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This article presents estimates of the elasticity of demand for lottery tickets using time series data in
which there is variation in the expected value of a lottery ticket induced by rollovers. An important
feature of our data is that there are far more rollovers than expected given the lottery design. We
find strong evidence that individuals do not choose their lottery numbers uniformly from a uniform
distribution—that is, conscious selection. We use our estimates to derive the inverse supply function
for the industry, and this enables us to identify the demand elasticity. We find the price elasticity to
be close to unity, which implies that the operator is revenue maximizing—which is the regulator’s

objective.
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Many countries have lotteries that raise considerable
amounts of revenue. In many cases, these are state-owned
monopolies in which the revenue in excess of costs is used
as tax (sometimes hypothecated) revenue, and in other cases
these are regulated with tax (and other deductions) be-
ing a contractually specified proportion of revenue. The
largest examples of lotteries are to be found in Spain, Aus-
tralia, Ireland, Canada, and the United Kingdom, and in the
United States there are large games in some states and some
large consortia that sell across several states. Our analy-
sis is based on the U.K. National Lottery that was intro-
duced in November 1994 although, because game designs
are similar the world over, our methodology and findings
are more widely relevant. We refer to the online draw game
as the National Lottery (NL), which is run by a private com-
pany franchised, from 1994 to 2001, by the UK. govern-
ment and regulated by the Office of the National Lottery
(OFLOT). The NL online “lotto” draw rapidly became the
fourth largest in the world in terms of weekly sales rev-
enue per capita. In its first year, NL sales were estimated to
be $4.39 billion (this is approximately 1% of annual retail
sales), it raised $527 million in direct government tax rev-
enue (i.e., not allowing for reductions in revenue from other
sources induced by changes in expenditure patterns), and,
in addition, $1.296 billion in revenue was hypothecated for
charitable purposes (known as “good causes”). The NL op-
erator also markets Instants, a “scratchcard” game that was
introduced just six months after the launch of the online
draw. Instants revenue also benefits good causes. Fitzher-
bert, Giussani, and Hunt (1996) provided useful background
to the U.K. National Lottery; see LaFleurs (1998) for an in-
ternational perspective.

The “price” elasticity of demand for lottery tickets shows
how demand varies with the expected value of the return
from a ticket, and it is this elasticity that is relevant in
assessing the merits of the design of the lottery and the
attractiveness of potential reforms to the design. That is, it

tells us how demand would vary in response to changes in
the design of the lottery—in particular, the tax rate on the
lottery or the nature of the prizes. Moreover, an estimate
of the elasticity would enable us to see the extent to which
the regulator, OFLOT, is succeeding in getting the operator
to revenue maximize as opposed to profit maximize.

Previous work has attempted to estimate this elasticity by
looking at how demand varies in response to actual changes
in lottery design across time or differences across states
(see Vrooman 1976; DeBoer 1985; Beenstock, Goldin, and
Haitovsky 1997). These have been few and far between,
however, and limited attempts have been made to control
for other changes and differences that may have occurred.
Moreover, it seems likely that these design changes have
themselves been endogenous—for example, motivated by
flagging sales. An important exception is found in the work
of Clotfelter and Cook (1993), who estimated the elasticity
of sales with respect to variations in the size of the major
draw prize (the jackpot). We also exploit the changes in the
return to a ticket induced by “‘rollovers” that occur when
the jackpot in one week is not won and gets added to the
jackpot prize pool for the subsequent week. This changes
the expected return to a ticket in a very specific way. In
particular, the expected return rises in a way that cannot
be arbitraged away by the behavior of agents. Moreover, it
is only by comparing rollover with nonrollover weeks that
we can reveal the appropriate demand elasticity: Changes
in the expected return that occur because of demand shocks
result in movements along the (inverse) supply curve, not
movements along the demand curve; only rollovers cause a
shift in the (inverse) supply schedule so that sales rise along
the demand curve.
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The fact that we rely on rollovers for identification causes
us a difficulty: Rollovers should occur with relative infre-
quency, so we may not have sufficient variance in our data
to obtain a reliable estimate. One of the startling features
of our data, however, is that it exhibits many more rollovers
than could have been generated by statistical chance. The
frequency of rollovers is obviously a property of the lottery
design. In general, if players choose randomly, the probabil-
ity of a rollover is given by (1 —7)", where n is the number
of tickets sold, so that « is approximately 1 in 14 million for
a lottery design that features 6 balls drawn from 49 without
replacement. For the U.K. lottery, this implies a rollover
probability of approximately 1% when ticket sales are at
their mean levels of 65 million. In fact, in our data there
have been 19 rollovers in 116 draws, and a high rollover
probability is a phenomenon common to all lotto games.
For example, the U.S. Powerball lotto game recently rolled
over in 17 consecutive draws, eventually generating a jack-
pot in excess of $200 million.

Rollover frequency depends on the game design and
the level of sales, but in the U.K. case the exceptionally
high frequency of rollovers can only arise from individu-
als choosing the numbers on the lottery tickets that they
buy in a nonuniform way. That is, many more individu-
als choose the same combinations of numbers than would
occur by chance if individuals selected their numbers uni-
formly. Clotfelter and Cook (1993) referred to this nonuni-
formity as “conscious selection.” The result of it is that
the probability distribution of numbers chosen by players
does not follow a uniform distribution, and the probability
of each number being chosen in the draw is the inverse of
the number of balls drawn—for example, 1/49 in the NL
case. Thus, the tickets sold cover a smaller set of possible
combinations than would have been the case had individuals
chosen their numbers in a uniform way—thus, there will be
more occasions when there are no jackpot prizes. There will
also be more occasions when there are many jackpot win-
ners. That is, the variance in the number of jackpot winners
will be higher under nonuniform choice. The implications
of this nonuniformity and (unintentional) coordination be-
tween players are important. If players realize that such
nonuniformity is occurring, then they will expect the re-
turn for holding a ticket to be smaller (for any given size
of rollover) than it would be if individuals were choosing
their numbers uniformly. Essentially, the nonuniformity in-
creases the probability that there will be a rollover, and we
would expect this to change the behavior of potential ticket
purchasers.

Lotteries are typically operated to maximize the result-
ing tax {or “good-causes”) revenue, which is usually a fixed
proportion of sales. Thus, knowledge of the price elasticity
is central to choosing an appropriate “take-out” rate. The
aim of this article is to recover the elasticity of demand for
lottery tickets from data on sales and on the number of prize
winners of each type. The latter is one important innova-
tion of the article. The observed number of prize winners
enables us to deduce the extent to which actual behavior
departs from random choice from a uniform distribution of
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numbers and this allows us to compute the expected value
of holding a ticket, given the way in which numbers are
chosen. Indeed, a knowledge of the number of winners of
each prize pool and the winning numbers enables us to es-
timate the probability distribution of the numbers chosen
and test for nonuniformity.

The second innovation in the article is that it addresses a
deficiency in the existing estimation of the demand elastic-
ity. In particular, earlier work has, at best, regressed sales
against the expected value. As we shall show, however, the
expected value is a complicated nonlinear function of sales
and the value of the rollover. Thus, nonlinear maximum
likelihood methods need to be applied.

The plan of the article is as follows. In Section 1, we out-
line the theory of the determination of the expected value
of holding a lottery ticket that allows for the nonuniform
nature of individual choices of numbers. This is essentially
the inverse supply function for the market. In Section 2,
we outline the statistical methodology required to estimate
the extent of nonuniformity to enable us to compute this
inverse supply function. In Section 3, we describe the data
and produce results from estimating precisely how individ-
uals are nonuniform. That is, we produce estimates of the
probability distribution for the numbers chosen and gener-
ate the inverse supply function from this. In Section 4, we
use these estimates of the extent of nonuniformity to infer
the expected value of holding a ticket and apply nonlinear
maximum likelihood to estimate from this the elasticity of
demand from the observed relationship between sales and
the expected value.

1. THE EXPECTED VALUE OF A LOTTERY TICKET

The expected value (V') of holding a lottery ticket was
first derived by Sprowls (1970) and has subsequently been
used by Scoggins (1995) and Clotfelter and Cook (1993).
These articles only considered the case in which individu-
als choose their numbers uniformly and in which there are
no fixed prizes (i.e., winners share a prize pool so that the
size of all the prizes won depends on the number who win).
There is considerable evidence, however, that many players
choose their numbers themselves, and there is a strong pos-
sibility that they do so using rules that are shared by other
players. This opens the possibility that the proportion of
certain six-number combinations covered by the tickets sold
is less than would be expected under uniform choice. Clot-
felter and Cook (1993) asserted that the qualitative proper-
ties of V' under the assumption of uniform selection hold in
this more general case of “conscious selection.” We know
of no proofs of these properties in this more general frame-
work, however, and we shall tarn to this later.

In addition to observing the frequency of rollovers the
lottery operator records, for each draw, we have informa-
tion on the “coverage rate” that shows the proportion of the
14 million possible combinations of numbers that have been
chosen by at least one player. We would expect the cover-
age rate to be close to unity when sales are on the order
of $60 million. Although the coverage data themselves are
regarded as commercially sensitive information by the op-
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erator, we can reveal that in the early draws of the game the
coverage rate was less than .75 and has drifted upward to
approximately .9 toward the end of the period. In addition to
this systematic trend, there is a marked increase in coverage
when there is a rollover. This presumably occurs because
players wish to purchase more than their normal number of
tickets and may therefore choose additional combinations
less systematically. In addition, there was a small increase
in coverage associated with the introduction of the “Lucky
Dip” facility on the sales terminals that permitted players
to instruct the terminal to use its pseudorandom number
generator to pick the combination. The use of the Lucky
Dip facility has been modest, with less than 10% using the
facility shortly after its introduction rising slowly to around
15% at the end of our data period.

1.1 Expected Value Under Nonuniform Choice

The expected monetary value of a lottery ticket depends
on the size of the prizes, which, for a pari-mutuel lottery,
are functions of the number of winners. Consequently, de-
riving a formula for the expected value of a ticket requires
that we specify a model of how participants select the num-
bers on their tickets. We will make the simple assumption
that individual selections are independent realizations of
the same (typically, nonuniform) probability distribution, 7.
More particularly, if S is the set of permitted selections of
numbers (6 out of 49 for the U.K. lottery), the probability
that any participant selects o € S is 7{c), independently of
all other choices.

Participants wishing to make a uniform choice are often
offered the facility of a random-number generator. This was
introduced in week 71 of the U.K. game. Such a possibil-
ity can be accommodated by using a mixture distribution
(o) = 8/|S|+(1—98)m (o), where 6 is the proportion using
Lucky Dip (which is publicly available information for each
draw) so that 7y is the distribution used by those eschewing
Lucky Dip.

With n tickets sold, the total revenue is n (taking the
cost of the ticket as numeraire) of which a proportion 7
is taken for “tax” and operating costs. Many lotteries, in-
cluding the U.K. National Lottery, offer at least one class
of prize that is fixed in value irrespective of the number of
winners. We shall assume that there is only one such prize
worth a (although the results are readily extended to cover
more general cases) and write wr(o) for the probability
that a participant who selects according to the distribution
7« will win such a prize when ¢ € § is drawn. In the UK.
lottery, a = $10 (except that this may be reduced in the un-
likely event that the prize pool is not large enough to pay
this to all winners). The probability of such an event is so
small (less than 1 in 1,500) that it has no significant effect
on the expected value calculations, however, and we ignore
it. If there are ny winners of the fixed prizes, we are left
with a residual pool of (1 — 7)n — anpg, a proportion p of
which (augmented by any sum, R > 0, rolled over from
the previous draw) forms the jackpot prize pool that is dis-
tributed equally among all of the jackpot prizewinners. We
write 7; (o), which is equal to (o) in the U.K. NL, for the
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probability that a participant selecting according to 7 will
win the jackpot pool when ¢ € S is drawn. If there are no
winners, the jackpot pool is rolled over to the next draw.
We assume that all the remaining prize money is distributed
as prizes in the current draw: Rollovers of prize pools other
than the jackpot pool are excluded. The actual rules are usu-
ally a good deal more complicated than this. For example,
in the NL, if no participant matches four numbers drawn,
this part of the prize pool is used to augment the fixed
prizes. In many lotteries the number of consecutive draws
in which the jackpot pool can be rolled over is limited (to 3
in the NL)}. For the participation levels observed in practice,
however, all deviations from our simplified story are very
low-probability events, which we ignore. For example, in
the NL the most likely candidate for a rollover, after the
Jjackpot, is matching five numbers out of six drawn plus the
bonus ball that is also drawn. With n > 10 million, the prob-
ability of a rollover of this prize pool is less than .01, and
with n = 60 million this falls to less than 10~'!. Neverthe-
less the formulas derived later may need modification and
should at least be treated with circumspection for “small” n,
where smallness will depend on the lottery design. Because
our choice model assumes that players are homogeneous,
the expected money value of the nonfixed prizes other than
the jackpot will be (1 —p){(1 —7)n—anr}/(n —ns—ng),
where 75 is the number of jackpot winners.

We will first derive the expected value of a ticket from the
perspective of a participant who has not yet made his/her
choice of numbers but who will use the distribution 7 to do
$0. The value will depend on np and n; (as well as on n),
which are not known for certain when the participation de-
cision is made. It will prove convenient to condition on the
draw, ¢ € S, and let N (o) and N (o) be random variables
denoting the number of jackpot and fixed prize winners, re-
spectively, among the other participants. If this purchaser
wins the jackpot, the total number of jackpot winners is
Nj(a) + 1, so the expected prize per winner is

p{1 —7)n - Np(o)a} + R
E|: NJ(U)+1

} = q, say.

If the purchaser wins neither the jackpot nor a fixed prize,
the expected value is

(1 -p{( - 71)n - Np(o)a}
E[ n—Nj(o)— Np(o)

|-, m.
Hence, the expected value of a lottery ticket, conditional on
o, 18

E[Vlo] = amy(o) + B(1 = m5(0) — np(0)) + anp(o)

because any given ticket may win at most one prize. Note
that o and 3 will depend on . The random variables N; (o)
and Nr (o) follow a trinomial distribution, T'(n—1, 75, 7p),
given by

P(Nj =14,Np =j)

(n—1)!
Gin—1—i- )

(1

= wymR(l -7y — )t
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where we have suppressed the dependence on o. This en-
ables us to evaluate the expectation of the ratios of random
variables in « and 3 (see App. A for details) and leads to
Proposition 1.

Proposition 1. The expected value conditional on o is
given by the expression

BWlel = [o1=)+ E| 1= 0= my

+(1=p)(1—-7)1— (s +7F)"]
+anplp(l —7y)" "t + (1= p)(my +7p) 1.

Because n is large and 7 p, and especially 7, are small,
then (m; + mp)»! effectively vanishes and (1 — 7 ;)™ and
(1 — 7;)""1 can both be closely approximated by e~ ™",
Assuming that the lottery is fair, we obtain the following
corollary.

Corollary 1. For large n, the expected value of a ticket
is given by

where
¢(0') =1 —T“K(g)e—ﬂ'.](ﬂ)n + % [1 _ e-7rJ(a)n]

and K(o) = p[(1 — 1) — anp(o)].
1.2 Comparative Statics

It is immediate, from Corollary 1, that Vg > 0,V < 0,
where subscripts indicate partial differentiation: The inter-
pretation of these results is obvious. Moreover, V, > 0,
which reflects the fact that fixed prizes, unlike the jackpot,
are not subject to rollovers and so cannot be captured by
participants in future draws: An increase in a reduces the
size of any rollover. Finally, V, < 0 provided that K (o) > 0
for all . This inequality simply says that a is set at a level
at which the prize fund is always large enough to pay the
fixed prizes plus a positive jackpot and holds for the U.K.
NL, both for the uniform case and for our estimated 7. We
have assumed that n is large enough for the law of large
numbers to hold.

Comparative statics with respect to n (which we shall
treat as continuous) are more involved than would be the
case were conscious selection not a possibility [see Farrell
and Walker (1999) for the simpler case]. The basic results
for ¢ will be summarized later. Proofs of the less obvious
assertions will be found in Appendix A.

Proposition 2.

1. Asn—00,¢(0) > 1—7.

2. If R = 0,¢(0o) is a strictly concave and increasing
function of n.

3.If 0 < R < R(o) = 2K(0)/ms(c), then there is an
7 > 0 such that ¢(o) is strictly increasing for n < # and
strictly decreasing for n > 7.

4. If R > R(o), ¢(o) is strictly decreasing for all n.
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The behavior of ¢ is determined by two countervailing
effects. First, an additional participant increases the prize
pool and decreases the probability that the jackpot is not
won. When R = 0, this gives 2 (the concavity reflects the
fact that the marginal benefit is decreasing). Clotfelter and
Cook (1993) referred to this phenomenon as lotto’s “pe-
culiar economies of scale,” referring to the fact that, for
a given game design, the larger the sales the greater the
expected return. When R > 0, there is a second effect: Ad-
ditional participants dilute any individual’s potential share
of the fixed sum R. If R > R(o), the marginal dilution
effect outweighs the marginal benefit for all values of n.
Otherwise this inequality is reversed for n < 7. In all cases,
both effects vanish for large n and the entire prize pool is
returned to participants; this is part 1.

Note that parts 1, 3, and 4 of Proposition 2 imply that, if
R > 0,¢ > 1—7 for all large enough n, while part 4 implies
that, for sufficiently large values of R, this inequality holds
for all values of n. The important feature of these results for
our empirical work is that they imply that when a rollover
occurs sales will rise if demand is increasing in ¢, but the
rise in sales cannot be sufficient to arbitrage the rise in ¢
away (at least not for finite n).

If lottery participants select numbers according to a uni-
form distribution, then 7, and 7z are independent of o.
Hence V inherits all the properties of ¢(.) described in
Proposition 2. If the selection of numbers is not uniform,
parts 1, 2, and 4 of Proposition 2 hold except that the for-
mula for R is no longer valid in the case in which a is
nonzero (and no simple alternative formula is available).
Part 3 may fail, however, even when ¢ = 0 and p = 1.
A counterexample with these parameter values is given in
Appendix A. Figure 1 illustrates these results for the 6/49
case used in the NL. The solid lines correspond to the case
in which there is uniform selection and no rollover (i.e.,
R = 0), £15 million, and £40 million, which are typical
for single and double rollovers (where the jackpot is rolled
over for two consecutive weeks). In the nonrollover case,
V approaches (1 — 7) from below monotonically as n in-
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creases. In the case of a small rollover, V need no longer
be monotonic and will eventually rise above (1 — 7), which
it then approaches from above as n tends to infinity. In the
larger rollover cases illustrated here, V' will be monotoni-
cally decreasing and again approach (1—7) from above. The
dashed lines are the corresponding V' functions when the se-
lection is made from the distribution of numbers estimated
in Section 2.3. In this case V lies below the uniform case
although the difference is small at large values of n because
both the uniform and nonuniform cases are asymptotic to
(1—1).

1.3 The Effect of Nonuniform Choice

In the absence of fixed prizes (a = 0), V' is a strictly con-
cave function of the probability distribution n(c),0 € S. It
follows from Jensen’s inequality that V' has a strict global
maximum at 7 = my, where 7y (o) = 1/|S| forall 0 € 5—
that is, the uniform distribution. Thus, the expected value of
tickets would increase for all participants if they adopted a
uniform choice distribution. Whether this represented an
improvement for these agents would depend on the ex-
tent to which the freedom to choose one’s own numbers
was a significant factor in the return to participating. It has
been suggested that the original New Hampshire lotto game
was unsuccessful because it did not permit players to select
their own numbers and that when it did allow this facility
it became successful. GTECH, a software company used
by many lotteries around the world, suggests that players
should not be allowed to select randomly until they have
been denied this opportunity for some time so as to pro-
mote the “ownership” of number combinations by players.
This, of course, leads to more rollovers, more revenue for
the government, and more profits for the operator.

Most lotto games offer some form of “Lucky Dip” in
which the uniformity required to implement =y is per-
formed by the game operator. It is important to note that
we are not claiming that participants can maximize their
individual expected returns by choosing 7. Indeed, to do
this one would need to select combinations that are cho-
sen infrequently by others. It has even been claimed that
this permits the expected value of a ticket to exceed the
cost [e.g., see Haigh (1996) and Ziemba, Brumelle, Gau-
thier, and Schwartz (1986), and see MacLean, Ziemba, and
Blazenko (1992) for strategies for maximizing expected in-
come growth in gambling when there are such profitable
opportunities].

When a > 0, the presence of fixed prizes makes the story
more complicated. We show in Appendix A that, provided
the rules for determining fixed prize winners award such
a prize, if g(< p) of the p numbers selected on the ticket
are included in the p drawn (in the NL, g = 3), then the
Hessian of V' regarded as a function of 7 is positive definite
at wy for sufficiently large values of n (n > 14 x 10% would
be sufficient). Appendix A shows that this result is true for
much more general rules. Because the first-order conditions
for a maximum of V' [subject to the constraint 3 s 7(0) =
1] are satisfied (trivially, by symmetry) at 7y, we deduce
that my is a strict local maximum. Attempts to turn this
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into a global result encounter difficulties arising from the
simplification gained from ignoring the possibility that the
prize pool is inadequate for paying the fixed prizes: For «
sufficiently remote from #y,, there could be ¢ € S for which
the expected value of a fixed prize exceeds 1 — 7, which,
by the law of large numbers, leads to the prize pool being
unable to fund the fixed prizes and drives the jackpot to 0.
For our estimated distribution, however we still find that
the expected ticket value is less than E[V (g )]

2. NONUNIFORM CHOICES AND
STATISTICAL INFERENCE

2.1 Modeling

The purpose of this section is to propose a model of the
mechanism that individuals use to choose the numbers on
which they bet and show how consistent estimation can be
achieved. Similar issues in the literature in statistics have
also been tackled by Johnson and Klotz (1993) and Fin-
klestein (1995); for a survey, see Haigh (1996). Our interest
in this is to compute the expected value allowing for the
nonuniform choices of numbers. Thus, we need to estimate
the extent to which choices are nonuniform. Our aim is to
allow for a nonuniform distribution over the set of all pos-
sible combinations. The possible parameterizations we can
consider are limited by the information available, at least as
far as small samples are concerned. Because we cannot ob-
serve a sample of the actual combinations played and aggre-
gate quantities are the only available substitute, we propose
a parsimonious parameterization that can be identified from
observations on the weekly number of players, the number
of winners, and the weekly set of numbers drawn. More-
over, the approach we propose is easily extended to allow
for the case in which a known proportion of the population
of players draws uniformly among combinations.

The natural way to describe individual behavior is to as-
sume that they draw without replacement 6 numbers out
of 49 in the same way the lottery mechanism does. We
assume, however, that the individual probability distribu-
tion does not give a uniform weight to every number. We
take for granted that the actual distribution of numbers
that are drawn is uniform, which is supported by tests re-
ported by Haigh (1996). To formalize this idea, let us de-
note p = (p(1),p(2),...,p(49)) as the vector of probabil-
ities p(4) that number i is picked among 49 numbers. p(i)
is the probability that ¢ is chosen first among the 49 num-
bers and should have the properties that p(i) > 0 for all
i€{1,...,.49} and Zfil p(i) = 1. The lottery draw mech-
anism is unbiased so that all p(i) are equal to 1/49. In con-
trast, the individual probabilities for the numbers that indi-
vidual players actually choose could be such that some num-
bers have larger probability of being chosen than others.

The probability of drawing a given (ordered) arrangement
of numbers a = (a1, a2, a3, aq,as,a6) is

p(a1)p(az)p(asz)p(as)p(as)plas)
(1 —=p(a1))(1 — p(a1) — p(az)) ... ’
(1 = p(a1) — plaz) — plas) — plas) — plas))]

(2)

pla;p) = [
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where the expression between brackets exists because
of the “without replacement” nature of the draw. Ob-
viously the probability of choosing the selection o =
{a1,a2,a3,a4,as5,a¢} in any order is as follows:

m(o; p)
- p(a1)p(az)p(as)p(as)p(as)p(as)
pirtsy (L= plp(a1))(1 = p(p(ar)) — p(p(az)))
- (L=p(p(a1)) — plp(az)) — ... — p(p(as)))]
3)

where the summation is over all the elements, p, of the set
of possible permutations of the elements of o, P(c). Note
that p(¢) is not the probability that i is chosen whatever its
rank; that is, p(i) # Z{i}e(mes (o). Moreover, note that
p(t) parameterizes the probability distribution on the set of
draws of 6 out of 49 in a very restrictive manner because
the less restrictive parameterization would be to consider
each w(o) as a parameter (there are millions of these!). The
latter would encapsulate any correlation structure between
the numbers drawn. Clearly, the former imposes constraints
on the correlation structure between two draws but one that
is difficult to characterize.

The probability of choosing three numbers out of o =
{a1,a2,as,a4,as, a6} is slightly more involved because we
have to consider all arrangements of six numbers that con-
tain exactly three in 0. We can write down the probability
of such an event in the following way:

7F{(o;p)

>

(21,32,93,94,75,36)€S(3,0)

p(31)p(52)p(53)p(ja)p(ds)p(Js)
(1 = p(G1)(A = p(H1) ~ p(52))
(= pG) = p(2) — ... — p(Fs)))

4)

where S(3, o) is the set of all (ordered) arrangements of six
numbers such that three exactly are in ¢ and three are in
the complement of o in {1,...,49}.

Similar expressions can be obtained for the probability to
choose four or five numbers among the six in ¢. Because
of the large number of elements (around 6.4E + 9) in a set
like S(3, o), direct evaluation is not possible, but modern
Monte Carlo techniques can be easily adapted to provide
a convenient method to evaluate 7r (o, p) with controlied
accuracy.

2.2 Estimation

Assume that we observe D draws of 6 numbers out
of 49; for each draw we observe the 6 numbers drawn,
o4,d = 1,..., D, the numbers of players (or equivalently
the number of tickets sold), N, and the number of win-
ners of each type—that is, with three correct numbers
ns,q, with four correct numbers n4 4, and so forth. As-
sume, moreover, that the players follow our model of in-
dividual choice of numbers, independently and with iden-
tical parameters p. Identification, of the parameter p could
be achieved, in principle, as soon as each number has
been drawn at least once by the lottery. It is then possible
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to obtain consistent estimates of the parameters through
the maximization of the likelihood. Although it is possi-
ble to write down the likelihood for the observation of
(04, Ng,n3.d, a4, M5,d, M54+1,d76,d)d=1...D» 1D practice it is
easier to consider only a restricted information set. For
instance, suppose the only information to be used is just
(04 Na»n6,4)da=1...0, then the likelihood is

In L(p; (04, Na, M6,d)d=1...0)

D

x Z [n6,aln(m(cq; P)) + (Ng—ne,q) In(1—7(og; p))]. (5)
d=1

Following the same idea, we can extend the information
set to the number of winners with three correct numbers,
we have In L(p; (64, Ng, 3.4, 6,d)d=1...0 ), Which is propor-
tional to

D
> [ngaln(m(04; p)) + ng.aIn(wr(oa; p))
d=1

+ (N4 —n6,d — n3,a) In(1 — w(oq; p) — 7r(0a; p))]. (6)

Extending this to cover other possible prize pools is te-
dious and computationally demanding but conceptually triv-
ial. Because of the difficulty of evaluating 75 (o; p) directly,
we substitute a smoothed unbiased simulated version of it
[see McFadden (1989) and Monfort and van Dijk (1995)
for an introduction to recent developments). Although there
are several ways to carry out the simulation, the simplest
is to apply the technique of importance sampling. This is
described in Appendix B.

We can easily extend the preceding approach to ac-
count for a known proportion of players choosing their
combination uniformly (i.e., players using the Lucky Dip
option). In the simple case, the information set becomes
(04, N4, n6,4,04)da=1...n0, Where d4 is the proportion of uni-
form players in draw d. The likelihood (5) then becomes
In L(p; (¢4, Na, 6,4, 6a)d=1...,p) Which is proportional to

S )
+ (Ng — ne.q) In (1 - 5d|—;! -(1- éd)w(ad;p))} .

An expression similar to this can be derived to extend the
likelihood in (6).

2.3 Data and Estimates of the Distribution

Our data are the first 116 weekly draws from the U.K.
online lottery. The operators, Camelot PL.C, are obliged to
publish the level of sales, the winning numbers, and the
number of winners of each prize pool. They are not obliged
to publish the distribution of numbers actually chosen by
players, and they regard this as commercially confidential
information. This information is only published rarely. To
our knowledge, only a lottery in Switzerland and one in
Canada publish this information. Our data records aggre-
gate weekly ticket sales for the online game only starting

W P a4 H <l
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from the first week of the lottery’s operation in November
1994 until February 1996 (after which the operator intro-
duced a second draw each week). The level of sales is given
in Figure 2, and it is obvious where the rollovers and dou-
ble rollovers occur. The average sales are approximately
£65 million in regular weeks, approximately £75 million
in the 15 rollover weeks, and the two double rollover weeks
have sales in excess of £100 million (a further two weeks
were “superdraws” in which the operator guaranteed a min-
imum size of jackpot, but this guarantee did not prove to
be a binding constraint in either week—that is, a sufficient
number of tickets were sold for the operator not to have
to top up the jackpot prize pool). The proportion of draws
that resulted in rollovers is .2361—that is, there were more
than 20 times more rollovers than we would have expected.

Figure 3 shows the results of estimating the unknown
distribution of numbers chosen by players derived using
the number of winners of the six-ball (i.e., jackpot) and
three-ball prize pools, the level of sales, and the published
number of tickets that were bought using the Lucky Dip
facility. There is obviously considerable nonuniformity in
the selection of numbers by players. The likelihood ratio
test of uniformity is highly significant. The difference be-
tween the likelihoods with and without allowing for Lucky
Dip is 924.936, which shows that allowing for the Lucky
Dip is important. Nevertheless the estimates are similar; see
Figure 3.

The popular conception that numbers above 31 are less
popular (because players are thought to choose their birth
dates) appears to be broadly true, although precisely why
33 appears to be popular and 1, 21, and 26 so unpopular is
unclear. This estimated distribution allows us to predict the
number of winners of each prize pool for any draw of num-
bers. Thus, in Figures 4 and 5, we show the predicted and
actual proportion of winners of the six (i.e., jackpot) and
three-ball match prize pools. Our estimated distribution of
numbers selected clearly does much better at predicting the
number of winners than the uniform distribution does, al-
though there are some outliers that suggest we have not cap-
tured all aspects of the distribution. One particular outlier
illustrates the problem. In draw 10 there were 133 jackpot
winners (each won a little more than £100,000—compared
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Figure 2. National Lottery Weekly Sales.
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Figure 3. Estimated Distribution of Numbers Selected.

with a typical jackpot winner who would expect to receive
approximately £2 million) and in draw 69 there were 53.
The mean number of jackpot winners when ticket sales are
£65 million per draw should be 4.65 with a standard devi-
ation of 2.16 when players choose uniformly. The assump-
tion that the numbers chosen by players are independent of
each other would not allow us to capture combinations that
form patterns, and hence our estimated distribution does not
capture this phenomenon. It would be extremely difficult to
generalize our methodology to capture such behavior [but
see Cox, Daniell, and Nicole (1998) for similar results using
an alternative methodology that does attempt to capture this
behavior]. Notice that outliers are less of a problem with the
£10 prize (three-ball matches) and our estimates of the pro-
portion of winners are very close to the actual proportions.
In draw 10, the winning combination made a pattern on the
ticket panel. Maiching “patterns” are less of an issue when
only three numbers are involved.
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Figure 4. Predicted and Actual Winners—-Jackpot Prize. Week 10 is
so much of an outlier (the proportion of winners was 1.904 x 109) that
to include it would so distort the scale that little other variation would be
seen.
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Our estimated distribution should allow us to achieve a
higher return on a ticket. The return from exploiting the
estimated distribution (i.e., the actual return on average) is
just .44 in regular weeks when the average sales are £65
million. In a double-rollover week, when sales are £110
million and the rollover is more than £20 million so that
the jackpot is approximately £40 million, it rises to .65.
In contrast, random choice (i.e., using the operator’s Lucky
Dip facility) would yield expected returns of .45 and .67 in
the regular and double-rollover cases, respectively. Figure
1 plots the relationship between expected value and sales
for both the uniform and the estimated distribution cases.
The differences are small when the returns are evaluated at
the observed, very high, levels of sales. The six least pop-
ular numbers (46, 41, 47, 48, 40, 36) would, in a typical
nonrollover week, yield a return of .9533 (i.e., —4.63% per
week) whereas the six most popular numbers (7, 19, 27, 17,
18, 9) would yield a return of only .2303 (i.e., —76.34% per
week)—assuming that the distribution remains unchanged.
In Figure 6 we plot the distribution of expected values im-
plied by our estimates. Of course, in a rollover the expected
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B
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Expected Value of a Ticket

Figure 6. Estimated Distribution of Expected Value.
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values of all tickets are raised and then a knowledge of the
popular combinations might give one sufficient “edge” to
make investing in this asset a profitable activity, although
it would be an extremely risky investment.

Our finding, shown earlier in Figure 1, that the expected
value seems to be relatively insensitive to conscious selec-
tion explains why players choose popular numbers: There
is some utility gain associated with playing one’s “lucky”
combination, and this is sufficient to outweigh the small loss
in expected value associated with the higher probability of
sharing the jackpot in the remote event that one wins. What
the source of this utility gain might be is unclear: There is
some literature that suggests that players suffer from an “il-
lusion of control,” but it is also possible that choosing one’s
own numbers might endow one with “bragging rights” in
the event of winning.

3. ESTIMATING THE DEMAND ELASTICITY

The previous sections have developed the relevant theory
of how the expected value of holding a ticket is determined
and estimated the relevant parameters to enable these ex-
pected values to be computed. This section computes those
expected values and shows how they vary with sales and
with rollovers. The aim is to estimate the “price” elasticity
of demand for lottery tickets with respect to the expected
value of a ticket and compare this in the case in which
the expected value allows for conscious selection with the
uniform selection case. Figure 7 plots the relationship be-
tween sales (in £ million) and the expected value (assuming
the uniform case). It clearly shows the distinction between
regular draws with no rollover from the rollover and two
double-rollover cases.

The essence of our empirical model is formed by con-
fronting some aggregate demand specification, D(V'), with
a mechanism by which individuals form their expectations
about the expected value that will reign when the draw takes
place. We make the rational-expectations assumption that
individuals forecast sales correctly so that their expectation
of the expected value at the time of the draw is given by
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the actual expected value given the aggregate sales for that
draw. The majority of sales occur in the 36 hours immedi-
ately prior to the draw after the operator has announced its
forecast of the likely size of the jackpot, which has typi-
cally been very accurate. Moreover, we assume that players
take account of the extent of conscious selection that oc-
curs. The assumption that demand responds to the expected
value and not to higher moments of the distribution can be
defended on the grounds that the wager is typically very
small and the assumption that agents are risk neutral can
be thought of as a good local approximation for such small
wagers. That is, we assume that

)]

where ¢ is a random disturbance uncorrelated with V' and
V is the expected value that depends on R, the size of the
rollover, and the level of sales. The demand for tickets de-
pends on V. We do not consider other regressors because
rollovers are random events uncorrelated with other sys-
tematic variables so that there is no question of inducing
omitted variable bias. Including these variables would only
serve to improve the fit of the model. The resulting esti-
mating equation is

V=V(Rn%, nP=DV)+e nP= n® =n,

n=D(V(R,n))+¢e, &~ N(0,02), (8)
which cannot be solved explicitly for n because the inverse
supply function cannot be inverted. Thus, it is not appropri-
ate to estimate (8) simply by least squares. Clotfelter and
Cook (1993) used instrumental variables (IV) with R em-
ployed as an instrument for V, but they also included the
size of the jackpot as well as V in the demand equation
itself. Because V is a linear function of J + R/n, where
J is the jackpot, there is a perfect collinearity problem, so
their results are unsatisfactory at this point.

It might be argued that intertemporal substitution is an
important consideration when the expected value varies
from draw to draw as a result of the random incidence of
rollovers. Thus, one might be tempted to include the ex-
pected value of Vi ; in D(.). This expected future value
can be expressed, however, as the weighted sum of the
value when a rollover occurs and the value when no
rollover occurs, where the weights are the probabilities of
a rollover occurring and not occurring. That is V§, =
E(Re—1).V(Re,nen (Re)) + (1 = §(Re—1))-V(0,m41(0)),
where £(.) is the rollover probability. This can be rewrit-
ten as Vg y = V(0,741(0)) + §(Re—1).[V (R, nes1(Re)) —
V(0,7441(0))]. The first term is constant across draws be-
cause it is simply the value of a ticket when there is no
rollover. The second term does vary across draws depend-
ing on whether there is a rollover or not, but it is the product
of two small numbers, the probability of a further rollover
and the effect of that rollover on the expected value. We ig-
nore this complication here and intend to return to the issue
when we have suitable panel microdata available to us.

We adopt two approaches to estimation of our simple
framework. One can either estimate the elasticity using IV
or one can explicitly estimate Equation (8) by nonlinear
methods. In Table 1 we present estimates in which we use
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the size of the rollover as our instrument and a dummy vari-
able for a rollover having occurred, as well as full informa-
tion maximum likelihood (FIML), nonlinear least squares,
and ordinary least squares (OLS). The estimates presented
in Table 1 are based on a double log specification, although
other specifications yield similar elasticities. It is difficult
to be more general than this because we have essentially
just two observations, the mean of sales and V' in regu-
lar weeks and the means in rollover weeks (with just two
double-rollover weeks). Thus, our estimates should be re-
garded as a local approximation to the demand curve-—we
do not have sufficient information to allow for greater flexi-
bility and are unlikely to ever have more because we cannot
expect to have many triple rollovers given the game design
and size of sales. The results are a significant improvement
on those of Clotfelter and Cook (1993): Here we find a posi-
tive relationship between the expected value of a ticket and
the level of sales—that is, a negative “price” elasticity—
whereas Clotfelter and Cook found a negative relationship.
The effects of expected value are highly significant, and the
generalized R? shows a respectable degree of fit consider-
ing that there is a single explanatory variable [see Pesaran
and Smith (1994), whose criterion we use for the OLS and
IV cases, and we calculate an equivalent statistic for the
FIML and nonlinear least squares cases]. Adding other ex-
planatory variables, to capture the time trend and some of
the dynamics, improves the fit, but they have little effect
on the estimated V elasticity, as one would expect because
these variables are orthogonal to rollovers.

Although instrumenting with a dummy variable equal to
unity when there is a rollover results in a smaller elasticity
than instrumenting with the size of the rollover, neither of
these elasticities are significantly different from the non-
linear FIML estimates. Moreover, the least squares results
are essentially identical. Thus, the results suggest that the
endogeneity of V' does not give rise to large bias in simple
least squares estimates. This arises because the U.K. game
operates at a high level of sales in all draws—that is, close
to the asymptote where the expected value is essentially
independent of the level of sales so that the endogeneity
suggested by the theory is empirically unimportant. Inspec-
tion of Figure 7 shows that there is essentially no variation
in the expected value in regular weeks; That is, the sales
levels are so high that the V' function is close to being flat
so that all of the variation in the expected value comes from
the effect of rollovers. It could be that, in different lottery
designs in which the V' function is not so flat at observed

Table 1. Estimated V Elasticities: Nonuniform Case
Estimation method V elasticity Generalized R?
FIML 772 (121) .457
OLs 768 (.079) 453
1V (rollover size) .857 (.081) 421
IV {rollover dummy) 654 (.083) 422

NOTE Number of observations ts 116 Standard errors are in parentheses
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levels of play, there would be some more pronounced dif-
ferences across estimation methods.

Clotfelter and Cook (1993) also made the assumption
of uniform selection and so did not take account of the
possible effects of nonuniform selection on this estimated
relationship. When we estimate (8) using expected values
generated under the assumption of uniformity, however, we
find results (not presented here) that are not significantly
different from those in Table 1. This is for the same rea-
sons as IV and OLS being little different: The U.K. game
operates at very high levels of sales given its 6/49 design.
Again, howeyver, it would be unwise to generalize from this
to other games that have not been designed to operate at
high sales.

Relative to games elsewhere, the U.K. game is relatively
easy to win because the jackpot odds are just 1 in 14 mil-
lion and yet the population is 58 million. In contrast, several
U.S. games operate at levels of V' considerably below their
asymptotic expected values because the game is designed
to be difficult to win—examples are Powerball (which has
a jackpot probability of approximately 1 in 80 million) and
the Californian State game (which has a probability of ap-
proximately 1 in 15 million but a somewhat smaller pop-
ulation than the U.K.). The large number of rollovers in
the U.K. occurs mainly because of the extent of conscious
selection, not just because of the underlying 6/49 design.
Thus, we would not expect the results here to carry over to
other games.

Note that the “price” elasticity is the elasticity with re-
spect to V, reported in Table I, multiplied by V/(1 - V) so
that the price elasticity ranges from —.80 to —1.06 and is
never significantly different from unity for any of the es-
timates. Thus, we conclude that the elasticity is very close
to unity and quite precisely estimated. We would normally
expect a revenue-maximizing monopolist to price output
where the demand elasticity is unity, but this product is
more complex because there is an intertemporal effect from
current pricing decisions. That is, raising the price from the
unit elasticity price will reduce demand in regular weeks
but increase the frequency of rollovers that would tend to
counteract the first effect on sales. Because the U.K. game
operates at such a high level of sales, however, we can safely
ignore this complication.

4. IMPLICATIONS AND CONCLUSION

This article is concerned with the elasticity of demand
for lottery tickets. Earlier work has typically exploited dif-
ferences in the terms of lotteries across time or across states
to estimate the elasticity and found elasticities greater than
unity. Our analysis shows that rollovers produce changes
in the expected value of holding a ticket that cannot be
arbitraged away, and we produce estimates that are based
on these exogenous variations in the expected value of a
ticket arising from rollovers. That is, we derive the inverse
supply curve for the industry and exploit the large number
of rollovers that have occurred in our time series data that
shift the supply curve to facilitate the identification of the
price elasticity of demand.
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Indeed, we found many more rollovers than we would
have expected from the design of the lottery. The reason
for this is that participants do not choose their numbers
uniformly—that is, randomly from a uniform distribution.
This results in a smaller number of combinations of num-
bers being sold than would otherwise have been the case.
The result is an increase in the variance in the number of
jackpot winners (and of other prize pools). Thus, there are
more occasions when there are many jackpot winners and
more occasions when there are no winners; that is, there
are more rollovers than one would otherwise expect. Our
estimates of the actual probability distribution for the num-
bers chosen by players shows significant departures from
uniformity and a corresponding increase in the frequency
of rollovers.

We used time series data from the U.K. National Lottery
lotto game to illustrate the methodology. Having derived
the inverse supply curve for the market, we note that it
cannot be inverted analytically, so we cannot obtain a lin-
ear reduced form for the model. Thus, we apply nonlinear
estimation methods. We find that the elasticity of demand
with respect to rollover-induced changes in the expected
value of a ticket in a simple demand specification is close
to unity. Because the objective of the government in initiat-
ing the lottery was to maximize “good-causes” revenue, our
results suggest that the take-out rate is set at about the right
level. That is, good-causes revenue could not be raised by
either raising or lowering the take-out rate (i.e., increasing
or reducing the amount returned as prizes).

Our estimates assume, however, that there are no omit-
ted variables that are correlated with rollovers, and there
are two reasons to doubt this that require further investi-
gation. First, when large jackpots occur, there is additional
publicity in the media that may directly affect demand, and
this would imply that the estimates were not appropriate
for analyzing the effect of changes in “price” arising from
factors not accompanied by additional publicity—such as
design changes. That is, even though players have no prefer-
ence over the variance or skewness in returns, in aggregate,
changes in higher moments of the prize distribution may
affect the publicity that the game gets and hence sales. This
might suggest that a rollover-induced change in expected
value might have a greater effect on sales than one induced
by the same change in expected value from a change in the
take-out rate, in which case our estimated price elasticity
would be biased upward.

Second, there may be systematic differences in players
across rollover and regular draws. For example, if the rich
face higher transaction costs than the poor, they may be
more likely to choose to play only during rollover weeks
and, because income may have a direct effect on demand,
the composition of players would change systematically
with rollovers. In this case our estimated price elasticity
would be biased downward/upward if lottery tickets had a
positive/negative income elasticity.

Because this article has established that conscious selec-
tion of numbers by players does not affect the estimated
demand elasticity, we will rely on these findings in subse-
quent work that addresses these complexities.
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APPENDIX A: PROOFS OF THE PROPOSITIONS

Proposition A.1. If N; and N are distributed as T'(n —
1,7y, 7TF), then
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and
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(d) E(n—NJ—~NF)_~ 1-—7rJ~7TF ’
Proof.

(a) It is a standard result that Ny ~ B(n—1, 7). Hence,
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The result follows from the binomial theorem.
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where we have set ¢/ = i + 1,5/ = 5 — 1. The inner sum
is (1 — m;)»~1=* by the binomial theorem, and the result
follows from a second application of this theorem.

{c) We have
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using the multinomial theorem. The result follows from the
binomial theorem.

(d) We have
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where 7' = j — 1. The proof is completed as in (c).

Proof of Proposition 2. 'We now justify the comparative
statics results of Section 3. The proofs of parts 1 and 2 of
Proposition 2 are obvious. Now observe that ¢, the partial
derivative of ¢ with respect to n, can be written in the form

bp = wye K — Rr;U(m m)},

where ¥(z) = (e® - 1 — z)/x? and we have suppressed the
dependence on o. The series expansion of the exponential
function can be readily used to show that (a) ¥ is strictly
increasing for x > 0, (b) ¥(z) — oo as x — oo, and (c)
¥(z) — & as z — 0. Proposition 2, part 4, follows from (a)
and (c). To establish Proposition 2, part 3, observe that any
stationary point 7 of ¢ satisfies 7» = &/n;, where ¥(&) =
K/Rr; = C, say, which can be rearranged as

e =1+ +C3° (A.1)
Because an exponential curve can intersect a parabola at, at
most, two points and & = 0 satisfies (A.1), there is, at most,
one stationary point of ¢ in n > 0. It also follows from
(b) and (c) that, if R < R(o), such a stationary point must
be a maximum. This proves Proposition 2, part 3. We also
note that, as R increases, C in (A.1) decreases and hence
so does the right side of (A.1). Because e” is increasing,
the positive root of (A.1) decreases. This implies that the
locus of maxima of ¢ as R varies is downward sloping,
asymptotic to the horizontal line cutting the vertical axis at
(1 — 7), and intersects the vertical axis at 1 — 7+ K(o) +
7;(0)R(c) =1 -7+ K(0o).

It is clear that the results of parts 1, 2, and 4 of Propo-
sition 2 are preserved by the addition operation in the def-
inition of V (with R = max,cg R(o) for Proposition 2,
part 4). This is not true for the assertion in Proposition
2, part 3, however, as the following example shows. Let
7 =.5p = 1,a = 0. That is, the only prize is the jackpot
so that 7r(o) disappears from the expression for ¢. The
distribution 7 on the set S of six subsets of {1,2,...49}
is described by partitioning S into two arbitrary subsets Sy
and S, with |S7] = 9,413,941 and |S;| = 4,569,875 and
setting

9.6825 x 10~8 foro € S
7TJ( =
1.9365 x 108 for o € S5

It is readily verified that } __s7s(0) = 1, and numerical
evaluation with R = 5.164 x 10° shows a (shallow) local
minimum at n = 63.5 x 10%. Indeed, Table A.1 gives values
of ¢1 = ¢(o) for o € S1,¢2 = ¢(o) for o € Sz, and V at
five different values of »n in millions (the second and fourth

————— e GO PG h t ©-2000AH-HghisFreserved———
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Table A.1. Two Local Maxima of V
n 20 40 635 110 200
b 648 6160 .5800 5469 5258
o2 .2435 .3391 4113 4819 5149
14 .5164 5255 5244 5257 5222

corresponding approximately to the two local maxima of
V). Note that the maximum of ¢; is approximately at 20 x
10°, but that of ¢ lies above 200 x 108,

Properties of V as a Function of &

To derive properties of V' as a function of 7(= 7;), we
must express 7 in terms of 7. We assume that for each
draw o € S a fixed prize is won by any participant whose
selection lies in the set S(o), where o &€ S{o). Then the
expansion for V in Corollary 1 can be rearranged as

V(m)=constant+ 3 [B Y m(o")—D|e ™,
oes o'eS(o)

(A2)

where B = ap/|S|,D = [p(1—7)+ R/n]/|S|, and the “con-
stant” refers to terms independent of .

We need to assume that S(o) is sufficiently regular in the
sense that, for all 0,0’ € S,

1S(o)| = |S(a")| (A.3)

and

o' € S(o) & o€ S(o). (A4)

For many lotteries, o is a selection of p numbers and S(o) =
{o' € §: |oNa’| = q} for some ¢ < p. In such a case (A.3)
and (A.4) are clearly satisfied.

Proposition A.2. Suppose (A.3) and (A.4) hold for all
o,0' € S, and let S be the common value of |S(o)|. If

Sa < (1 —1)|S], (A.5)

then the Hessian matrix of V(x) is negative definite for
n > @i, where

2a5| S|
(1 = 7)|S| — Sa}

n= (A.6)

Remark. Because S/|S| is the probability of winning a
fixed prize, (A.5) asserts that the expected value of a fixed
prize to an individual is less than the total expected value
of prizes for that individual. If (A.5) fails, it follows from
the law of large numbers that we are unlikely to be able to
pay fixed prizes out of the prize pool for large n; practical
lottery designs must satisfy (A.5). For the UK. lottery, (A.6)
is also satisfied because we have, approximately, i = 14 x
105 and n > n is always satisfied at observed levels of
participation.

Proof of Proposition A.2.

A straightforward calculation applied to (A.2) and using
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(A.4) shows that

_ov
Om(o)or (o)
2 (B Y eres(o) T(o") — D) e ifo =0
=\ —nB(e ™" 4 @) if o’ € S(o)
0 otherwise.

Writing H for the Hessian matrix evaluated at 7(o) =
ny(o) = 1/}8| for all o € S and letting x be a vector
with S as index, set

xTHx = n?(BS/|S| —

D)e /15l Za; 0)?

oS
where
k= —-2nBZ Z e 18z (o) 2 (o)
o o’'eS(o)
< 2nBe~ /15! Z Z 0)22 Z
o o'e€S(o) o o'eS(o)

2nBSe~"/I5! Z z(o)?

and where the second line applies the Cauchy—Schwarz in-
equality and the subsequent equation exploits (A.3) and
(A.4). It follows that H is negative definite provided
n?(BS/|S| — D) + 2nBS < 0, and this can be rewritten

as
n > (2a5‘—}—;)/[1—¢—a|—§l].

When R = 0, this reduces ton > f. If R > 0, then n > 7 is
sufficient for (A.7); indeed, for large enough R any positive
n satisfies (A.7).

(A.7)

APPENDIX B: DESCRIPTION OF THE SIMULATOR

In our case, a convenient way to simulate 7y {o; p) is to
consider the following quantity:

- )

uh)a p)

B.
“2Gn) B.1)

7rF(O'; p7

where ¢(j) is a probability function that supports S(3,0),j
is an element of S(3,0),p(j; p) is the probability that the
arrangement j occurs (in that order) when the probability
distribution of the first number drawn is p [Eq. (4)], and H
is the number of simulations. U is an (H x 9) matrix of
realizations of uniform deviates that are the basis for the
generation of the H elements j(uy) of S(3,a). For exam-
ple, the realizations j(up) can be obtained in the following
stages:
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1. Using the first three columns of U, draw H times
without replacement three numbers out of ¢; note that this
implies an ordering.

2. Using the next three columns of U, draw H times
without replacement three numbers out of the complement
of ¢ in {1,...,49}.

3. Using the last three columns of U, draw H times one
number out of {1, 2, 3, 4}, say ¢;(U), one number out
of {i1(U) + 1,...,5}, say i2(U), and one number out of
{i2(U) +1,...,86}, say i3(U). This defines the positions of
the three numbers drawn out of o among the 6.

This last operation, together with the draws without replace-
ment, defines an arrangement of numbers such that exactly
3 are in o. These operations define ¢(j(u)) such that

, 314001 1 1
Q(J(u)) = —6_74_?”15_11(11)6—7,2(11,),

where v is a (1 x 9) vector of realizations of uniform vari-
ables and i(u) are as defined previously. By construction,
#r(o,p, U) is unbiased for 7z (o; p); moreover, it is con-
tinuous with respect to each element of p.

The precision of #g(o,p,U) can be further im-
proved by using an antithetic variance-reduction argu-
ment (see Davidson and MacKinnon 1993). The sim-
plest way to do so is to calculate 7p(o,p,U) and
#7r{o,p,1 — U), for the same U, and then consider
7_TF(0', p, U) = %("?F(Uv P, U) + 'ﬁ'F(J> p,1— U)) The im-
provement comes because 7 (o, p, U) has a smaller vari-
ance than (o, p,U). The extent of the improvement is
difficult to measure a priori and depends on the negative
correlation between 7 (o, p, U) and #p(o,p,1 — U).

It can be shown that if H and D tend to infinity in such
a way that vVD/H — 0, the maximization of the simulated
maximum likelihood gives asymptotically consistent esti-
mates (Monfort and van Dijk 1995).

(B.2)

[Received September 1998. Revised July 1999.]
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