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 Standard competitive markets do not exist for some important goods and services 

such as many environmental improvements, or a range of health and safety benefits. As a 

result, some government bodies draw on ‘stated preference’ methods to provide data about 

people’s values and preferences which may inform policy in these domains. But such survey 

data are liable to exhibit substantial uncertainty, imprecision and patterns which fail to satisfy 

various standard assumptions (see, for example, Bateman et al. (2002, Chapter 12) and 

Loomes (2006)). If such data are to be used for policy decisions which may impact upon 

people’s risks of death, injury and illness, it is important to gain a better understanding of the 

imprecision in stated preferences and any susceptibility to bias that may be involved.  

Experimental research has also shown that even when the ‘goods’ are relatively 

familiar and straightforward, many intelligent and numerate individuals find it hard to know 

their own preferences precisely and may systematically transgress basic axioms of rationality 

that underpin standard consumer theory and the policy principles that flow from it. If this is 

true, and given the growing variety and sophistication of goods and services, are there 

implications for consumer protection? If consumers’ preferences are imprecise and 

susceptible to manipulation, this may be used against their own best interests. But it is hard to 

reach firm conclusions about the right policies to pursue until we have a better model of 

imprecise preferences. This paper explores some basic issues about the way that people deal 

with risk, with a view to contributing towards the construction of better models.  

During the last three decades, hundreds of studies have been published which report a 

variety of seemingly systematic violations of expected utility (EU) theory. The breadth and 

weight of this evidence has inspired more than a dozen alternative decision theories (for a 

review see Starmer, 2000). However, no single model has been able to accommodate more 

than a subset of these patterns. For example, different rank-dependent expected utility 

(RDEU) models can account for violations of betweenness and independence, but cannot 
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explain systematic intransitivity or the preference reversal phenomenon, while other models 

such as regret theory allow standard preference reversals and certain patterns of cyclical 

choice but cannot explain many of the violations of betweenness and independence1.  

Third-generation prospect theory (Schmidt, Starmer, & Sugden 2008) is a 

generalization of prospect theory which, unlike earlier versions, can account for standard 

selling preference reversals as well as the other anomalies predicted by prospect theory 

(pp.212-220). Despite this important advance it still cannot account for buying preference 

reversals, nor choice cycles. It would also struggle to find plausible parameter values that can 

capture the strong reversals and non-standard reversals that are reported in Butler and 

Loomes (2007). 

More recently, and partly as a response to those data, Blavatskyy (2009) has produced 

a model that provides a possible probabilistic choice account of the directions of the 

asymmetries reported in Butler and Loomes (2007). Blavatskyy argues that his model can 

also account for some violations of independence and betweenness, although this requires 

additional assumptions about the non-homogeneity of the probabilistic function. As such, it is 

in the tradition of taking some deterministic ‘core’ theory – in this case, EU – and embedding 

it in some particular stochastic specification to account for seemingly systematic deviations 

from core principles (for more discussion and examples of this literature, see the special issue 

of Experimental Economics in late 2005, Wilcox’s major review chapter in Cox and Harrison 

(2008) and chapter 7 in Bardsley et al., (2009)).  

However, our strategy is different. Rather than focusing on a probabilistic model 

revolving around some specific set of principles or axioms, we consider what insights may be 

gained from the fairly minimal structure suggested in an unpublished paper by MacCrimmon 

and Smith (1986) – henceforth, M&S. In Butler and Loomes (2007), we showed how their 

model of imprecise preferences, though quite loosely specified, not only accounted for the 
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‘standard’ preference reversal phenomenon involving a systematic disparity between choice 

and certainty equivalent valuation but also predicted the opposite asymmetry involving 

choice and probability equivalents. In the present paper, we consider whether an extension of 

that same simple model can also accommodate systematic violations of betweenness and 

independence, and we report experimental data suggesting that this is indeed a possibility.  

 

I. The Model 

Consider the Marschak-Machina triangle diagram in Figure 1a.  

 

FIGURE 1a HERE 

 

This diagram enables us to depict the kinds of lotteries most often deployed in tests of 

independence and betweenness: namely, lotteries involving combinations of up to three 

payoffs – x1, x2 and x3, where x3 > x2 > x1 (and where, in most cases – and in our experiment 

– x1 is set at 0). In this diagram, the vertical axis shows the probability of x3 and the 

horizontal axis shows the probability of x1, with the probability of x2 being given by 1-pr(x3)-

pr(x1). Hence the point on the hypotenuse labelled M1 depicts a lottery offering a 0.8 chance 

of x3 and a 0.2 chance of x1, while M4 represents a lottery involving a 0.2 chance of x3 and a 

0.8 chance of x1.  

 Machina (1982) showed that an EU maximizer’s preferences over such lotteries can 

be represented by indifference curves within the triangle that are linear and parallel, each 

sloping up from the south-west to the north-east and with the slope reflecting the individual’s 

risk attitude (the steeper the slope, the more risk averse the individual). The most frequent 

violations of independence can be represented by curves that are not parallel but ‘fan out’ as 

if from some point of convergence to the south-west of the right angle of the triangle. Could 
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behaviour taking on this appearance be consistent with the intuition behind the M&S model 

of imprecise preferences? 

We start with the case (which was one we investigated experimentally) where x3 = 

$40, x2 = $20 and x1 = 0, and suppose that a respondent is asked to identify a lottery L1
* on 

one of the other edges of the triangle which she regards as equivalent to M1, where M1 can be 

denoted by (40, 0.8; 0, 0.2)2. In line with M&S, we suppose that the respondent recognises 

and respects transparent dominance. Thus she recognises that L1
+ ( = (40, 0.8; 20, 0.2)) and 

all lotteries above it on the vertical edge strictly dominate M1, and therefore realises that L1
* 

must lie below L1
+. On the other hand, L1

-( = (20, 0.8; 0, 0.2)) and all lotteries to the right of 

it on the horizontal edge are strictly dominated by M1, so that L1
* must lie somewhere to the 

left of L1
-.  

 So the ‘permissible’ range for equivalents to M1 consists of all points below L1
+ on 

the vertical edge and to the left of L1
- on the horizontal edge. A conventional deterministic 

model would entail that each respondent could identify a single one of those points as the 

lottery which she regards as exactly as good as M1. But the M&S notion of imprecise 

preferences allows for the possibility that, although the respondent should be able to 

eliminate some parts of the range, she may end up not being able to say exactly which lottery 

she regards as equivalent to M1. 

Purely to illustrate the idea, consider one such individual who is fairly confident that 

she would prefer an L-lottery to M1 if it were higher on the vertical edge than, say, (40, 0.6; 

20, 0.4) and who is also confident that she would prefer M1 to any L-lottery located lower 

down the vertical edge than, say, (40, 0.1; 20, 0.9). However, this leaves an interval on the 

vertical edge between 0.6 and 0.1, depicted in Figure 1a by the bracket, where she is less than 

sure about her preferences but from within which she is required to identify a point of 

equivalence. To keep the example simple, suppose that if a sample of people of this kind 
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were each asked to pick some single point from the interval, they would, between them, 

generate a distribution of points, the median of which (let us say) happens to be the mid-

point3 of the interval, i.e. (40, 0.35; 20, 0.65). For the purposes of the current exposition, let 

us take this as the ‘representative’ response and label it L1* in Figure 1a. If we connect this 

representative equivalence to M1 by a straight dashed line, we have a depiction of one 

indifference curve in the triangle. 

 Now consider Figure 1b and a corresponding account of trying to identify an 

equivalent for M4 ( = (40, 0.2; 0, 0.8)).  

 

FIGURE 1b HERE 

 

We can see that L4
+ and every point above it on the vertical edge dominate M4, while L4

- and 

every point to the right of it are dominated by M4, so the lottery regarded as equivalent to M4 

must lie somewhere along the stretch of edges between those two points. The typical 

individual is, let us say, sure she would prefer every L lottery on the permissible section of 

the vertical edge and anywhere to the left of (20, 0.8; 0, 0.2) and is also sure she would prefer 

M4 if the alternative L lottery were worse than (20, 0.3; 0, 0.7). Suppose once again that the 

representative response is the mid-point of this ‘imprecision interval’ – in this case, (20, 0.55; 

0, 0.45), which we label L4* in Figure 1b. The dashed line in Figure 1b depicts the relevant 

representative indifference curve. 

 These are only examples, of course, and their purpose is simply to illustrate how the 

intuitions behind the M&S model might be extended to the Marschak-Machina framework; 

and in so doing, to indicate the potential for predicting behaviour within that environment 

which violates EU in the way typically reported. Whether actual behavior operates broadly 

along the lines of the example is what the experiment set out to investigate. However, to stay 
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with the example for a moment, a comparison between Figures 1a and 1b shows that the 

gradient of the slope joining M1 and L1* is 2.25, considerably steeper than the slope of 0.57 

joining M4 and L4*, and consistent with the ‘fanning out’ pattern characteristic of many data 

sets. 

 To be as faithful as possible to the M&S notion, rather than focus exclusively upon 

the ‘representative’ point in the middle of the interval, we may allow that a respondent might, 

on any particular occasion, opt for a point anywhere within the interval. Without imposing 

some probability distribution over the interval, this entails observing gradients for the 

indifference curve between M1 and L1* drawn from the range between 1 and 3.5, while 

gradients for the indifference curve between M4 and L4* would, in this example, be drawn 

from the range between 0.33 and 2. So while there is some overlap in these ranges, and there 

could be pairs of observations where the M4-L4* gradient would actually be steeper than the 

M1-L1* gradient (which would look like ‘fanning-in’), there is clearly more scope for the 

opposite inequality typical of fanning-out.   

 For those readers who find the above examples too ad hoc, a more general way of 

thinking about the model may be helpful. Consider first the lottery on the vertical edge which 

has the same expected value as M1 and so marks the boundary between risk aversion and risk 

seeking. That lottery is (40, 0.6; 20, 0.4) – call it L1
EV. Four-fifths of the interval between L1

+ 

and L1
- lie below L1

EV, indicating the scope for imprecision to favour equivalences for M1 

that show up as risk averse. For M4, the equivalent lottery on the horizontal edge, L4
EV, is 

(20, 0.4; 0, 0.6). In this case, four-fifths of the interval between L4
+ and L4

- lie to the left of 

that lottery, so that imprecision would be more likely to pull equivalences for M4 in the 

direction of risk seeking. The specific examples shown in Figures 1a and 1b are just particular 

cases of the general tendency, consistent with the body of past evidence, for individuals to 
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give responses which look risk averse in the middle and upper part of the triangle but appear 

to be risk seeking in the bottom right hand corner. 

 The way in which the same notion of imprecision might also account for violations of 

betweenness can be demonstrated in conjunction with Figure 2.  

 

FIGURE 2 HERE 

 

Consider the case where the values of x3, x2 and x1 are such that the representative 

equivalent L2* for M2 is the lottery (x2, 0.9; x1, 0.1) on the bottom edge, so that the straight 

line connecting L2* to M2 passes through M5. Betweenness entails that the representative 

equivalent for M5 should also be L2*. However, transparent dominance constrains the interval 

for M5 to lie somewhere inside the range from L5
+ ( = (x3, 0.2; x2, 0.8)) to L5

-, ( = (x2, 0.8; x1, 

0.2)). Thus three times as much of the ‘permissible’ range lies to the left/above L2* as lies to 

the right of it. Of course, this does not necessarily mean that the imprecision interval for L5* 

will reflect those exact proportions; but on the other hand, there is clearly much more scope 

for the bulk of that interval to lie to the left of L2*, in which case M5 would appear to be 

preferred both to M2 and to L2*, a result which would violate betweenness predominantly in 

the direction of convexity, as has often been reported – see, for example, Camerer (1995). 

Those who are accustomed to thinking in the way that economists are trained to think, 

whereby individuals are supposed to make their choices on the basis of reasonably stable, 

well-articulated and self-contained preferences, might be uncomfortable with the implication 

that the limits and range of the permissible interval may play an influential role in shaping 

patterns of response. However, such an implication is consistent with an established body of 

psychological evidence.  
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For example, Parducci and Wedell (1986) discussed range-frequency effects, whereby 

people’s judgments of the values of items could be influenced by their ranking in whatever 

range and/or set of other items they were embedded. If respondents had clear and precise 

preferences, their judgments would be much less susceptible to changes in the range or 

distribution of other alternatives. But if preferences are somewhat imprecise, it may be a 

reasonable strategy for decision makers to look for points of reference – such as alternatives 

which dominate or are dominated – that eliminate some possibilities and facilitate a greater 

focus. Thus it may not be surprising to find those ‘sure’ points of reference exerting some 

influence.  

Inconvenient though it may be from a normative perspective or for the enterprise of 

building general all-purpose models, such influences do appear to play a role even in the 

controlled conditions of laboratory experiments involving lotteries with no more than two or 

three modest monetary sums and relatively straightforward probabilities. For example, 

Bateman et al (2007) found clear evidence of range-frequency effects when certainty 

equivalents were inferred from ranking exercises. They describe (p.52) how two lotteries, 

labelled I and J, were ranked in two separate sets, one of which was composed of other 

lotteries that were generally more attractive than I and J, while the other set contained 

lotteries that were mostly less attractive. The same sure sums were included in both sets, but 

the differences in the distributions of other lotteries resulted in the inferred certainty 

equivalents of I and J being some 50% higher when included in the less attractive set than 

when the majority of other lotteries were more attractive. In a somewhat different task, 

Blavatskyy and Kohler (2009) found strong evidence of range effects when using the Becker, 

DeGroot & Marshak (BDM) valuation mechanism for lotteries by comparing a restricted and 

unrestricted interval from which the valuations could be drawn.   
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To summarise, then, the main implications and issues of interest in our application of 

the M&S model to the present context are as follows: 

a) Most individuals are liable to manifest a degree of imprecision in their statements of 

their preferences, reflected by an ‘imprecision interval’ for each M-lottery. 

b) In the vicinity of the Li
+ lottery that dominates Mi and also in the vicinity of the Li

- 

lottery that is dominated by Mi, individuals will express high confidence in their 

choices, but for most individuals there will typically be a non-trivial imprecision 

interval. 

c) While the average size of the imprecision intervals might be strongly influenced by 

the ranges between L+ and L-, we were interested to see whether other features might 

exert some influence. For example, while the lengths of the lines that constituted the 

‘permissible’ range were the same for all of M1-M4, the distance between hypotenuse 

and edge varied, being greater for M2 and M3 than for M1 and M4. If these distances 

are related to the (dis)similarity between lotteries, and if dissimilarity adds to 

uncertainty about preferences (see Buschena and Zilberman (1999) for a discussion of 

this possibility), we might see this reflected in the widths of the imprecision intervals. 

Likewise, increasing the x3 payoff while holding x2 and x1 constant may be regarded 

as generating greater dissimilarities, and this might also correlate with imprecision 

intervals. 

d) The Li-lottery giving the same expected value as an Mi-lottery may lie much closer to 

Li
+ for some Mi, and closer to Li

- for other Mi. This asymmetry may cause choices to 

appear more (less) risk averse in some evaluations than in others.  

The next section describes the experimental design intended to investigate how far the 

various possibilities outlined above are manifested in actual behaviour. Section III reports the 

results and concludes with a discussion of their interpretation and possible implications. 
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II. Design and Implementation of the Experiment 

The design was built around two Marschak-Machina triangles. One of these was 

described in the previous section; the other was the same in every respect except that x3 was 

set at $60 rather than $40. Respondents were allocated at random to one or other of the two 

triangles.  

Our first objective, in Stage 1 of the experiment, was to get respondents to compare 

each of the fixed lotteries M1-M5 with a series of alternative L lotteries located on the vertical 

and horizontal edges of the triangle, and to identify the point at which they switched between 

the M lottery and the L alternative.  

 To illustrate how we did this, take the case where the fixed lottery was M2 in the $60 

sub-sample: that is, it offered a 0.60 chance of $60 and a 0.40 chance of 0. This lottery was 

presented on a computer screen as option A. The alternative, option B, was a lottery on the 

vertical or horizontal edge. For half of each sub-sample (again, determined at random), B was 

initially located on the vertical edge at L2
+: so in this case, for that half of the sub-sample, B 

initially offered a 0.60 chance of $60 and a 0.40 chance of $20. For the other half of the sub-

sample, B was initially located on the horizontal edge at L2
-, offering a 0.60 chance of A$20 

and a 0.40 chance of 0. 

 Because we were interested in the role of imprecision in explaining behaviour, we set 

out not only to identify respondents’ stated preferences but also aimed to obtain some 

measure of the confidence with which those preferences were recorded. To that end, 

respondents were asked to respond in one of four ways, which we recorded on a 1-4 scale: if 

they “definitely preferred” option A, we coded it as 1; if they “probably preferred” A, a 2 was 

recorded; 3 signified “probably preferring” B; and a definite preference for B was coded as 4. 

(The instructions, available on request, explained the terms “definitely prefer” and “probably 
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prefer” in more detail.)  

To illustrate how this worked, consider first a respondent initially presented with a 

choice between M2 (i.e., A) and L2
+ (i.e., B). Since B here dominates A, almost every 

respondent signified a definite preference for B, coded as 4. Once the initial response had 

been recorded, the computer program changed B, making it two points worse: that is, 

displaying a lottery which offered ($60, 0.58; $20, 0.42) instead of the initial ($60, 0.6; $20, 

0.4). The respondent was then asked again to state their preference and the confidence with 

which they held it. Thereafter, B was made progressively worse, so that it moved steadily 

down the vertical edge, reducing the chances of $60 and increasing the chances of $20, until 

B reached the corner (the certainty of $20), after which point B moved along the horizontal 

edge until it eventually became L2
-, where the procedure came to an end.  

So for those starting on the vertical edge and initially recording 4’s, there came a 

point at which they indicated that they still chose B but no longer felt so sure, coded as 3. As 

B was degraded further, there came a point at which the respondent switched from B to A: if 

this was initially a ‘probable’ preference for A, it was recorded as 2; when, after further 

degradation of B, it became a definite preference for A, it was recorded as 1.  

We refer to the treatment where B initially dominated A, and then was progressively 

degraded, as ‘iterating down’. For the other half of the subsample, B was initially set at L2
- 

and the program progressively improved it, in effect moving B leftwards along the horizontal 

edge towards the corner, then up the vertical edge until it became L2
+. We refer to this 

treatment as ‘iterating up’. Within a sub-sample, the same direction of iteration was used for 

all five fixed lotteries, the only difference being that for M5 the iteration involved decrements 

or increments of one point at a time, rather than the two-point changes used for each of the 

four lotteries on the hypotenuse4. 
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In this way, in the course of Stage 1 of the experiment, we elicited from each 

respondent their implied point of indifference between the M and L lotteries (the 2↔3 

switchpoints) and also some indication of the intervals (between the 1↔2 switchpoint and the 

3↔4 switchpoint) over which they considered themselves to be less than sure about their 

preference5. We neither claim nor require that this represents the same level of confidence for 

different respondents. It is necessary only that whatever a particular respondent regarded as 

the point of transition between a ‘definite’ and a ‘probable’ preference in the case of one pair 

of lotteries would correspond with that same respondent’s judgment of their own confidence 

for the other pairs. 

 The main objective of these questions in the experiment was to explore how far our 

extension of the M&S model might be able to account for violations of betweenness and 

independence. However, the bulk of the existing body of evidence has taken the form of 

pairwise choice data, so we wanted to see how the patterns yielded in Stage 1 by iterating 

through a succession of very similar pairwise choices would compare with the usual approach 

of asking respondents to make a number of separate one-off choices between a variety of 

predetermined pairs. Note that these pairs were the same for all subjects and fixed in advance, 

so subjects could not affect their future choices by their responses in Stage 1. 

To this end, Stage 2 of the experiment involved presenting each subsample with a set 

of 20 pairwise choices: that is, 4 B’s for each of M1-M5, with each B chosen to produce a 

particular gradient of the line connecting it to A, as shown in Figure 3 for the $60 triangle. 

These gradients, which we shall denote by g1 ... g4, were as follows: 

      g1 g2 g3 g4 

When x3 = $40, the gradients were:   1,    1⅔, 2½,  5 

When x3 = $60, the gradients were:   ½,   1,  2,   4 
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Because a risk-neutral subject’s indifference curves would have a gradient of 1 when 

x3 = $40 but a gradient of ½ when x3 = $60, it was necessary to use a different set of 

gradients in each triangle to obtain useful data from each. 

 

FIGURE 3 HERE 

 

We know of no way of making incentive compatible the distinction between stating a 

‘definite’ preference and stating a ‘probable’ preference. We doubt that such a mechanism 

can be devised – at least, not in a form simple and transparent enough to work without 

creating additional uncertainty. So we relied upon respondents making the distinction simply 

because we asked them to do so and because they found that distinction meaningful. 

Someone skeptical of our interpretation might question the status of responses to procedures 

not directly linked to financial incentives. It might be suggested that respondents really have 

fairly precise preferences which they reveal with reasonable accuracy when offered the 

appropriate financial incentives, but that in the absence of such incentives they have no 

motivation to engage properly with the tasks and answer questions carefully. So is it right to 

rely on data from the iterative procedures to inform us about behavior when the stakes are 

real? 

 A comprehensive discussion of the general importance (or otherwise) of financial 

incentives in decision experiments is beyond the scope of this paper (though see Bardsley et 

al., 2009, chapter 6), so we address our remarks to the specific question of the usefulness of 

our imprecision data for understanding the phenomena central to this paper. We suggest that 

this issue might be judged on the basis of two criteria: first, whether the data show reasonable 

signs of being the product of engagement and deliberation, as opposed to being generated 
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haphazardly, with little thought or effort; and second, whether they tell a story that is broadly 

consistent with patterns in the incentive-linked responses. 

 Regarding the first question, the great majority of our respondents expressed definite 

preferences over some ranges and more tentative preferences over other ranges on either side 

of the point where they switched from one option to the other, and did so in ways which 

showed considerable and systematic responsiveness to the characteristics of the different 

questions. Respondents were clearly not changing from ‘definite’ to ‘probable’ preference, or 

vice-versa, after much the same numbers of steps in the iterative procedure, irrespective of 

the nature of the lottery: for example, the 1↔2 switch-point for M1-M4 was typically 25% (in 

the $40 triangle) and 30% (in the $60 triangle) of the distance from the bottom of the iterative 

range, while the 3↔4 point was 50% of the way along for the $40 triangle and 55% for the 

$60 triangle.   

The questions relating to betweenness and independence alternated with questions 

investigating preference reversals, as reported in Butler and Loomes (2007). So we are able to 

examine whether switchpoints were sensitive to the differences between the ‘triangle’ 

questions and the preference reversal questions. They were: the 1↔2 switch-point for the 

certainty equivalent of the $-bet was typically between 15% and 20% of the distance from the 

bottom of the iterative range, while the 3↔4 point was just over 40% of the way along (i.e. 

less than halfway); while the 1↔2 switch-point for the certainty equivalent of the P-bet was 

typically between a third and a half way along the range, with the 3↔4 switch-point lying 

roughly 60%-80% of the way along (depending on the direction of iteration). Given the 

different probabilities of winning offered by these bets, this seems entirely consistent with the 

proposition that respondents were attending to the parameters of the lotteries and trying to 

reflect their feelings about them. All this suggests that most participants had at least some 

intuitive feel for the distinction between ‘definite’ and ‘probable’ preference and, having 
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been asked to do so, reported those feelings as best they could and in a manner that was 

broadly responsive to the varying parameters of the lotteries presented to them. (For further 

discussion of this issue, see Butler and Loomes (2007, pp.293-294)).  

We were of course able to make the Stage 2 straight choices between A and B 

incentive compatible, and it was explained that all these choices were made on the basis that, 

at the end of the session, one question would be selected at random for each respondent, and 

they would each be paid according to the way their decision in that particular question 

worked out. There were 43 such questions, (twenty of direct relevance to this paper) so 1 in 

43 choices was played for real. This is entirely within the range of usual practice regarding 

the random lottery incentive system (see Starmer and Sugden, 1991). Average earnings in our 

study were $26, ranging from a low of $0 to a high of $160. Moreover, as will become 

apparent in the next section, the data from these incentive-compatible questions exhibited 

essentially the same overall patterns of behaviour as displayed by responses to the Stage 1 

elicitations of switchpoints and imprecision intervals. 

A total of 89 individuals drawn from a broad cross-section of students and staff at the 

University of Western Australia took part. Verbal and on-screen explanations plus on-screen 

practice questions for both stages introduced the experiment. 45 participants were allocated at 

random to the $40 triangle (of whom 23 iterated down and 22 iterated up in Stage 1) and 44 

to the $60 triangle (with equal numbers iterating in each direction).  

As listed at the end of Section I, the main issues we hoped that the data would 

illuminate were as follows. First, do people typically have non-trivial imprecision intervals 

(i.e. between 1↔2 and 3↔4)? And if so, what determines the widths of these imprecision 

intervals? And can their positioning within the permissible range offer an account of 

systematic violations of betweenness and independence?  
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III. Results 

We begin with the Stage 2 pairwise choice data. Table 1 reports, for each triangle and 

each gradient, the numbers of respondents who chose the riskier M lottery.  

 

TABLE 1 HERE 

 

 Reading down the rows, things were much as virtually every model would lead us to 

expect: as the gradient increased, the L lottery became less favourable, and more respondents 

chose M.6  

 However, when we read along the rows from left to right, we find the kind of patterns 

consistent with the ‘usual’ departures from EU. There is not much to see in the top row for 

each triangle, but for the other three gradients in each triangle, there was a clear trend for the 

numbers of M choices to increase as the lotteries move towards the bottom right hand corner. 

A within-subject analysis of those choices shows that the numbers choosing L1 and M4 

outnumbered those choosing M1 and L4 to an extent that was significant at the 1% level in all 

six comparisons (using a McNemar exact binomial test). This is consistent with a significant 

degree of fanning out. Indeed, at the level of the individual, 45 of the 89 subjects satisfied 

strict fanning out, while just two satisfied strict fanning in.  

 Violations of betweenness were also in evidence, directly and indirectly. In the case 

of the $60 triangle, there were two direct tests. When the gradient was ½, the straight line 

joining M3 to its L counterpart passed through M5, and when the gradient was 2, the straight 

line joining M2 to its L counterpart also passed through M5. In the first of these cases, there 

were very few M choices at all, so the fact that 10 out of 44 chose M5 over L as opposed to 6 

choosing M3 over the same L is consistent with convex indifference curves but is not a 

statistically significant difference. However, as Table 1 reports, when the gradient was 2, 32 



 17 

out of 44 respondents chose M5 compared with just 21 who chose M2, and this asymmetry in 

the direction consistent with convex indifference curves was significant at the 1% level.  

In the $40 triangle, the tests were less direct, but the results pointed to the same 

conclusions. Consider first M2 and the straight line with gradient 1⅔ linking it to L2 = (x2, 

0.96; 0, 0.04). This line passes just to the left of M5 – it goes through (x3, 0.2; x2, 0.64; 0, 

0.16) – but there is little space between it and the straight line of the same gradient joining M5 

to L5 = (x2, 0.92; 0, 0.08). Yet there were 22 respondents choosing M5 over that L5 as 

opposed to just 9 choosing M2 over the corresponding L2, with the within-subject asymmetry 

registering as significant at the 1% level. In case this might be attributed to some very acute 

fanning out in that thin slice of the triangle, consider M2 and the gradient 2½ which links it to 

(x2, 0.84; 0, 0.16). This straight line passes to the right of M5 through (x3, 0.2; x2, 0.56; 0, 

0.24) – that is, by the same distance to the right that the previous line passed it to the left – so 

that any fanning out effect while maintaining linearity might be expected to favour M2 more 

than M5. But once again Table 1 shows that M5 was chosen much more often – by 31 as 

opposed to 17 respondents; and once again the asymmetry was significant at the 1% level.  

Overall, then, when viewed from the perspective of deterministic models, the patterns 

of choice in Stage 2 appear entirely consistent with a model of convex indifference curves 

fanning out as if from some point to the south-west of their respective triangles. But how far 

do such patterns also show up in the Stage 1 data? And to what extent were they predicted by 

the sorts of propositions about imprecision discussed earlier? 

 Table 2 shows the data analogous to those in Table 1, but this time drawn from 

individuals’ responses to the Stage 1 iterative procedure. The one additional complication is 

that with the Stage 1 procedure we may occasionally observe the 2↔3 switching point 

coincide with the relevant pre-set L lottery. In such cases, we have counted this as half a 

choice of each option. Of necessity, the data in Table 2 must be more regular than those in 
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Table 1 when it comes to reading down the columns, with at least as many choices of M at 

steeper gradients as at shallower ones. However, the important issue is the pattern reading 

along the rows. And as far as fanning out is concerned, the picture here is even sharper than it 

was in Table 1: for all four gradients in both triangles, the differences between M1 and M4 

patterns of choice are significant at the 1% level. 

 

TABLE 2 HERE 

 

 The picture is not quite so sharp with respect to violations of betweenness. Making 

the same comparisons as in Table 1, all four disparities were in the direction consistent with 

convex indifference curves near the bottom edge. However, once again there were relatively 

few M choices in the $60 triangle when the gradient was ½, so that the difference (8.5 of 44 

against 7 of 44) was not statistically significant. By contrast, when the gradient was 2, the 

asymmetry (35.5 of 44 against 20 of 44) was again significant at the 1% level. Meanwhile in 

the $40 triangle, the two comparisons between M2 and M5 when the lines from M2 with 

gradients 1⅔ and 2½ pass either side of M5 produced one difference that was significant at 

10% and another that just failed to be significant at that level.  

 However, with the iterative procedure we are not confined to looking just at preferred 

choices: with these data we can not only examine the behaviour of the 2↔3 switch-points, 

but also the widths and locations of the intervals of imprecision around those points. When 

reporting these results, we shall refer to the mean index values of the various switching 

points. These index numbers can be best understood with reference to the triangle as follows: 

the top left point has the value 100 and the numbers fall to 0 at the right angle, and then 

become progressively more negative as we move along the bottom edge, with the bottom 

right corner taking the value -100. 
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 Table 3 reports the mean switch-points for all M lotteries in both triangles, as well as 

(in bold) the implied gradients of straight lines connecting the M lotteries to their respective 

mean switch-point L lotteries. The mean intervals between the 3↔4 and the 1↔2 switch-

point L lotteries are also computed. What do these data show? 

 

TABLE 3 HERE 

 

We begin by considering the lotteries on the hypotenuse of both triangles. The 

gradients from these M’s to their 2↔3 switch-point L lotteries get progressively less steep as 

we go from M1 to M4: in the A$40 triangle, the gradients fall from 3.25 to 0.68, while in the 

$60 triangle, the corresponding fall is from 2.89 to 0.56. This pattern of strict fanning-out 

corresponds with the patterns of choice reported in Tables 1 and 2.  

The data also enable us to see that, holding the permissible range constant, the 

distance between the fixed lottery and the edge upon which the equivalence response is 

recorded does not seem to systematically influence the width of the imprecision interval. If 

we use the length of the straight lines connecting M1-M4 to their respective 2↔3 switch 

points as a rough estimate of that distance7, then in both triangles M4 would be closest to the 

relevant edge, followed by M3, then M1, with M2 furthest away, these last distances being 

between 75% and 100% greater than those for the respective M4’s. But the widths of the 

intervals between 1↔2 and 3↔4 did not follow that pattern. Rather, as Table 3 shows, within 

a given triangle all four interval widths were very similar and there were no significant 

differences between any two of them. Moreover, in relation to the intervals between L+ and 

L-, the positions of the imprecision intervals were remarkably stable, as Table 4 shows.  

 

TABLE 4 HERE 
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 For M1-M4 in the $40 triangle, the range over which the M lottery is definitely 

preferred lies between 20.4 and 27.6 points of the corresponding dominated L, while the 

range over which the L lottery is definitely preferred lies between 50.7 and 56.3 points of the 

L which dominates M. So as we go from M1 to M4 and as the positions of L+ and L- and the 

100-point ranges between them shift, so too do the positions of the intervals between 1↔2 

and 3↔4 and the 2↔3 switch-points. The $60 triangle exhibits similar behaviour, except 

that, with x3 being larger, the ranges over which M is definitely preferred are wider and the 

ranges over which L is definitely preferred are narrower. So increasing x3 while keeping x2 

and x1 constant had the effect of increasing the widths of all of the imprecision intervals and 

systematically shifted the location of those intervals. At the same time, the positions of those 

intervals within each L+ to L- range were as stable for the $60 triangle as for the $40 triangle. 

 The finding that the widths of the imprecision intervals are more a function of the L+ 

to L- range than of the distance from an M to the equivalence edge is given further support by 

the data relating to M5. Table 4 reports the actual intervals in the bottom row; but just above, 

in the row labelled (M5), these are converted to percentages to make them comparable with 

the M1-M4 data. This shows that, as proportions of the relevant L+ to L- range, all of the 

imprecision intervals within the same triangle are of much the same magnitude: 21-23 

percentage points for the $40 triangle, 25-28 percentage points for the $60 triangle.8  

 What the M5 row also shows is a tendency for the position of the imprecision interval 

to be shifted somewhat relative to its position for M1-M4: with M5, a relatively larger 

proportion of the range is associated with a definite preference for M and a correspondingly 

smaller proportion represents a definite preference for L. This is in line with our conjecture 

that for M5 the imprecision interval would be pushed in a clockwise direction, producing an 
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effect that looks like a violation of betweenness consistent with convex indifference loci near 

the bottom edge. 

 Figures 4 and 5 depict the overall patterns of responses in terms of lines from the M 

lotteries to their respective 2↔3 switch point L lotteries. These figures are based on the mean 

values of 45 and 44 subjects respectively. For simplicity, these lines are drawn straight, but 

the fact that the M5 line has a shallower slope than might be extrapolated from its position 

relative to M2 and M3 – and indeed, the fact that in the $60 triangle the M5 line actually 

crosses the M2 line – suggests that if one were to wish to impose an indifference map of the 

kind typical of deterministic theories, the best fit for an ‘average’ subject would be one which 

involved curves that are convex near the bottom edge and fanning out from the south-west of 

the triangle: that is, the kind of configuration which some RDEU models are able to generate. 

 

IV. Concluding Remarks 

It might be argued that the violations of independence and betweenness discussed in 

this paper can be explained just as well by one of the class of RDEU models as by the model 

of imprecision we have investigated. So what are the arguments for and against adding this 

imprecision model to the existing catalogue of theories?  

The first argument for so doing is that although RDEU models may be technically 

capable of accommodating these patterns, they could be regarded as behaviourally 

implausible: in particular, the process of converting probabilities into the decision weights 

required to fit the data is one which is quite complex (as anyone who has tried to teach the 

notion to students will know). By contrast, the imprecision model is behaviourally very 

simple – indeed, for some theorists’ tastes it has, if anything, too little structure. Despite its 

modest assumptions, it can make refutable predictions. 
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Second, the imprecision model can explain other phenomena – most notably, the two 

opposite forms of the preference reversal phenomenon described in Butler and Loomes 

(2007) – which RDEU models simply cannot deal with. While it may be that ultimately no 

single model can be expected to account for all behaviour in all contexts, it does seem 

reasonable to expect one model to capture the key phenomena generated by the same subjects 

performing similar tasks in the course of a single experiment. A relatively simple descriptive 

model of imprecision is able to accommodate a variety of ‘anomalies’ that have defied 

capture by any one of the many alternative deterministic models developed to date.  

There are limitations, of course. For example, it is not (yet) obvious how to apply the 

model to decisions involving more than three payoffs, or where there are larger choice sets. 

Nevertheless, what the model and the data presented above clearly suggest are that 

imprecision is a feature of many people’s preferences and that there is some potential for 

explaining regularities in behaviour in terms of such imprecision. There may be a good deal 

more work to be done to investigate the scope and limitations of such models, but the present 

paper, in conjunction with Butler and Loomes (2007), gives grounds for believing that this 

may be a useful line of enquiry to pursue.  
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Figure 4: The Fitted Lines from the 2↔3 Switch-points in A$40 Triangle  
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Figure 5: The Fitted Lines from the 2↔3 Switch-points in A$60 Triangle  
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Table 1: Numbers of M Choices in Stage 2 

 M1 M2 M3 M4 M5 

x3 = A$60      

g1 (=½) 5 2 6 4 10 

g2 (=1) 8 11 18 25 24 

g3 (=2) 17 21 34 36 32 

g4 (=4) 26 35 36 41 33 

      

x3 = A$40      

g1 (=1) 12 5 8 8 13 

g2 (=12/3) 8 9 18 25 22 

g3 (=21/2) 11 17 29 36 31 

g4 (=5) 26 34 38 43 36 

 
 
 
 
 
 

Table 2: Numbers of M Choices Inferred from Stage 1 

 M1 M2 M3 M4 M5 

x3 = A$60      

g1 (=½) 1.5 3 7 18 8.5 

g2 (=1) 4.5 13 20.5 34 20 

g3 (=2) 10.5 20 36.5 40 35.5 

g4 (=4) 31.5 36 41 43 41 

      

x3 = A$40      

g1 (=1) 3.5 12 14 27 15.5 

g2 (=1⅔) 7 18.5 30 38 26 

g3 (=2½) 13 25 35 41 32 

g4 (=5) 30.5 40 43.5 44 36.5 
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Table 3: Mean Switch-points, Gradients and Imprecision Intervals 

 M1 M2 M3 M4 M5 

x3 = A$40      

3↔4 switch-point 27.07 9.33 -13.07 -36.27 1.60 

3↔4 gradient 2.65 1.27 0.85 0.46 0.92 

2↔3 switch-point 15.02 -3.29 -26.04 -50.58 -3.96 

2↔3 gradient 3.25 1.63 1.18 0.68 1.25 

1↔2 switch-point 5.91 -12.36 -34.18 -59.60 -7.69 

1↔2 gradient 3.70 2.17 1.55 0.98 1.62 

1↔2 to 3↔4 interval 21.16 21.69 21.11 23.33 9.29 

      

x3 = A$60      

3↔4 switch-point 35.18 15.18 -4.73 -27.32 4.80 

3↔4 gradient 2.24 1.12 0.72 0.38 0.76 

2↔3 switch-point 22.27 -1.55 -19.50 -44.59 -1.11 

2↔3 gradient 2.89 1.56 0.99 0.56 1.06 

1↔2 switch-point 9.36 -10.09 -31.95 -54.77 -6.64 

1↔2 gradient 3.53 2.01 1.43 0.79 1.50 

1↔2 to 3↔4 interval 25.82 25.27 27.23 27.45 11.43 

 
 
 
 
 
 

Table 4: Widths of ‘Definite’ and ‘Imprecise’ Intervals 

 x3 = A$40  x3 = A$60 

 L- to 
1↔2 

1↔2 to 
3↔4 

3↔4 to 
L+ 

 L- to 
1↔2 

1↔2 to 
3↔4 

3↔4 to 
L+ 

M1 25.9 21.2 52.9  29.4 25.8 44.8 

M2 27.6 21.7 50.7  29.9 25.3 44.8 

M3 25.8 21.1 53.1  28.1 27.2 44.7 

M4 20.4 23.3 56.3  25.2 27.5 47.3 

(M5) (30.8) (23.2) (46.0)  (33.4) (28.6) (38.0) 

M5 12.3 9.3 18.4  13.4 11.4 15.2 
(All figures rounded to one decimal place) 
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Footnotes 

                                                 
1 Regret theory can account for some violations of independence such as the ‘common ratio effect’, but only by 
assuming statistical independence between the alternatives (see Loomes and Sugden, 1982). However, many 
experiments have shown that even when the juxtaposition of payoffs is such that regret effects are controlled 
for, the common ratio effect continues to be manifested to a degree that regret theory cannot account for. 
2 All payoffs were in Australian dollars. 
3 The data in fact show a slight asymmetry in the average size of the imprecision intervals above and below the 
2↔3 switch point, of between 0 and 3 percentage points, so preferences are slightly more risk-averse than the 
mid-point of the interval would imply. However this does not affect the thrust of the argument given here. 
4 This was intended to reduce the difference between the procedure used for M5 and that used for the other four 
lotteries, although some disparity remained: i.e. the M5 procedure involved only 40 changes of B rather than the 
50 changes involved in the course of eliciting responses for M1-M4. 
5 A respondent who felt no sense of uncertainty could, of course, switch from 4 to 1 (or vice-versa) without ever 
recording either 2 or 3. A few (male) subjects consistently did just this. 
6 The only exception to this was M1 in the A$40 triangle, where more respondents chose M1 when the gradient 
was 1 than when the gradient was either 1⅔ or 2½. This is a case for which we have no explanation except 
chance aberrations. Further evidence that the top left cell was aberrant comes from comparing that whole g1 row 
with the g2 row when x3 = A$60. Since the gradient was 1 in both cases, the M lotteries should have been 
chosen by more respondents in the A$60 sub-sample. This was what happened for M2-M5, where in each case 
the number of M choices was about two or three times higher; but not for M1. 
7 We are not ruling out that the indifference loci might, in fact, be convex; but moderate convexity would not 
alter the general result. 
9 It also turns out that these intervals are of a similar magnitude to those found for the preference reversal study: 
24 points for the certainty equivalents of the $-bet and P-bet; 28 points for the probability equivalents, when 
converted to percentages of the non-dominated range. 
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