## Problem Set 5-EC123

## Q4 (a)

Writing $z=e^{x(t) y(t)^{3}}$ and using the chain rule we find that $\frac{d z}{d x}=\left(\frac{d x}{d t} y^{3}+x 3 y^{2} \frac{d y}{d t}\right) e^{x y^{3}}$.
Substituting in for $x^{\prime}(t)$ and $y^{\prime}(t)$ we get

$$
\frac{d z}{d x}=\left(2 t y^{3}+x 3 y^{2} 3 t^{2}\right) e^{x y^{3}}=t y^{2} e^{x y^{3}}(2 y+9 x)
$$

## Q4 (b)

Writing $z=x^{2} h(x(t), y(t))$ again we use the chain rule to get

$$
\begin{gathered}
\frac{d z}{d t}=2 x x^{\prime}(t) h(x(t), y(t))+x^{2} \frac{d h(x(t), y(t))}{d t} \\
\frac{d z}{d t}=2 x 2 t h(x, y)+x^{2}\left(\frac{\partial h(x, y)}{\partial x} \frac{d x}{d t}+\frac{\partial h(x, y)}{\partial y} \frac{d y}{d t}\right) \\
\frac{d z}{d t}=2 t x h(x, y)+x^{2}\left(\frac{\partial h(x, y)}{\partial x} 2 t+\frac{\partial h(x, y)}{\partial y} 3 t^{2}\right)
\end{gathered}
$$

## Q5 (a)

We are given $z=F(x, y)=x(t)^{2}+e^{y(t)}$ and then compute

$$
\frac{d z}{d t}=2 x \frac{d x}{d t}+e^{y} \frac{d y}{d t}=2 x 3 t^{2}+e^{y} 2
$$

Simplifying this eventually leads to $\frac{d z}{d t}=2\left(3 t^{5}+e^{2 t}\right)$

## Q5 (b)

Starting with $Y(K, L)=K(t) L(t)^{2}$ we get

$$
\frac{d Y}{d t}=\frac{\partial Y}{\partial K} \frac{d K}{d t}+\frac{\partial Y}{\partial L} \frac{d L}{d t}=L^{2} K^{\prime}(t)+2 K L L^{\prime}(t)
$$

## Q5 (c)

As I think I said in the seminar, it might be easier to rewrite the function as $F(r, u(r), v(r))$ where $u(r) \equiv(1-r)$ and $v(r) \equiv(1-r)^{-1}$. Then differentiating $F$ with respect to $r$ we get

$$
\frac{\partial F}{\partial r}+\frac{\partial F}{\partial u} \frac{d u}{d r}+\frac{\partial F}{\partial v} \frac{d v}{d r}=\frac{\partial F}{\partial r}-\frac{\partial F}{\partial u}+\frac{\partial F}{\partial v}(1-r)^{-2}
$$

Q5 (d)
Finding $\frac{d z}{d t}$ and $\frac{d z}{d s}$ we should see that

$$
\frac{d z}{d t}=\frac{\partial F}{\partial f} \frac{d f}{d t}+\frac{\partial F}{\partial g} \frac{d g}{d t} \text { and } \frac{d z}{d s}=\frac{\partial F}{\partial g} \frac{d g}{d s}
$$

