Rules of Elasticities - Andrew Harkins (EC123)

(1) Elasticity of a constant	$El_{x}\left(A\right)=0$
(2) Product rule for elasticities	$El_{x}(f(x)g(x)) = El_{x}f(x) + El_{x}g(x)$
(3) Chain rule for elasticities	$El_{x}(f(g(x))) = El_{u}f(u)El_{x}u$
	where $u = g(x)$
(4) Quotient rule for elasticities	$El_{x}\left(\frac{f}{g}\right) = El_{x}f(x) - El_{x}g(x)$
(5) Elasticity of a sum	$El_{x}(f+g) = \frac{fEl_{x}f+gEl_{x}g}{f+g}$
	$El_{x}(f-g) = \frac{fEl_{x}f-gEl_{x}g}{f-g}$

EMEA (second edition) p. 242 (Section 7.7 'Why Economists Use Elasticities', Q10)

Clearly you can also apply rules (2)-(5) when f and g are not functions of x by using rule (1).

Example application of the product rule

Find $El_x(-10x^{-5})$

Call f = -10 and $g = x^{-5}$. Using the product rule for elasticities $El_x(-10x^{-5}) = El_x(fg) = El_xf + El_xg$. Using rule (1) we get $El_xf + El_xg = 0 + El_xg = El_xx^{-5}$. Now directly computing $El_xx^{-5} = \frac{dx^{-5}}{dx}\frac{x}{x^{-5}}$ we get $El_x(-10x^{-5}) = -5$

Example application of the chain rule

Find $El_x(e^{2x^2})$

Call $f(u) = e^u$ and $u = g(x) = 2x^2$. Using the chain rule for elasticities we get $El_x(f(g(x))) = El_u f(u) El_x u = El_u e^u El_x 2x^2$. Taking $El_u e^u$ first we compute this as $El_u e^u = \frac{de^u}{du} \frac{u}{e^u} = u = 2x^2$. Now looking at $El_x 2x^2$ and directly computing (or using the product rule) we get $El_x 2x^2 = \frac{d2x^2}{dx} \frac{x}{2x^2} = 2$. Putting these two together we arrive at $El_x(e^{2x^2}) = 4x^2$.

Question 5 from problem set #4

Q5: Find the elasticity with respect to x when $x^a y^b = Ae^{x/y^2}$ and a, b and A are strictly positive constants.

To solve this problem we take a similar approach to implicit differentiation. We will try to find the elas-

ticity of *y* with respect to *x* on both sides of the equality and then rearrange to find an expression for $El_x y$. Notice here that *y* is an implicit function of *x*.

To find $El_x x^a y(x)^b$, first use the product rule to get:

$$El_{x}x^{a}y(x)^{b} = El_{x}x^{a} + El_{x}y(x)^{b} = a + El_{x}y(x)^{b}$$

Now we apply the chain rule to get

$$El_{x}y(x)^{b} = El_{y}y(x)^{b}El_{x}y(x) = bEl_{x}y(x)$$

For the right hand side of the equality we can see straight away (by (2) and (1)) that $El_x Ae^{x/y(x)^2} = El_x e^{x/y(x)^2}$. Use the chain rule for elasticities first to get:

$$El_{x}e^{x/y(x)^{2}} = El_{u}e^{u}El_{x}\frac{x}{y(x)^{2}}$$

From the previous example above we know that $El_u e^u = u = \frac{x}{y(x)^2}$. For $El_x \frac{x}{y(x)^2}$ we use the 'quotient rule for elasticities' to arrive at:

$$El_{x}\frac{x}{y(x)^{2}} = 1 - El_{x}y(x)^{2} = 1 - 2El_{x}y(x)$$

Now, putting it all together (both sides) gives:

$$a + bEl_{x}y(x) = \left(\frac{x}{y(x)^{2}}\right)\left(1 - 2El_{x}y(x)\right)$$

Rearranging we get:

$$El_{x}y(x) = \frac{\frac{x}{y(x)^{2}} - a}{2\frac{x}{y(x)^{2}} + b}$$

Multiplying numerator and denominator by y^2 we finally arrive at:

$$El_x y(x) = \frac{x - ay^2}{2x + by^2}$$

This is the same answer we got when using the 'natural log method' which I discussed in the seminar (i.e. rewrite $x^a y^b = Ae^{x/y^2}$ as $\hat{x} + \hat{y} = \hat{c} + e^{\hat{x} - 2\hat{y}}$ where $\hat{x} = ln(x)$, $\hat{y} = ln(y)$, and \hat{c} is a constant, and then find $\frac{d\hat{y}}{d\hat{x}}$ via implicit differentiation).