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Abstract
This paper studies a model of dynamic network formation when individuals are farsighted :
players evaluate the desirability of a “current" move in terms of its consequences on the entire
discounted stream of payoffs. We define a concept of equilibrium which takes into account
farsighted behavior of agents and allows for limited cooperation amongst agents. We show
that an equilibrium process of network formation exists. We also show that there are valuation
structures in which no equilibrium strategy profile can sustain efficient networks. We then
provide sufficient conditions under which the equilibrium process will yield efficient outcomes.
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1. Introduction

In several social and economic contexts, the structure of interactions between individuals is
best described as a network. The precise structure of interaction across players may be crucial in
determining the outcome. Examples include channels of information flow (Bala and Goyal (2000),
Calvo-Armengol and Jackson (2001), Bramoullé and Kranton (2002) and Kariv (2002)), trading
networks (Tesfatsion(1997,1998) and Weisbuch, Kirman and Herreiner(1995)), mutual insurance
(Fafchamps and Lund (1997) and Genicot and Ray (2003)), technology adoption (Conley and
Udry (2002), Chatterjee and Xu (2002) and Bandiera and Rasul (2002)) and buyer-seller networks
(Kranton and Minehart (2000, 2001) and Wang and Watts (2002)).1 Most of these papers explicitly
adopt the network formalism, and describe the space of interactions as a graph, where the set of
nodes coincides with the set of agents, while an arc between two nodes indicates the existence
of bilateral interaction between the corresponding agents.

The theoretical literature on networks, starting from Aumann and Myerson(1988) and Jackson
and Wolinsky (1996), emphasizes two related issues. The first issue is the determination of the
structure of networks which will be formed if links are established voluntarily by agents so as
to maximize individual self-interest, while the second issue is concerned with whether such
endogenous networks are socially efficient.

Following Aumann and Myerson, the typical approach has been to model network formation
in a static framework, 2 though some degree of farsightedness (for instance via offers and coun-
teroffers) can be accommodated even in this context.3 A recent departure is Jackson and Watts
(2002), which models network formation as an intertemporal process with individuals breaking
and forming links as the network evolves dynamically. At the same time, individuals are as-
sumed to act myopically: their decisions are guided completely by current payoffs, although the
process of network formation takes place over real time.

Jackson and Watts argue that this form of myopic behaviour makes sense in large networks
where players’ information may be limited to their immediate “neighborhood”, or if players
discount the future heavily. To be sure, there would be intrinsic interest in the opposite presump-
tion as well: that agents behave in a farsighted manner and take into account the intertemporal
repercussions of their own decisions. A principal aim of this paper is to formalize this idea in
the context of network formation.

Our main methodological tool is a variant of the framework introduced by Konishi and Ray
(2003) to analyze coalition formation when players are farsighted. At first sight, our modification
appears to be simply a special case: instead of arbitrary coalitions being active at any date, we
only permit a (randomly chosen) pair of agents to be active at the start of a period. However —
and here the structure of a network is used to full effect — each agent has natural “unilateral"
domains of action. These are the network links that each of the agents has with other agents. An
agent can destroy such links unilaterally, and does not require the consent of her partner to do so.
At the same time, the pair act together on an equally natural “bilateral" domain. This concerns
the formation of a link between the pair. Link formation must be a joint decision. Therefore, while
only special “coalitions" can form, they are only enjoined to partly cooperate.

1Dutta and Jackson (2003) contains a collection of papers which examine various issues related to valuation structures.
2See, for instance, Dutta and Mutuswami (1997), Dutta, van den Nouweland and Tijs (1998), and Slikker and van den

Nouweland (2000, 2001).
3See, for instance, Currarini and Morelli (2000) and Page, Wooders and Kamat (2001). However, the sort of “intro-

spective farsightedness" considered in these papers — see also Chwe (1994) — is different from a description of actual
play along an explicitly dynamic path, with payoffs received as players change their links and alliances. This is the
approach adopted here. Konishi and Ray (2003) contains more discussion on this general theme.



2

This sort of structure raises interesting conceptual issues, and we cannot pretend to have
dealt with them in an entirely satisfactory way. Surely, all actions pertaining to the bilateral
link between a pair are commonly observed by the two players, and can therefore serve as
correlation devices for their unilateral actions concerning other links. In particular, when a
“bilateral deviation" occurs from some ongoing prescribed strategy, both players will be aware
of this occurrence. In contrast, we assume that a unilateral deviation by a player that breaks
links other than the one with her partner cannot be used as a conditioning device by the partner.
We are aware, of course, that this restriction is not entirely satisfactory — we rule out bilateral
conditioning on unilateral action — but our own attempts to deal with both types of conditioning
have led us into difficult terrain (concerning existence, even in mixed strategies) and we have
settled for the more modest advance in this paper.

We show in Theorem 1 that a Markovian equilibrium process of network formation exists.
We use our solution concept to tackle the question of efficiency in networks. It is well-known

that “stable" networks may not be efficient, and the reason for this is simple. When a link is
formed, or destroyed, the players involved do so with their own gain in mind. At the same time,
these actions also affect the payoff of other players, and so a wedge is driven between stability and
efficiency. Theorem 2 restates this in an explicitly dynamic context, using our solution concept:
there are network structures where the process will not converge to any efficient network for any
equilibrium strategy profile. This is the dynamic counterpart of the conflict between individual
incentives and social efficiency demonstrated by Jackson and Wolinsky (1996) for static networks.

A simple way of seeing this conflict (at least for some equilibria) is to study network games
where link formation is always profitable in the static sense (to the pair which forms the link).
Call this property link monotonicity. Of course, when players i and j form an additional link,
some player k may suffer a loss in current value. This implies that the complete network is not
necessarily socially efficient. Nevertheless, Theorem 3 establishes that there is some equilibrium
at which the complete graph is reached in the limit from all initial networks.

Yet other questions remain. For instance, how good is farsighted network formation at resolv-
ing “weaker" efficiency issues that stem, for instance, from nonconvexities or increasing returns?
In particular, consider situations in which a “small" number of links are costly (to those who
form them), while a larger number of links is beneficial to all. Jackson and Watts (2002) observe
that myopic agents cannot capture the benefits from such situations: the process may not get off
the ground if initial returns are negative. No pair of agents may agree to form the first link if the
immediate benefit is smaller than the cost, even if subsequent benefits are exceedingly large.

At first sight, it appears that farsightedness would automatically take care of this problem. A
matched pair of agents would surely realize the future gains from linking, even if those benefits
are not to be had in the short term. Yet this behavior applied across the board cannot constitute
an equilibrium, for then a matched pair would prefer not to form a link until such time as a large
number of links have already been built up. This would enable then to save on the transition
costs when there are a small number of links. Just because agents are farsighted does not mean
that they are impervious to short-term costs. Faced with a less costly transition path they would
surely prefer such an alternative.

Notice that these efficiency issues are not as weak as coordination failures. There is some
element of coordination, in that the efficient outcome is easy enough to sustain as an equilibrium,
provided one starts there. But there is also a genuine absence of common interest: starting from
the null network, for instance, a player would prefer that other players take the lead in link
formation before plunging in herself. These phenomena have been noted in other contexts
(see Chamley and Gale (1994) and Adserà and Ray (1998)). Fortunately, we are able to show in
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Theorem 4 that the complete graph (which must be socially efficient) will be the unique absorbing
limit of the network formation process for some equilibrium profile.

Of course, “static" coordination failures can arise even in our dynamic framework. We provide
a particularly stark example of this in Example 3, where we show that all matched pairs may break
all links at the complete graph even when it is the unique socially efficient network. An implication of
such static coordination failures is that typically efficiency cannot be sustained at all equilibria.

2. Valuation Structures

Let I be a finite index set of players, and g an undirected graph on I . Such a graph, or network,
is formally just a collection of ij pairs, the interpretation being that i and j are “linked".4 We use
the notation g + ij to denote the new graph obtained from g by linking i and j.

A component of a network g is a subset c of g such that no i ∈ c is linked outside c and such that
every distinct i and j in c are directly or indirectly linked.5 Let C(g) denote all the components
of g. For each c ∈ C(g), let I(c) denote the set of individuals in c.

Let G denote the set of all graphs on all nonempty subsets of I . The complete network, denoted
g̃, is the graph in which all individuals are linked to one another.

Given any graph g, and component c in C(g), w(c, g) is the value or total “worth" of players in
c. The total value of g is

(1) w(g) ≡
∑

c∈C(g)

w(c, g)

We will say that w is an additive function if the value of any component c is independent of the
structure of links of players not in c. In this case, we may as well use the notation w(c) instead
of w(c, g). For such functions we also normalize by setting the value of singleton components
equal to zero: w({i}) = 0 for all i.

Notice that an additive function w is a generalization of TU-characteristic functions in co-
operative game theory. However, our more general formulation allows for externalities across
components of a graph, and so represents a generalization of partition functions since the value
of a component depends not only on the coalition structure as in partition functions, but also on
how the players in c are linked to each other.

Let W be the set of all worth functions w defined on all (c, g) pairs, where g is a network and
c a component of g.

2.1. Allocation Rules. An allocation rule is a mapping a : G×W → IRn such that
∑

i∈I ai(g,w) =
w(g), for all worth functions w and graphs g. The rule specifies the (one-period) payoffs to each
player i for every conceivable network and worth function. We will refer to the pair (a,w) as a
valuation structure.

An allocation rule satisfies component balance if for all w ∈ W , for all g ∈ G, and for all c ∈ C(g),∑
i∈I(c) ai(g,w) = w(c, g). This restriction rules out any cross-subsidization across links.
Throughout the paper, we will assume that the allocation rule satisfies component balance.
An allocation rule is anonymous if it distributes payoffs that depend only on player position

in the network, and the particular worth function, and not player labels. Formally, if π is a
permutation of I , let cπ be the appropriate transformation of c for every component of g, and also
define gπ in similar fashion. For any w, define wπ by wπ(cπ, gπ) = w(c, g). Then a is anonymous

4Because the graph is undirected, these links are reciprocal. For analyses of valuation structures which are directed
graphs, see Bala and Goyal(2000) and Dutta and Jackson (2000).

5Thus isolated singletons are components by definition.
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relative to (g,w) if for any permutation π, aπ(i)(gπ,wπ) = ai(g,w). Say that the rule is anonymous
(without qualification) if it is anonymous relative to every (g,w).

One rule which is both component balanced and anonymous is the component-wise egalitarian
allocation rule. This rule distributes worth equally within each component of a graph. That is,
letting ae denote the component-wise egalitarian rule, we have

For all i ∈ I, ae
i (g, w) =

w(c, g)
|c| , where c ∈ C(g), i ∈ I(c).

2.2. Efficiency. Given some valuation structure, one might consider different notions of (static)
efficiency for networks.6 For instance, efficiency could correspond to maximizing aggregate pay-
offs: a graph g is strongly efficient if w(g) ≥ w(g′) for all g′ ∈ G.

A more conservative definition would allow for limited transferability, so that the constraints
inherent in a given allocation rule are taken into account. In this spirit, a graph g is (weakly)
efficient relative to (a,w) if there is no other g′ ∈ G such that ai(g′,w) ≥ ai(g,w) for all i ∈ I with
strict inequality for some j ∈ I .

2.3. Some Restrictions on Valuation Structures. Two specific valuation structures will play a
role in what follows. First, a valuation structure (a,w) exhibits link monotonicity if for every
network g and all i, j ∈ I , ai(g + ij, w) > ai(g, w) and aj(g + ij, w) > aj(g, w) whenever ij �∈ g.
That is, link monotonicity requires that an individual’s payoff is increasing in the number of her
own links.

To be sure, link monotonicity allows for the possibility that an individual’s payoff may go down
if other players set up bilateral links. Specifically, the complete network g̃ may not be efficient
even when the network structure displays link monotonicity. The example below shows that
when |N | = 3, the complete network may violate strong efficiency. More complicated examples
can be constructed to illustrate the possible violation of (weak) efficiency when |N | ≥ 4.
Example 1. Let N = {1, 2, 3}. w is additive and symmetric with w({ij}) = 2, w({ij, jk}) =
7/4, andw(g̃) = 3/2. Moreover, ai({ij},w) = aj({ij},w) = 1, ai({ij, jk},w) = ak({ij, jk},w) =
1/4, aj({ij, jk},w) = 5/4, and al(g̃,w) = 1/2 for all l ∈ N . Obviously, link monotonicity is satisfied,
but the complete network is inefficient.

A valuation structure (a,w) displays increasing returns to link creation (IRL) if

(i) w is additive and w(g̃) > 0 (with w({i}) normalized to 0 for all i);

(ii) whenever c is a nonsingleton component of some g with w(c) ≥ 0, then w(c) < w(c′) for all
c′ ⊃ c;

(iii) for components c as described in (ii), if i ∈ I(c) but ij /∈ g, then ak(g + ij,w) > ak(g,w) for
k = i, j.

The formalities of the definition look complicated but the main idea is very simple. Avaluation
structure satisfies IRL if along every nested chain of “increasingly connected" networks, there is
a threshold (nonsingleton) network for which the worth turns nonnegative, and both aggregate
payoffs as well as payoffs of individuals who form extra links then increase as the network
becomes even larger. The point is that between the “empty network" of singletons and the
threshold(s) there may lie intermediate networks that generate negative values.

Of course, link monotonicity and IRL are different conditions. The former applies to all w,
not just to additive functions, while the latter is restricted to the additive case. At the same
time, the latter condition only imposes link monotonicity on a subcollection of components, not
everywhere, though it also requires that aggregate worth also increase over this subcollection.

6See Jackson (2001).
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This last condition helps to guarantee that under IRL, the complete network is the unique strongly
efficient network. In contrast, we have already described an example to show that g̃ may not be
strongly efficient when the valuation structure satisfies link monotonicity.

3. Some Examples

In this section, we provide some examples that illustrate our general framework.

3.1. Connections. This model is due to Jackson and Wolinsky (1996). Links represent social
relationships. Individuals i and j are “friends” if they are linked together, and friendship is
valuable. Individuals also benefit from indirect relationships — a “friend of a friend” brings
additional benefit, which deteriorates, however, in the “distance" of the relationship. Let π < 1
be the benefit that i gets from a direct link with j, π2 the benefit that i gets from someone who is
at a distance two, and so on. Then

(2) ai(g,w) =
∑
j �=i

πt(ij) − #{k : ik ∈ g}d.

where t(ij) is the number of links in the shortest path between i and j, and d is the cost per link that
i has to pay for each direct link. Here, the total value of a network is simply w(g) =

∑
i∈I

ai(g, w).

The nature of strongly efficient graphs depend upon the relative values of π and d. If d < π−π2,
then the complete graph g̃ is strongly efficient. In this case, the valuation structure satisfies both
link monotonicity as well as IRL.

A star7 encompassing all agents is the unique strongly efficient graph for intermediate values
of d.

If d > π + (N−2
2 )π2, then the empty graph is the unique strongly efficient graph.

3.2. Group Insurance. Consider n identical farmers producing random outputs. Any farmer
can have a “high” output (of one unit) with probability p, or a low output (of zero units) with
the remaining probability. These probabilities are iid across farmers. Each farmer is risk-averse,
with v being the common increasing, strictly concave utility function.

Any two farmers can be connected at a cost of d. Assume that any group of connected farmers
can mutually insure each other; suppose that the insurance contract is such that each member of
the group will get an equal share of the total realized endowment net of the costs of the links.

Let c be a connected community of farmers with cardinality k and overall connection costs
equal to d(c). Then

w(c) = k
k∑

l=0

pl(1 − p)k−l

(
k

l

)
v

(
l − d(c)

k

)

and

ai(c,w) =
w(c)

k
.

Of course, efficiency requires that each component be minimally connected as long as d > 0.
Notice that ai is increasing in the size of the connected component as long as the connection

cost d is small, but for any positive connection cost must ultimately decline if the total number
of farmers is large enough.

7A star is a graph with a central node to which every other node is connected, with no other links.
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3.3. Collaboration. This is due to Goyal and Joshi (2003).8 Consider an oligopoly setting where
firms form pairwise collaborative links with other firms. The collaboration could involve joint
research activities, sharing knowledge about markets, sharing facilities such as distribution chan-
nels. A link between firms i and j yields lower costs of production for the two firms. Any
collaboration network thus induces a distribution of costs across firms. Given these costs, firms
subsequently compete on the product market as Cournot oligopolists.

Assume that all firms have constant marginal costs of production, given by ci for firm i. Given
a graph g, let µi(g) denote the number of firms with which i has collaboration links. Then the
resulting marginal cost of firm i is:

ci(g) = ci − γµi(g).

where γ > 0 is the cost reduction induced by each link.9

Suppose the inverse market demand curve is linear :

p = a − q

The output produced by firm i in the Cournot game will be:

qi(g) =
(a − nci +

∑
j �=i cj) + nγµi(g) − γ

∑
j �=i µj(g)

n + 1
,

and its overall profit is qi(g)2. Notice that the profit of firm i increases if i sets up an additional
link. It follows that the valuation structure satisfies link monotonicity. On the other hand, an
additional link by two rival firms k and l reduces firm i’s profit. Total industry profit is not
maximised when all firms form bilateral links, and so the valuation structure does not satisfy
IRL.

4. Process of Network Formation

Suppose that at any date, a pair of players i and j is randomly chosen (with uniform prob-
ability) and endowed with the capacity to take actions at that date. Each of these players can
unilaterally sever any existing link with any other player, and they can bilaterally form a link
between the two of them if one doesn’t exist to begin with. These actions create a (possibly)
new graph, and then one-period payoffs are received according to the given allocation rule. The
current period then ends, and the whole process begins again ad infinitum.

Thus there are two components of a strategy in force: unilateral, which involves link severance,
and bilateral, which involves link creation. Throughout, we will assume that players follow
Markov strategies; i.e., their actions will be presumed to depend only on the existing payoff-
relevant state.

Because strategies involve some elements of correlation and independence, we will need to be
more specific and careful in describing them. Suppose that two individuals “partially cooperate",
as they do here in setting up a bilateral link, but also take independent actions, as they do here
with link destruction. Then the bilateral creation of a link between i and j are commonly observed
by the two players, and can therefore serve as correlation devices: either player can condition her
unilateral actions on the joint decision to bring this link into existence. In contrast, unilateral link
breaking cannot be conditioned upon (at least in the absence of an explicit sequential structure
which we do not assume).

This suggests that the situation is formally equivalent to one in which (at any date) actions
pertaining to the possible creation of an ij link are taken “first" and these are “followed" by the

8See also Goyal and Moraga (2001).
9Assume that γ is small, so that net marginal cost is always positive for each firm.
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unilateral actions (by i and j) pertaining to all other existing links.10 Let us make this approach
more formal.

It will be useful to define a principal state as a collection s = (g, ij), where g is the historically
given graph and ij is the chosen active pair. Define an intermediate state as a collection s = (g, ij, ζ),
where g and ij are as before, and ζ is a variable which takes the value 0 if the pair ij is not linked,
and the value 1 if ij is linked. An intermediate state doesn’t physically exist; it is a conceptual
halfway point for defining unilateral actions; hence the choice of terminology. In contrast, a
principal state physically exists at the start of a period. When there is no need for a distinction,
we shall simply use “state" to denote either of the two varieties. Notice, too, that we use the
same notation s which will also ease the writing.

For any intermediate state s = (g, ij, ζ), define Di(s) ≡ {k|i and k are linked in that state},
and likewise define Dj(s). These are the sets of existing linkages to i and j which can be broken
unilaterally. [By assumption, no links other than those pertaining to the active pair can be created
during this period.]

Formally, then, (mixed) actions may be described as follows. At any principal state s with
active pair ij it is simply a probability µ(s) = q of bilateral linkage between i and j. At any
intermediate stage s with active pair ij it is a collection µ(s) ≡ {νi, νj}, where for each k = i, j,
νk is a probability measure defined over all subsets (including the empty subsets) of Dk(s).11

We will let µ stand for the entire profile of µ(s)’s over all states (notice that µ(s) has a different
interpretation depending on what sort of state we are looking at), and refer to µ as a strategy
profile.

A strategy profile precipitates — for each state s, principal or intermediate — some probability
measure λs over the feasible set F (s) of future networks starting from s. [We omit the tedious but
entirely routine formulae that link the λs’s to the underlying profile µ.] In particular, a Markov
process is induced on the set S of principal states: at any principal state s, λs describes the
movement to a new network, and the given random choice of active players moves the system
to a new active pair.

The process creates values for each player. Assuming that the ak’s are vN-M payoffs, we can
write — for every state s with active pair ij — the overall payoff to any person k (under the
strategy profile µ) as the unique solution to the functional equation

Vk(s,µ) =
∑

g′∈F (s)

λs(g′)[ak(g′) + δk

∑
i′j′

π(i′j′)Vk(s′, µ)]

where δi ∈ (0, 1) is the discount factor of agent i, λs is the probability over F (s) associated with µ,
π(i′j′) is the probability that a pair i′j′ will be active “tomorrow", and s′ stands for the principal
state (g′, i′j′). [Note that Vk is well-defined on both principal and intermediate states.]

Finally, at the risk of minor notational abuse, we will find it convenient to use Vk(g, µ) to
denote the (expected) payoff to k at a given network g, before the active pair at that network is
selected. This is given by simply taking expectations over the choice of active pair:

Vk(g, µ) =
2

n(n − 1)

∑
ij∈I×I

Vk((g, ij), µ)

4.1. Equilibrium. Loosely speaking, an equilibrium process of network formation is a strategy profile
µ with the property that there is no active pair at any state s which can benefit — either unilaterally
or bilaterally — by departing from µ(s). The benefit is evaluated according to the value function

10The phrases that suggest chronology are deliberately in quotes because no real chronology is implied.
11As a matter of notation, we should also index the individual ν-components by s, but this is notationally cumbersome

and hopefully the context will prevent any confusion.
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introduced above. The remainder of this section contains a precise formulation of this idea. Before
the formalities are introduced, however, note the following points:

[1] Profitable deviations are not necessarily myopic: individuals take the ongoing process as
given and evaluate the entire stream of consequences arising from a single action. One can imitate
perfectly myopic behavior by taking the discount factor to zero, and perfect farsightedness by
taking the opposite limit.

[2] Network formation and payoffs occur together. There is no “waiting" in the model until
some “stable" network is formed, following which payoffs are assigned. Indeed, our definition
permits cycles and continued flux in the network, and there is no difficulty at all in evaluating
overall payoffs.

Now for a precise account. Fix some ongoing strategy profile µ and an intermediate state s
with active pair ij. A unilateral move for i at s (to be sometimes referred to as an i-unilateral move
at s when it’s necessary to keep track of the relevant agent) is simply a collection µ′(s) = {ν′

i, νj}.
That is, the ith component of µ(s) has (possibly) been altered from νi to ν′

i. Given a principal
state s, a bilateral move for the active pair ij is simply a probability µ′(s) of ij-linkage.

A strategy profile µ “perturbed" by an unilateral or bilateral move at s is still a strategy profile.
We will occasionally use the notation µ′ to denote the new profile (the context will make clear
exactly which move is generating µ′).

For an intermediate state s with active pair ij, and for some k = i, j, say that a k-unilateral
move µ′(s) is profitable if

(3) Vk(s,µ′) > Vk(s,µ),

where µ′ is the strategy profile “induced" by the k-unilateral move µ′(s) (see previous paragraph).
Likewise, for a principal state s with active pair ij, say that a bilateral move µ′(s) is profitable if

(4) Vi(s,µ′) > Vi(s,µ) and Vj(s,µ′) > Vj(s,µ),

where, again, µ′ is the strategy profile “induced" from µ by the bilateral move µ′(s). A strategy
profile µ is an equilibrium if at no s is a unilateral or bilateral move profitable.

Notice how our description of equilibrium subsumes a “perfection" requirement. An equi-
librium must be immune to all profitable moves, including those starting from principal or
intermediate states that may never be reached.12

4.2. Existence. One can establish the following
Theorem 1. An equilibrium in mixed bilateral and unilateral strategies always exists.
Proof. For every state s look at the space U(s) of all possible µ(s). Let U ≡ ∏

s∈S U(s). [Note:
with the obvious product topology, U is viewable as a compact, convex subset of some finite-
dimensional Euclidean space.] For each s, we construct a nonempty-valued, convex-valued uhc
correspondence Ψs from U to U(s) in the following way.

Fix some µ ∈ U, and consider any state s. If s is an intermediate state with active pair ij,
maximize — for each k ∈ {ij} — the value of Vk(s,µ′) over all µ′ induced from µ by k-unilateral
moves at s. Gather all the (mixed) k-unilateral moves ν′

k that achieve this maximum. Because
Vk is linear in ν′

k, this collection is nonempty and convex: call it Ak(s, µ). Define Ψs(µ) ≡
Ai(s, µ) × Aj(s, µ).

We’ve already seen that Ψs is a nonempty- and convex-valued correspondence. The fact that
it is uhc follows from the continuity of Vk(s,µ) in µ and the maximum theorem.

12Our requirement is not the same as perfection because — properly speaking — an intermediate stage is not a
subgame. It is a device designed to capture partial cooperation.
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If s is a principal state with active pair ij, then denote by s0 and s1 the two intermediate states
that emerge from it. If the expression

min{Vi(s1, µ) − Vi(s0, µ), Vj(s1, µ) − Vj(s0, µ)}
is strictly positive, define Ψs(µ) = {1}. If the expression is strictly negative, set Ψs(µ) = {0}. If
it is zero, let Ψs(µ) = [0, 1].

It is obvious that for each µ, Ψs(µ) is nonempty and convex. Using the continuity of Vk(s,µ)
in µ, it is straightforward to check that Ψs(µ) is uhc.

It follows from the two previous paragraphs and Kakutani’s theorem that the product Ψ ≡∏
s∈S Ψs (which is a correspondence from U to U) must have a fixed point µ∗ in U. By construc-

tion, no profitable deviation — unilateral or bilateral — is possible from µ∗, and therefore it is
an equilibrium.

4.3. Remarks on the Network Formation Process. Several variations can be considered on the
set of active players at any date. For instance, while maintaining the assumption that only a
single pair at each date is able to alter its bilateral link, we may wish to allow for every individual
to unilaterally destroy links at every date. One would have to face certain modelling choices.
Do the “third parties" know that the {ij} pair is active? And if they do, can they condition their
actions on the formation of the {ij} link? Might some of these individuals be aware of these
matters, and others not?

Fortunately, our equilibrium concept is robust enough to accommodate these alterations,
though in the interest of focus we do not pursue the variants in this paper. For instance, consider
the scenario in which third parties are free to sever links (in addition to the active pair), and they
know the identity of the active pair. Because no commitment is assumed, suppose that third
parties must move simultaneously against one another (and against the active pair). Formally,
this amounts to having the third parties move at the principal state, while the members of the
active pair continue to move in the intermediate stage (with effective knowledge of their own
bilateral actions).

It is easy to see that the existence argument goes through with only minor changes.
The same is also true when there are several pairs of active players, provided that different

pairs do not have players in common.
Potential problems might arise when active pairs “intersect", especially if several pairs forming

a “closed loop" are simultaneously active with positive probability. The epistemic implications
of such scenarios are yet to be carefully studied.

The reader may also be interested in knowing how these variations affect the other substantive
results of the paper. We remark on these matters later.

5. Sustaining Efficiency

An issue in this general setting that merits special attention is the question of network efficiency.
It hardly needs mentioning that the efficiency question is fundamental: the “Coase Theorem"
tells us that under free and unrestrained negotiation, with the ability to write unlimited binding
agreements, the equilibrium outcome must be efficient. Whether or not the “Coase Theorem" is
true is a complex question: it depends on how one models “free and unrestrained negotiation":
there are conceptual difficulties in a precise description of what exactly this phrase means. A
more modest goal is to describe small departures from the unrestrained ideal, and see how much
of an efficiency failure (if at all) takes place.

The great merit of the current setup is that it captures one central aspect of free negotiation,
which has to do with continued renegotiation. In this framework, links can be altered again and
again, and if there is little discounting of the future, this means that there is essentially vast scope
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for flexible movement with very little cost. Does this process give rise to efficient outcomes? Our
results suggest that the answer to this question is far from easy.

We have already provided alternative definitions of efficient networks. There is then the ques-
tion of what it means for network formation processes to yield these efficient outcomes. These
have to do with concepts of absorption: an efficient state (however defined) may be strongly absorb-
ing (in the sense that it attracts the process from all initial conditions), or it may be just a stationary
state, in the sense that the process, once there, remains there. [Other weak definitions, such as
recurrence, are also possible.] An intermediate requirement is one in which each equilibrium
strategy profiles results in a path that ultimately leaves the set of inefficient networks.

5.1. Possibility of Inefficiency. In order to demonstrate that the issue of sustaining efficiency
in this framework is not a trivial proposition, we show that there are valuation structures in
which no equilibrium strategy profile yields paths that are absorbed solely into a set of efficient
networks. This can be viewed as the dynamic counterpart of the conflict between (static) stability
and efficiency demonstrated by Jackson and Wolinsky (1996). To show this, say that an allocation
rule permits limited transfers if ai(g, w) ≤ w(g) for all i whenever w(g) ≥ 0.

An allocation rule which permits limited transfers does not allow other individuals to “over-
compensate" any individual.

Suppose the allocation rule is anonymous and satisfies Limited Transfers. We construct below
a (symmetric) worth function on three players such that the efficient network is not strongly
absorbing at any pure strategy equilibrium. The worth function is sNuch that the complete
graph has a value 3α, while each one-link graph has value 2α. All other graphs have value 0.
Then, the complete graph is the unique efficient network. Given the restrictions on the allocation
rule, each player getsN α if the complete graph forms, while players i and j also get α if they form
the one-link graph {ij}. Then, once a graph {ij} has formed, i and j have no incentive to move
towards the complete graph since their payoffs at {ij} and the complete graph are identical,
and there will be some intermediate stages where they get zero. The proof below shows that
the possibility of “coordination failures" does not cause the process to converge to the complete
graph at any equilibrium.
Theorem 2. Suppose that a is anonymous and permits limited transfers. Then there is w and δ̄ < 1
such that for all δ ∈ (δ̄, 1) every pure strategy equilibrium profile generates paths that fail to exit the set
of inefficient networks.
Proof. Let I = {1, 2, 3}. Choose symmetric additive w such that w({i}) = 0, w({ij}) = 2α,
w({ij, ik, jk}) = 3α, while w({ij, jk}) = 0, where α > 0. Since a is anonymous, ak({ij}) =
ak(g̃) = α for all i, j and k = i, j. Finally, the limited transfers property ensures that each agent
gets 0 at {ij, jk}.

The unique efficient graph here is the complete graph. We want to show that there is no pure
strategy equilibrium at which g̃ is absorbing from every initial network; i.e., at which g̃ is strongly
absorbing.13

Suppose, on the contrary, that µ∗ is a pure strategy equilibrium for which g̃ is strongly absorb-
ing. Since all subsequent statements are with reference to this strategy profile, we will simply
write Vi(g) (instead of Vi(g, µ∗)) for equilibrium values starting from g.

We also use the notation {ij} →ik g to denote that the network {ij} is changed to g at the
principal state ({ij}, ik) according to µ∗.

Then, the following are true:
(F1) {ij} →ij {ij}.
(F2) {ij} →ik g �= {ij} and {ij} →jk g′ �= {ij} for k /∈ {i, j}.

13However, there are pure strategy equilibria in which g̃ and each of the one-link graphs are absorbing.
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(F2) requires that both i and j move away from {ij} when they meet k. This is true for the
following reason. Some player must move away from {ij} since the complete network is strongly
absorbing. Suppose only i either forms the one link network {ik} or the two link network {ij, ik}
when the current network is {ij}. Then, i’s payoff must be zero in all periods when the two-link
networks are in place. [There must be some periods when the two-link networks are in place since
the process converges to the complete network by assumption.] However, if i remains at {ij} —
which he can do by a unilateral deviation from µ∗ — then he obtains a payoff of α in each period.
So, the unilateral deviation would then give i a higher profit, contradicting the hypothesis that
µ∗ is an equilibrium.

If g̃ is to be strongly absorbing, then there must exist some principal state s = ({ij}, ik) such
that {ij} →ik {ij, ik}. Wlog, let s = ({12}, 13), and denote g = {12, 13}. Then,

(5) V1(s) = δV1(g) =
δα

(3 − 2δ)(1 − δ)

Case 1: Suppose {12} →23 {12, 23} = g′.
Suppose 1 deviates from µ∗ at s by refusing the link with 3, but retains the link with 2. Denoting

the resulting discounted payoffs by V ′
1 ,

V ′
1(s) = α + δV ′

1({12})

= α +
δ

3
[2α + 2δV ′

1({12}) + δV ′
1(g′)]

=
3α + δ2V ′

1(g′)
3 − 2δ

Using V1(g′) = V1(g),

V ′
1(s) − V1(s) =

3α

3 − 2δ
+

δα

(3 − 2δ)(1 − δ)

(
δ

3 − 2δ
− 1

)

=
3α

3 − 2δ
− 3αδ

(3 − 2δ)2

> 0.

But, then µ∗ cannot be an equilibrium.

Case 2: Suppose {12} →23 {23}.14

We let the reader check that if {23} →13 {13}, then 2 is better off by retaining the link with 1
and refusing to form the link with 3 at s′ = ({12}, 23).

So, we only need to check for the case {23} →13 {13, 23} = g′′ and {23} →12 {12}.15

In this case, we have to consider specifications of µ∗ at principal states involving the network
{13}.

Case 2(a): Suppose {13} →12 {12} and {13} →23 {13, 23}.
Then,

V1({13}, 12) = α + δV1({12}).
where

V1({12}) =
a

3 − 2δ
+

δV1(g)
3 − 2δ

.

14In view of (F2), this is the only remaining possibility.
15If {23} →13 {13, 23}, then it cannot be the case that {23} →12 {12, 23}. Simply apply the proof of Case 1 to

establish that 2 will then have a profitable deviation at the principal state ({23}, 12).



12

Suppose 1 deviates from µ∗ at the principal state ({13}, 12), by retaining the link with 3 and
refusing to form the link with 2. Denoting the resulting discounted payoffs by V ′,

V ′
1(({13}, 12) = α + δV ′

1({13}).

But

V ′
1({13}) =

2α

3 − 2δ
+

δ

3 − 2δ
V1({13, 23}) =

2α

3 − 2δ
+

δα

(3 − 2δ)2(1 − δ)
> V1({12}).

Hence, µ∗ cannot be an equilibrium in this case.

Case 2(b): Suppose {13} →12 {12, 13} and {13} →23 {23}
In this case, 3 has a profitable unilateral deviation at ({13}, 23) - 3 can retain link with 1 and

refuse to form link with 2.

Case 2(c): Suppose {13} →12 {12} and {13} →23 {23}.
Then,

V3({13}, 23) = α + δV3({23}).
Also,

V3({23}) =
α

3 − δ
+

δ

3 − δ
V3({13, 23}) +

δ

3 − δ
V3({12}).

V3({12}) =
α

3 − δ
+

δ

3 − δ
V3({23}) +

δ

3 − δ
V3({12, 13}).

Using the fact that V3({12, 13}) = V3({13, 23}) = δα
(3−2δ)(1−δ) , and simplifying,

V3({23}) =
α

3 − 2δ
+

δ

3 − 2δ
V3({13, 23})

Hence,

V3({13}, 23) =
3α − αδ

3 − 2δ
+

δ2

3 − 2δ
V3({13, 23}).

Now, suppose 3 deviates at the intermediate state so that after forming a link with 2, 3 retains the
link with 1. Then,

V ′
3({13}, 23) = δV3({13, 23}).

Hence,

V ′
3({13}, 23) − V3({13}, 23) =

3αδ

(3 − 2δ)2
− 3α − αδ

3 − 2δ
.

This is positive for δ large enough.
Also, note that 2 is better off forming the link with 3 rather than remaining at {13}, even if 3

refuses to cut the link with 1. Hence, µ∗ cannot be an equilibrium in this case either.
Using (F2), this exhausts all possible cases, and so establishes the theorem.

Notice that the complete graph may be absorbing at some equilibrium. However, if the process
of network formation “starts" at the empty network, then the complete graph will never be
reached at any equilibrium — only one-link graphs will form. So, this example illustrates the
importance of efficient graphs being sustained as strongly absorbing graphs.

At first sight, this type of failure to sustain an efficient network may appear similar to that
arising in strictly superadditive (transferable utility) games with empty cores. Here too, the grand
coalition may not form since some subset may do better on its own. However, this argument
implicitly presumes that the members of the blocking coalition agree to “leave the game" and
form a sub-society of their own. In other words, members of the blocking coalition assume
that there is some committment device which “binds" them together. In contrast, the current
framework assumes very limited cooperation amongst individuals. So, when the network {ij}



13

forms, both i and j may anticipate that the other will form a link with k. Even though this does
not bring any additional benefit to either i or j, these anticipations can in principle sustain each
other. The theorem essentially demonstrates that this cannot happen in the specific example
used in the proof.

5.2. Absorption into the Complete Graph. In this subsection, we both simplify and extend the
logic of inefficient outcomes. The simplification is that we select the equilibrium in question
(Theorem 2 applied to all equilibria). But we extend the argument in the sense that we provide a
set of conditions (not just an example) under which the complete network is strongly absorbing
(for some equilibrium). Note that this says nothing about efficiency (after all, the complete
network may be inefficient).

Specifically, we now show that if the valuation structure satisfies link monotonicity, then the
complete graph g̃ can be supported as a strongly absorbing graph at some equilibrium strategy
profile. [However, we also remark that the complete graph is not necessarily strongly absorbing
at all equilibria.]
Theorem 3. Suppose (a,w) satisfies link monotonicity. Then, for all δ ∈ (0, 1), there is some equilibrium
µ∗ such that g̃ is strongly absorbing.

Proof. Consider the strategy profile µ∗ where at any principal state (g, ij), i and j form the
link ij (if unlinked), and at every intermediate state, no link is severed. We show that such µ∗ is
an equilibrium strategy profile.

It will be sufficient to show that

(6) For all g, for all ij /∈ g, Vi(g + ij, µ∗) > V (g, µ∗).

We prove that (6) is true by induction on the number of links (“distance") that separates g from
g̃.

If g and g̃ are separated by a single link, then g = g̃ − ij. In this case, given the strategies of
all players, i and j obtain (in each period) precisely ai(g,w) and aj(g,w) as long as they do not
form a link, and ai(g̃,w) and aj(g̃,w) if they do. So given link monotonicity, (6) is trivially true
in this case.

Next, define M ≡ (
n
2

)
. This is the number of all possible pairs, and therefore also the maximal

“distance" between g̃ and any g. Suppose, inductively, that for 2 ≤ K ≤ M , (6) holds for all g
which are at a distance of K − 1 or less from g̃. Pick any g (with ij /∈ g) at distance K from g̃.
Define g′ ≡ g + ij. Then

Vi(g, µ∗) =
M − K

M
(ai(g,w) + δVi(g, µ∗)) +

1
M

⎛
⎝∑

kl/∈g

(ai(g + kl,w) + δVi(g + kl, µ∗))

⎞
⎠

=

(M − K)ai(g,w) + ai(g′,w) + δVi(g′, µ∗) +
∑

kl/∈g′
(ai(g + kl,w) + δVi(g + kl, µ∗))

M − δ(M − K)
(7)

Similarly,

Vi(g′, µ∗) =

(M − K + 1)ai(g′,w) +
∑

kl/∈g′
(ai(g′ + kl,w) + δVi(g′ + kl, µ∗))

M − δ(M − K + 1)

>

(M − K + 1)ai(g′,w) +
∑

kl/∈g′
(ai(g + kl,w) + δVi(g + kl, µ∗))

M − δ(M − K + 1)
,(8)

where the inequality invokes both link monotonicity and the induction hypothesis (noting that
for all kl /∈ g′, g′ + kl = {g + kl} + ij, and that g + kl is at a distance of K − 1 from g̃).
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Combining (7) and (8), we may conclude that

[M−δ(M−K+1)]Vi(g′, µ∗)−[M−δ(M−K)]Vi(g, µ∗) > (M−k)[ai(g′,w)−ai(g,w)]−δVi(g′, µ∗),

so that

Vi(g′, µ∗) − Vi(g, µ∗) >
M − K

M − δ(M − K)
[ai(g′,w) − ai(g,w)] > 0,

the last inequality following from link monotonicity once again. This completes the inductive
step.

Link monotonicity does not imply that the complete graph is strongly absorbing at all equi-
libria. In Example 1, it is easy to check that there can be an equilibrium in which the one-link
graph is an absorbing graph.

Notice, too, that the variations on the solution concept described in Section 4.3 do not af-
fect Theorem 3. For instance, if all players can delete links (and not just the active pair), the
equilibrium described above survives, and displays exactly the same peoperties.

5.3. A Positive Result on Efficiency. Finally, we turn to a positive result regarding efficiency.
We show that if the valuation structure satisfies IRL, and if the allocation rule is the component-
wise egalitarian rule, then the complete graph will be strongly absorbing at some pure strategy
equilibrium profile. A first reaction may be that this is an obvious result. After all, if g̃ is
the unique strongly efficient graph, then surely everyone has a common interest in reaching g̃
and then staying there? However, suppose that aggregate payoffs (normalized so that isolated
individuals obtain 0) are negative for “small" graphs. Then, all individuals prefer to join the
network after it has reached the critical threshold beyond which payoffs are nonnegative. Indeed,
it is a non-trivial issue to show that free-riding behaviour does not become so pervasive so as to
altogether negate the convergence of the process to the complete network.

The following example illustrates the nature of the free-riding behavior when the valuation
structure satisfies IRL.

Example 2. Let N = {1, 2, 3}, w(g) = −4 if #g = 1, w({ij, jk}) = −3, w(g̃) = 3. Suppose the
allocation rule is the component-wise egalitarian rule.

Then, it cannot be an equilibrium for all pairs to form a link at all networks. For suppose, both
1 and 2 want to form additional links at each opportunity. This then permits 3 to free-ride. To
check this, let V3 denote discounted payoffs if 3 also agrees to form a link at each opportunity.
Routine calculations yield (for i = 1, 2)

V3(∅, 3i) = − −6
3 − δ

− 6δ

(3 − δ)(3 − 2δ)
+

2δ2

(3 − δ)(3 − 2δ)(1 − δ)

On the other hand, if 3 refuses to form the first link, but is willing to form subsequent links, then
the discounted payoff at a principal state (∅, 3i) is

V ′
3(∅, 3i) =

δ2

(3 − 2δ)2(3 − δ)

[
−6 +

2δ

1 − δ

]
> V3(∅, 3i)

Of course, whether free-riding will take place or not depends on the specific parameter values.
For instance, if δ is “close" to 1, and if w(g̃) is sufficiently large relative to the absolute values of
other graphs, then all agents will want to form additional links at each opportunity.

Theorem 4. Suppose the valuation structure satisfies IRL. Then, for all δ sufficiently large, there is an
equilibrium strategy profile such that g̃ is strongly absorbing.
Proof: If a component c is nonsingleton and w(c) ≥ 0, call it nonnegative. Define a strategy profile
µ∗ as follows. Consider any state s = (g, ij).
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(I) If either i or j (or both) are members of some nonnegative component of g (perhaps
different ones), then i and j retain all existing links and form the link ij if it did not exist
before (and if s is a principal state).

(II) Otherwise, i and j follow any equilibrium strategy profile in the “restricted" game where
strategies follow (I) whenever (I) applies.16

Notice that in Case I, the immediate payoffs of both i and j must go up (this is easy to verify
using the definition of IRL). This means that link monotonicity is satisfied on the subdomain
in which (I) applies. Because w is additive, the behavior specified by (I) is an equilibrium, by
Theorem 3. So µ∗ is an equilibrium in the overall game.

We will now show that the equilibrium entails convergence to g̃. To this end, we first claim

Fact 1. If Vi(s, µ∗) > 0 for any state s and any i, the process must converge to g̃ from that state.

To prove this, let H be the set of all graphs that contain at least one nonnegative component. By
(I), if the process enters H , then it must converge to g̃ a.s. But if the process does not ever enter
H , then no player can ever earn a strictly positive payoff, by the definition of IRL. This proves
Fact 1.

Fact 2. There exists a δ̄ ∈ (0, 1) such that for all δ ≥ δ̄ and for any graph g, there is some stage of
the form s = (g, ij) where the active players i and j earn a positive payoff.

To show this, first note that once the process enters H , there is a stochastic, bounded time (inde-
pendent of δ) within which the complete graph g̃ will be reached. Notice that ai(g̃,w) > 0 for all
i, so for any i,

Vi(s, µ∗) ≥ Vi(δ),

for some function Vi(δ) which goes to +∞ as δ → 1.
Now, take any connected ḡ /∈ H such that ḡ+ ij ∈ H for some ij, and let s = (ḡ, ij). Both i and

j can get at least δVk(δ) (for k = i, j) by forming the link ij. This means that their equilibrium
payoff is strictly positive. It follows from Fact 1 that from s the process must converge to g̃ almost
surely.

Let q ≡ |{kl|(ḡ+kl) ∈ H}|. Then the following is immediate: The probability that the network
process converges to g̃ from ḡ is at least q

M .
Next, observe that the (stochastic) time to any pair being active is a bounded random variable,

independent of the discount factor. Moreover, any active pair can always break all links. Therefore,
there is finite L, independent of the discount factor, such that for all states s and for all individuals
i, Vk(s, µ∗) ≥ −L no matter what the discount factor is.

Now, take any g′ and kl such that g + kl = ḡ, and consider s′ = (g, kl). Since kl can form the
link kl, for each i ∈ {k, l}

Vi(s′, µ) ≥ ai(ḡ, w) +
q

M
δ2Vi(δ) − M − q

M
L

Notice that for sufficiently large values of δ, Vi(s′, µ∗) → ∞ as δ → 1. Therefore the active pair
(k, l) enjoys a strictly positive payoff at this stage.

Continuing these arguments inductively, it is possible to establish Fact 2 for all initial networks
g.

Combining Facts 1 and 2, the proof of the proposition is complete.

16The strategy profile µ∗ is well defined because our existence proof implies that an equilibrium will exist in the
restricted game.
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Our last example shows that “static" coordination failures can occur even when the valua-
tion structure satisfies IRL. The example shows that g̃ is not strongly absorbing under some
equilibrium profiles even though IRL is satisfied.
Example 3. Suppose N = {1, 2, 3, 4}, the valuation structure satisfies IRL, with w(g̃) = 4, w({ij}) =
−100, w(g) < 0 for all other nonempty g ⊂ g̃. Let the allocation rule be ae, and δ > 6

151 .
Let µ be such that each pair i, j breaks all links at each (g, ij) and also refuses to form the link

ij if ij /∈ g. This makes the empty graph the strongly absorbing graph. To check that this is an
equilibrium, we simply check incentives to follow this strategy profile at g̃. First, note that for
all g and i, j,

Vi(g, ij,µ) = 0
Suppose i, j deviate at (g̃, ij) and dont break any links. Denoting this strategy profile by µ′,
routine calculation yields

Vi(g̃, ij,µ′) =
6(6 − 151δ)

(6 − δ)2
< 0

This shows that µ is an equilibrium.

Finally, observe that Theorem 4 is unaffected by reasonable variations on the solution concept
of the kind considered in Section 4.3. For instance, if all players can break links at every date, the
proof of the proposition is actually made easier, because all values must perforce be nonnegative.

6. Conclusion

This paper studies the dynamics of network formation when agents are farsighted. In contrast
to a large literature on group formation with farsighted agents in which individuals see through
the implications of several moves but there are no explict dynamics, we adopt an explicitly dy-
namic approach, with payoffs accruing in “real time" along with the network formation process.
In particular, players evaluate the desirability of a “current" move in terms of its consequences
on the entire discounted stream of payoffs, and the discount factor becomes a natural proxy for
the degree of farsightedness.

In addition to the use of this dynamic framework, which we borrow from Konishi and Ray
(2001), we posit a limited form of cooperation that is grounded firmly in the networks literature:
links are formed bilaterally and destroyed unilaterally, as in Jackson and Wolinsky (1996). Thus,
instead of arbitrary coalitions being active at any date, an active pair is randomly chosen, and
this pair can form a bilateral link if one does not exist between them. [They can also sever links
unilaterally.] This yields a solution concept that we show to be nonempty in a wide class of
situations. We then apply the concept to the study of efficiency. In particular, we show that there
are valuation structures in which no equilibrium strategy profile can sustain efficient networks.
We then provide sufficient conditions under which the equilibrium process will yield efficient
outcomes.
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