Problem Set 6 - EC123

Q7 (a)

The first part of the question asks us to find the demand function of a hypothetical consumer with utility function $U=x^{a}+y$ and income m. We will use the Lagrange multiplier method to solve this particular problem. We are given the task of solving

$$
\begin{aligned}
& \qquad \max _{x, y} x^{a}+y \\
& \text { s.t. } p x+y=m
\end{aligned}
$$

Writing the Lagrangian we get

$$
\mathcal{L}:=x^{a}+y-\lambda(p x+y-m)
$$

Assuming an interior solution (as stated in the question) we use the first order conditions for maximisation to solve for x, y and λ. Starting with the FOCs

$$
\begin{gathered}
\frac{\partial \mathcal{L}}{\partial x}=a x^{a-1}-\lambda p=0 \\
\frac{\partial \mathcal{L}}{\partial y}=1-\lambda=0 \\
\frac{\partial \mathcal{L}}{\partial \lambda}=p x+y-m=0
\end{gathered}
$$

We can see that $\lambda=1$ and so $a x^{a-1}=p$. This gives us $x=\left(\frac{p}{a}\right)^{\frac{1}{a-1}}$ and $y=m-$ $p\left(\frac{p}{a}\right)^{\frac{1}{a-1}}$. It is possible to simplify the demand function for y as $m-p^{1+\frac{1}{a-1}} c=m-p^{\frac{a}{a-1}} c$ where we can define $c:=a^{-\frac{1}{a-1}}$ to make the notation less messy.

Q7 (b)

Next we are asked to check the partial derivatives of these demand functions with respect to p and m. Computing for m is straightforward, giving $\frac{\partial x(p, m)}{\partial m}=0$ and $\frac{\partial y(p, m)}{\partial m}=1$. For partials with respect to p it is more complicated. As pointed out by Gor at the very end of the last seminar, the correct way to differentiate $x(p, m)$ is:

$$
\frac{\partial x(p, m)}{\partial p}=\frac{1}{a-1} p^{\frac{1}{a-1}-1} c=\frac{c}{a-1} p^{\frac{2-a}{a-1}}
$$

Here c is the constant I defined in part (a), which is always positive since $a \in(0,1)$, meaning that $\frac{c}{a-1}<0$ since $a<1$. Therefore, we see that increases in price p will lead to less demand for good x, as expected. Next for $\frac{\partial y(p, m)}{\partial p}$ we get

$$
\frac{\partial y(p, m)}{\partial p}=\frac{a}{a-1} p^{\frac{a}{a-1}-1} c=-\frac{c \cdot a}{a-1} p^{-\frac{1}{a-1}}
$$

which is positive since, again as expected.

Q7 (c)

We are now asked to calculate the elasticity of $p x$ with respect to p, i.e. to find $\mathrm{El}_{p} p x$. The product rule of elasticities tells us that this is simply $1+\mathrm{El}_{p} x=1+\frac{\partial x(p, m)}{\partial p} \frac{p}{x(p, m)}$ where we can find that $\mathrm{El}_{p} x$ is

$$
\left(\frac{c}{a-1} p^{\frac{2-a}{a-1}}\right) \frac{p}{p^{\frac{1}{a-1}} c}=\left(\frac{1}{a-1} p^{\frac{2-a}{a-1}}\right) p^{1-\frac{1}{a-1}}=\left(\frac{1}{a-1} p^{\frac{2-a}{a-1}}\right) p^{\frac{a-2}{a-1}}
$$

When we examine this further we see that $\mathrm{El}_{p} x$ simplifies to $\frac{1}{a-1} p^{0}=\frac{1}{a-1}$, meaning that the final answer is $1+\frac{1}{a-1}=\frac{a}{a-1}$.

Q7 (d)

Finally we must substitute in $a=\frac{1}{2}$ to $V=x(p, m)^{a}+y(p, m)$ and then differentiate with respect to p to prove that $\frac{\partial V}{\partial p}=-x(p, m)$. If we substitute in we get $x(p, m)=(2 p)^{-2}=$ $\frac{1}{4} p^{-2}$ and so $x(p, m)^{\frac{1}{2}}=\frac{1}{2} p^{-1}$, whilst $y(p, m)=m-p^{\frac{a}{a-1}} c$ becomes $m-p^{-1} \frac{1}{4}$. This gives us $V=\frac{1}{2} p^{-1}+m-\frac{1}{4} p^{-1}=m+\frac{1}{4} p^{-1}$. Differentiating yields

$$
\frac{\partial V}{\partial p}=-\frac{1}{4} p^{-2}=-x(p, m)
$$

