x1}.  

Now construct any linear combination T = (S, λ; R, 1-λ) where 0 < λ < 1, and 

consider the pairwise choices {S, T} and {T, R}. Since T is on the straight line 

between S and R, bS/bT = bT/bR = b. Hence φ(bS, bT) = ( )αλ-1
b  and φ(bT, bR) = ( )αλ

b . 

With 0 < λ < 1, this entails φ(bS, bT), φ(bT, bR) < b for all b < 1; and also φ(bS, bT), 

φ(bT, bR) > b for all b > 1. Since ξ( yR, yS) = b for all these pairings, the implication is 

either the triple R f  T, T f  S, but S ~ R when b < 1, or else S f  T, T f  R, but R ~ S 

when b > 1. As they stand, with S ~ R, these are weak violations of transitivity; but it 

is easy to see that by decreasing q3 very slightly when b < 1 (so that S f  R), or by 

increasing q3 enough when b > 1 (to produce R f  S), strict violations of transitivity 

will result. 
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 The implication of betweenness cycles is one which sets PRAM apart from 

EUT and all non-EU models that entail transitivity. But is there any evidence of such 

cycles? Such evidence as there is comes largely as a by-product of experiments with 

other objectives, but there is at least some evidence. For example, Buschena and 

Zilberman (1999) examined choices between mixtures on two chords within the M-M 

triangle and found a significant asymmetric pattern of cycles along one chord, 

although not along the other chord. Bateman et al. (2006) also reported such 

asymmetries: these were statistically significant in one area of the triangle and were in 

the predicted direction, although not significantly so, in another area.  

Finally, re-analysis of an earlier dataset turns out to yield some additional 

evidence that supports this distinctive implication of PRAM. Loomes and Sugden 

(1998) asked 92 respondents to make a large number of pairwise choices, in the 

course of which they faced six ‘betweenness triples’ where b < 1 – specifically, those 

lotteries numbered {18, 19, 20}, {21, 22, 23}, {26, 27, 28}, {29,30,31}, {34, 35, 36} 

and {37, 38, 39} in the triangles labelled III-VI, where b ranged from 0.67 to 0.25. 

Individuals can be classified according to whether they a) exhibited no betweenness 

cycles, b) exhibited one or more cycles only in the direction consistent with PRAM, c) 

exhibited one or more cycles only in the opposite direction to that implied by PRAM, 

or d) exhibited cycles in both directions. 35 respondents never exhibited a cycle, and 

11 recorded at least one cycle in both directions. However, of those who cycled only 

in one direction or the other, 38 cycled in the PRAM direction as opposed to just 8 

who cycled only in the opposite direction. If both propensities to cycle were equally 

likely to occur by chance, the probability of the ratio 38:8 is less than 0.00001; and 

even if all 11 ‘mixed cyclers’ were counted strictly against the PRAM implication, the 

probability of the ratio 38:19 occuring by chance would still be less than 0.01. 

 So there is at least some support for PRAM’s novel implication concerning 

transitivity over lotteries within any given triangle. However, because this is a novel 

implication of PRAM for which only serendipitous evidence exists, the new 

experimental work described in Section 5 was also intended to provide further 

evidence about this implication. 

Thus far, then, we have seen that when bS/bR > 1, PRAM entails the opposite 

of the CRE pattern associated with scenarios where bS/bR < 1; and also that when 

bS/bR < 1, PRAM entails betweenness cycles in one direction, while when bS/bR > 1, 

the expected direction of cycling is reversed. These two implications are particular 
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manifestations of the more general point that moving from bS/bR < 1 to bS/bR > 1 has 

the effect of turning the whole ordering in Table 1 upside down. This broader 

implication is also addressed in the new experimental work.  

 There is a further implication, not tested afresh but relevant to existing 

evidence. Consider what happens when the payoffs are changed from gains to losses 

(represented by putting a minus sign in front of each xi in Figure 2). The S lottery now 

involves a sure loss of 30 – that is, S = (-30, 1) – while R = (-40, 0.8; 0, 0.2). In this 

case, bS/bR = 4, so that the ‘reverse CRE’ is entailed by PRAM. Although there is a 

dearth of evidence about scenarios where bS/bR > 1 in the domain of gains, there is a 

good deal more evidence from the domain of losses, ever since Kahneman and 

Tversky (1979) reported the reverse CRE in their Problems 3’ & 4’, and 7’ and 8’, 

and dubbed this ‘mirror image’ result the ‘reflection effect’. It is clear that PRAM also 

entails the reflection effect, not only in relation to CRE, but more generally, as a 

consequence of inverting the value of bS/bR when positive payoffs are replaced by 

their ‘mirror images’ in the domain of losses.  

 Finally, by way of drawing this section to a close, are there any well-known 

regularities within the M-M triangle that PRAM does not explain? It would be 

remarkable if a single formula on the probability dimension involving just one 

‘perception parameter’ α were able to capture absolutely every well-known regularity 

as well as predicting several others. It would not be surprising if human perceptions 

were susceptible to more than just one effect, and there may be other factors entering 

into similarity judgments besides the one proposed here. For example, Buschena and 

Zilberman (1999) suggested that when all pairs of lotteries are transformations of 

some base pair such as {F, J} in Figure 3, the distances between alternatives in the M-

M triangle would be primary indicators of similarity – which is essentially what the 

current formulation of φ(bS, bR) proposes (to see this, compare the distances in Figure 

3 with the values of φ(bS, bR) in Table 1). However, Buschena and Zilberman 

modified this suggestion with the conjecture that if one alternative but not the other 

involved certainty or quasi-certainty, this might cause the pair to be perceived as less 

similar, and if two alternatives had different support, they would be regarded as more 

dissimilar.  

An earlier version of PRAM (Loomes, 2006) proposed incorporating a second 

parameter (β) into the functional form of φ(bS, bR) with a view to capturing something 
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of this sort, and thereby distinguishing between two pairs such as {F, G} and {N, P} 

which are equal distances apart on parallel lines. The effect of β was to allow F and G 

to be judged more dissimilar from each other than N and P, since F and G involved a 

certainty being compared with a lottery involving all three payoffs, whereas N and P 

involved two payoffs each. On this basis, with bS/bR < 1, the model allowed the 

combination of F f  G with N p  P, but not the opposite. And this particular regularity 

has been reported in the literature: it is the form of Allais paradox that has come to be 

known since Kahneman and Tversky (1979) as the ‘common consequence effect’. 

This effect is compatible with CPT, but if PRAM is restricted to the ‘α-only’ form of 

φ(bS, bR), there is no such distinction between  {F, G} and {N, P} so that this α-only 

form of PRAM does not account for the common consequence effect. 

So why is β not included in the present version? Its omission from the current 

version should not be interpreted as a denial of the possible role of other influences 

upon perceptions: on the contrary, as stated above, it would be remarkable if every 

aspect of perception on the probability dimension could be reduced to a single 

expression with just one free parameter. But in order to focus on the explanatory 

power provided by that single formulation, and to leave open the question of how best 

to modify φ(bS, bR) in order to allow for other effects on perception, there is an 

argument for putting the issue of a β into abeyance until we have more information 

about patterns of response in scenarios which have to date been sparsely investigated. 

If the α-only model performs well but (as seems likely) is not by itself sufficient to 

provide a full description of behaviour, the data collected in the process of testing may 

well give clues about the kinds of additional modifications that may be appropriate.  

However, the more immediate concern is to extend the model beyond sets of 

decisions consisting of no more than three payoffs between them. To that end, the 

next section considers how perceptions might operate on the payoff dimension.  

 

3. Modelling Payoff Judgments 

 As indicated in Expressions (6) and (8), the EUT and CPT ways of modelling 

‘the relative argument for R compared with S on the payoff dimension’ are, 

respectively, [u(x3)-u(x2)]/[u(x2)-u(x1)] and [v(x3)-v(x2)]/[v(x2)-v(x1)]. That is, these 

models, like many others, map from the objective money amount to an individual’s 

subjective value of that amount via a utility or value function, and then suppose that 
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the relative argument for one alternative against another can be encapsulated in terms 

of the ratio of the differences between these subjective values. So modelling payoff 

judgments may be broken down into two components: the subjective difference 

between any two payoffs; and how pairs of such differences are compared and 

perceived. 

 Consider first the conversion of payoffs into subjective values/utilities. It is 

widely accepted that – in the domain of gains at least – v(.) or u(.) are concave 

functions of payoffs, reflecting diminishing marginal utility and/or diminishing 

sensitivity. Certainly, if we take the most neutral base case – S offering some sure x2, 

while R offers a 50-50 chance of x3 or x1 – it is widely believed that most people will 

choose S whenever x2 is equal to the expected (money) value of R; and indeed, that 

many will choose S even when x2 is somewhat less than that expected value – this 

often being interpreted as signifying risk aversion in the domain of gains. In line with 

this, PRAM also supposes that payoffs map to subjective values via a function c(.), 

which is (weakly) concave in the domain of gains12. To simplify notation, c(xi) will be 

denoted by ci. 

 On that supposition, the basic building block of ξ(yR, yS) is (c3-c2)/(c2-c1), 

which is henceforth denoted by cR/cS. This is the counterpart to bS/bR in the 

specification of φ(bS, bR). So to put the second component of the model in place, we 

apply the same intuition about similarity to the payoff dimension as was applied to 

probabilities, and posit that the perceived ratio is liable to diverge more and more 

from the ‘basic’ ratio cR/cS the more different cR and cS become. Because the ci’s refer 

to payoffs rather than probabilities, there is no counterpart to bS+bR having an upper 

limit of 1. So, as a first and very simple way of modelling perceptions in an analogous 

way, let us specify ξ(yR, yS) as: 

 

 ξ(yR, yS) = (cR/cS)
δ
  where δ ≥ 1             (11) 

 

                                                 
12 Actually, the strict concavity of this function, although it probably corresponds with the way most 
people would behave when presented with 50-50 gambles, is not necessary in order to produce many of 
the results later in this section, where a linear c(.) is sufficient. And since there are at least some 
commentators who think that the degree of risk aversion seemingly exhibited in experiments is 
surprisingly high – see, for example, Rabin (2000) – it may sometimes be useful (and simpler) to work 
on the basis of a linear c(.) and abstract from any concavity as a source of what may be interpreted as 
attitude to risk. The reason for using c(.) rather than u(.) or v(.) is to keep open the possibilities of 
interpretations that may differ from those normally associated with u(.) or v(.). 
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Under both EUT and CPT, δ = 1 (i.e. when c(.) = u(.) under EUT and when 

c(.) = v(.) under CPT). However, when δ > 1, whichever is the bigger of cR and cS 

receives ‘disproportionate’ attention, and this disproportionality increases as cR and cS 

become more and more different. So in cases where cR/cS > 1, doubling cR while 

holding cS constant has the effect of more than doubling the perceived force of the 

relative argument favouring R. Equally, when cR/cS < 1, halving cR while holding cS 

constant weakens the perceived force of the argument for R to something less than 

half of what it was. 

With ξ(yR, yS) specified in this way, a number of results can be derived. In so 

doing, the strategy will be to abstract initially from any effect due to any nonlinearity 

of c(.) by examining first the implications of setting ci = xi. 

First, we can derive the so-called fourfold pattern of risk attitudes (Tversky 

and Kahneman, 1992) whereby individuals are said to be risk-seeking over low-

probability high-win gambles, risk-averse over high-probability low-win gambles, 

risk-seeking over high-probability low-loss gambles and risk-averse over low-

probability high-loss gambles.  

This pattern is entailed by PRAM, even when c(.) is assumed to be linear 

within and across gains and losses. To see this, start in the domain of gains and 

consider an R lottery of the form (x3, q3; 0, 1-q3) with the expected value x2 (= q3.x3). 

Fix S = (x2, 1) and consider a series of choices with a range of R lotteries, varying the 

values of q3 and making the adjustments to x3 necessary to hold the expected value 

constant at x2.  Since all of these choices involve bS+bR = 1, φ(bS, bR) = (1–q3)/q3. 

With ci = xi, we have ξ(yR, yS) = [(x3-x2)/x2]
δ
. With x2 = q3.x3, this gives ξ(yR, yS) = 

[(1–q3)/q3]
δ
, which can be written ξ(yR, yS) = [φ(bS, bR)]

δ
. When q3 > 0.5, φ(bS, bR) is 

less than 1 and so with δ > 1, ξ(yR, yS) is even smaller: hence S is chosen in 

preference to R, an observation that is conventionally taken to signify risk aversion. 

However, whenever q3 < 0.5, φ(bS, bR) is greater than 1 and ξ(yR, yS) is bigger than 

φ(bS, bR), so that now R is chosen over S, which is conventionally taken to signify risk 

seeking. Thus we have the first two elements of the ‘fourfold attitude to risk’ – risk-

aversion over high-probability low-win gambles and risk-seeking over low-

probability high-win gambles in the domain of gains. And it is easy to see that if we 

locate R in the domain of losses, with q3 now being the probability of 0 and with the 
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expected value of R held constant at q1.x1 = x2, the other two elements of the fourfold 

pattern – risk-aversion over low-probability high-loss gambles and risk-seeking over 

high-probability low-loss gambles – are also entailed by PRAM.   

The fact that these patterns can be obtained even when c(.) is linear breaks the 

usual association between risk attitude and the curvature of the utility/value function 

and suggests that at least part of what is conventionally described as risk attitude 

might instead be attributable to the way that the perceived relativities on the 

probability and payoff dimensions vary as the skewness of R is altered. If c(.) were 

nonlinear – and in particular, if it were everywhere concave, as u(.) is often supposed 

to be, the above results would be modified somewhat: when q3 = 0.5 and x2/x3 = 0.5, 

(c3-c2)/c2 < 0.5, so that S would be chosen over R for q3 = 0.5, and might continue to 

be chosen for some range of q3 below 0.5, depending on the curvature of c(.) and the 

value of δ. Nevertheless, it could still easily happen that below some point, there is a 

range of q3 where R is chosen. Likewise, continuing concavity into the domain of 

losses is liable to move all of the relative arguments somewhat in favour of S, but 

there may still be a range of high-probability low-loss R which are chosen over S. In 

short, and in contrast with CPT, PRAM does not use convexity in the domain of 

losses to explain the fourfold pattern. 

 Still, even if they reach the result by different routes, PRAM and CPT share 

the fourfold pattern implication. However, there is a related regularity where they part 

company: namely, the preference reversal phenomenon and the cycle that is its 

counterpart in pairwise choice. In the language of the preference reversal 

phenomenon (see Lichtenstein and Slovic, 1971, and Seidl, 2000) a low-probability 

high-win gamble is a $-bet while a high-probability low-win gamble is a P-bet. The 

widely-replicated form of preference reversal occurs when an individual places a 

higher certainty equivalent value on the $-bet than on the P-bet but picks the P-bet in 

a straight choice between the two. Denoting the bets by $ and P, and their certainty 

equivalents as sure sums of money CE$ and CEP such that CE$ ~ $ and CEP ~ P, the 

‘classic’ and frequently-observed reversal occurs when CE$ > CEP but P f  $. The 

opposite reversal – placing a higher certainty equivalent on the P-bet but picking the 

$-bet in a straight choice – is relatively rarely observed. 

 Let X be some sure amount of money such that CE$ > X > CEP. Then the 

‘classic’ preference reversal translates into the choice cycle $ fX, X f P, P f $. 

However, this cycle and the preference reversal phenomenon are both incompatible 
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with CPT and other models which have transitivity built into their structure: if $ fX 

and X f P – which is what the fourfold pattern entails when X is the expected value 

of the two bets – then transitivity requires $ f P in any choice between those two, and 

also requires that this ordering be reflected in their respective certainty equivalents. 

Any strong asymmetric pattern of cycles and/or any asymmetric disparity between 

choice and valuation cannot be explained by CPT or any other transitive model13. 

By contrast, PRAM entails both the common form of preference reversal and 

the corresponding choice cycle. To see this, consider Figure 4. 

 

Figure 4: A {$, P} Pair with Expected Value = X 
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 In line with the parameters of most preference reversal experiments, let the 

probabilities be set such that 1 > q > 0.5 > λq > 0. The case is simplest when both bets 

have x1 = 0 and the same expected value, X. To simplify the exposition still further 

and show that the result does not require any nonlinearity of c(.), let ci = xi. We have 

already seen from the discussion of the fourfold pattern that under these conditions, 

when X is a sure sum equal to the expected value of both bets, $ fX and X f P. For a 

cycle to occur, PRAM must also allow P f $. To see what PRAM entails for this pair, 

we need to derive φ(bP, b$) and ξ(y$, yP). 

 Since bP = (1-λ)q and b$ = λq,  φ(bP, b$) = ( )
( )

α

λλ
q

)/-(1        (12) 

 And since y$ = [(1-λ)X/λq] and yP = X/q, ξ(y$, yP) = ( )δλλ)/-(1           (13) 

 

                                                 
13 Kahneman and Tversky (1979) are very clear in stating that prospect theory is strictly a theory of 
pairwise choice, and they did not apply it to valuation (or other ‘matching’) tasks. In their 1992 
exposition of CPT they repeat this statement about the domain of the theory, and to the extent that they 
use certainty equivalent data to estimate the parameters of their value and weighting functions, they do 
so by inferring these data from an iterative choice procedure. Strictly speaking, therefore, CPT can only 
be said to have an implication for choices – and in this case, choice cycles (which it does not allow). 
Other rank-dependent models make no such clear distinction between choice and valuation and 
therefore also entail that valuations should be ordered in the same way as choices.  
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 Thus the choice between P and $ depends on whether λ is greater than or less 

than 0.5 in conjunction with whether q
α

 is greater than or less than δ. Since α and δ 

are person-specific parameters, consider first an individual whose perceptions are 

such that q
α

 > δ ≥ 1. In cases where λ > 0.5 and therefore (1-λ)/λ < 1, such an 

individual will judge φ(bP, b$) < ξ(y$, yP) and will pick the $-bet, so that no cycle 

occurs. But where λ < 0.5, that same individual will judge φ(bP, b$) > ξ(y$, yP) and 

will pick the P-bet, thereby exhibiting the cycle $ fX, X f P, P f $. Since PRAM 

supposes that valuations are generated within the same framework and on the basis of 

the same person-specific parameters as choices, $ fX entails CE$ > X and X f P 

entails X > CEP, so that such an individual will also exhibit the classic form of 

preference reversal, CE$ > CEP in conjunction with P f $.  

 Next consider an individual whose perceptions are such that δ > q
α

 ≥ 1. For 

such an individual, λ < 0.5 entails φ(bP, b$) < ξ(y$, yP) so that she will pick the $-bet 

and no cycle will be observed. But in cases where λ > 0.5, she will judge φ(bP, b$) > 

ξ(y$, yP) and will pick the P-bet, thereby exhibiting the cycle $ fX, X f P, P f $. So 

although this individual will exhibit a cycle under different values of λ than the first 

individual, the implication is that any cycle she does exhibit will be in same direction 

– namely, the direction consistent with the classic form of preference reversal.  

Thus under the conditions in the domain of gains exemplified in Figure 4, 

PRAM entails cycles in the expected direction but not in the opposite direction. On 

the other hand, if we ‘reflect’ the lotteries into the domain of losses by reversing the 

sign on each non-zero payoff, the effect is to reverse all of the above implications: 

now the model entails cycles in the opposite direction. 

 Besides the large body of preference reversal data (again, see Seidl, 2000) 

there is also empirical evidence of this asymmetric patterns of cycles – see, for 

example, Tversky, Slovic and Kahneman (1990) and Loomes, Starmer and Sugden 

(1991). In addition, the opposite asymmetry in the domain of losses was reported in 

Loomes & Taylor (1992). 

 Those last two papers were motivated by a desire to test regret theory (Bell, 

1982; Fishburn, 1982; Loomes and Sugden, 1982 and 1987), which has the same 

implications as PRAM for these parameters. But the implications of regret theory and 

PRAM diverge under different parameters. To see this, scale all the probabilities of 
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positive payoffs (including X, previously offered with probability 1) down by a factor 

p (and in the case of X, add a 1-p probability of zero) to produce the three lotteries 

shown in Figure 5. 

 

Figure 5: A {$’, P’, X’} Triple, all with Expected Value = p.X 
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 Since the payoffs have not changed, the values of ξ(., .) for each pairwise 

choice are the same as for the scaled-up lotteries. However, scaling the probabilities 

down changes the φ(., .) values. In the choice between $ and X when p = 1, φ(bX, b$) 

is ( )
( )

α

λλ
1

)/-(1 qq  which reduces to [(1-λq)/λq]; and with λq < 0.5, this is smaller than 

ξ(y$, yX) = [(1-λq)/λq]
δ
 when δ > 1. However, as p is reduced, p

α
 increases, and at 

the point where it becomes larger than δ, φ(bX’, b$’) becomes greater than ξ(y$’, yX’) so 

that the individual now chooses X’ over $’. Likewise, when p = 1, the scaled-up X 

was chosen over the scaled-up P; but as p is reduced, φ(bX’, bP’) falls and becomes 

smaller than ξ(yP’, yX’) at the point where p
α

 becomes larger than δ. So once this point 

is reached, instead of $ fX and X f P we have P’ fX’ and X’ f $’.  

 Whether a ‘reverse’ cycle is observed then depends on the choice between $’ 

and P’. Modifying and combining Expressions (12) and (13) we have    

 

      f            > 

 P’  ~  $’   ⇔   φ(bP’, b$’) = ( )
( )

α

λλ
pq

)/-(1  =  ( )δλλ)/-(1   = ξ(y$’, yP’)     (14) 

              
      p             < 
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 so that S’ will be chosen in cases where (1-λ)/λ > 1 and (pq)
α

 > δ. In such 

cases – and (1-λ)/λ > 1 is typical of many preference reversal experiments – the result 

will be the cycle P’ fX’, X’ f $’, $’ f P’. The opposite cycle will not occur once p 

has fallen sufficiently to produce p
α

 > δ (although, of course, the value of p at which 

this occurs may vary greatly from one individual to another).   

 Such ‘similarity cycles’ were reported by Tversky (1969) and were replicated 

by Lindman and Lyons (1978) and Budescu and Weiss (1987). More recently, 

Bateman et al. (2006) reported such cycles in two separate experiments with rather 

different payoff parameters than those used by Tversky. Those experiments had been 

designed primarily to explore the CRE, and the data concerning cycles were an 

unintended by-product. Even so, there were four triples that fitted the Figure 5 format 

and in all four of these, similarity cycles outnumbered cycles in the opposite direction 

to a highly significant extent. 

 Such an asymmetry is contrary to the implications of regret theory14. However, 

as shown earlier, PRAM not only entails similarity cycles in scaled-down choices but 

also entails the opposite asymmetry in scaled-up choices – a predominance of what 

might be called ‘regret cycles’. Moreover, this novel and rather striking implication of 

the model turns out to have some empirical support. Following the first two 

experiments reported in Bateman et al. (2006), a third experiment was conducted in 

which every pairwise combination of four scaled-up lotteries, together with every 

pairwise combination of the corresponding four scaled-down lotteries, were presented 

in conjunction with two different sets of payoffs. All these choices were put to the 

same individuals in the same sessions under the same experimental conditions. The 

results are reported in Day and Loomes (2009): there was a clear tendency for regret 

cycles to predominate when the lotteries were scaled up, while there was a strong 

asymmetry favouring similarity cycles among the scaled-down lotteries. 

 There is a variant upon this last result for which some relatively recent 

evidence has been reported. Look again at X’ in Figure 5: it is, in effect, a P-bet. 

Likewise, P’ from Figure 5 could be regarded as a $-bet. Finally, let us relabel $’ in 

Figure 5 as Y, a ‘yardstick’ lottery offering a higher payoff – call it x* – than either of 

the other two. Instead of asking respondents to state certainty equivalents for P and $, 

we could ask them to state probability equivalents for each lottery – respectively, PEP 

                                                 
14 More will be said about this in the discussion in Section 4. 
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and PE$ – by setting the probabilities of x* that would make them indifferent between 

that lottery and the yardstick15. If, for some predetermined probability (such as λpq in 

Figure 5), the individual exhibits a ‘similarity cycle’ Y f $, $ f P, P fY, then the 

probability equivalence task requires setting the probability of x* at something less 

than λpq in order to establish PE$ ~ S, while it involves setting the probability of x* at 

something greater than λpq in order to generate PEP ~ P. Thus for valuations elicited 

in the form of probability equivalents, PRAM allows the possibility of PEP > PE$ in 

conjunction with $ f P. A recent study by Butler and Loomes (2007) reported exactly 

this pattern: a substantial asymmetry in the direction of ‘classic’ preference reversals 

when a sample of respondents gave certainty equivalents for a particular {$, P} pair; 

and the opposite asymmetry when that same sample were asked to provide probability 

equivalents for the very same {$, P} pair.  

 However, the Butler and Loomes (2007) data involved only a single {$, P} 

pair, leaving open the possibility that theirs could have been a one-off result peculiar 

to the parameters and the particular experimental procedure used. A subsequent 

experiment reported in Loomes et al (2009) used six pairings of six different lotteries 

and a different elicitation procedure linked directly to incentive mechanisms. The 

same patterns – the ‘classic’ asymmetry when certainty equivalences were elicited and 

the opposite asymmetry when probability equivalences were elicited – emerged very 

clearly, providing further strong evidence of this striking implication of PRAM.  

 There are other implications of PRAM omitted for lack of space16, but the 

discussion thus far is sufficient to show that PRAM is not only fundamentally 

different from CPT and other non-EU models that entail transitivity but also that it 

diverges from one of the best-known nontransitive models in the form of regret 

theory. This may therefore be the moment to focus attention on the essential respects 

in which PRAM differs from those and other models, and to consider in more detail 

the possible lessons not only for those models but for the broader enterprise of 

developing decision theories and using experiments to try to test them.  

                                                 
15 Such tasks are widely used in health care settings where index numbers (under EUT, these are the 
equivalent of utilities) for health states lying somewhere between full health and death are elicited by 
probability equivalent tasks, often referred to as ‘standard gambles’. 
16 In the earlier formulation of the model (Loomes, 2006) some indication was given of the way in 
which the model could accommodate other phenomena, such as Fishburn’s (1988) ‘strong’ preference 
reversals. Reference was also made to possible explanations of violations of the reduction of compound 
lotteries axiom and of varying attitudes to ambiguity. Details are available from the author on request.  
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4. Relationship With, And Implications For, Other Models 

 The discussion so far has focused principally on the way that PRAM compares 

with and diverges from EUT and from CPT (taken to be the ‘flagship’ of non-EU 

models), with some more limited reference to other variants in the broad tradition of 

‘rational’ theories of choice. In the paragraphs immediately below, more will be said 

about the relationship between PRAM and these models. However, as noted in the 

introduction, PRAM is more in the tradition of psychological/behavioural models, and 

in the latter part of this section there will be a discussion of the ways in which PRAM 

may be seen as building upon, but differentiated from, those models.  

First, the most widely used decision model, EUT, is a special case of PRAM 

where α = 0 and δ = 1. This means that individuals are assumed to act as if all 

differences and ratios on both the probability and utility dimensions are perceived and 

processed exactly as they are, save only for random errors. PRAM shows that once we 

allow interactions which affect the judgments and perceptions of these ratios, many 

implications of EUT are liable to fail descriptively.  

However, the ability of alternative models to accommodate such failures may 

also be limited by the extent to which they rule out such interactions. So CPT is liable 

to fail for two main reasons. First, although it replaces u(.) by v(.), it makes essentially 

the same assumption in terms of a consequence carrying its assigned value into every 

scenario, with differences and ratios between those values being processed 

independently and exactly as they are – that is, as if δ = 1. So the kinds of choice 

cycles described above as ‘regret’ and ‘similarity’ cycles cannot be accounted for. 

Second, although CPT and other rank-dependent models allow probabilities to be 

transformed nonlinearly, and can even assign the same probability a different weight 

depending on its ‘rank’ within a lottery and the magnitudes of the other probabilities 

in that same lottery, CPT disallows any between-lottery influences on this 

transformation17.  

                                                 
17 It is interesting to consider why CPT, a model that was initially inspired by insights about 
psychology and psychophysics, should permit effects from comparisons within a lottery but – even 
though it is explicitly a theory of pairwise choices – should disallow such effects between lotteries. The 
answer may be found in the evolution of the model. The original (1979) form of prospect theory made 
no such within-lottery comparisons: probabilities were simply converted via a nonlinear transformation 
function. But this had the result that the weights generally did not add up to 1, which allowed effects 
that were regarded as normatively undesirable or behaviourally implausible and that had to be 
controlled by other means such as an ‘editing’ phase to spot them and eliminate them. The rank-
dependent procedure was a later development, proposed as a way of closing such ‘gaps’ and 
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Other models can achieve some CPT-like results by a different within-lottery 

route: for example, disappointment theory (Bell, 1985; Loomes and Sugden, 1986) 

keeps probabilities as they are, but allows within-lottery interactions between payoffs 

in ways which can accommodate certain violations of independence. However, what 

rank-dependent models and disappointment theory have in common is that they 

effectively assign ‘scores’ to each lottery as a whole which that lottery carries with it 

into every choice and valuation task. In short, by restricting such interactions to 

within-lottery comparisons and ruling out any between-lottery effects, these models 

cannot account for violations of transitivity. 

By contrast, regret theory allows between-lottery comparisons – but only on 

the payoff dimension. Essentially, it modifies the utility of any one payoff on the basis 

of the other payoff(s) offered by other lotteries under the same state of the world. In 

the 1987 formulation of regret theory, the net advantage of one payoff over another is 

represented by the ψ(. , .) function, which is assumed to be strictly convex, so that for 

all x3 > x2 > x1, ψ(x3, x1) > ψ(x3, x2) + ψ(x2, x1)
18. This enables the model to 

accommodate regret cycles, classic preference reversals and some violations of 

independence (although these latter require the additional assumption of statistical 

independence between lotteries). However, regret theory does not allow for any 

between-lottery interactions on the probability dimension – in fact, it takes 

probabilities exactly as they are – and therefore cannot account for violations of the 

sure-thing principle, nor similarity cycles, nor betweenness cycles under assumptions 

of statistical independence19. 

Many non-EU models of the kind referred to above – and especially those 

designed to appeal to an audience of economists – have been influenced by the desire 

to meet criteria of rationality and/or generality and have therefore tried to minimise 

departures from the baseline of EUT and to invoke alternative axioms or principles 

driven by normative considerations. However, if there are between-lottery interactions 

                                                                                                                                            
guaranteeing respect for dominance and transitivity. But the latter goal is driven more by normative 
precepts than by psychological insight; and this ‘arranged marriage’ between the various insights and 
goals may be seen as the reason why CPT ends up in a ‘halfway house’ position when viewed from the 
PRAM perspective.  
18 Notice that the PRAM formulation is consistent with this. Taking the differences between the pairs of 
payoffs and putting them over any common denominator Z to get a measure of the relative force of 

each difference, PRAM would imply the same inequality i.e. [(x3-x1)/Z]
δ
 > [(x3-x2)/Z]

δ
 + [(x2-x1)/Z]

δ
 

for all δ > 1. 
19 Regret theory can produce cycles over triples involving a set of just three payoffs by manipulating 
the juxtaposition of those payoffs. Such ‘juxtaposition effects’ – see, for example, Loomes (1988) – can 
also be shown to be implied by PRAM. Details can be obtained from the author on request. 
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operating on perceptions in the way modelled by PRAM, those axioms are bound to 

be transgressed. Thus any such model will fail in one way or another to accommodate 

the evidence and/or will need to invoke certain supplementary assumptions or forms 

of special pleading to try to cope with those data. 

Models from a more psychological/behavioural may be less encumbered by 

such rigidities. Nevertheless, as discussed below, when such models are viewed from 

a PRAM perspective, it turns out that they too have imposed certain assumptions 

which limit their capacity to account for the evidence – except by invoking special 

additional assumptions of their own. 

For example, Shafir et al. (1993) proposed an ‘advantage’ model (AM) which 

accommodates some departures from EUT and has some insights in common with 

PRAM. However, that model was concerned exclusively with choices between binary 

lotteries and money or probability equivalences for such lotteries. Thus it does not 

address tasks where one or both lotteries have more than two payoffs, which 

necessarily limits its scope relative to PRAM: by its nature, it does not deal with any 

lotteries in the interior of the M-M triangle, and therefore cannot deal with violations 

of betweenness or betweenness cycles. In addition, AM invokes different parameters 

for gains and losses, and calls on an additional principle, denoted by (*) – see their 

p.336 – to allow each of those parameters to vary further according to the nature of 

the task. This is in contrast with PRAM, which applies the same person-specific 

parameters across the board to all choice and equivalence tasks.  

To see why AM needs to invoke different parameters and principles for 

different situations, consider how that model handles the most basic choice problem. 

Adapting AM to the notation used in the current paper, the simplest choice involves a 

pair S = (x2, p2) and R = (x3, q3) where x3 > x2 and p2 > q3 and where the expected 

money values are, respectively, EMVS = x2 ×  p2 and EMVR = x3 ×  q3. The AM 

choice rule is then: 

 

     f                      > 

 S  ~  R   ⇔    EMVS(p2-q3)  =  EMVR[(x3-x2)/x3]kG    (15) 

     p              < 

 

where kG is a weight representing the relative importance placed upon the payoff and 

probability advantages. In simple choices, the expectation is that most people will 
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place more weight on probabilities than payoffs, so including kG in the payoff part of 

the expression suggests kG < 1. When simple choices involve losses rather than gains, 

a different weight kL is used instead. Supplementary principle (*) invokes 

‘compatibility’ in equivalence tasks, so that the same person’s k’s may be different for 

money equivalences than for straight choices, and different again for probability 

equivalences. And while, as stated earlier, the present paper does not deny that such 

additional considerations may come into play, PRAM does not require them in order 

to accommodate the evidence, whereas the explanatory power of AM is greatly 

reduced without them.  

 The reason why AM is relatively limited and why it therefore needs 

supplementary assumptions may be found by examining the restrictions on PRAM 

implicit in Expression (15). EMVS is weighted by the simple difference between 

probabilities. However, the interaction between difference and ratio, which is crucial 

to the PRAM modelling of the perceived relative argument favouring S, is absent 

from (15). So although AM can accommodate the ‘usual’ common ratio effect when 

q3/p2 ≥ 0.5, applying it to cases where q3/p2 is considerably less than 0.5 would entail 

an even stronger ‘fanning out’ pattern, whereas PRAM suggests that the usual effect 

is moderated or even reversed in such cases. And while AM can find a way of 

accommodating Tversky’s (1969) similarity cycles, it can only do so by invoking a 

value of kG “somewhat outside the common range, which is compatible with the fact 

that it [Tversky’s evidence] characterizes a pre-selected and therefore somewhat 

atypical group of subjects” (Shafir et al., 1993, p.351). However, the examples of 

similarity cycles reported in Bateman et al. (2006) and Day and Loomes (2009) 

cannot be accounted for20. Meanwhile, explaining the typical form of preference 

reversal requires (*) to be invoked to allow a rather different kG to be used for 

valuation than for choice because AM is not generally compatible with the kinds of 

choice cycles that mimic the preference reversal phenomenon. This limitation relative 

to PRAM appears to stem from the fact that the [(x3-x2)/x3] term on the right hand 

side of (15) does not actually use the ratio of relative advantages (which would 

                                                 
20 For example, in Experiment 2 described in Bateman et al (2006), participants chose between pairs of 

lotteries {P, R}, {R, S} and {P, S} where the three lotteries were: P = (£25, 0.15); R = (£15, 0.20); S = 
(£12, 0.25). Out of 21 participants (from a total of 149 in the sample) who exhibited choice cycles, 20 
were in the ‘Tversky’ direction i.e. P f  R, R f  S, but S f  P. However, there is no value of kG 
compatible with this cycle. In particular, R f  S requires kG > 0.25, while S f  P requires kG < 0.154. 
So although there may be some cycles compatible with AM, there are also some very strong 
asymmetric patterns which the model does not readily accommodate. 
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require the denominator to be x2) and does not allow for the perceptual effects 

represented in PRAM by raising the ratio to the power δ. In the absence of modelling 

that effect, AM aims to compensate with a combination of (*) and kG.  

 The ‘contrast-weighting’ model proposed by Mellers and Biagini (1994), with 

its emphasis on the role of similarity, is closer in both spirit and structure to PRAM. 

The key idea is that similarity between alternatives along one dimension/attribute 

tends to magnify the weight given to differences along the other dimension(s). The 

model is framed in terms of strength of preference for one option over another. 

Applied to a pair of lotteries where S = (x2, p2; 0, 1-p2) and R = (x3, q3; 0, 1-q3) and 

where x3 > x2 and p2 > q3, the judged strength of preference for S over R is given by 

u(x2)
α(p)

.π(p2)
β(x) – u(x3)

α(p)
.π(q3)

β(x) where u(.) gives the utilities of the payoffs and 

π(.) represents the subjective probabilities of receiving those payoffs, while α(p) and 

β(x) are, respectively, the contrast weights applied as exponents to those indices. 

 To make the comparison with PRAM easier to see, let us suppose that choice 

between S and R maps to strength of preference in an intuitive way, so that S is 

chosen when strength of preference for S over R is positive and R is chosen when that 

strength of preference is negative. On that basis, and with some straightforward 

rearrangement, we have: 

 

     f            > 
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     p            < 

 

which might be read as saying that the choice between S and R depends on whether 

the strength of preference favouring S on the probability dimension is greater than, 

equal to, or less than the strength of preference favouring R on the payoff dimension. 

Put into this form, it is easier to identify the difference between PRAM and this 

contrast weighting (CW) model. PRAM expresses the basic ratio of arguments within 

each dimension in a form which can take values less than or greater than 1 (depending 

on the relative magnitudes of advantage within a dimension) and then expresses the 

perception of each ratio as a continuous nonlinear function which reflects interactions 

between ratios and differences. The CW model proposed in Mellers and Biagini 

(1994) takes its exponents α(p) and β(x) as depending just on the absolute differences 
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between p2 and q3 and between x3 and x2, and as taking one of just two values – one 

when differences are ‘small’ and the two indices in question are judged ‘similar’ and 

another when differences are ‘large’ and the two indices are judged ‘dissimilar’. In 

this respect, the CW model has much in common with the similarity analysis 

suggested by Rubinstein (1988) and Leland (1994, 1998), using a dichotomous 

similar/dissimilar judgment. However, it was precisely in order to overcome the 

limitations of such a formulation and to allow many more diverse applications that 

PRAM was developed. Mellers and Biagini note on p.507 that “a more general 

representation would allow weights that are a continuous function of the absolute 

difference along a dimension”, but they do not themselves provide such a 

representation. PRAM might be seen as developing the CW/similarity insights 

broadly in the direction which Mellers and Biagini considered would be useful. 

 A somewhat different line of development was pursued by Gonzalez-Vallejo 

(2002). The primary focus of that paper was to embed a deterministic similarity ‘core’ 

in a stochastic framework. Using the terminology from that paper, the deterministic 

difference between two alternatives is denoted by d, and the decision maker chooses 

the option with the deterministic advantage if and only if d ≥ δ + ε, where δ is a 

‘personal decision threshold’ and ε is a value representing noise/random disturbance, 

drawn from a distribution with zero mean and variance σ2.  

For the pair of basic lotteries S = (x2, p2; 0, 1-p2) and R = (x3, q3; 0, 1-q3) 

where x3 > x2 and p2 > q3, Gonzalez-Vallejo’s Equation (3) gives the deterministic 

term as d = [(p2-q3)/p2] – [(x3-x2)/x3]. In this formulation, S is preferred to / indifferent 

to / less preferred than R according to whether the proportional advantage of S over R 

on the probability dimension is greater than, equal to or less than the proportional 

advantage of R over S on the payoff dimension – with, in both cases, this proportion 

being the difference expressed as a fraction of the higher value. Because of the 

centrality of the difference between these proportions, Gonzalez-Vallejo calls this the 

proportional difference (PD) model. 

Notice that, as expressed here, PD effectively says that the deterministic 

component amounts to a preference for the alternative with the higher expected 

money value. If the money values of the payoffs were replaced by their von 

Neumann-Morgenstern utilities, the deterministic component would amount to a 

‘core’ preference for the alternative with the higher EU; and if payoffs were mapped 
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via v(.) to a value function and probabilities were converted to decision weights in the 

manner proposed by rank-dependent models, the core preference would correspond 

with CPT or some other rank-dependent variant. So departures from expected value / 

expected utility / subjective expected value maximisation models are accounted for by 

PD in terms of the way that an individual’s decision threshold δ departs from 0.  

In this respect, δ plays a role not unlike that played by kG in Shafir et al. 

(1993). And as with AM, the only way the PD model can accommodate a wide variety 

of different regularities is by allowing δ to vary from one regularity to another. A 

particular problem caused by the proportionality at the core of this model is that 

scaling down p2 and q3 by the same factor leaves d unchanged, so that the usual CRE 

would require δ to change systematically according to the scaling of the probabilities. 

That would also be required in order to allow both similarity cycles and regret cycles 

to be accommodated21. Likewise, the ‘fourfold attitude to risk’ patterns would require 

not only the size but also the sign of δ to change from one choice to the next: 

choosing a small-probability high-payoff lottery over a sure sum with the same EMV 

(i.e. where d = 0) requires a δ that favours the payoff proportion, whereas choosing 

the same sure sum over a large-probability moderate-payoff lottery with the same 

EMV (so that d is still 0) requires a δ of the opposite sign. In short, to accommodate a 

wide variety of different departures from EV/EU maximisation, we need PD to 

specify how δ varies from one set of tasks and parameters to another. Gonzalez-

Vallejo does not provide such a theory. Arguably, PRAM makes such a theory 

unnecessary, since it accounts for the diverse effects within the same ‘core’ 

specification. 

The other issue addressed by Gonzalez-Vallejo (2002) and in a different way 

by Mellers and Biagini (1994) is the stochastic nature of actual choice behaviour. 

Although Gonzalez-Vallejo’s approach to this was to use a standard Fechnerian error 

term, that is not the only way of incorporating a stochastic element into choice 

behaviour: as discussed by Loomes and Sugden (1995), a ‘random preference’ 

specification, in the spirit of Becker, DeGroot and Marschak (1963) may be an 

alternative route to take. However, a comprehensive discussion of the strengths and 

                                                 
21 In addition, explaining the choice cycles analogous to classic preference reversals (if it could be done 

at all) would typically require a positive sign on δ (because the riskier lotteries generally have higher 

EVs) whereas the δ needed to explain Tversky’s similarity cycle (Gonzalez-Vallejo, 2002, p.143) was 
negative (with EVs falling as the lotteries became riskier). 
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weaknesses of different variants of ‘error’ specification, as well as the issues raised 

for fitting models and testing hypotheses, could constitute a whole new paper, and is 

beyond the scope of the present enterprise22. Suffice it to say that PRAM could be 

adapted to either approach, but the incorporation of a stochastic element by allowing 

any individual’s behaviour, as well as any sample’s behaviour, to be modelled in 

terms of some distribution over both α and δ would appear to be a route that could be 

profitably investigated in future research. Meanwhile, taking a deterministic form of 

PRAM as reflecting some ‘central tendency’ values of α and δ is sufficient for the 

purposes of the present paper.  

More recently still, Brandstatter et al. (2006) have proposed a ‘priority 

heuristic’ (PH) model to explain a number of regularities. Whereas most of the 

models discussed above say little or nothing about the order in which people process a 

choice or valuation task, PH suggests a sequence of comparisons of features of a 

problem with stopping and decision rules at each stage. On this basis, the PH model 

can accommodate a number of the well-known regularities in choice. But this model 

turns out to be poor at dealing with some patterns that seem easy to predict just by 

looking at them, and PH offers no guidance about equivalence judgments.  

The essence of the problem here is encapsulated in the second part of the title 

of the paper: “making choices without trade-offs”. A rule is either satisfied or it is not, 

and this dichotomous structure of the model causes it to neglect more holistic 

considerations, which can then only be dealt with by invoking another heuristic. As 

the authors acknowledge (p.425-6), PH’s predictive power is poor in cases involving 

large discrepancies between expected values working in the opposite direction to the 

PH sequence of rules23. This reflects the model’s lack of a trade-off mechanism that 

would allow such expected value differentials to play a suitably weighted role. In the 

absence of such a mechanism, PH also offers no obvious way of handling equivalence 

tasks, despite the fact that participants seem perfectly able to make such judgments. 

Although this issue is not addressed by Brandstatter et al., one supposes that 

equivalences would require a further set of rules. It would be interesting to see what 

such a set would entail, how it would relate to the choice rules – and how well it 

                                                 
22 Loomes (2005) discusses the differences between various kinds of ‘error’ model and shows how the 
appropriate null and alternative hypotheses may be quite different, depending on the error model used.   
23 An example given on p.425 involves a choice between A = (88, 0.74) and B = (19, 0.86) where PH 
predicts choosing B but where the majority of the sample actually picked A, whose expected value is 
four times that offered by B. Similar failures were apparent in a number of other pairs. 
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would be able to accommodate the conjunctions between certainty equivalents, 

probability equivalents and choices discussed above. PRAM requires no such 

additional set(s) of rules/principles: the appropriate trade-offs are intrinsic to the 

model, and the same two free parameters can be applied equally well to the various 

equivalences as to pairwise choices.  

 

5. New Experimental Evidence 

 It will have become apparent, in Sections 2 and 3 in particular, that although 

there is some evidence consistent with various of the more striking and distinctive 

implications of PRAM, that evidence is somewhat scattered and happenstantial. 

Moreover, since such evidence as there is was mostly in existence before PRAM was 

formulated24, and could arguably have been influential in shaping PRAM, it does not 

constitute a proper test of the model. So in February 2009 an experiment was 

conducted to investigate certain implications of PRAM more directly. 

5.1 Design 

 That experiment revolved around the 14 pairs of lotteries listed in Table 1 and 

illustrated in Figure 3 above, for which the bS/bR ratio is 0.25, together with the 14 

pairs obtained by rotating Figure 3 around the 45o line passing through F, as 

illustrated on the right-hand side of Figure 6 below. All of the latter 14 pairs therefore 

involve a bS/bR ratio of 4.0. So a comparison of responses to these two sets of 14 pairs 

will shed light on the adequacy of the implication derived in Section 2 that inverting 

the bS/bR ratio will, in effect, turn Table 1 upside down.  

                                                 
24 Mostly, but not entirely: the experiment described in Loomes et al (2009) had not been conducted at 
the time the earlier version of this paper was submitted for consideration, and in that sense the data 
from that experiment can be regarded as an independent test of the particular implications set out 
towards the end of Section 3. 
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Figure 6: The Two M-M Triangles Underpinning the Experimental Design 

 

 

 Thus, if the α-only form of PRAM is sufficient, we should expect to see the 

safer lotteries chosen with decreasing frequency (and therefore the riskier alternatives 

being chosen with increasing frequencies) as the distances between alternatives are 

scaled down in the triangle on the left hand triangle (LHT) in Figure 6, whereas for 

those pairs in the right hand triangle (RHT), we should expect the safer lotteries to be 

chosen with increasing frequency as the distances between alternatives are scaled 

down.  

Besides this ‘upside-down’ implication of inverting the bS/bR ratio, we can 

also check the implication of PRAM which distinguishes it from the class of all 

models entailing transitivity: for each subsample, we should expect any ‘betweenness 

cycles’ to be more frequent in the R f  T, T f  S, S f  R direction in the LHT but 

more frequent in the S f  T, T f  R, R f  S direction in the RHT. 

Further pairs were constructed to test the implication set out in Section 3 that 

when we vary payoffs as well as probabilities we may expect cycles among scaled-up 

pairs to be more frequently in the direction of ‘regret’ cycles, whereas the 

corresponding scaled-down pairs should be more likely to exhibit an asymmetry in the 

opposite direction involving a preponderance of ‘similarity’ cycles25.   

 A 2 x 2 x 2 design was used, creating 8 series of choices involving: a) two sets 

of payoffs (but in both cases keeping the probability distributions of the lotteries 

                                                 
25 This is not such a novel feature of the design since, as noted in Section 3, some evidence of this 
asymmetry has already been reported in Day and Loomes (2009). Still, it is a distinctive implication of 
the PRAM model and it seemed worthwhile to take the opportunity to check on the robustness of the 
Day and Loomes results for different sets of payoffs than those used by them. 
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exactly as in Figure 6); b) two opposite orders of presentation of the choices; and c) 

reversing which lottery was displayed in the upper ‘A’ position and which was 

displayed in the lower ‘B’ position. A total of 134 respondents took part, allocated at 

random between the various subsamples. The incentive for them to give honest and 

careful answers was that they knew that after they had made all of their decisions, one 

question would be picked at random (independently and transparently for each 

respondent) and they would be paid on the spot and in cash according to how their 

choice in that question played out.  

5.2 Results 

The aggregate data are summarised in Table 226. For each triangle, responses 

are reported in the form of differences as compared with the ‘baseline’ choice 

between F and J, since for every payoff set the α-only form normalises perceptions 

relative to this fully-scaled-up pair. To illustrate how to read Table 2, the row 

reporting the fully scaled-up choice between F and J in the LHT shows that 109 of the 

134 respondents chose the safer option (in this case, a sure sum). To normalise, 

109/134 is therefore set equal to 0. 

When the distance between lotteries falls to 0.75 of the fully scaled-up 

distance – i.e. in the rows reporting F vs H and G vs J – the -10 and -8 figures indicate 

that in the LHT there were 10 fewer choices of the safer option in the F vs H pair (i.e. 

the Safer:Riskier split was 99:35) and 8 fewer choices of the safer option in the G vs J 

case. 

                                                 
26 The Appendix gives an expanded version of Table 2, showing the patterns displayed by the two 
subsamples who were presented with different sets of payoffs: that is, for the 68 respondents for whom 
x3 = £18, x2 = £12 and x1 = 0 in the LHT together with x3 = £50, x2 = £5 and x1 = 0 in the RHT, and the 
66 respondents for whom x3 = £15, x2 = £10 and x1 = 0 in the LHT and x3 = £70, x2 = £7 and x1 = 0 in 
the RHT. 
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Table 2: Choices for Different Pairs of Lotteries from Figure 6 

 

   

Frequency of Choice of S 

 

 

Value of 

φφφφ(bS, bR) 

 

Pair 
 

Left Hand 

Triangle 

bS/bR = 0.25 

 

Right Hand 

Triangle 

bS/bR = 4.0 

 

Difference: 

RHT–LHT 

 

( )α1/
R
b

S
b  

 

F vs J 

 

0 = 109/134 

 

0 = 87/134 

 

0 

 

( )α0.75/
R
b

S
b  

 

 

F vs H 

G vs J 

 

-10 

-8 

 

+8 

+21 

 

18 

29 

 

( )α0.5/
R
b

S
b  

 

C vs E 

G vs H 

K vs M 

 

-11 

-35 

-19 

 

+36 

+18 

+6 

 

47 

53 

25 

 

( )α0.25/
R
b

S
b  

 

A vs B 

C vs D 

D vs E 

F vs G 

H vs J 

K vs L 

L vs M 

N vs P 

 

-10 

-22 

-29 

-39 

-27 

-63 

-20 

-59 

 

+36 

+34 

+27 

-24 

+32 

-9 

+35 

0 

 

46 

56 

56 

15 

59 

54 

55 

59 

 

On the basis of the α-only model, scaling the probabilities down further 

should increase the movement from safer to riskier in the LHT, and Table 2 gives 

some support for this prediction: for the three choices where the probabilities are 

scaled down by 0.5 (namely, C vs E, G vs H and K vs M), there were, respectively, 

11, 35 and 19 fewer safe choices – an average movement of just short of -22, 

compared with an average of -9 for the two pairs involving a 0.75 scaling. On the 

other hand, the α-only model would not entail any substantial differences in the 

proportions of safer and riskier choices within a given level of scaling, whereas there 

appears to be considerable variability at the 0.5 level of scaling. 
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Similar remarks may be made about the further scaling down to the 0.25 level: 

across all eight of those pairs, the average movement is -33.625, as compared with an 

average of -22 at the 0.5 level; but again, there is considerable variability within the 

0.25 level, with the movement relative to F vs J ranging from -10 to -63. This raises 

the suspicion that while the α-only model may be consistent with a clear average 

trend in the data, there may be at least one other factor at work creating additional and 

somewhat orthogonal variability. 

Now consider the evidence from the RHT. First, recall that the α-only model 

predicts that inverting the bS/bR ratio turns the Table 1 ordering upside-down – which 

in this case means that the movements relative to F vs J should be in the opposite 

direction (i.e. the signs should be reversed) and that the magnitude of those 

movements should increase as the probabilities are progressively scaled down. 

On the first of these counts – the reversal of direction of movement – Table 2 

shows that whereas all 13 signs were negative for the LHT pairs, 10 of the 13 in the 

RHT are positive and one is zero. Second, at the 0.75 level of scaling, the average is 

+14.5, while for the 0.5 level it increases to +20. However, contrary to the α-only 

specification, the average for the eight pairs at the 0.25 level falls back somewhat to 

+16.375. 

Once again, there is considerable variability at both the 0.5 and 0.25 level – 

including, at the 0.25 level, three pairs exhibiting either no movement or else some 

movement in the opposite direction to that exhibited by the great majority of RHT 

pairs. Notice that the three pairs in question – F vs G, K vs L and N vs P – are also the 

three displaying the largest negative values in the LHT27.  

These are the three pairs that are liable to be affected by the so-called ‘bottom 

edge effect’. This effect reflects the regularity observed in many past studies and 

identified in a number of econometric analyses where it has appeared that preferences 

in the vicinity of the bottom edge of the MM triangle exhibit significantly less risk 

aversion / greater risk seeking than in any other region of the triangle. (For examples 

of this kind of analysis and discussions of the related literature, see Buschena and 

Zilberman (2000) and Loomes et al. (2002).) 

Without a specification for any such effect and a formal model of any 

interaction with other variables, it is not clear exactly how to try to separate it from 

                                                 
27 The expanded version of Table 2 given in the Appendix shows that this pattern is displayed by each 
of the subsamples presented with different sets of payoffs. 
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the α component. However, one (no doubt overly simplistic) strategy might be to try 

to ‘net out’ part or all of the bottom edge effect by subtracting the LHT movements 

from the RHT movements and thereby focus attention on the role of the α component 

which entails the difference between RHT movements and LHT movements getting 

larger as the probabilities are scaled down. 

The right hand column of Table 2 shows the results of such subtraction. The 

pair involving F vs G appears somewhat aberrant; but apart from that pair, the pattern 

is very much as the α component would suggest: for the three levels of scaling, the 

average RHT-LHT difference changes from 23.5 to 41.67 to 55 (50 if F vs G is 

included).  

Thus, while it is clear that an α-only model is not sufficient to capture all 

important patterns in the data, its rather striking ‘upside-down’ implications appear to 

have good support in every area of both triangles away from the bottom edge. For F 

vs G, K vs L and N vs P in the case where bS/bR = 0.25, the α effect and the bottom 

edge effect work in the same direction to produce very strong movements – one of 

which, involving the comparison of F vs J with N vs P, produces the classic form of 

Allais paradox / CRE which has been so widely and reliably replicated and which 

constitutes the single strongest violation of the independence axiom of EU theory. 

However, when the value of bS/bR is inverted, the influence of α and the bottom edge 

effect work in opposite directions, with the result that the standard CRE is greatly 

attenuated – or, in this case, completely eliminated. At the same time, the opposite 

reversals are now observed in other areas of the triangle away from the bottom edge. 

Thus while the α component cannot claim to be the only factor at work, the data thus 

far would seem to support its claim to have an important and distinctive influence. 

Let us now consider the other particularly distinctive implication of the PRAM 

model: namely, a tendency for systematic violations of transitivity both within a given 

triangle and across different payoff sets. We start with ‘betweenness’ cycles.  

As shown in Section 2 above, the α-only model entails that for any individual 

for whom α < 0 there will be some range of ξ(yR, yS) such that there will exist some 

mixture T of the S(afer) and R(iskier) lotteries for which R f  T, T f  S, but S ~ R 

when bS/bR < 1, or S f  T, T f  R, but R ~ S when bS/bR > 1.  

Of course, a theoretical proof of existence does not mean it is necessarily easy 

to observe significant amounts of supporting evidence in an experiment. The practical 
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difficulty is that different individuals may have different values of ξ(yR, yS) for the 

same set of three payoffs, and for many sets of payoffs these values may not be very 

close to the value which would give S ~ R; and even for two individuals with the 

same ξ(yR, yS) giving S ~ R, the mixtures T that lie in the critical range will vary for 

different values of α. In short, an experiment which presents everyone with the same 

predetermined sets of pairwise choices may hit the critical range for only a minority 

of respondents. An experiment based on predetermined pairwise choices may 

therefore be a rather crude instrument for this particular purpose: testing this aspect of 

PRAM more thoroughly may require a more sensitive instrument that can be more 

closely tailored to different individuals’ ξ(yR, yS) and α values. With that caveat in 

mind, the data from the experiment may nevertheless give some indication of whether 

there are patterns which are consistent with PRAM’s implications. 

 As Figure 6 shows, there is a betweenness triple involving C, D and E and 

another involving K, L and M. There are also four lotteries on the same line in the 

form of F, G , H and J. There are four possible permutations of three from these four, 

and (bearing in mind that these are not independent of each other) Table 3 reports the 

numbers of cycles from all four as well as from CDE and KLM for each triangle.  

 In the LHT, PRAM entails a tendency for the riskier options to be chosen 

more frequently at the 0.25 level of scaling than at the 0.5 level, which in turn entails 

the cycle listed second in each pair being observed more frequently than the cycle 

listed first (that is, C fE, E fD, D fC occurring more frequently than C fD, D 

fE, E fC, and so on). The asymmetry is in line with this prediction in every case. 

For the RHT, PRAM entails the opposite asymmetry. Although the numbers are 

small, this prediction is also borne out in five of the six comparisons28. 

 

 

 

 

  

                                                 
28 More detailed tables showing for each triple the frequencies of the six patterns of choice that 
conform with different orderings as well as the two types of cycle, broken down by payoff sets, can be 
found in the Appendix. For the LHT, the asymmetry is in the predicted direction in 9 of the 12 
instances, with equal numbers of both cycles in the other three cases. For the RHT, the asymmetry is in 
the predicted (opposite) direction in 9 of the 12 instances, with equal numbers of both cycles in one 
case and with the asymmetry in the unpredicted direction in two cases (the triple FGH for each 
subsample). 
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Table 3: Betweenness Cycles 

 

 

Cycles 
 

LHT 

bS/bR = 0.25 

 

RHT 

bS/bR = 4.0 
 

C fD, D fE, E fC 

C fE, E fD, D fC 

 

5 

10 

 

7 

6 

 

F fG, G fH, H fF 

F fH, H fG, G fF 

 

2 

20 

 

4 

8 

 

F fG, G f J, J fF 

F f J, J fG, G fF 

 

6 

15 

 

8 

5 

 

F fH, H f J, J fF 

F f J, J fH, H fF 

 

2 

6 

 

16 

0 

 

G fH, H f J, J fG 

G f J, J fH, H fG 

 

7 

17 

 

6 

1 

 

K fL, L fM, M fK 

K fM, M fL, L fK 

 

6 

14 

 

8 

1 

 

Given the modest numbers in any one of these instances, another perspective 

can be obtained by taking the individual respondent as the unit of analysis. For each 

triangle, the 134 respondents can be divided into four categories: those who exhibit no 

cycles in any of the six instances; those who exhibit at least one cycle only in the 

direction consistent with PRAM; those who exhibit at least one cycle only in the 

direction opposite to that entailed by PRAM; and those who exhibit at least one cycle 

in each direction.  

 For the LHT, the breakdown for the four categories is 71, 39, 12 and 12 

respectively; while for the RHT the breakdown is 88, 31, 9 and 6. So in both cases the 

numbers exhibiting cycles consistent with PRAM are considerably greater than those 

exhibiting the unpredicted cycles. This is a pattern that no transitive theory can readily 

accommodate. 
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 The other predicted violation of transitivity entailed by PRAM – the 

predominance of ‘regret’ cycles in scaled-up lotteries together with the predominance 

of the opposite ‘similarity’ cycles in scaled-down lotteries – was also investigated in 

the experiment. This involved four scaled-up lotteries and their four scaled-down 

counterparts, as follows: 

 
 Scaled Up     Scaled Down 
 
W: Certainty of payoff w   W’: 0.25 chance of w, 0.75 chance of 0 

X: 0.8 chance of x, 0.2 chance of 0  X’: 0.2 chance of x, 0.8 chance of 0 

Y: 0.6 chance of y, 0.4 chance of 0  Y’: 0.15 chance of y, 0.85 chance of 0 

Z: 0.4 chance of z, 0.6 chance of 0  Z’: 0.1 chance of z, 0.9 chance of 0 

 

 To provide variety and complement the different sets of payoffs used in the 

triangles, for 68 of the respondents the payoffs here were w = £9, x = £15, y = £25 

and z = £45, while for the other 66 respondents w = £8, x = £14, y = £21 and z = £35. 

There were no systematic differences in the distributions of choices produced by the 

different payoff sets, so the data from both have been pooled for the purposes of Table 

4, which reports the numbers of cycles of each kind for each possible triple29.  

 

Table 4: ‘Regret’ and ‘Similarity’ Cycles 

 

 

Cycles 
 

Scaled Up 

 

 

Scaled Down 

 

W fX, X fY, Y fW 

W fY, Y fX, X fW 

 

11 

4 

 

8 

15 

 

W fX, X fZ, Z fW 

W fZ, Z fX, X fW 

 

13 

3 

 

4 

16 

 

W fY, Y fZ, Z fW 

W fZ, Z fY, Y fW 

 

12 

3 

 

4 

21 

                                                 
29 The more detailed tables showing for each triple the frequencies of the six patterns of choice that 
conform with different orderings, broken down by payoff sets, are given in the Appendix. When broken 
down in this way, the asymmetries are in the predicted direction in 7 of the 8 scaled-up cases and in the 
predicted (opposite) direction in every one of the 8 scaled-down cases. 
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X fY, Y fZ, Z fX 

X fZ, Z fY, Y fX 

 

10 

6 

 

9 

29 

 

 Since each choice pair appears in two triples, the above patterns cannot be 

considered as completely independent of one another, but the picture is the same 

whichever triple we take: for the scaled-up lotteries, regret cycles are more frequent, 

while for the scaled-down counterparts, similarity cycles predominate. In each case, a 

chi-squared test rejects the null that there is no significant difference between the 

patterns of asymmetry when we compare a scaled-up triple with its scaled-down 

counterpart (in one case, p < 0.05, in one case p < 0.01 and in two cases p < 0.001).  

At the level of the individual, we can divide the 134 respondents into four 

categories: those who exhibit no cycles in any of the four triples; those who exhibit at 

least one cycle only in the regret direction; those who exhibit at least one cycle only in 

the similarity direction; and those who exhibit at least one cycle in each direction. For 

the scaled-up lotteries, the respective frequencies are 94, 26, 7 and 7, while for the 

scaled-down lotteries the corresponding frequencies are 69, 15, 48 and 2 – a clear 

switch from the predominance of regret cycles over similarity cycles in the scaled-up 

cases to the opposite asymmetry when the lotteries are scaled down. This is a very 

similar picture to the one reported in Day and Loomes (2009) and appears to confirm 

the robustness of a pattern which is consistent with PRAM but not with regret theory 

nor any model entailing transitivity. 

Overall, then, the results from this experiment appear to give some 

considerable (although not unqualified) support to the PRAM model. There are two 

main qualifications.  

First, although the α-only specification is consistent with a good deal of the 

evidence in many regions of the two triangles considered above, there appears to be 

one other significant effect – the so-called ‘bottom edge’ effect – which it does not 

capture. Some further investigation of this effect is required before we can judge how 

best to explain/incorporate it – for example, we might explore whether it applies only 

when the safer lottery lies strictly on the bottom edge or whether it continues to hold 

for safer lotteries located close to but just above that edge, and/or we might see 

whether it is much stronger in cases when x1 = 0 than when x1 takes some positive 

value. 
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Second, although the use of pairwise choices between predetermined sets of 

lotteries has the advantage of simplicity, it is a somewhat blunt instrument which 

could miss the critical ranges of values for many respondents in any sample. So the 

numbers exhibiting cycles in any particular case reported above are often quite small. 

Even so, when Tables 3 and 4 are taken in conjunction with the analysis at the level of 

the individual, the overall pattern constitutes a prima facie case in support of PRAM 

(or at the very least, in support of further investigation with other more sensitive 

instruments).  

 

6. Concluding Remarks 

The past thirty years have seen the development of an array of ‘alternative’  

theories which try in different ways to account for the many well-established 

regularities observed in individual decision experiments: see Starmer (2000) for a 

review of “the hunt for a descriptive theory of choice under risk”; and Rieskamp et al. 

(2006) for a review from a more psychological perspective. 

However, no single theory has so far been able to organise more than a (fairly 

limited) subset of the evidence. This has been something of a puzzle, because all of 

the regularities in question are generated by the same kinds of people. In fact, in some 

experiments, the very same group of individuals exhibit many of them one after the 

other in the same session. So it would seem that there really ought to be some 

reasonably simple model of individual decision making under risk that is able to 

account for a substantial proportion of the most robust regularities.  

It has been argued above that PRAM (or something very much like it) offers a 

contribution to solving that puzzle by representing the way that many participants 

make pairwise choices and judge equivalences in cases where there are no more than 

three payoffs – this being the nature of the great majority of experimental designs. 

Using some fairly simple propositions about perception and judgment, PRAM shows 

how a typical sample of participants may, between them, be liable to exhibit all of the 

following regularities: the common ratio effect; violations of betweenness; 

betweenness cycles; the reflection effect and ‘fourfold’ attitudes to risk; ‘similarity’ 

cycles; ‘regret’ cycles; and preference reversals involving both certainty and 

probability equivalences. Moreover, all of these results were generated without 

requiring any special assumptions about framing effects, reference points, failures of 

procedural invariance, and so on. 
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The development of alternative decision theories during the past thirty years 

has often been influenced by the desire to incorporate/defend particular assumptions 

or axioms for normative reasons. But if the experimental data are actually generated 

by PRAM-like perceptions influenced by between-lottery comparisons of 

probabilities and/or payoffs, any model which disallows such between-lottery 

influences on normative grounds is liable to fail descriptively. The data simply will 

not fit such theories, and the price to be paid for trying to force them into the wrong 

mould is that various supplementary assumptions or forms of special pleading have to 

be invoked and/or that the estimates arising from fitting such mis-specified models 

could be seriously misleading.    

On the other hand, it has to be acknowledged that although pairwise 

comparisons involving no more than three payoffs have been the staple diet of 

individual decision experiments, they are only a small subset of the kinds of risky 

decisions which are of interest to psychologists, economists and decision theorists. 

What if the kinds of between-lottery effects modelled by PRAM are specific to – or at 

least, particularly pronounced in – these two-alternative three-payoff cases? If this is 

the case, how far can we extrapolate from these data to other scenarios?  

 For example, suppose we want a model which organises behaviour when 

decision makers are choosing between a larger number of more complex risky 

prospects. Perhaps the types of pairwise comparisons modelled by PRAM are less 

important in such cases: indeed, perhaps they are superseded altogether by other 

judgmental considerations. It might be that a model which fails on almost every front 

in the special class of experimental pairwise choices could do much better in other 

scenarios which bring additional and/or different judgmental processes into play30. 

This raises the possibility that the usefulness of any particular theory as a descriptive 

model of decision behaviour may depend on the characteristics of the class of 

problems to which it is being applied; and different models may be more or less 

successful in different kinds of scenarios. At the very least, this points to a need for 

experimental research to pay more attention not only to other areas of the M-M 

triangle and to choices connected by lines with different gradients within that triangle, 

but also to choices involving more complex lotteries and/or larger choice sets.

                                                 
30 There is some tentative support for this suggestion in Bateman et al. (2006) which shows that when 
participants were asked to rank larger sets of prospects, the usual CRE pattern, which has been so 
widely and strongly found in pairwise choice designs, was greatly attenuated. 
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APPENDIX 

 

For each triangle, 68 respondents were presented with choices where x3 = £18, 

x2 = £12 and x1 = 0 in the LHT together with x3 = £50, x2 = £5 and x1 = 0 in the RHT; 

the other 66 faced choices where x3 = £15, x2 = £10 and x1 = 0 in the LHT and where 

x3 = £70, x2 = £7 and x1 = 0 in  the RHT. This expanded version of what is Table 2 in 

the main text shows the data broken down accordingly. 

 

 

 

Value of 

φφφφ(bS, bR) 

 

Pair 

 

Frequency of Choice of S 

 

Difference: 

RHT–LHT 

 

( )α1/
R
b

S
b  

 

 

F vs J 

 

LHT68 

0 = 

55/68 

 

LHT66 

0 = 

54/66 

 

RHT68 

0 = 

42/68 

 

RHT66 

0 = 

45/66 

 

 

n=68 

0 

 

 

n=66 

0 

 

 

( )α0.75/
R
b

S
b  

 

F vs H 

G vs J 

 

-10 

-10 

 

0 

+2 

 

+5 

+10 

 

+3 

+11 

 

15 

20 

 

 

3 

9 

 

( )α0.5/
R
b

S
b  

 

C vs E 

G vs H 

K vs M 

 

-2 

-22 

-13 

 

-9 

-13 

-6 

 

+19 

+9 

+1 

 

 

+17 

+9 

+5 

 

21 

31 

14 

 

26 

22 

11 

 

( )α0.25/
R
b

S
b  

 

A vs B 

C vs D 

D vs E 

F vs G 

H vs J 

K vs L 

L vs M 

N vs P 

 

-5 

-12 

-12 

-25 

-13 

-34 

-12 

-28 

 

-5 

-10 

-17 

-14 

-14 

-29 

-8 

-31 

 

+20 

+18 

+13 

-10 

+19 

-2 

+18 

-3 

 

+16 

+16 

+14 

-14 

+13 

-7 

+17 

+3 

 

25 

30 

25 

15 

32 

32 

30 

25 

 

21 

26 

31 

0 

27 

22 

25 

34 
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Betweenness Cycles and Orderings 

For each triangle, there are six transitive orderings consistent with six different 

combinations of pairwise choice, plus two choice cycles.  

In each case below, the letters in the left-hand column should be translated 

into their column counterparts according to alphabetical order. So, for example, in the 

case of the triple involving lotteries K, L and M in the LHT presented to 68 

respondents, the ordering B f  A f  C translates into L f  K f  M. So in LHT68, 

reading along the row labelled B f  A f  C and down the column headed KLM shows 

that 19 respondents made choices consistent with this ordering (i.e. L f  K, L f  M 

and K f  M).   

 

 

LHT68 

 

Ordering CDE FGH FGJ FHJ GHJ KLM 

       

AfB, BfC, CfA 3 2 3 1 6 3 

A f  B f  C 26 18 22 26 21 15 

A f  C f  B 11 8 4 15 5 1 

B f  A f  C 8 4 17 9 8 19 

B f  C f  A 6 9 3 6 7 6 

C f  A f  B 3 2 1 3 1 2 

C f  B f  A 3 10 6 3 9 15 

CfB, BfA, AfC 8 15 12 5 11 7 

 

 

 

LHT66 

 

Ordering CDE FGH FGJ FHJ GHJ KLM 

       

AfB, BfC, CfA 2 0 3 1 1 3 

A f  B f  C 26 27 34 33 25 20 

A f  C f  B 11 12 3 16 15 2 

B f  A f  C 6 10 14 4 10 19 

B f  C f  A 3 4 5 2 4 4 

C f  A f  B 5 1 0 4 0 0 

C f  B f  A 11 7 4 5 5 11 

CfB, BfA, AfC 2 5 3 1 6 7 
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RHT68 

 

Ordering CDE FGH FGJ FHJ GHJ KLM 

       

AfB, BfC, CfA 4 2 6 9 5 7 

A f  B f  C 47 27 24 34 44 28 

A f  C f  B 6 2 0 3 2 3 

B f  A f  C 4 13 14 5 5 11 

B f  C f  A 0 9 8 13 7 14 

C f  A f  B 3 1 2 1 0 2 

C f  B f  A 0 9 10 3 4 2 

CfB, BfA, AfC 4 5 4 0 1 1 

 
 

RHT66 

 

Ordering CDE FGH FGJ FHJ GHJ KLM 

       

AfB, BfC, CfA 3 2 2 7 1 1 

A f  B f  C 54 26 27 40 49 36 

A f  C f  B 4 0 0 1 2 0 

B f  A f  C 2 19 17 4 5 14 

B f  C f  A 0 7 10 7 3 11 

C f  A f  B 0 3 2 0 2 1 

C f  B f  A 1 6 7 7  4 3 

CfB, BfA, AfC 2 3 1 0 0 0 

 

 

‘Regret’ and ‘Similarity’ Cycles and Orderings  

These tables should be read as for the betweenness tables above. There were 

68 respondents for whom w = £9, x = £15, y = £25 and z = £45 and 66 respondents 

for whom w = £8, x = £14, y = £21 and z = £35. 

 

Scaled Up 

 

Ordering WXY 
68 

WXY 
66 

WXZ 
68 

WXZ 
66 

WYZ 
68 

WYZ 
66 

XYZ 
68 

XYZ 
66 

         

AfB, BfC, CfA 8 3 8 5 6 6 9 1 

A f  B f  C 25 31 21 34 23 38 30 44 

A f  C f  B 3 3 8 2 4 1 6 1 

B f  A f  C 5 7 4 3 4 3 5 4 

B f  C f  A 12 8 7 9 12 6 4 2 

C f  A f  B 5 8 8 12 7 7 5 10 

C f  B f  A 8 4 9 1 10 4 5 2 

CfB, BfA, AfC 2 2 3 0 2 1 4 2 
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Scaled Down 

 

Ordering WXY 
68 

WXY 
66 

WXZ 
68 

WXZ 
66 

WYZ 
68 

WYZ 
66 

XYZ 
68 

XYZ 
66 

         

AfB, BfC, CfA 6 2 0 4 0 4 4 5 

A f  B f  C 10 14 14 11 11 19 16 22 

A f  C f  B 1 2 2 1 6 2 5 2 

B f  A f  C 1 1 2 3 7 8 1 4 

B f  C f  A 6 5 6 5 3 3 3 2 

C f  A f  B 4 12 12 22 10 4 1 1 

C f  B f  A 31 24 23 13 22 14 24 15 

CfB, BfA, AfC 9 6 9 7 9 12 14 15 

 
 
 




