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Abstract

We examine how a society chooses to divide a given budget among various regions,

projects or individuals. In particular, we characterize the Banks set and the Uncovered

Set in such problems. We show that the two sets can be proper subsets of the set of

all alternatives, and at times are very pointed in their predictions. This contrasts with

well-known \chaos theorems," which suggest that majority voting does not lead to any

meaningful predictions when the policy space is multidimensional.
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1 Introduction

McKelvey's celebrated theorems (1976, 1979) on the genericity of global cycles in majority

voting are fundamental to our understanding of the potential outcomes of a social decision

process. These results assert that if the set of social alternatives is a multidimensional

Euclidean space, then under mild conditions on the pro�le of voters' preferences, there is

a �nite chain of alternatives starting at any given x and ending in any other y such that

each alternative in the chain is preferred by a majority of voters to its predecessor. These

results are often interpreted to show that in multidimensional policy spaces majority voting

is chaotic or unstable since no alternative appears to dominate the others.

The general conclusions drawn from this interpretation of McKelvey's Chaos Theorems1

have led many people to believe that it is impossible to predict the nature of social decision-

making without a detailed speci�cation of social institutions and rules. For instance, Stiglitz

(1988) writes, \If, however, there are a variety of dimensions-some individuals are liberal on

some issues and conservative on others-then the median voter is not well de�ned, and there

may be no equilibrium to the political process." According to Persson and Tabellini (2000),

\By the mid-to late 1970s, theorists had clearly demonstrated that searching for a universally

applicable theory of political equilibrium is a futile exercise. Further, majority voting would

generically lead to cycles, unless the voting agenda was restricted... The outlook of many

researchers at the time was thus quite pessimistic: any positive theory of political choice -

whether it was based on majority voting or not - seemingly had to rely on unattractive or

arbitrary assumptions."

These beliefs have resulted in a growing body of literature that derives social equilibria

conditional on explicit speci�cations of the institutional structure. Without denying the

importance of that direction of investigation, one is left with the impression that except in

exceptional cases, very little can be said about social choice outcomes that is institution-free.

This is problematic if the equilibrium outcomes are highly sensitive to the �ne details of the

institutional process. For instance, if the \institution" resembles a bargaining game, then

the equilibrium outcome will typically depend on the speci�c bargaining protocol. Therefore,

it appears as if the unpredictability associated with the chaos theorems has been replaced

by a predictability that may su�er from a lack of robustness.

The approach adopted in this paper, following another of McKelvey's (1986) inuential

papers, is to explore whether there are some predictions about majoritarian social choice

1A version of the Chaos Theorem for the �nite unstructured setting has been proved by Bell (1981). We

refer the reader to chapter 6 in Austen-Smith and Banks (1999) for an illuminating presentation of chaos

results in the spatial model.
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outcomes that are \relatively" institution-free. More precisely, is it possible to bound the

set of \stable social outcomes" in the sense that all social equilibria must lie within these

bounds under a wide variety of di�erent institutional arrangements? In this paper, we focus

on two such sets: the Uncovered Set of Miller (1980) and the Banks Set (Banks (1985)).

The two sets are arguably the most appropriate ones to bound the possible social out-

comes. McKelvey (1986) demonstrated2 that in any multidimensional setting where voters

have quasi-concave preferences (the so-called spatial setting), the Uncovered Set contains

the outcomes that would arise from equilibrium behavior under three di�erent institutional

frameworks : a two-candidate competition in a large electorate3, cooperative behavior in

small committees, and sophisticated behavior in a legislative environment. Hence, in a

strong sense the Uncovered Set is a useful generalization of the notion of a Condorcet win-

ner. The Banks Set is less general than the Uncovered Set in that it only applies to a speci�c

institution. Nevertheless, that institution, voting by amendment agendas (also known as

voting by successive elimination), is a very important one which is paradigmatic for most

committee voting rules and is the procedure central to Roberts Parliamentary Rules of Or-

der. It is often asserted that a chairman (or sub-committee) can manipulate the agenda so

as to ensure the choice of an alternative which is in his (or its) interest. However, Miller

and McKelvey showed that the set of sophisticated equilibrium outcomes corresponding to

voting by successive elimination must lie in the Uncovered Set; and Banks (1985) provided

a full characterization of this set of outcomes, which is the Banks Set. Thus, the Banks Set

puts some bounds on the monopoly power of an agenda setter in the context of amendment

agendas.4

The uncovered and Banks Sets have been investigated extensively in the case where the

set of alternatives is �nite and voters have no a priori structure to their preferences, and

so some properties of these sets are now well-known.5 However, the explicit computation

of these sets is not easy, particularly when the feasible set of alternatives is some subset of

multi-dimensional Euclidean space and one might expect some natural structure to voters'

preferences. The only real analysis that has made any progress on that issue is in the case of

purely distributive politics, where Epstein(1998) and Laslier and Picard(2002) have shown

that the Uncovered Set is the entire set of alternatives;6 and recent papers by Penn (2002)

2Miller (1980) had already shown that under a variety of institutional settings, game theoretic behavior

by participants leads to outcomes in the Uncovered Set when the set of alternatives is �nite.
3On this aspect, see also Banks, Duggan and Le Breton (2002).
4Miller, Grofman, and Feld (1990a), (1990b) argue that the interest for studying the Banks Set goes

beyond this.
5See Laslier (1997) for a detailed description of this area of research.
6See also McKelvey (1986), Banks, et al (2003), Cox(1987), De Donder (2000), Feld, et al (1987), Fey
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and Dutta, Jackson, and Le Breton (2002) who show that speci�c equilibrium notions of

agenda formation can lead to some pointed predictions in some circumstances.

This paper furthers our understanding of the structure of the behavior of majority rule

in spatial settings in two ways. The �rst is that we identify a broad class of social choice

problems that includes many situations that have been analyzed separately in the literature.

The common feature of these problems is that an alternative is a feasible allocation of a given

budget across �nitely many uses or projects. These projects could correspond to individuals

if we model private transfers in a distributive politics environment, or to districts or regions

or di�erent types of public expenditures in the context of pork barrel politics and �nancing

of local public goods (Ferejohn, Fiorina and McKelvey (1987), Lockwood (2002)). Other

budget allocation problems covered by our framework include the mixed setting where some

private projects compete with a global public project as in Lizzeri and Persico (2001). Our

key assumption is that voters' preferences are linear; that is, indi�erence contour sets are

parallel hyperplanes. While a special case of the spatial model, this is a rich setting that to

the best of our knowledge has never been investigated in any generality before. Our second

contribution is to provide some (partial) characterizations of the uncovered, Banks, and Top

Cycle sets in this setting, in the context of some important special cases. In particular, we

examine in some detail the case where each voter views each project as either being good or

bad.

In the next section, we introduce and illustrate the linear setting and the main concepts

which are used in this paper. In section 3, we introduce the main majoritarian sets which

are examined in this paper. Then, in section 4-7, we focus on the special case where there

are three projects and three voters. In section 4, we present the simple geometry of the

majority relation in the linear setting. We show that the necessary and su�cient condition

for the existence of a Condorcet winner in this setting is less stringent than the well-known

condition of Plott (1967). We also o�er a direct simple proof of McKelvey's chaos theorem

on the Top Cycle. Then, we calculate explicitly the Uncovered Set for many important linear

settings. We also calculate or describe with some accuracy the Banks Set to show how much

it di�ers from the Uncovered Set. We conclude in section 8 with a discussion of the general

case.

(2003), Hartley and Kilgour (1987), Koehler(1990).
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2 A Model of Budget Allocation where Voters have

Linear Preferences

Alternatives

The set of alternatives X consists of the set of feasible allocations of a given budget,

denoted by M , among K distinct possible uses. The uses may be thought of, depending

upon the context, as being districts, regions, individuals, public projects or other criteria.

Generic elements of X are denoted x, y, and z, and are K-dimensional vectors.

If money is assumed to be perfectly divisible, then the set X is in�nite. In this case, X

is the simplex (
x 2 IRK+ :

KX
k=1

xk =M

)
:

When M = 1, the set of social alternatives could be alternatively interpreted as the set of

lotteries over an unstructured �nite set of choices.

If, instead, money can only be divided into discrete units, with say 1 being the smallest

unit of money, then the set X is �nite. It is then de�ned as7(
x 2 f0; 1; : : : ;MgK :

KX
k=1

xk =M

)
:

We shall alternate between the use of these two settings. While the in�nitely divisible

setting provides some technical advantages, we stick with the �nite world in situations where

we analyze the Banks Set, as an uncontroversial de�nition for the Banks Set has not been

given for the case where X is in�nite. We shall discuss the limit as the units become small

(M becomes large), and this provides some predictions for the in�nite case.

This also gives us some feel for the importance of divisibilities, as we shall see that at

least in some cases the Banks Set changes as the units become relatively small, and the limit

may have di�erent features from situations with substantial indivisibilities.

We assume that M � 4 in the indivisible setting, as the case where M � 3 is an easily
analyzed special case where the geometry of the problem degenerates.

Voters and Preferences

The committee or society of voters is described by the �nite set N = f1; :::; Ng.
Voter i has preferences over the set of alternatives represented as follows. There exists a

vector ui 2 IRK such that the utility to i of an alternative x is simply ui � x. Thus, i prefers
7We presume that the entire budget is allocated. This is in line with voters viewing at least one of the

projects as not being objectionable.
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an alternative x to an alternative y if and only if

ui � x > ui � y:

Thus, uki denotes i's marginal valuation for project k. So, preferences are completely de-

scribed by the matrix u � (u1; ::::; uN) 2 IRNK .

The linearity of indi�erence is obviously special; but, as we now illustrate, it is general

enough to cover a large family of interesting problems.

Example 1 Private Projects: Divide the Dollar

This corresponds to the case where K = N and the matrix u is equivalent to

u =

1 0 � � 0
0 1 � � �
� � � � �
� � � � �
0 � � � 1

The conventional interpretation of this problem is that an alternative is a division of

the amount M among the N voters, who are assumed to derive utility exclusively from the

amount they receive, the larger the better. A second interpretation views the K dimensions

as K public projects in competition and assuming that each voter cares exclusively about

the amount allocated to a speci�c project, justifying the terminology \private projects" even

if the projects have the features of public projects.

Example 2 Goods and Bads

Consider a world where each dimension is viewed by a voter as either a \good" or a \bad"

project. Goods are equivalent in the voter's view, as are bads. To normalize things, goods

have a marginal value of 1 and bads have a marginal value of 0. So each ui is a vector of 0's

and 1's.

A special case of this is the divide the dollar setting described in Example 1, where each

player has a di�erent dimension that is a good, and only one dimension, and where the

number of dimensions is the number of voters K = N . Another special case is the private

and public good example (Example 3, below), in the case where b = 1. More generally, the

goods and bads model is one where K might di�er from N , several voters might view any

particular dimension as good, and players might consider several dimensions to be \goods."
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Example 3 Private Projects versus a Public Project

This example, inspired by Lizzeri and Persico (2001), is a setting mixing the divide the

dollar setting (Example 1) with an extra public project that is a pure public good. Here

voters are bargaining between allocating resources to a common public good, and payments

directly to the voters themselves. In particular, K = N + 1 and

u =

1 0 � � 0 b

0 1 � � 0 b

� � � � � �
� � � � � �
0 0 � � 1 b

where b is a positive parameter describing the common willingness to pay of each voter for

the public project.

Example 4 Choice Between Public Projects

Consider a society allocating resources to any of a list of projects, which may have private

and/or public components. In this case, there are no speci�c restrictions on the matrix u.

The K dimensions are interpreted as K di�erent potentially projects that are in competition

for funding. The allocation xk de�nes the scale of operation of project k (variations in costs

can be incorporated into the marginal utilities). Certainly, voter i would like to see all the

budget allocated to his or her \favorite projects" (projects k such that uki � uk
0
i for all k

0).

However, unlike the goods and the bads model, an agent is not systematically indi�erent

between projects that are identical in their allocation to the agent's most preferred projects.

When K = N , and the K dimensions are interpreted as districts or states in a federation

or regions in a country, this model describes pork barrel politics with some form of exter-

nalities across projects. Suppose that region i derives a bene�t equal to xi from project i

operated at the scale xi, but also derives some bene�ts from projects implemented in other

regions. The bene�ts resulting from these other projects are less important, the more \dis-

tant" is the region (where distance might or might not be a physical measure). Precisely,

uki = 1 � �dik. Knowledge of the intensity � of the externality and the pattern describing
the geographical network, is essential for understanding the voting behavior.8

8See Lockwood (2002) for an analysis of a model with externalities.
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Example 5 Criteria

When bargaining over the split of a budget, it is often the case that the discussion

takes place on various criteria that might be used to allocate the budget instead of directly

in terms of the allocation itself.9 For instance, consider a university deciding on how to

allocate a budget among a set of departments. The decision might be based on a whole set

of criteria including quality of research and teaching measured by various indicators, numbers

of students, numbers of researchers, etc. Let K be the number of such criteria. With respect

to these criteria, voter i (say department i) is described by the vector �i = (�
1
i ; ::::; �

K
i ) as to

how \much" of each criterion voter i possesses. So, �1i might be a measure of department i's

research output, �2i might be a measure of the number of students enrolled in the department

i's courses, and so on.

Here, an alternative x is a decision on the relative weight of each criterion in allocating

the budget. Given an x the allocation of the budget is such that voter (department) i receives

M
KX
k=1

xk
�kiP

1�j�N �
k
j

:

For instance, if x2 = 1=3, then in the university example 1/3 of the budget will be allocated

based on the number of students that a department has. There,
�2iP

1�j�N �
2
j
would measure

the fraction of all students that a given department has.

Presuming that voter i prefers to be allocated as much of the budget as possible, we end

up with preferences for voter i described by

uki =
�kiP

1�j�N �
k
j

;

for each k.

3 Majority Voting and Tournaments

Let us now discuss how we model the choice of alternatives made by voters.

The strict majority preference induced by a pro�le u of preferences is denoted by T (u)

and de�ned over X as follows.

xT (u)y , # fi 2 N : ui � x > ui � yg > # fi 2 N : ui � y > ui � xg
9We thank Salvador Barbera for having suggested this problem.
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If N is odd and individual preferences are strict, then T = T (u) is complete.10 Otherwise,

ties may occur and this results in some freedom in how one de�nes the sets and procedures

that we examine next.

For the following de�nitions, T may be an arbitrary asymmetric (and possibly incomplete)

binary relation.

Condorcet Winners

An alternative x is a Condorcet winner if :

xTy for all y 2 Xn fxg :

An alternative x is a weak Condorcet winner if :

not [yTx] for any y 2 X:

Let WC(T ) denote the set of weak Condorcet winners associated with T .

In the case where T is complete, the two de�nitions coincide. In fact, it is easy to see

that whenever there is a Condorcet winner then that alternative must also be the unique

weak Condorcet winner. However, in cases where T is incomplete it is possible for there to

exist many weak Condorcet winners, in which case there is no Condorcet winner.

The Top Cycle

As the majority preference is not necessarily transitive, it can have cycles. A prominent

cycle that we refer to in the sequel is the Top Cycle associated with T .

Let a weak T -chain between alternatives x and y be a sequence of alternatives x1; : : : ; xk

such that x1 = x, xk = y, and not xj+1Txj for each j = 1; : : : ; k � 1.
The Top Cycle of T , denoted by TC(T ) is the set11

TC(T ) = fx j 8y 2 X;9 a weak T-chain between x and yg

Thus, the Top Cycle is the set of alternatives that can reach any alternative in X via some

weak T -chain.

The Uncovered Set

10A binary relation which is asymmetric and complete is called a tournament. See Laslier (1997) for an

illuminating account of the principal results in the vast literature on tournaments and majority voting.
11When the majority preference is not complete, there are various possible de�nitions of the Top Cycle

(see Schwartz (1972) and Duggan and Le Breton (2001)). All of these de�nitions coincide with the de�nition

of TC considered in this paper when the majority preference is complete.
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The Uncovered Set of T , denoted UC(T ), is the set of maximal elements of the covering

relation C(T ) de�ned over X. De�ning C(T ) by

xC(T )y if and only if xTy and for all z 2 X : yTz implies xTz;

UC(T ) = fx j not yC(T )x8y 2 Xg:

Again, it should be pointed out that when T is not complete, there are several possible

of the Uncovered Set. The de�nition above, which is the most relevant for our subsequent

analysis of the Banks Set, corresponds to UCd in Banks and Bordes (1988), to Fd in Bordes

(1983) and to Miller's subset in Bordes, Le Breton and Salles (1992). It does not correspond

to the de�nition of the Uncovered Set which is found in Banks, Duggan and Le Breton (2002,

2003), Dutta and Laslier (1999) and McKelvey (1986). There, the Uncovered Set is de�ned

as the set of maximal elements of the partial order C(T ) de�ned over X by

xC(T )y i� xTy and for all z 2 X : [yTz implies xTz] and [zTx implies zTy]

Let

UC(T ) = fx j not yC(T )x8y 2 Xg:

Since C(T ) is a subrelation of C(T ), the Uncovered Set that we focus on in this paper UC(T )

is a subset of this other Uncovered Set UC(T ).

Amendment Agendas and Voting by Successive Elimination

A prominent procedure that selects a single allocation out of the feasible set X is that

based on amendment agendas, as central to Roberts Parliamentary Rules of Order. This

procedure, is also often referred to as voting by successive elimination in the literature, and

is de�ned as follows.

Consider an ordering � of the �nite set of alternatives X and let � = (x1; : : : ; xL) where

L denotes the number of alternatives in X. A vote is �rst taken to eliminate either xM or

xM�1. The `winning' alternative from the �rst round is compared to xM�2, and a vote is

taken to eliminate either surviving alternative from the �rst vote or xM�2, and so on. After

(M � 1) comparisons, the last surviving alternative is declared to be the voting outcome.
At each stage, the elimination of one alternative is according to majority voting, or more

generally according to the binary relation T . This is well-speci�ed when T is complete. In

cases where there are ties under the majority preference relation, or T is incomplete, the

voting procedure needs to be more completely speci�ed. We do so as follows. At each stage

allow individuals to vote for one of the two alternatives or to abstain (in the case where they

are indi�erent). In case of a tie in the voting between alternatives xl and xl0 , xl is elected
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if and only if xl comes before xl0 in the ordering � of voting; that is, l < l0. This favors

alternatives proposed earlier in the agenda under ties, which is a natural way to break ties

given that they have not already been broken under T .

In order to determine the eventual voting outcome, it is also necessary to describe how

voters act. We consider the case where they vote strategically at each stage, and so focus

on the sophisticated voting outcome of this binary voting procedure.12 This is the outcome

under the iterative elimination of weakly dominated strategies that has been well-studied.

As demonstrated by Shepsle and Weingast (1984),13 the sophisticated outcome induced by

the ordering �, denoted S(�; T ); is equal to w�L which is the last element of the �nite sequence

described by the following algorithm:

w�1 = x1; and for all l > 1 w
�
l =

8<: xl if xlTw
�
l0 for all l

0 < l; and

w�l�1; otherwise:

The Banks Set

The Banks Set (Banks (1985)), denoted B(T ), is the subset of alternatives which are

sophisticated outcomes for at least one ordering of X. Formally,

B(T ) = fx 2 W : 9� 2 � such that x = S(�; u)g ;

where � denotes the set of permutations of X.

Let a T -chain between alternatives x and y be a sequence of alternatives x1; : : : ; xk such

that x1 = x, xk = y, and xjTxj+1 for each j = 1; : : : ; k � 1.
Given an alternative x 2 X, an x-chain of T is a chain H with x 2 H such that xTy for

all y 2 H. The set of all x-chains is denoted H(x; T ).
Thus, an x-chain is a chain where x beats all the other alternatives in the chain according

to T .

The characterization provided by Banks (1985), stated to accommodate the possible

incompleteness, can be stated as follows.

Proposition 1 (Banks (1985))

B(T ) = fx j 9H 2 H(x; T ) s:t: 8y =2 H 9z 2 H s:t: not yTzg:
12For more on sophisticated voting, see Farquharson (1969) and McKelvey and Niemi (1978).
13The Shepsle-Weingast algorithm was de�ned for the case where T is complete. Our procedure of breaking

possible ties in the majority preference relation coming earlier in the ordering � ensures that the sophisticated

outcome can be derived from a straightforward variation on the algorithm derived by Shepsle and Weingast,

as shown, for instance, in Banks and Bordes (1988).
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Thus, Banks showed that the outcomes found by varying the ordering (for a �xed tour-

nament) of the amendment agenda when voting by successive elimination correspond to the

endpoints of chains, where the chains are such that any alternative not included in the chain

is beaten by something in the chain. The intuition behind the characterization is that the

alternatives in the chain are those who temporarily \win" at some stage in the voting (the

wk's in the Shepsle-Weingast algorithm), and the remaining alternatives are those who are

eliminated at their stages.

The following variation on well-known inclusions is helpful in what follows.

Lemma 1 If T is an asymmetric binary relation, then WC(T ) � B(T ) � UC(T ) � TC(T ).

The �rst inclusion is easily seen by noting that any weak Condorcet winner forms a

maximal T -chain. This means that if the ordering is such that this weak Condorcet winner

appears �rst in the order, then it will be the outcome of the amendment agenda, as no

other alternative beats it. The second inclusion appears as theorem 4.1 in Banks and Bordes

(1988). The third inclusion follows easily from the de�nitions.

In what follows we use the notation WC(u); B(u); UC(u); TC(u) to denote the sets

WC(T (u)); B(T (u)); UC(T (u)); TC(T (u)).

In the following sections, we examine the simplest framework for which the class of

allocation problems described in the preceding section is not degenerate. If K = 2 or N = 2,

there is always at least one weak Condorcet winner and all sets coincide with the set of

weak Condorcet winners. When K � 3 and N � 3, the set of (weak) Condorcet winners is
sometimes empty or some set of points that is not a singleton and not the whole set, and

the determination of TC, UC, and B becomes more challenging and interesting as we have

a true multidimensional problem. Thus, in what follows we restrict attention to the case of

K = N = 3.

4 The Simple Geometry of the Majority Relation and

the Top Cycle

In this section, we consider the continuous version ofX and assume, without loss of generality,

that M = 1. Under the assumption that K = N = 3, we are in position to use the

simple geometry of the triangle to support our formal arguments. Given these dimensionality

assumptions,

X =
n
x = (x1; x2) 2 IR2+ : x1 + x2 � 1

o
;
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that is, X is the triangle represented on Figure 1. The three vertices of the triangle are

denoted e1; e2 and e3.

Insert Figure 1 about here

Given u 2 uN and x 2 X, let U(u; x) be the set of alternatives that are considered strictly
superior to x by a majority, the so-called win set of x and by L(u; x) the set of alternatives

that are considered strictly inferior to x by a majority of voters. When there is no Condorcet

winner, these two sets are the union of three simple sets as pictured in Figure 2.

Insert Figure 2 about here

The following simple consequences of the linearity assumption on preferences will be very

useful in the sequel.

(a) If xT (u)y, z 2 X and � > 0, then �x+ (1� �)z T (u) �y + (1� �)z .

(b) If xT (u)y and �; � 2 [0; 1], then � > � implies �x+ (1� �)y T (u) �x+ (1� �)y.

(c) An immediate consequence of (a) is that if U(x; u) 6= ;, then U(u; x) intersects the
boundary of X; a similar observation applies to L(u; x).

(d) We deduce from (b) that if x majority dominates y, then any point belonging to the

line segment joining x and y majority dominates any other point of the segment which

is farther away from x.

In the rest of this section, we rule out preference pro�les which either o�er little interest

or will be examined in some subsequent sections. In particular, we assume that each voter

has a unique ideal point. It is straightforward to see that the linearity assumption implies

that this ideal point is necessarily a vertex of the triangle; i.e., the ideal point must be one of

e1; e2 or e3. We also assume that the three ideal points are all di�erent, as otherwise at least

two voters have the same ideal point, which is then the unique Condorcet winner. Without

loss of generality, let ei be the ideal point of voter i for all i = 1; 2; 3: Finally, we limit our

attention to the generic case where a given voter is never indi�erent between the ideal points

of the two other voters. A pro�le of preferences u displaying these features is described by

matrix with three degrees of freedom. A pro�le of preferences is completely described by a

vector u � (v1; v2; v3) 2 (0; 1)3 where vi denotes the intensity of the preference of voter i for
his second best choice among the vertices. Within this class of linear preference pro�les, two

situations may appear:
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(1) None of the vertices dominates the two other vertices. Up to a permutation of voters'

labels, a pro�le of preferences u in this category is described by a matrix

u =

1 0 v3

v1 1 0

0 v2 1

where 0 < v1; v2; v3 < 1.

(2) One of the vertices majority dominates the two other vertices. When this happens,

we call such a vertex a vertex Condorcet winner as it would be the obvious winner if

competition was limited to the �nite set of vertices. Up to a permutation of voters'

labels, a pro�le of preferences u in this category is described by a matrix

u =

1 v2 v3

v1 1 0

0 0 1

where 0 < v1; v2; v3 < 1.

We �rst examine the conditions under which a Condorcet winner exists.

Proposition 2 Let u � (v1; v2; v3) 2 (0; 1)3 be a pro�le of preferences as described in (1)
and (2) above. x is a Condorcet winner for u, if and only if it is a vertex and u falls in

category (2) and satis�es v2 + v3 � 1 (where up to a permutation of labels, vertex e1 is the
winner).

Proposition 2 departs in a fundamental way from Plott's well-known necessary and suf-

�cient conditions for the existence of a Condorcet winner in the spatial model. His result

asserts that for some alternative x to be a Condorcet winner, it has to be that x is the

ideal point of some voter i and for any other voter j, there exists a voter k such that the

normalized gradients of the utility functions of j and k evaluated in x are exactly opposite.

Since such symmetry conditions are not robust to perturbations of preferences, a corollary

of Plott's result is that Condorcet winners do not exist generically. It is often forgotten that

this applies only if x is in the interior or relative interior of the feasible set, which is vacuously

true if X is the entire Euclidean space. If, instead, like here, X is a compact convex subset of

the Euclidean space, then Plott's conditions do not apply to alternatives on the boundary.14

14Plott (1967) applies a budget constraint, but does not impose any nonnegativity constraints and so does

not consider boundary issues in the manner considered here.
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This applies systematically in our linear setting, since we just demonstrated that Condorcet

winners, when they exist, are on the boundary. The necessary and su�cient condition stated

in Proposition 2 is robust to perturbations.

Let us make a �nal comment on the existence of Condorcet winners. The linear setting is

a natural generalization of the �nite setting and will be at least as complicated as the �nite

setting in that the majority tournament limited to the set of vertices can take any form. But

the linear setting is richer in that a vertex doing well when matched exclusively against the

other vertices may be defeated by a majority when compromises are introduced. Suppose u

displays the pattern

u =

1 v2 v3

v1 1 0

0 0 1

.

Then e1 is a vertex Condorcet winner: voters 2 and 3 cannot agree on another vertex. Can

they agree on something else? They can if the intensity of their preference for e1 is not too

large, as stated by the inequality v2+v3 < 1 in Proposition 2. The condition is fairly intuitive

since if v2 and v3 are small enough then the gap between their second best and worst choices

vanishes, and it becomes possible to �nd a compromise �e2 + (1� �)e3 preferred by both of
them to e1. Figures 3 and 4 illustrate the two conceivable situations.

Insert Figure 3 about here

Insert Figure 4 about here

The following proposition provides a complete description of TC(u) when u � (v1; v2; v3) 2
(0; 1)3 is a pro�le of preferences as described above.

Proposition 3 Let u be a pro�le of preferences as described in (1) or (2) above. Then,

either there is a Condorcet winner, or TC(u) = X, or TC(u) = Xn feig for some i.

Proposition 3 is a version of McKelvey's chaos theorem in our linear setting. The proof

o�ered in the appendix shows how a cycle connecting any two alternatives is constructed,

and the problems raised by the existence of a boundary are addressed. In contrast to the

conditions leading to the existence of a Condorcet winner, the boundary does not have much

impact here, as the only departure from total chaos is the exclusion of a Condorcet loser,

when there is one.
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5 The Goods and Bads Model

In this section, we return to the discrete version of the problem, still keeping withN = K = 3.

We focus on the goods and bads model of example 2 and characterize all of the sets, including

the Banks and Uncovered Sets.

Let us �rst start with the analysis of a prominent case that falls in the goods and bads

model: that of the divide the dollar model.

Proposition 4 Consider the divide the dollar model of Example 1. The set of weak Con-

dorcet winners is empty, the Top Cycle is the whole set of alternatives, and the Uncovered

Set is the set of alternatives excluding the vertices. The Banks Set includes every x 2 X
such that xi < [(xj + xk)

2 + 5(xj + xk)� 4]=2, for some i and distinct j, k . Thus, the size
of the Banks Set converges to the size of the set of alternatives as the grid becomes �ner

(limM!1
#B(u)
#X

= 1). However, the Banks Set is a strict subset of the Uncovered Set for any

M > 5; as (M � 1; 1; 0) and permutations of these points are not in the Banks Set.15

Proposition 4 provides a di�erent view of the Banks Set than what is previously known.

While in some �nite settings with arbitrary preferences, one can �nd examples where the

Banks Set is a strict subset of the Uncovered Set (see Banks (1985)), it was not known

whether this was true in more naturally structured environments. Indeed, Penn (2003)

shows that in an in�nitely divisible version of a divide the dollar game with three players,

the Banks Set and Uncovered Set coincide.16 Here, in contrast, the Banks Set makes a

selection from the Uncovered Set. As the indivisibilities disappear, the sets converge to each

other, with the Banks Set always remaining a strict subset of the Uncovered Set.

Let us now return to the more general analysis of the goods and bads model, where

players may agree on which dimensions are goods, and may like several dimensions.

Let sk =
P
i u

k
i and s =

P
k s

k =
P
i

P
k u

k
i . Note that s 2 f0; 1; : : : ; 9g, and sk 2

f0; 1; 2; 3g.
Thus, sk is the strength of the support for dimension k. The analysis of the various sets

now depends on the relative strengths of the dimensions.

15For larger M , one can also check that (M � 2; 2; 0) and (M � 2; 1; 1) (and permutations) are not in the
Banks Set, and so forth; but the proofs become increasingly tedious as the number of chains to be ruled out

grow as we move away from the vertices.
16Penn's de�nition of the Banks Set in in�nite settings is directly in terms of maximal chains rather than

in terms of an agenda, and her tie-breaking rule is di�erent from ours. It is not clear that there is an

unambiguously appealing de�nition of the Banks Set in the in�nite setting, as without some modi�cations

of tie-breaking there does not exist any maximal chains.
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Proposition 5 Consider the goods and bads model from Example 2, and assume that at

least one voter is not completely indi�erent. Without loss of generality, label the dimensions

so that s1 � s2 � s3.

(1) If one dimension dominates the others (s1 > s2), then the vertex corresponding to that

dimension is a Condorcet winner and all the sets coincide (TC(u) = UC(u) = B(u) =

WC(u) = f(M; 0; 0)g).

(2) If there are two dimensions that have the same strength and dominate the third (s1 =

s2 > s3), then there is no Condorcet winner and the sets include all points that allocate

only to the �rst two dimensions (TC(u) = UC(u) = B(u) =WC(u) = fx j x3 = 0g).

(3) In the case where the strength of support for the three dimensions is identical (s1 =

s2 = s3):

(3a) If some voter is completely indi�erent, then no alternative beats any other, and

so X = WC(u) = B(u) = UC(u) = TC(u).

(3b) If each voter views a di�erent two dimensions as goods, thenWC(u) = f(M; 0; 0); (0;M; 0); (0; 0;M)g,
while TC(u) = X, and B(u) = UC(u) = Xnf(M�2; 1; 1); (1;M�2; 1); (1; 1;M�
2)g.

(3c) If each voter views one dimension as a good then we are back in the divide the

dollar game setting as characterized in Proposition 4.

Proposition 5 states that the analysis of the goods and bads model breaks into �ve cases,

basically depending on how much agreement there is among the voters as to which dimensions

are goods. When there is enough agreement (as in (1) or (2)), then the predictions are

narrow, while when there is signi�cant disagreement (as in (3a) (3b) and (3c)) then many

voting cycles appear and the sets are nearer to the entire space. Interestingly, the only

situation where something falls in between is in the divide the dollar game with smaller M

(substantial indivisibilities) where the Banks Set is narrower than the Uncovered Set and

Top Cycle.

More speci�cally, in the �rst case, there is some dimension that receives more support

than any other, and then giving the full budget to this dimension is a Condorcet winner.

In the second case, there are two dimensions that are viewed as goods by an equal number

of voters and the third dimension is viewed as a good by a lesser number. Here, the set

of weak Condorcet winners is the set of alternatives that give only to the two dimensions

with broader support. In the third, fourth, and �fth cases, all of the dimensions have equal
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support. However, they behave quite di�erently. In the third case, no alternative beats any

other, as the two voters who are not indi�erent completely disagree on the goods and bads,

and so all sets are the whole space. In the fourth case, the three vertices form the set of Weak

Condorcet winners. The Top Cycle is the whole set X, while the Banks and Uncovered Sets

are almost the entire set X. The �fth case refers to the divide the dollar game, as already

discussed.

6 Beyond the Goods and Bads Model.

We have o�ered a complete description of WC(u), TC(u) and UC(u), and some bounds on

the description of B(u), for the goods and bad model,. In this section, we return to the more

general linear model. In Section 4, we analyzed that model in terms of understanding the

Top Cycle. We now return to that analysis to see what we can say about the Uncovered Set.

Precisely, we focus on the generic case where there is not a Condorcet winner and the

pro�le of preferences is described by the pattern

u =

1 v2 v3

v1 1 0

0 0 1

;

where 0 < v1; v2; v3 < 1. Thus, e
1 is a vertex Condorcet winner, as it beats the other vertices

in a majority contest.

What does the Uncovered Set look like in such a setting? If e1 is a Condorcet winner,

then obviously UC(u) = fe1g. So let us assume that e1 is not a Condorcet winner. From
Proposition 2, this holds true if and only if v2 + v3 < 1: In such a case, TC(u) rules

out the Condorcet loser e3, but none of the points arbitrarily close to e3. The following

proposition demonstrates that there is a neighborhood of e3 which is outside UC(u). The

proof technique is based on the following simple but useful lemma which follows immediately

from the de�nition of covering (C(T )).

Lemma 2 x 2 UC(u) if and only if for all y 2 Y either not yTx or there exists z 2 X such

that xTz and not yTz.

This lemma states a version of the two-step principle (a terminology due to Miller and

McKelvey). Indeed, the lemma states that to be in the Uncovered Set an alternative x must

weakly majority dominate any other alternative in either one step or two steps; and if there

are two steps then the �rst component of the weak T -chain must be strict. Let L2(x) be the
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set (XnU(u; x)) [ ([y2L(u;x)(XnU(u; y))).17 The lemma asserts that x 2 UC(u) if and only
if L2(x) = X.

Proposition 6 Let u be as discussed above and x = (x1; x2) 2 X. Then, x 2 UC(u) if and
only if

x1
v1
+
x2
v2
� 1

It is interesting to note that the condition in Proposition 6 does not involve v3. If

v1 = v2 � v, then the condition in the Proposition is simply that :

x1 + x2 � v:

Obviously, from Proposition 6 it follows that the Uncovered Set rules out many points

around e3. This is a �rst step in an exploration of UC(u). This provides the interesting

conclusion that the Uncovered Set is a subset of the space of alternatives that depends in

interesting ways on the utility pro�le.

Likely, a similar analysis can be conducted in the case where there is no vertex Condorcet

winner.

7 The Mixed Private versus Public Goods Model

In this �nal section, we investigate the mixed private versus public goods model de�ned

as Example 3. In this model, a pro�le of preferences is identi�ed by the single positive

parameter b describing the common willingness to pay of each voter for the public project.

To emphasize this speci�city, we use the notation WC(b), TC(b) and UC(b) instead of

WC(u), TC(u) and UC(u). The following proposition describes the dependence of the three

sets18 upon the parameter b.

Proposition 7 Consider the mixed private versus public goods model from Example 3.

(1) If the bene�t from the public good is large (b > 1
2
), then allocating the entire budget to

the public good is a Condorcet Winner (and thus, WC(b) = UC(b) = TC(b) = (0; 0; 0;M) ).

(2) If the bene�t from the public good is intermediate (1
3
< b < 1

2
), then there are no weak

Condorcet winners, the Top Cycle is the whole set of alternatives, and the Uncovered Set is the

set of alternatives such that at most two voters get a positive amount of the private good and

no voter gets the entire supply of the private good (UC(b) =
n
x 2 X : xi = 0 for at least one i 2 f1; 2; 3g and xk 6=M for any k 2 f1; 2; 3g

o
).

17The notation L2 is justi�ed by the fact that when T is a tournament, L2(x) = L(u; x)[([y2L(u;x)L(u; y)).
18We have not calculated the Banks Set in this model.
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(3) If the bene�t from the public good is small (b < 1
3
), then the sets look like they do in

the divide the dollar game (WC(b) = ;, UC(b) =
n
x 2 X : x4 = 0 and xk 6=M for any k

o
and TC(b) = X).

Proposition 7 demonstrates that the presence of the public project has an impact on the

distributive politics component of the budget allocation. If the bene�t from the public good

is su�cient, then it swamps the private allocation, as in (1). If it is too small, then the

problem becomes similar to the divide the dollar game, as in (3). In the middle case, we see

some interesting impact of the public good. One voter among the three should derive his

payo� exclusively from public consumption. This is due to the fact that when b > 1
3
, the

Bowen-Lindahl-Samuelson �rst order optimality condition rules out any interior allocation.

Since the Uncovered Set is a subset of the Pareto set, this provides an upper bound. We

prove that, in fact, the two sets coincide.

8 Concluding Remarks and Higher Dimensions

We have shown that it is possible to make predictions about the nature of voting equilibria

under majoritarian rule that are not too sensitive to speci�c institutional details, even in

multi-dimensional policy space. We did this by analyzing budget allocation problems where

voters' preferences are linear.

Section 4 describes the geometric structure of the Top Cycle set. Proposition 2 showed

that if there is a Condorcet winner, then it must be a vertex. We also found that the

conditions under which a Condorcet winner exists extend Plott's analysis because they are

applicable even when a Condorcet winner lies on the boundary of the feasible set - which is

absent from his analysis. Having a boundary on the problem provides a di�erent perspective

than one gets from Plott's analysis, and the possibility of a Condorcet winner is no longer

so extreme. Proposition 3 is the counterpart of Mckelvey's chaos theorems, and shows that

if a Condorcet winner does not exist, then the Top Cycle set is virtually the entire set - at

most it excludes the three vertices. So, while we still come to the conclusion that the Top

Cycle is either a single point or the whole space, the conditions under which it is a single

point are no longer so extreme.

We went on to consider the goods and bads model, where voters view each dimension as

either a good or a bad. Proposition 5 demonstrates that there are cases where the Banks

Set and Uncovered Sets are strict subsets of the feasible set, even in situations where no

Condorcet winner exists. The Banks Set is generally a strict subset of the Uncovered Set,

but the di�erence between the two sets disappears as the divisibility of the budget becomes
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�ner.

In section 6, we returned to the more general linear preference framework of section 4, but

restrict attention to the analysis of preference pro�les which give rise to a vertex Condorcet

winner. We characterize the Uncovered Set and show that it excludes a neighborhood of

points close to the vertex Condorcet loser. This provides an interesting setting in which

the Uncovered Set makes pointed predictions about the outcome of any majority rule based

collective decision.

Finally, section 7 looks at the \mixed" public and private goods model (Example 3).

Not surprisingly, voters' common willingness to pay for the public good turns out to be

the crucial parameter in this model. If this willingness to pay is very high, then the entire

budget will be spent in production of the public good under majoritarian rule. Conversely,

if the willingness to pay is low, then the Uncovered Set excludes production of the public

good. The interesting case is when the common willingness to pay takes on an intermediate

value, and then the Uncovered Set predicts that at least one voter must be excluded from

consumption of the private good.

The bulk of our analysis was in the special case where there are three projects and three

voters, as that case is still tractable and yet introduces the full force of multi-dimensionality.

Certainly, it is worthwhile to explore beyond this. While the extension to more than three

projects and/or three voters does not raise conceptual di�culties, it is obviously much trick-

ier. One reason is that the linear model is at least as di�cult as the �nite model and therefore

moving to larger K complicates the combinatorics of the problem, as we know from the the-

ory of majority tournaments. We have listed below several directions of investigation that

seem promising to explore as a continuation of the analysis performed here.

� What happens to the goods and bads model in higher dimensions? The following

conjecture might be considered.

Conjecture: Consider the goods and bads model, and a case where there is some dimension

k that a strict majority of agents view as a good. Let J be the set of agents who think k is

a good and let A = fk0 : such that uk0i = 1 for some i 2 Jg: If x 2 UC(u) and ` =2 A, then
x` < K.

� It seems that Proposition 2 generalizes to higher dimensions. A Condorcet winner will
have to be a vertex. What conditions ensure that this vertex Condorcet is a Condorcet

winner? Using Farkas' Lemma, it seems that a complete characterization of preference

pro�les for which this holds is possible! Once again, this will depart from Plott's symmetry

conditions.

� It seems that we can also generalize Proposition 3 to higher dimensions, as follows.
De�ne the vertex Top Cycle, denoted V TC(u), to be the subset of vertices that are in the
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Top Cycle of the majority weak tournament restricted to the vertices and the vertex bottom

cycle, denoted V BC(u), to be the subset of vertices that are in the bottom cycle of the

majority weak tournament restricted to the vertices. We conjecture that

TC(u) =
n
x 2 X : xk = 0 for all e

k 2 V BC(u)
o
:

This implies that if a vertex is in the vertex top cycle, then it is in the Top Cycle, but

the converse does not hold, as we know already from the case where K = N = 3.

� The computation of the Uncovered Set does not seem out of reach either. One pre-

liminary question we may ask could be the following. De�ne the Vertex Uncovered Set to

be the subset of vertices which are in the Uncovered Set of the majority weak tournament

restricted to the vertices. Is it true that a vertex is in the Vertex Uncovered Set must also

be in the Uncovered Set? We know that the converse does not hold from Proposition 4.

� Finally, a detailed exploration of Example 3 would be valuable. It is straightforward
to check that if there is a Condorcet winner, it must give the whole allocation to the public

project. Furthermore, this project is a Condorcet winner if and only if

b � 1�
N
2

��
+ 1

:

The following conjecture, extending Proposition 7, could be considered.

Conjecture: Consider the private versus public goods model. If b > 1
M
for some positive

integer M , then x 2 UC(b)) # fi : xi > 0g < M . Furthermore, if b < 1
M�1 , then UC(b) =

fx 2 X : xi = 0 for at least N �M + 1 voters g.
Note that the �rst assertion is true from an analysis of the Pareto set. Only the second

assertion remains to be proved.
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Appendix

Proof of Proposition 2: Let x be a Condorcet winner for u. We �rst show that x

must be on the boundary of the triangle. Assume to the contrary that x is in the interior of

X. Then, for all i; j 2 N , the indi�erence lines of voters i and j passing through x must be
identical, as otherwise, there would exist y in the neighborhood of x such that ui � y > ui � x
and uj � y > uj � x, contradicting our assumption that x is a Condorcet winner. This implies
that the slopes of the indi�erence lines of voters i and j through x are the same, so that

vivj = 1. This cannot be, as there is no solution (v1; v2; v3) 2 (0; 1)3 to the system of

equations

v1v2 = 1; v1v3 = 1 and v2v3 = 1:

So we have shown that a Condorcet winner must be on the boundary of X.

Next, we show that a Condorcet winner must be a vertex. We know from above that

a Condorcet winner x can be written as x = �ei + (1 � �)ej for some 0 < � < 1. Then,

either uk � ei > uk � ej, in which case ei majority dominates ej via the coalition fi; kg; or,
uk � ei < uk � ej, in which case ej majority dominates ei via the coalition fj; kg. Therefore,
either � = 0 or � = 1, and the Condorcet winner must be a vertex.

We complete the proof by showing that (2) must apply and that vj + vk � 1 for some j
and k. Without loss of generality, let x = e1. Then, u must fall in (2) and it must be that

either

u =

1 v2 v3

v1 1 0

0 0 1

or u =

1 v2 v3

0 1 0

v1 0 1

:

Indeed, since e1 majority dominates e2 and e3, then either e3 is the worst choice for 1 and

2 or e2 is the worst choice for 1 and 3. Without loss of generality, consider the �rst case.

For e1 to be Condorcet winner it is necessary and su�cient that there not exist (y1; y2) 2 X
such that

v2y1 + y2 > v2 and (v3 � 1)y1 � y2 > v3 � 1:

It is straightforward to check that this system of inequalities is consistent with (y1; y2) 2 X
if and only if v2 + v3 < 1.

Proof of Proposition 3 : Assume that there is no Condorcet winner. We distinguish

two cases.

Case 1: There is no vertex Condorcet winner.

In this case, up to a permutation, e1T (u)e2T (u)e3T (u)e1 and from (d) above, the cycle

extends to the whole boundary of X: for any two points z and w on the boundary there
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is a weak T -chain between z and w. Now take x and y in X. Since there is no Condorcet

winner, we deduce from (c) above that there exist z and w on the boundary of X such that

xT (u)z and wT (u)y: The existence of a weak T -chain between x and y follows from the

juxtaposition of the three weak T -chains. This proves that TC(u) = X.

Case 2: There is a vertex Condorcet winner.

Without loss of generality, assume that e1 is the vertex Condorcet winner. Since e1 is

not a Condorcet winner, there exists z on the segment [e2; e3] such that zT (u)e1. From (b)

above, we deduce that e1T (u)e2T (u)zT (u)e1 and from (d) above the cycle extends to the

entire boundary of the triangle with vertices e1; e2 and z, as illustrated in Figure 5.

Insert Figure 5 about here

We �rst show that for all x; y 2 [e1; e2] [ [e2; e3] [ [e2; e3] [ [e1; z] such that x 6= e3, there
exists a weak T -chain from x to y. For any x 2 [e1; e2][ [e2; z][ [z; e1], the claim follows from
the existence of a cycle as in claim. Consider now the case where x 2 [e1; e3] [ [z; e3] with
x 6= e3. The idea is to construct a weak T -chain starting from x and ending in h belonging

to the smaller triangle with vertices e1; e2 and z; once there, we just demonstrated that you

can anywhere else on the boundary of X. The construction goes as follows.

First consider f 2 [z; e3] and let g be the intersection of [e1; e3] with the indi�erence line
of voter 2 passing through f . Given the slopes of the indi�erence line of voters 2 and 3, it is

easy to see that this point is well de�ned and that u3 � g > u3 �f . Then, de�ne h as being the
intersection of the indi�erence line of voter 3 with either [z; e1] or [z; e3]. Given the slopes

of the indi�erence lines of voters 1 and 3, it is easy to see that this point is well de�ned

and that u1 � h > u1 � g. We have obtained the short weak T -chain fT (u)gT (u)h. This is
illustrated in Figure 6.

Insert Figure 6 about here

If h 2 [z; e1], we have completed the desired argument. If instead, h 2 [z; e3], it is easy
to show that j h� e3 j>j f � e3 j. Starting from h, we repeat the argument above to obtain

g0 and h0 2 [z; e1] [ [z; e3]. If h0 2 [z; e1], we are done. Otherwise, we continue this process.
After a �nite number of steps, we will obtain a point in [z; e1]. This is illustrated in Figure

7.

Insert Figure 7 about here

The case where f 2 [e1; e3] follows from (a) above, since f = �e1 + (1 � �)e3 for some
� 2 ]0; 1[ and e1T (u)w for all w 2 ]z; e3[, we deduce that fT (u)�w+(1��)e3. The connection
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involving points in the interior of X is done as in case 1. This completes the proof of the

claim that TC(u) = Xn fe3g.

Proof of Proposition 4: First, note that yTx implies that y exceeds x on exactly two

dimensions.

From this it is clear that there are no weak Condorcet winners, as for any alternative

there exists some other alternative that gives more to two of the dimensions (given that

M � 4).
Next, let us check that the Uncovered Set is the set of all points less the vertices. Consider

x = (u; v; w) that is defeated by some y = (a; b; c). Without loss of generality, let a > u,

b > v, and c � w � 2. Consider z = (M � c � 1; 0; c + 1). Here, provided v > 0, x beats z
and yet z beats y. Thus, y cannot cover x. This implies that the only covered points could

be the vertices. Indeed, the vertices never beat any point, and are beaten by any interior

point, and so are covered.

To verify that the Top Cycle is X, we only need to check that the vertices are in the

Top Cycle, as the other alternatives are all uncovered. We need to check that from any

vertex, say x = (M; 0; 0), and any other alternative y there is a weak T -chain. If y has a 0 in

either of the last two dimensions, then x and y are non-comparable, and so there is a weak

T -chain directly. Thus consider any alternative y = (u; v; w), where v > 0 and w > 0. Let

z = (u+ 1; v +w� 1; 0). Then x is non-comparable to z and z defeats y, so there is a weak
T -chain from x to y. This completes the proof of the Top Cycle.

The claims about the Banks Set are established as follows. Let us identify a maximal

T -chain with x = (u; v; w), where u � v � w, at the end.
Consider the case where u > v + w. (u; v; w), (u� 1; v + 2; w � 1), (u� 4; v + 6; w � 2),

: : : (u � ci; v + i + ci; w � i), : : : ... where i is the index of the step until w � i hits 0, then
(u � ci; v � i + w; i + ci) for the remaining steps until v + w � i hits 0. Let us de�ne ci,
and let i� be the smallest i for which u � (i2 + 3i � 2)=2 � v + w � i: Then for i < i� set
ci = (i2 + 3i � 2)=2 For i � i� set ci = u � (v + w) + i. Let us prove that this chain is
maximal. Suppose that y = (a; b; d) beats everything in the chain. It cannot be that b � v,
as then there is some point in the chain with middle entry b. Similarly d � w is not possible.
So b > v and d > w. Thus it must be that a � u � 2. It cannot be that a � u � ci� , as
then there is some step with �rst entry a. So, it must be that a > u� ci� . Without loss of
generality then, take a = u� ci + 1, for some i < i�. Then it must be that b and d beat all
the second and third entries above this. This means that b+d � v+w+ ci�1+(i�1)+1+1
[either beating the highest second entry and w + 1, or the highest third entry and v + 1 if

we are already in the second part of the algorithm] We also know from the value of a that
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v+w+ci�1 � b+d. This implies that ci � ci�1+ i+2. This does not hold by the de�nition
of ci, which solving inductively amounts to ci � (i2 + 5i � 4)=2, which cannot hold given
that u < ((v + w)2 + 5(v + w)� 4)=2. So, we have reached a contradiction.
So, to complete the proof consider the case where u � v+w and let us identify a maximal

T -chain with x = (u; v; w) at the end. (u; v; w), (u � 1; v + 2; w � 1), (u � 2; v + 4; w � 2),
: : : (u � i; v + 2i; w � i), : : : ... where i is the index of the step until w � i hits 0, then
(u � i; v + w � i; 2i) for the remaining steps until u � i hits 0. Note �rst that this chain of
length u+1 is well de�ned; indeed, when i = u, v+w� i � 0. Let us prove that this chain is
maximal. Assume on the contrary that y = (a; b; d) beats everything in the chain. It cannot

be that a � u, as then there is some point in the chain with �rst entry a. Similarly d � w is
not possible. The same reasoning show that b is such that either b > v or b < v+w�u. The
�rst case is not possible as it implies a+b+d > u+v+w which is not possible. Consider the

second case. Since (a; b; d) beats all alternatives in the chain, we deduce from b < v+w� u
that (a; b; d) is preferred by voters 1 and 3 to any alternative in the chain. This implies a > u

and d > 2u and therefore, since u � v � w, a + b + d � a + d > 3u � u + v + w, which is
not possible.

Finally let us show that for any M > 5, (M � 1; 1; 0) and its permutations are not in the
Banks Set, and so B(u) 6= UC(u). The only alternatives that this beats are (k; 0;M � k)
for k < M � 1. The only chains that could conceivably be maximal are then of the form
(k; 0;M � k), (M � 1; 1; 0). If k < M � 3, then the alternative (M � 3; 2; 1) beats both. If
k � M � 3, then (0; 2;M � 2) beats both (provided M � 2 > M � (M � 3) = 3, so when
M > 5).

Proof of Proposition 5:

Case (1) is easily checked directly.

Let us check (2).

If s1 = s2 = 3 > s3, then it must be that every voter weakly prefers any allocation x with

x3 = 0 to any allocation y with y3 6= 0, and some voter has a strict preference between any
two such allocations. Moreover, all voters are indi�erent between any two allocations that

have x3 = 0, and so the set of weak Condorcet winners is the set fx j x3 = 0g. Since any
allocation outside of this set is defeated by one inside this set, this is the Top Cycle. Also,

since the set of weak Condorcet winners is a subset of the Banks Set, the claim follows from

Lemma 1 noting that fx j x3 = 0g = WC(u) � B(u) � UC(u) � TC(u) = fx j x3 = 0g.
If s1 = s2 = 2 > s3, then it can be checked that any allocation x with x3 = 0 defeats any

allocation y with y3 6= 0. [Such a y gets at most one vote versus such an x, and such an x
always gets at least one vote versus such a y. For any con�guration of preferences that �ts
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in this case where such a y gets one vote, it must be that such an x gets two votes.] Also,

there must be one voter who is indi�erent between all allocations in fx j x3 = 0g, while
the other two agents split on it. Thus, again the set of weak Condorcet winners is the set

fx j x3 = 0g, and any allocation outside of this set is defeated by one inside this set. So the
rest of the proof is as in the case above.

If s1 = s2 = 1 > s3 = 0, then either there is one voter who thinks both dimensions 1 and

2 are goods, and other voters are completely indi�erent, or there are two voters who each

like one of the two dimensions, and the other voter is indi�erent between all allocations. In

either situation it is clear that the set of weak Condorcet winners is the set fx j x3 = 0g, and
any allocation outside of this set is defeated by one inside this set, as in the earlier cases.

Next, let us consider (3a). In this case, without loss of generality, suppose that voter

1 views dimension 1 as a good, voter 2 views dimensions 2 and 3 as goods, and voter 3

is completely indi�erent. If we consider two alternatives that have the same allocation to

dimension 1, then all voters are indi�erent between these alternatives. If we consider two

alternatives that have di�erent allocations between dimension 1, then voters 1 and 2 will have

opposing preferences over the alternatives. Thus, any two alternatives are non-comparable

under T (u).

Next, let us consider (3b). Note that no two voters agree on which dimensions are goods.

There is one voter who likes dimensions 1 and 2, one who likes 2 and 3, and one who likes

1 and 3. One key observation is that if yT (u)x in this case, it must be that y exceeds x on

exactly one dimension and is less than x on the two remaining dimensions. (If it is the same

on any dimension then they are non-comparable. If y exceeds x on two dimensions, then

the sum of the remaining dimension together with either other dimension is greater under

x, and x will win.) This results in the following observations about T (u).

(a) Any two alternatives which agree on some dimension are non- comparable to each

other.

(b) Any vertex will beat any alternative that is positive on the other two dimensions.

From (a) and (b) it follows that the vertices are not beaten by any alternative, and from

(b), it follows that any other alternative is beaten by some vertex. Thus the set of weak

Condorcet winners is exactly the set of vertices.

Next, let us show that UC(u) = X n f(M � 2; 1; 1); (1;M � 2; 1); (1; 1;M � 2)g � X�.

First, we show that x = (M � 2; 1; 1) is not in the Uncovered Set. Let y = (M; 0; 0).

Then, yTx. Suppose not yTz. Then, from (b), either z2 = 0 or z3 = 0. Without loss of

generality, suppose z2 = 0. In order for x to beat z, x has to be bigger than z in just one
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component, and smaller than z in the other two components. Since z2 = 0, this means that

x1 < z1 and x3 < z3. But this is not possible. So, xTz implies yTz. Hence, x is covered.

Analogous arguments establish that (1;M � 2; 1) and (1; 1;M � 2) are covered.
Next, we show that no other element in X� is covered.

Each vertex forms a maximal chain as a singleton and so is in the Banks Set and thus

the Uncovered Set.

Next, consider an alternative x 2 X� that has two dimensions positive and the other 0.

Without loss of generality, say x = (a;M � a; 0) where a � M � a. This alternative beats
(0;M � 1; 1). Note also that any alternative y that has y3 � 1 does not beat (0;M � 1; 1)
(the voter who likes the last two dimensions is at best indi�erent, and the voter who likes

the �rst two dimensions prefers (0;M � 1; 1)). Thus only alternatives with y3 = 0 beat

(0;M � 1; 1). Then, it follows from (a) that forming a chain of x and (0;M � 1; 1) is a
maximal chain that results in x, and so x is in the Banks Set, and thus the Uncovered Set.

Next, consider an interior alternative x = (x1; x2; x3) 2 X�. Without loss of generality,

assume that x1 � x2 � x3. Note that since x 2 X�, x2 � 2.
Suppose yTx and y is an interior alternative in X. Without loss of generality, let yi <

xi; yj < xj and yk > xk. Of course, such i; j; k must exist. So, yi � xi � 1, yj � xj � 1,
yk � xk + 2. This must mean that xi � 2; xj � 2 since y is interior by assumption. Now,

consider z such that zi = 0, zj = xi + xj � 1, and zk = xk + 1. Then, xTz, but zTy. So, x
cannot be covered by y.

Next, suppose that yTx and y is not an interior point. If y1 = 0, then choose z =

(0; x2+1; x3+x1�1). Since x1 � 2, we have xTz. But, by (a), y and z are non-comparable.
So, y does not cover x.

If y2 = 0, then choose z = (x1+1; 0; x3+x2�1). Note that since x 2 X�, x2 � 2. Again,
xTz, but y and z are non-comparable.

The last possibility is that y3 = 0. Since yTx, there is i such that yi � xi + 2. Choose z
such that zi = xi + 1 < yi, zk = 0 where k 6= 0, and z3 = M � xi � 1. Since x2 � 2, check
that z3 > x3. It follows that xTz and yTz. So, x is not covered.

Thus, we have shown that UC(u) = X�, and so Lemma 1 implies that X� � TC(u).

Now, consider x = (M � 2; 1; 1). We show that there is a weak T -chain connecting x to each
of the vertices. Take (M; 0; 0). Then, the weak T -chain is (x; (M � 2; 0; 2); (M; 0; 0)). Weak
T -chains to other vertices are obvious extensions of this weak T -chain. Similarly, there is a

weak T -chain from x to any other point in X. Hence, TC(u) = X.

Next, let us identify the Banks Set. Our arguments above already show that the Banks

Set includes all alternatives that are not in the interior. Consider x = (x1; x2; x3) in the

interior. Without loss of generality, let x1 � x2 � x3 � 1, and since B(u) � UC(u) = X�,
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we know that x2 � 2.
Let k+ be the smallest integer greater than or equal to k, and k� the greatest integer

smaller than or equal to k.

Let us build a T -chain that ends in x and argue that it is maximal. This shows that x is

in the Banks Set.

The �rst element in the chain is x. The next part of the sequence are the alternatives

(x1 + 1; x2 � 2; x3 + 1), (x1 + 2; x2 � 4; x3 + 2), : : :,
�
x1 + (x

2

2
)�; 0; x3 + (x

2

2
)+
�
.

Denote x1M = x1 + (x
2

2
)�, and x3M = x3 + (x

2

2
)+.

The last part of the sequence is (x1M�2; x2+1; x3M+1), : : :,
�
0; x2 + (

x1M
2
)�; x3M + (

x1M
2
)+
�
.

It is easy to check that this is a chain. Let us show that it is maximal.

Suppose y beats everything in the chain. Consider the case where y1 > x1. The chain

contains without any gap everything from x1 to x1M . So, y
1 > x1M . But, then y cannot beat

(x1M ; 0; x
3
M). The same argument rules out cases where y

2 > x2. So we are left with the

case y3 > x3. In the third dimension, the chain contains all consecutive elements from x1 to

x3M + (
x1M
2
)+ except possibly 19 x3M � 1 and x3M + (

x1M
2
)+ � 1.

Suppose y3 = x3M � 1. Since y3 > x3M � 2, we need y2 < 3. But, then y1 � x1M � 1. So, y
does not beat (x1M � 1; 3; x3M � 2), which is the element just before (x1M ; 0; x3M).
An analogous argument works if y3 = x3M + (

x1M
2
)+ � 1.

(3c) follows from Proposition 4.

Proof of Proposition 6: Let x = (x1; x2) 2 X. We examine the indi�erences lines of
voters 1 and 2 through x. The four possible cases are:

� The indi�erence line of voter 1 through x intersects [e2; e3] and the indi�erence line of
voter 2 through x intersects [e1; e3] (This is the case considered in Proposition 6)

� The indi�erence line of voter 1 through x intersects [e2; e3] and the indi�erence line of
voter 2 through x intersects [e1; e2]

� The indi�erence line of voter 1 through x intersects [e1; e2] and the indi�erence line of
voter 2 through x intersects [e1; e3]

� The indi�erence line of voter 1 through x intersects [e1; e2] and the indi�erence line of
voter 2 through x intersects [e1; e2]

This leads to a partition of the triangle X into four areas as indicated in Figure 8.

Insert Figure 8 about here

We can check that whenever x belongs to areas 2, 3 and 4, L2(x) = X. From lemma

2, this implies that the union of these areas is included in the uncovered Set. Assume now

19There are no gaps if x2 and x1M are even.
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that x belongs to the �rst area. Then, L(x) is the union of the quadrilateral xAe3B and the

two triangles xCD and xEF . This pattern is depicted in Figure 9 where the hatched area

corresponds to L(x).20

Insert Figure 9 about here

From Lemma 2, to test if x 2 UC(u), it is enough to calculate L2(x). From the geometry
of the problem, it is straightforward to verify that L2(x) is the union of the two triangles

e3FG and e3DH where G is the intersection of [e2; e3] with the indi�erence line of voter 1

through F and H is the intersection of [e1; e3] with the indi�erence line of voter 2 through

D. Let I � (w1; w2) be the intersection of the lines GF and DH. Therefore, L2(x) = X i�

w1 + w2 < 1. The rest of the proof amounts to simple calculus.

The �rst coordinate of F , say f1, is solution of the equation

v2f1 = v2x1 + x2

or

f1 = x1 +
x2
v2
:

Therefore, the line FG is described by the equation

y1 + v1y2 = x1 +
x2
v2

Similarly, the second coordinate of D, say d2, is solution of the linear equation

v1d2 = x1 + v1x2

or

d2 =
x1
v1
+ x2:

Therefore, the line DH is described by the equation

v2y1 + y2 =
x1
v1
+ x2:

We deduce that

w1 =
x2
v2
and w2 =

x1
v1
;

which implies the conclusion.

Proof of Proposition 7:

20Up to the exclusion of the boundaries.
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(1) Let b > 1
2
and x 2 X with x4 < 1. Then, for at least two of the voters, say i and j,

xi � 1�x4
2
and xj � 1�x4

2
. Therefore, since b > 1

2
,

uk � x = xk + bx4 �
1� x4
2

+ bx4 < b = uk � (0; 0; 0; 1) for k 2 fi; jg :

We deduce that (0; 0; 0; 1)T (b)x and the conclusion follows.

(2) Let 1
3
< b < 1

2
. It is clear that WC(b) = ; as (1

2
; 1
2
; 0; 0)T (b)(0; 0; 0; 1). Let us prove

that UC(b) = fx 2 X : xi = 0 for at least one i 2 f1; 2; 3g ; xk 6=M for any k f1; 2; 3gg.
(i) UC(b) � fx 2 X : xi = 0 for at least one i 2 f1; 2; 3g; xk 6=M for any k f1; 2; 3gg.
Let x 2 X with xi > 0 for all i 2 f1; 2; 3g. Let y = (x1 � �; x2 � �; x3 � �; x4 + 3�) where

0 < � < Min (x1; x2; x3). Since b >
1
3
, y Pareto dominates and therefore covers x. Next,

suppose that xk = M for some k 2 f1; 2; 3g. Then, x is covered by (0; 0; 0;M), as x does
not defeat any alternative.

(ii) UC(b) �
n
x 2 X : xi = 0 for at least one i 2 f1; 2; 3g and xk 6=M for any k 2 f1; 2; 3g

o
.

Without loss of generality, consider the case where x3 = 0: Suppose that, contrary to the

assertion, x is covered by y. Since we can take y to be uncovered, from (i) we deduce that

either y = (y1; y2; 0; y4) or y = (y1; 0; y3; y4) or y = (0; y2; y3; y4). Let us consider the case

where x4 6= 0:
Case 1 : y = (y1; y2; 0; y4).

Subcase 1 : y4 � x4. Since yTx, we deduce that y4 6= x4 and therefore y1 > x1 and y2 > x2:
It follows that (x1; x2; 0; x4)T (y1 + y2; 0; 0; y4) but not [(y1; y2; 0; y4)T (y1 + y2; 0; 0; y4)]. This

shows that y does not cover x.

Subcase 2 : y4 > x4. The extra public good y4�x4 is �nanced by voters 1 and 2. Without
loss of generality, assume that voter 2 pays at least half of the cost i.e. y2 � x2 � �y4�x4

2
.

Consider the vector z � (1�y2�by4�"; y2+by4+�; 0; 0) where " is a small positive number.
Note that for " small enough, z is a feasible allocation as y2 + by4 < y2 +

y4
2
< 1 since b < 1

2
.

Then, for " small enough, xTz since x4 6= 0 while however Not [yTz]. This shows again that
y does not cover x.

Case 2 : y = (y1; 0; y3; y4).

Subcase 1 : y4 � x4. Then, for su�ciently small but positive, �, we have :

(x1; x2; 0; x4)T (y1 + y3; �; 0; y4 � �) but Not [(y1; 0; y3; y4)T (y1 + y3; �; 0; y4 � �)]

This shows that y does not cover x.

Subcase 2 : y4 > x4. Clearly, 3 prefers y to x. Suppose �rst that 1 also prefers y to x

(and therefore that 2 prefers x to y), and consider the vector z � (1� by4 � "; by4 + "; 0; 0),
where " is a small positive number. Then, for small enough ", z is a feasible allocation and
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xTz while, not [yTz]. If instead 1 prefers x to y, and therefore 2 prefers y to x, consider the

vector z � (y2+ by4+ "; 0; 1� y2� by4� "; 0), where " is a small positive number. Then, for
small enough ", z is a feasible allocation and xTz since x4 6= 0, while not [yTz]. This again
shows that y does not cover x.

Case 3 : y = (0; y2; y3; y4). This case is similar to case 2.

Consider the situation where x4 = 0. The analysis has to be changed slightly.

Case 1 : y = (y1; y2; 0; y4). Since yTx and b <
1
2
, it must be that y4 > 0. Furthermore,

either y1 + by4 < x1 or y2 + by4 < x2. Without loss of generality assume that the second

inequality holds and let z � (0; y2 + by4 + "; 1 � y2 � by4; 0), where " is a small positive
number. Then, for small enough ", z is a feasible allocation and xTz while not [yTz].

Case 2 : y = (y1; 0; y3; y4).

Subcase 1 : y4 = 0. Since x1 6= 0 and x2 6= 0, we deduce from Proposition 4 that y cannot
cover x.

Subcase 2 : y4 > 0. Clearly, 3 prefers y to x. Suppose that 1 also prefers y to x (and

therefore that 2 prefers x to y), and consider the vector z � (0; by4+"; 1�by4�"; 0), where "
is a small positive number. Then, for small enough ", z is a feasible allocation and xTz while

not [yTz]. If on the other hand, 1 prefers x to y, and therefore 2 prefers y to x, consider the

vector z � (y1 + by4 + "; 0; 1� y1 � by4 � "; 0) where " is a small positive number. Then, for
small enough ", z is a feasible allocation and xTz since x2 6= 0 while not [yTz]. This shows
again that y does not cover x.

Case 3 : y = (0; y2; y3; y4). Similar to case 2.

(3) Let b < 1
3
. Then

UC(b) =
n
x 2 X : x4 = 0 and xk 6=M for any k 2 f1; 2; 3g

o
The inclusion UC(b) � fx 2 X : x4 = 0 g follows from the fact that if b < 1

3
, then any

x such that x4 > 0 is Pareto dominated and therefore covered. Since any alternative in

UC(b j PO(b))21 where PO(b) denotes the set of Pareto undominated allocations is in
UC(b)22, we deduce from Proposition 4 that UC(b) contains the setn

x 2 X : x4 = 0
o
:

21For any A � X, UC(b j A) denotes the Uncovered Set when the set of alternatives is restricted to the
subset A.
22We leave the proof of this simple claim to the reader. Note however that the reverse inclusion UC �

UC(PO) does not always hold i.e. while the deletion of Pareto undominated alternatives can never hurts

an alternative already in the Uncovered Set, the consideration of such alternatives may help some other

alternatives which would not be in otherwise !

35



We now only need to prove that the vertices are not in UC(b). This follows from the fact

that for any vertex x, there is no y such that xTy.

To complete the proof, it remains to be shown that if b < 1
2
, then TC(b) = X.

From (3c) in Proposition 2 we know that any alternative in the setfX � fx = (x1; x2; x3; x4) 2 X : x4 = 0 g is connected to any other alternative in that
set (the weak T -chain is in fX). To conclude it remains to prove that fX and XnfX are

connected. Let x 2 X with x4 > 0. Since b <
1
2
, (x1 +

x4
2
; x2 +

x4
2
; x3; 0)Tx. Finally, observe

that xT (x1 + x4; x2; x3; 0).
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Figure 2
The Win Set of x

- X1

e3

XXXXXXXXXXXXXXXXXXXXXX

s
�
�
3

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

�
�

3

ZZ}
2

S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S
S�

��3 1

6
X2

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
ccs

s

1

e1

J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
J
JJ

1

��3

�
�
�
�
�
�
�
�
�
�
�
�
�
��
ZZ}

2

x

1 e2

��
��

�

��
��
�

��
��

��

��
��

��
��

��
��

��
��

��

��
��

��
�

��
��

�

���
��

�����
��

���
���

������
���

���
���

���
�����
�����

����
�����

���
���

���
��

��
��

��

!!
!!!

!!
!!

!!

!!
!!

!!
!!

!!
!!

!!
!!

!

!!
!!

!!
!

!!
!!

!
��
�

t

38



6

-

X2

e3
s s

s1

1

X1

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

���1
1

3

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb

�
�� 2

e2

e1

Figure 3
A Condorcet Winner

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

�
�

39



6

-

X2

e3
s s

s1

1

X1

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

���1
1

e2

e1

Figure 4
A \Vertex" Condorcet Winner
which is not a Condorcet Winner

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

�
��

b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
b
bb

�
��

3

2
sZ

��
�

��
��

��
��

�

��
��

���

��
��

��
��

��
��

��
��

��

��
��

��
��

�

��
��

��
��

��
��

��
�

��
��

��
�

��
��

��

��
���

"
"
""

�
��

��

40



6

-

X2

e3
s s

s1

1

X1

e1

Figure 5
The \Cycles" on the boundary

of the triangle

sZ

?

?

?

?

?

?
����

Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
Z
ZZ

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

PPPq
PPq

PPq
QQk

Z
ZZ}

Z
Z}

Z
Z}

ZZ}

Z
Z}

e2

PPq

HHj

PPq

41



6

-

X2

s s

Figure 6
Construction of h

e3
X1

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

l
l

ll̀
e2

1

3

2

�
��
3

�
��

���

��� 2

1

e1s
g

���: 1

shZ

42



6

-s

Figure 7
Connection to [e1; Z]
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Figure 8
The Four Areas
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Figure 9
L(X) and L2(X)
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