Rules of Elasticities - Andrew Harkins (EC123)

EMEA (second edition) p. 242 (Section 7.7 'Why Economists Use Elasticities', Q10)

(1) Elasticity of a constant	$E l_{x}(A)=0$				
(2) Product rule for elasticities	$E l_{x}(f(x) g(x))=E l_{x} f(x)+E l_{x} g(x)$				
(3) Chain rule for elasticities	$E l_{x}(f(g(x)))=E l_{u} f(u) E l_{x} u$				
where $u=g(x)$		$	$	(4) Quotient rule for elasticities	$E l_{x}\left(\frac{f}{g}\right)=E l_{x} f(x)-E l_{x} g(x)$
:---	:---				
(5) Elasticity of a sum	$E l_{x}(f+g)=\frac{f E l_{x} f+g E l_{x} g}{f+g}$				
	$E l_{x}(f-g)=\frac{f E l_{x} f-g E l_{x} g}{f-g}$				

Clearly you can also apply rules (2)-(5) when f and g are not functions of x by using rule (1).

Example application of the product rule

Find $E l_{x}\left(-10 x^{-5}\right)$

Call $f=-10$ and $g=x^{-5}$. Using the product rule for elasticities $E l_{x}\left(-10 x^{-5}\right)=E l_{x}(f g)=E l_{x} f+E l_{x} g$. Using rule (1) we get $E l_{x} f+E l_{x} g=0+E l_{x} g=E l_{x} x^{-5}$. Now directly computing $E l_{x} x^{-5}=\frac{d x^{-5}}{d x} \frac{x}{x^{-5}}$ we get $E l_{x}\left(-10 x^{-5}\right)=-5$

Example application of the chain rule

Find $E l_{x}\left(e^{2 x^{2}}\right)$
Call $f(u)=e^{u}$ and $u=g(x)=2 x^{2}$. Using the chain rule for elasticities we get $E l_{x}(f(g(x)))=E l_{u} f(u) E l_{x} u=$ $E l_{u} e^{u} E l_{x} 2 x^{2}$. Taking $E l_{u} e^{u}$ first we compute this as $E l_{u} e^{u}=\frac{d e^{u}}{d u} \frac{u}{e^{u}}=u=2 x^{2}$. Now looking at $E l_{x} 2 x^{2}$ and directly computing (or using the product rule) we get $E l_{x} 2 x^{2}=\frac{d 2 x^{2}}{d x} \frac{x}{2 x^{2}}=2$. Putting these two together we arrive at $E l_{x}\left(e^{2 x^{2}}\right)=4 x^{2}$.

Question 5 from problem set \#4

Q5: Find the elasticity with respect to x when $x^{a} y^{b}=A e^{x / y^{2}}$ and a, b and A are strictly positive constants.

To solve this problem we take a similar approach to implicit differentiation. We will try to find the elas-
ticity of y with respect to x on both sides of the equality and then rearrange to find an expression for $E l_{x} y$. Notice here that y is an implicit function of x.

To find $E l_{x} x^{a} y(x)^{b}$, first use the product rule to get:

$$
E l_{x} x^{a} y(x)^{b}=E l_{x} x^{a}+E l_{x} y(x)^{b}=a+E l_{x} y(x)^{b}
$$

Now we apply the chain rule to get

$$
E l_{x} y(x)^{b}=E l_{y} y(x)^{b} E l_{x} y(x)=b E l_{x} y(x)
$$

For the right hand side of the equality we can see straight away (by (2) and (1)) that $E l_{x} A e^{x / y(x)^{2}}=E l_{x} e^{x / y(x)^{2}}$. Use the chain rule for elasticities first to get:

$$
E l_{x} e^{x / y(x)^{2}}=E l_{u} e^{u} E l_{x} \frac{x}{y(x)^{2}}
$$

From the previous example above we know that $E l_{u} e^{u}=u=\frac{x}{y(x)^{2}}$. For $E l_{x} \frac{x}{y(x)^{2}}$ we use the 'quotient rule for elasticities' to arrive at:

$$
E l_{x} \frac{x}{y(x)^{2}}=1-E l_{x} y(x)^{2}=1-2 E l_{x} y(x)
$$

Now, putting it all together (both sides) gives:

$$
a+b E l_{x} y(x)=\left(\frac{x}{y(x)^{2}}\right)\left(1-2 E l_{x} y(x)\right)
$$

Rearranging we get:

$$
E l_{x} y(x)=\frac{\frac{x}{y(x)^{2}}-a}{2 \frac{x}{y(x)^{2}}+b}
$$

Multiplying numerator and denominator by y^{2} we finally arrive at:

$$
E l_{x} y(x)=\frac{x-a y^{2}}{2 x+b y^{2}}
$$

This is the same answer we got when using the 'natural log method' which I discussed in the seminar (i.e. rewrite $x^{a} y^{b}=A e^{x / y^{2}}$ as $\hat{x}+\hat{y}=\hat{c}+e^{\hat{x}-2 \hat{y}}$ where $\hat{x}=\ln (x), \hat{y}=\ln (y)$, and \hat{c} is a constant, and then find $\frac{d \hat{y}}{d \hat{x}}$ via implicit differentiation).

