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Abstract

We study the relationship between bargaining and competition with incomplete
information. We consider a model with two uninformed and identical buyers and
two sellers. One of the sellers has a privately-known reservation price, which can
either be Low or High. The other seller’s reservation price is commonly known to
be in between the Low and High values of the privately-informed seller. Buyers
move in sequence, and make offers with the second buyer observing the offer
made by the first buyer. The sellers respond simultaneously. We show that there
are two types of (perfect Bayes) equilibrium. In one equilibrium, the buyer who
moves second does better. In the second equilibrium, buyers’ expected payoffs
are equalised, and the price received by the seller with the known reservation
value is determined entirely by the equuilibrium of the two-player game between
a single buyer and an informed seller. We also discuss extensions of the model
to multiple buyers and sellers, and to the case where both sellers are privately
informed.



1 Introduction

One fruitful way of modelling the microstructure of markets has been to conceive

of them as the results of pairwise meetings between economic agents, with the

market outcome being determined by the various agreements concluded by those

pairs who agree to trade.This approach goes back a long way (see, for example,

the housing market example in Shubik’s book [14]); the modern interest in it

dates back to the papers of Rubinstein and Wolinsky [11], Gale [9] and Binmore

and Herrero [2] and the ensuing debate on the nature and properties of the

equilibria generated.

These papers were concerned with random matching in large markets. Ru-

binstein and Wolinsky [12] discussed markets with small numbers of buyers and

sellers and their work was followed up by Hendon and Tranaes [10] and Chat-

terjee and Dutta [3] amongst others. Chatterjee and Dutta [3] consider a model

of a market in which sellers compete for heterogeneous buyers and, in a setting

that has some features of auction-like competition and of bilateral bargaining.

They show that in general one cannot obtain uniform prices across pairs or

efficient (immediate) trade in this setting.

All the models mentioned above have assumed complete information. As is

well-known, a literature on bilateral bargaining under incomplete information

also developed around the same time.1 However, possibly because of the general

perception of the difficulty in obtaining determinate results in this literature

without using equilibrium refinements, there has been no work that we know

of that addresses small markets with some incomplete information and with

the features of competition for bargaining partners that occur in some of the

complete information papers.
1See the illuminating survey by Ausubel, Cramton and Deneckere[1], and the references

cited there.
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This paper attempts to make a start in studying the relationship between

bargaining and competition with incomplete information, using as our basis a

simplified version of a model of bilateral bargaining with two types that appears

as a sub-model in Chatterjee and Samuelson [4]. Our purpose here, of course, is

not just to fill a perceived gap in the literature. The interaction of competition

and incomplete information has potentially interesting implications for the value

of outside options and how this changes with incomplete information, a problem

studied in a different setting by Fudenberg, Levine and Tirole[7] and Samuelson

[13]. In the first model only a single seller has the ability to switch among

buyers and would do so in the event of a rejection from a buyer signalling that

the buyer is of a recalcitrant type. We discuss the incentive to switch in this

way, but like Chatterjee and Dutta [3], add competition among sellers as well

as a finite number of players on both sides of the market.

Our basic setup is as follows (a more formal description appears in Section 2):

There are two buyers and two sellers.2 One of the sellers has a privately-known

reservation price, which can either be Low or High with commonly-known prob-

abilities. The other seller has no private information, and his reservation price

is commonly known to be in between the Low and High values of the privately-

informed seller. The two buyers have the same commonly-known value, which is

greater than the High seller reservation price. The buyers move in sequence and

make offers with the second buyer observing the offer made by the first buyer.

The sellers respond simultaneously3 and accept or reject the offers made. Any

acceptance leads to the trading pair leaving the market. In the next period, buy-

ers again make offers and sellers accept or reject. Future payoffs are discounted

with the common discount factor being δ.

2We discuss extensions to more buyers and sellers in the last section.
3We also consider what would happen if the sellers move in the order in which they are

named by the buyers (if only one seller receives offers only that seller moves).
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What would intuition suggest about a market of this nature? One might

expect, first, competition among buyers to equalise equilibrium expected payoffs

for the buyers (in which case the order in which they move would not matter

in equilibrium). One might also expect that if the probability is high that the

privately-informed seller is of Low type, that seller will reap the benefits of

buyer competition with the opposite being true if the informed seller is more

likely to be a High type, so that weakness could be strength. One might also

surmise that the reservation price of the known seller would play a crucial role

in determining prices in the first case and the reservation price of the High type

in the second. 4

It turns out there are two types of (perfect Bayes) equilibrium, one in which

the intuition about equal expected payoffs of the buyers is satisfied and the

other in which the second buyer to move does better. More surprisingly, if we

consider the first kind of equilibrium, the price received by the known seller is

entirely driven by the payoffs in the two-player incomplete information game,

so that no switch occurs as described in the previous paragraph.

Moreover, we demonstrate through an example that when both the sellers are

privately informed, even though their reservation prices are independent draws,

the first kind of equilibrium with payoffs to buyers being order-independent need

not exist.

It seems natural to compare our results to Shubik’s discussion of the hous-

ing market, especially the attainment of the core allocation. The incomplete

information of course leads to potential inefficiency through delay, so there is

no hope of achieving the complete-information core. However, the equality in

expected payoffs between the buyers seems a good proxy for the core, as in some

loose sense we have equality in expectations of prices. However, this is not true
4These were our own initial intuitions about this problem.
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in general if there is “too much” private information.

The outline of the rest of the paper is as follows: The next section introduces

the notation and the explicit description of the model. Section 3 considers the

complete information benchmark, in there are no privately informed sellers.

Section 4 describes the two-player bargaining game with incomplete information

and is based on Chatterjee and Samuelson [4]. Section 5 contains the basic

analysis of the four-player game. Section 6 has the example with two privately-

informed sellers and Section 7 discusses markets with more sellers and buyers

in addition to providing concluding remarks.

2 The Model and Notation

There are two identical buyers B1 and B2. Each buyer has one unit demand

for an indivisible good. The buyers’ common and commonly-known valuation

for the good is v > 0. There are also two sellers. Each seller owns one unit of

the good. The first seller, to be denoted SM , has a reservation value of M for

the good, and this is common knowledge. The second seller’s reservation value

is private information to the seller. However, it is common knowledge that her

reservation value is either H with probability π or L with probability 1 − π,

where v > H > M ≥ L. In what follows, we simplify notation by setting L = 0.

We will sometimes refer to the second seller as the informed seller, and denote

her as SI .

We consider the following infinite horizon bargaining game. in which only

buyers make offers. In each period, the two buyers make offers to the sellers

sequentially, the order of offers being random. An offer is simply a price p at

which the buyer is willing to buy one unit of the good. The offer is targeted

to a particular seller, since they are not identical. After both offers are on the
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table, the sellers decide whether to accept at most one of the offers.5

Matched pairs, if any, leave the market. If some pair is left unmatched, then

the bargaining proceeds to the next period, in which the unmatched buyer(s)

again make price offers to the unmatched seller(s). All players have the same

discount factor δ ∈ (0, 1). All players are risk neutral.

We adopt the terminology of Fudenberg and Tirole [8] and denote each

period as a “stage” in this game, to avoid the use of “subgames” in a game of

incomplete information. We will also use their equilibrium concept of “Perfect

Bayes’ Equilibrium”, namely sequential rationality at every stage given beliefs

at that stage and beliefs being compatible with Bayes’ theorem on and, wherever

possible, off the equilibrium path.

Note that a stage in which a buyer and SI have left the market and the other

players remain begins a complete-information subgame (with a trivial solution).

If a buyer and seller SM have traded and left the market, the ensuing game is a

two-player bagaining game of one-sided incomplete information with two types.

This too has a determinate sequential equilibrium, to be discussed in the next

section. We essentially adopt part of the Chatterjee-Samuelson [4] paper for this

part. In that paper, there is a one-sided incomplete information “subgame” with

two-sided offers. However the informed player’s offers are always rejected in the

equilibrium constructed there except possibly in the last stage. The game with

the uninformed player being the sole proposer therefore has an easily derived

equilibrium. 6

The specification in which the buyers move in sequence might need some

comment. We specify the model in this way rather than having buyers make
5Our results do not depend qualitatively on whether sellers move simultaneously or se-

quentially, though some details differ as pointed out later.
6See, for instance, Deneckere and Liang [5]. The game with a continuum of types was

solved by Sobel and Takahashi [15] and Fudenberg, Levine and Tirole ([6] and there is no
substantive difference in the results. So, we do not claim any novelty for our reformulation of
the relevant part of Chatterjee-Samuelson ..
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simultaneous targeted offers, as in Chatterjee and Dutta [3], mainly for analyt-

ical tractability. However, one can think of buyers moving in continuous time

and extraneous irrelevant factors determining who moves first in a particular

stage. This rules out strategically choosing whether to move first or second;

such a restriction does not matter if the order of moves is payoff-irrelevant in

equilibrium.

3 The Complete Information Game

In this section, we briefly describe the nature of equilibrium payoffs when seller

valuations are also commonly known. The main purpose of this section is to act

as a benchmark for the case when one of the sellers is privately informed about

his reservation value - the case that is of principal interest in this paper.

We consider the case where seller reservation values are publicly known to be

M and L. What will be the nature of equilibrium payoffs in this case? Intuition

suggests that there should be competition for SL, and this competition “should”

drive up the price offered to the Low seller to M , which is also offered to SM .

Hence, in this equilibrium, buyer payoffs will be equalised at v −M .

Indeed, this will be one set of equilibrium payoffs. However, there is also

another set of equilibrium payoffs. Suppose buyer B1 is the first to make offers.

Then, B1 “knows” that if she offers a price p < M to seller SL, then B2 will

win over SL with a slightly higher price p′. Hence, B1 knows that her payoff

canno exceed v−M . On the other hand, she can always ensure herself a payoff

of v −M by offering a price M to SM . Notice, however, that if B1 does make

this offer to SM , then B2 can trade with SL at the low price of L.

Hence, this suggests that there will be a second set of equilibrium payoffs

where buyer payoffs are not equalised because B1 essentially drops out of a

6



contest she cannot win.7

The proposition below summarises the previous discussion.

Proposition 1 The following constitute the only sets of equilibrium payoffs in

the bargaining game when seller valuations are commonly known to be M and

L.

(i) Both buyers buy at the common price of p = M giving rise to buyer

payoffs of v −M . Seller SM has zero payoff while seller SL derives a payoff of

M − L.

(ii) Buyer B1 (the first buyer to make an offer in the initial period), has a

payoff of v −M , while B2 has a payoff of v − L. Both sellers get zero payoff.

Proof. We first describe equilibrium strategies which give rise to these payoffs.8

The following strategies support the first set of payoffs.

(a) Buyer B1 offers a price of M to SL in the initial period.

(b.1) If B1 has offered a price of at least M to SL, then B2 offers M to SM .

(b.2) If B1 has offered p < M to SL, then B2 offers p′ = max(p, L) to SL.

(b.3) If B1 has made an offer to M , then B2 offers L to SL.

(c) If SL receives only one offer p, then she accepts this offer iff p ≥ L. If she

receives two offers, then she accepts the higher of the two offers if this is

at least as high as L. If both buyers offer the same price p ≥ L, then she

accepts the offer from B2.

(d) If SM receives only one offer p, then she accepts this offer iff p ≥ M . If she

receives two offers, then she accepts the higher of the two offers if this is
7Of course, this equilibrium arises due to the fact that buyers make offers sequentially.
8We do not claim that there are only two sets of equilibrium strategies.
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at least as high as M . She uses any tie-breaking rule if both buyers offer

the same p ≥ M .

In subsequent periods, if only one pair is unmatched, then the players play

the unique equilibrium of the two-player game, where the buyer offers a price

exactly equal to the reservation value of the remaining seller. If both pairs are

unmatched, then all players play the equilibrium strategies corresponding to the

second set of equilibrium payoff which are described below.

In the second equilibrium buyer B1 offers M to SM , instead of to SL. All

other strategies are as described earlier.

We leave it to the reader to check that these indeed constitute equilibrium

strategy profiles.

To verify that these are the only equilibrium payoffs possible, simply note

that B1 cannot obtain a payoff higher than v−M . For if she did, then she must

be trading with SL at a price p < M . Since B2 makes her offer after B1, she

can make a slightly higher payoff and win over SL.

4 The Two-Player Game with Incomplete Infor-
mation

Play of the four-player game may lead to a two-player “subgame” involving

the informed seller and one of the buyers. In fact, as we show in the next

section, this continuation game will be reached with positive probability along

the equilibrium path when SM accepts the targeted offer made to her while SI

rejects the offer made to her with some probability. In this section, we briefly

review the results on the equilibrium of this two-player game.

Since the subgame has only one buyer and one seller, we simplify notation by

denoting the buyer as B and the (informed) seller as S. Suppose the subgame

starts in period t′, and let πt′ be the initial probability that the seller’s reserva-
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tion value is L. We will describe the unique equilibrium which is essentially the

one described in Chatterjee and Samuelson [4] and Deneckere and Liang [5]. 9

It is convenient to count time “backwards”. That is, period t means that the

game will end t periods from now. Of course, this assumes that the game ends

in finite time. Fortunately, it turns out that for any δ < 1, the game ends in a

finite number of periods N(δ). Moreover, as δ tends to one, N(δ) is uniformly

bounded.10

Construct an increasing sequence of probabilities {0, q1, . . . , qt, . . .}. Recall

that π0 is the initial probability that SI is of the Low type, and define pt ≡ δtH

for all t = 1, . . . , N(δ). The nature of the equilibrium path is the following.

Suppose that in period t, the play of the game so far and Bayes Rule implies

that πt ∈ (qt, qt+1] is the updated probability that the seller is the Low type.

Then, B offers pt. The High seller rejects this offer with probability one, while

the Low seller accepts this with a probability which implies through Bayes Rule

that the updated probability πt−1 equals qt−1. If πt < q1, then B offers H. This

offer is accepted by both types of S.

The cut-off points qt are chosen such that the buyer is indifferent between

making the offer δtH and ending the game in t periods or offering δt−1H and

ending the game one period earlier. So, at q1, B is indifferent between offering

H and δH. The latter offer is accepted with probability one by L. Hence, B’s

expected payoff from the offer δH is q1(v − δH) + (1 − q1)δ(v −H). Equating

this to v −H, we get q1 = v−H
v .

It is trivial to check that the Low type seller’s behavior is optimal given

B’s specified strategy. For suppose, he receives the offer pt. If he rejects this
9There is a small difference in our description of the equilibrium from that of Chatterjee

and Samuelson. They specify an alternating offers extensive form so that buyers make offers
every two periods. Since B makes an offer in every period in our model, there is a difference
in the rate of discounting.

10This is shown in Deneckere and Liang [5]
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offer, his payoff next period is pt−1. Since δpt−1 = pt, he is indifferent between

rejecting and accepting this offer.

It is also easy to show that the 2-player game has a unique equilibrium.

Clearly, after every history of the game, equilibrium must be unique if πt < q1

as this essentially becomes a 2-player complete information game. A form of

“backward induction” argument can be used to establish uniqueness.

5 The Four-Player Game with Incomplete In-
formation

In this section, we consider the four-player game described in Section 2.

We use the cutoffs qt derived in the previous section. Recall that if π is below

q1, the two-player game essentially becomes a complete information game with

the high offer made to the seller and if π is between q1 and q2, the two-player

game would last at most for two periods. We first consider the four-player game

in this ranges of values of π as an example of what happens in equilibrium in

this game. We then extend the analysis to all values of π.

Let π0 ∈ [q1, q2) be the initial probability of type L. Define p̄M
1 and pM

t as

follows: (i) v − p̄M
1 = π0(v − δH) + (1 − π0)δ(v −H) and (ii) pM

1 = M + (1 −

π0)δ(H −M).

Example 1 W.l.o.g. let B1 move first as the outcome of the random draw. The

following is an equilibrium of the game for sufficiently high δ.

B1 offers p̄M
1 to SM . The offers of B2 depend on the offers made by B1, and

are described below.

(i) If B1 offers a price p ≥ p̄M
1 to SM , then B2 offers p1 = δH to SI .

(ii) If B1 offers a price p < p̄M
1 to SM , then B2 offers p + ε also to SM .

(iii) If B1 offers H or higher to SI , B2 offers M to SM .
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(iv) If B1 makes an offer p ∈ (δH, H) to SI , B2 makes an offer pM
1 to SM .

(v) If B1 makes an offer p ∈ (δ2H, δH) to SI , then B2 offers p̃M
1 = M + (1−

π0α)δ(H − M) to SM where α is as defined in the response for type L

below.

(vi) Finally, if B1 makes an offer p ≤ δ2H to SI , B2 makes an offer M +

δ(p̄M
1 −M) to M.

Seller SI , type L accepts all offers p ≥ δH, rejects all offers p ≤ δ2H and

accepts offers in (δ2H, δH) with probability α such that q1 = π0(1−α)
π0(1−α)+1−π0 ,.

Type H accepts all offers p ≥H and rejects all offers below H; and SM accepts

any offer greater than his expected continuation payoff, which could be either

pM
1 or p̃M

1 , depending on the offer made to SI .
11

If the initial offers are rejected, the game goes into the following period with

all four players and with π either unchanged (=π0), π = q1 or π = 0. If π = π0,

the strategies above are played. If π = q1, the offer to SI randomises between

δH and H. An analogue of (i) above then determines the offer made to SM .

If π = 0, the complete information strategies described in Section 3 are used,

that is H is offered to both sellers. Thus, the equilibrium outcome path is: B1

offers p̄M
1 to SM and B2 offers δH to SI , SM and type L accept and in the next

period, B2 offers H to SI who accepts.

If SI accepts and SM rejects, the buyer remaining offers SM a price of M

in the following period. If SM accepts and SI rejects, the ensuing game is a

two-player game of incomplete information and the strategies are as described

in the previous section.

Proof. The argument constructs two prices for seller SM , her continuation

payoff, given in (ii), and the price obtained by competition among the buyers
11We have not set down details of possible deviations by B2. They do not affect the sellers’

response strategies.
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as given in (i). We shall show that, in fact, the second is strictly higher than

the first, so SM always finds it optimal to accept p̄M
1 . Seller SI here plays the

two-player game of the previous section with one of the buyers, so the two-player

analysis carries over. The buyers follow strategies that equalise their expected

payoffs.

We check deviations. If B1 deviates and offers p > p̄M
1 to SM , SM accepts

and B1 is worse off. If B1 offers p < p̄M
1 , B2 offers a higher price which SM

accepts, thus giving B1 the two-player expected payoff with SI but one period

later. This makes him strictly worse off. If B1 deviates and offers to SI , the

best resulting expected payoff is exactly equal to that obtained by offering p̄M
1

to SM and therefore no gain is realised. If B1 does not make a serious offer

or makes a rejected offer, B2 induces acceptance by making an offer to SM of

M + δ(p̄M
1 −M), thus making B1 worse off. Deviations by B2 can be shown

similarly to be unprofitable.

For the sellers, SM will accept p̄M
1 , since this is strictly greater than his

continuation payoff, pM
1 . To see this, we explicitly calculate

p̄M
1 − pM

1 = (v −M)(1− δ) + δπ0H − π0v + δπ0(v −M) (1)

= v(1− δ)(1− π0) + δπ0(H −M)−M(1− δ) (2)

As δ → 1, the first and the third terms go to 0 and the second term is

positive. 12

We can similarly check that the rest of his strategy is optimal for SM , namely

to accept anything at least as high as his continuation payoff. The response

strategy of SI is the same as in the corresponding two-player game with one

buyer. This is optimal because SM finds it optimal to accept the equilibrium

offer, and so SI faces a two-player continuation game. If the offers are such that
12If δ = 0 and π0 is close to q1, then the expression is positive. However when π0 is close

to q2, the expression is negative. (With δ = 0, pM
1 = M.)
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SM will reject but SI type L is supposed to accept, a rejection by L signals he

is a H type. But he can only obtain the H offer in the following period. The

offer is such that L is indifferent between accepting and rejecting and getting

the high offer in the next period.

Remark 1 Note that if the sellers were to respond in the order they were named

rather than simultaneously, there would be no change as long as SM moves first.

If SI moves first, SM ’s continuation payoff would depend on whether SI accepted

or rejected. This would not make a difference on the equilibrium path because

B1 would still be indifferent between making an offer of p̄M
1 to SM or p1 to SI

and thus would not gain by deviating. So in fact SM would move first. But if SI

were chosen by B1, the offer from B2 to SM could be either M or M +δ(H−M)

depending on B2’s belief about SI ’s probability of accepting.

One would expect the (high) price needed to obtain a trade with type L of

SI when the probability of L is small to drive buyer competition for SM . What

happens when this probability is high? Suppose for instance that SI is “almost

certainly” of the Low type. Surely, the buyers should be competing to trade

with SI? The next lemma shows, surprisingly, that for sufficiently high δ, the

competition is always over SM .

Define the following sequences of prices for all t = 1, . . ., with at = πtαt the

equilibrium acceptance probability for such an offer in the two-player incomplete

information game.

(i) pI
t = δtH.

(ii) pM
t = M + δ(1− at)(p̄M

t−1 −M).

(ii) p̄M
t = v −

[
(v − pI

t )at + (1− at)δ(v − p̄M
t−1)

]
(iii) p̂M

t = max(pM
t , p̄M

t ).
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We now prove a lemma, which we shall refer to as the “competition lemma”.

Lemma 1 For all t = 1, . . ., there exists δ̃(t) such that for all δ ≥ δ̃(t), p̂M
t =

p̄M
t .

Proof. We show that for all t ≥ 1 and for sufficiently high δ, p̄M
t ≥ pM

t .

p̄M
t − pM

t = v −
[
(v − pI

t )at + (1− at)δ(v − p̄M
t−1)

]
−M − δ(1− at)(p̄M

t−1 −M)

= (v −M)(1− δ + δat)− at(v − pI
t )

= (1− δ)(v −M) + at(δv − δM − v + δtH)

= (1− δ)(v −M) + at(δtH − δM − (1− δ)v).

We have remarked earlier that for all δ < 1, the equilibrium duration of the

two-player incomplete information game is uniformly bounded by say T ∗. Fix

t = T ∗. It is sufficient to show that the second term (the co-efficient of at) is

non-negative for some δ̃. Note that this is increasing in δ; at δ = 1, it is clearly

positive. Therefore there exists a δ̃ < 1 such that for δ > δ̃, the second term

is positive. If this is true for t = T ∗, it is clearly true for smaller values of t.

Therefore, p̄M
t > pM

t whenever δ ≥ δ̃.

We now construct the equilibrium for δ > δ̃ such that the expected payoff

to the buyer does not depend upon the order in which the offers are made. We

utilise four sequences, one of probabilities and three of prices, {qt}, {pI
t }, {p̄M

t }, {pM
t }.

The interesting feature here is that competition results in SM getting more than

his continuation game expected payoff. This is because SM ’s continuation pay-

off is the combination of two terms. If SI accepts, SM is at the mercy of the

other buyer who gives him M in the next period. If SI rejects, she is more likely

to be a H type and gets a higher equilibrium payoff. This drives up SM ’s payoff

in the following period as buyers potentially compete for his good. The driving

force in the competition is the incomplete information in the game.
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Proposition 2 Define sequences pI
t , p

M
t , pM

t from conditions (i)-(iii) in the pre-

ceding lemma. Let qt be defined as in the two-player game with incomplete in-

formation. Let pikt
13 represent the offer made by buyer i to seller Sk when

πε[qt, qt+1); let B1 , without loss of generality, be the first mover in each period.

Let δ ≥ δ̃, where δ̃ has been defined in the competition lemma. There is one

equilibrium in which the buyers obtain the same expected payoffs ui. The com-

mon expected payoff u = u1 = u2 is the expected buyer payoff in the two-player

incomplete information game with the given value of π0, which we denote by

vB(π0).

The stationary14 strategies that sustain these equilibrium payoffs are as fol-

lows:

(i) B1 chooses p1Mt = p̄M
t and does not make an offer to SI .

(ii) If p1Mt ≥ p̄M
t , B2 chooses p2It = pI

t ; SM accepts, SI of type L accepts with

a probability sufficient to make π = qt−1 in the next period, SI of type H

rejects any offer less than H.

(iii) If p1Mt < p̄M
t , B2 chooses p2Mt = p1Mt + ε such that p2Mt ≤ p̄M

t and

p2Mt ≥ M + δ(p̄M
t −M), SM accepts p2Mt, SI has no move.

(iv) If p1It ≥ pI
t and B1 does not make an offer to SM , B2 offers pM

t to SM ,

SM accepts, SI of type L uses the same acceptance strategy at as in the

two-player incomplete information game.

(v) If p1It ∈ [pI
t−1, pI

t ), p2Mt = pM
t (āt), where āt is the equilibrium acceptance

probability of the corresponding two-player incomplete information game,

player SM accepts. Player SI ’s (L type) acceptance decision implies that

āt is the acceptance probability.
13Each buyer can choose only a single value of pikt in this game.
14By “stationary” we mean independent of history apart from the updated value of π and

of the set of players remaining in the game.
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(vi) If B2 deviates from (ii), SI of type L responds according to the two-player

game equilibrium strategy, SM accepts if p̄M
t is at least as high as his

continuation payoff given the acceptance probability for SI .

(vii) If p2Mt > 0, SM accepts any p2Mt ≥ pM
t (at), SM ’s continuation payoff

given an acceptance probability of at by the L type of SI . The response

behaviour of SI (L type) follows that of the seller in the two-person in-

complete information game with an uninformed buyer.

Proof. Consider deviations by B1. If he chooses p1Mt > p̄M
t , he is worse off

because (a) SM accepts any offer greater than her expected continuation payoff,

pM
t and, by the competition lemma, p̄M

t > pM
t , and (b) B2 is better off making

an offer to SI than choosing p2Mt > p̄M
t , so B2 will not offer such a price to

SM . If p1Mt < p̄M
t , B2 raises the offer by (iii) above, SM accepts p2Mt, and B1

gets an expected payoff equal to the discounted buyer payoff in the incomplete

information game with SI . From the definition of p̄M
t , this is strictly less than

v− p̄M
t . If B1 chooses to make an offer to SI , SI will respond as in the two-player

incomplete information game and, again by the definition of p̄M
t , B1 will not be

strictly better off with the optimal p1It. B2 moves second. If she deviates (1) by

not following (ii), she is worse off since pI
t is the equilibrium offer in the ensuing

two-player incomplete information continuation game (since SM will accept); (2)

by not following (iii), she is clearly worse off by the definition of p̄M
t ; (3) by not

following (iv), she is worse off because SM accepts any offer at least as high as

his continuation payoff for which pM
t is an upper bound and v−pM

t > v− p̄M
t , by

definition. The responses of the sellers are clearly optimal from the two-player

continuation games and the four-player game with the updated value of π.

Remark 2 Out-of-equilibrium beliefs do not play a significant role here because

buyers make offers. Their deviations (and deviations by SM ) cannot signal
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anything about S′
Is type by the requirement of “no signalling what you don’t

know”. Player SI always has a positive probability of accepting or rejecting and

deviations in these probabilities are not observable. The sole exception is if the

offer to SI is p ≥ H. In this case, a rejection does not change beliefs.

Remark 3 The comment after the first example in this section about the order

of responses holds more generally.

As the complete information analysis of Section 3 would suggest, this is not

the only equilibrium in stationary strategies. There is another equilibrium in

which the first mover in each period makes an offer to SI and the second proposer

offers SM that seller’s continuation payoff. We write this as a proposition. (We

are again restricting our attention to sufficiently high values of δ.)

Proposition 3 There exists an equilibrium in stationary strategies where the

first buyer to move, B1, obtains an expected payoff u
′

1 = vB(π0), B2 obtains

u
′

2 = v −M and u
′

2 > u
′

1.

Proof. The strategies that sustain these as equilibrium payoffs are obtained

from (iv) to (vii) of the previous proposition. B1 chooses p1It > 0, making the

equilibrium offer in the two-player incomplete information bargaining game for

the given value of π. A deviation to making an offer to SM will not increase

this payoff, from the previous proposition. If B1 makes an offer to SI , B2 offers

M to SM , who accepts any offer p ≥ M . The continuation payoff for SM is

0. If π < q1, B1 makes an offer of H to SI , who accepts with probability 1.

SM will then accept any offer p ≥ M. Since, in each period, B2 makes an offer

p2Mt equal to the continuation payoff of SM , backward induction shows that the

continuation payoff must be 0 in each period. SI responds as in her equilibrium

strategy in the two-player, incomplete information game.
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If B1 makes an offer to SM , the response from B2 follows (ii) and (iii) from

the previous proposition. This ensures B1 does not gain by deviating. It is clear

that B2, SI will not gain by deviating.

These two are equilibria in stationary strategies. One can think of the sec-

ond as essentially a decomposition into two separate two-player games, one with

incomplete information and one with complete information. The first equilib-

rium shows that putting the four players together can give rise to competition

and to outcomes different from the two-player games for some of the players.

We can clearly combine the two equilibria to obtain others. For example,

take the second equilibrium discussed above. Suppose that, if there is no agree-

ment in the first period, the players switch to the first equilibrium (in which the

first proposer makes an offer to SM ). In this case, the first-period offer by B2

to SM would be pM
t > M, since SM has a continuation payoff greater than 0.

However, we can identify the following properties of all equilibria.

Proposition 4 In all equilibria of the 4-player game, after every history, the

following hold.

• The offer to the informed player SI as well as her response is identical to

that of the two-player game with a single buyer.

• The first proposer B1 obtains an expected payoff vB(π).

• The payoff to SM varies between 0 and p̄M
t −M.

Proof. To prove the first point, consider the first period t where πt ≤ q1. An

offer of H is optimal for a buyer in the two-player game and is accepted by SI

with probability 1. Clearly a higher offer is not optimal in the four-player game

since even the type H seller will accept an offer of H with probability one. A

lower offer is not optimal because the type H seller will reject this, and the

18



definition of q1 implies that it is better to offer H instead. So, in the four-player

game SI will get the same offer for πt ≤ q1. Now consider type L of SI playing

a pure strategy in equilibrium at some period τ in the four-player game. In

equilibrium, the pure strategy cannot be to reject with probability 1, because

no updating takes place and the buyer will increase her offer. Suppose the pure

strategy is to accept with probability 1. Then, in period τ − 1, πτ−1 = 0, and

the buyer must offer H. But, incentive compatibility for the low type implies

the offer that is accepted is δH and optimality for the buyer implies πτ ≤ q2.

For other values of πt, type L of SI must be playing a non-degenerate mixed

strategy. Let t′ be the first period (counting backwards) in which SI in the

four-player game gets an offer pI
t′ strictly greater than the equilibrium offer in

the two-player game for πt′ . (A strictly lower offer will clearly not occur in

equilibrium.) If SI , type L, plays a randomised behavioural strategy, he must

be indifferent between accepting pI
t′ or rejecting and accepting the two-player

equilibrium offer in period t′− 1. Therefore pI
t′ = δpI

t′+1. But this is exactly the

equilibrium offer in the two-player game, contradicting our hypothesis.

For the second and third parts, note that the first buyer to make a proposal

can choose either SI or SM. If she chooses SI , she has to offer the two-player

game offer and gets a payoff of vB(πt). If she chooses SM she has to offer a price

that cannot be bid up by the buyer following, i.e. p̄M
t . This shows point 2 of the

proposition. If B1, being indifferent between SI and SM randomises in period

t − 1, the continuation payoff for SM in period t will depend on the sequence

of such randomisations employed by the first proposer in periods t− 1 onwards.

The minimum continuation payoff for SM will be obtained if the first proposer

always makes an offer to SI - a payoff of 0. The highest payoff will be obtained

if B1 always chooses SM , a payoff of p̄M
t −M.

Remark 4 It is not possible to rule out rejection with probability 1 by SM .
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This could happen, for example, if the randomisation chosen by B1 in periods

t− 1 onwards depended on the offer made by B2 in period t.

The preceding discussion has been based on the protocol where the order

of proposers is chosen randomly at the beginning of the game. Suppose, alter-

natively, that each buyer is chosen as first proposer with equal probability in

each period. Clearly, there is no difference in the first equilibrium in which the

buyers have the same expected payoff. The second equilibrium also survives.

Suppose B1 and B2 have been chosen in that order in a particular period. B1

might consider making a non-serious offer so as to wait for the chance to make

an offer to SM in the following period. However, a non-serious offer to SI will

(a) not result in any updating of π and (b) SM will accept the equilibrium offer

from B2, so that B1 will not have SM available in the next period. If B1 makes

an offer to SM , the optimal offer does not increase his payoff beyond vB(π).

Therefore, a change in the protocol does not affect the equilibrium.

6 Extensions

In this section, we consider some extensions of the basic model considered earlier.

6.1 Many Buyers and Sellers

The results of the basic model extends easily to the case when there are “many”

buyers and sellers, provided only one seller has private information. Suppose

there are n > 2 buyers and sellers, with each buyer’s valuation being v, while

sellers 1, . . . , n− 1 have known reservation values M1 ≥ . . . ≥ Mn−1 ≥ 0. Seller

n is the informed seller, and her valuation is either H with probability 1 − π0

or L = 0 with probability π0, where

v > H > M1
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Suppose δ is sufficiently high. Then, there is an equilibrium in which all

buyers get the same expected payoff u(π0), where u(π0) is the expected buyer

payoff in the 2-person game where π0 is the initial probability that the informed

seller is of the low type.

We describe informally the strategies which sustain this equilibrium. With-

out loss of generality, let B1, . . . , Bn be the order in which buyers make offers.

Then, each buyer Bi , i < n offers p̄M
t

15 to some seller Si, i < n so that each

seller receives only one offer. Seller Bn makes the equilibrium offer of the 2-

person bargaining game with an informed seller. Sellers 1, . . . , n−1 accept their

offers, while Sn’s response mimics that of the informed seller in the 2-person

game. Bn has no incentive to deviate becasue she is essentially playing the 2-

person gane with an informed seller. If some other buyer Bi offers a lower price

p < p̄M
t to seller i < n, then this does not help because buyer Bn then offers

p+ ε to the same seller, who obviously accepts the higher offer. Thus, deviation

results in Bi tarding with Bn one period later.

As before, there is also an equilibrium in which buyers who make offers later

in the sequence get higher payoffs.16

6.2 Two Privately-Informed Sellers

Suppose now that both sellers are privately informed. If both sellers are ex ante

identical -that is, both sellers have an identical probability of bewing the low

type- then the 4-person market essentialy splits up into two 2-person markets.

The interesting case is when the two sellers are not ex ante identical. In par-

ticular, will there still be an equilibrium in which both buyers obtain the same

expected payoff? We construct an example in which there is no equilibrium

with both buyers obtaining the same expected payoff.
15As before, the price p̄M

t is such that v − p̄M
t = u(π0).

16The inequality in buyer payoffs will be strict if the reservation values M1, . . . , Mn=1 are
all distinct.
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Let v = 5,H = 4, δ = 3
4 , π1

0 = 1
2 , π2

0 = 4
7 , where π1

0 , π2
0 are the initial

probabilities that sellers 1 and 2 are of the low type.

We first calculate the cut-offs q1, q2, q3.

If the probability of the low type is q1, the buyer (in the 2-player game) is in-

different between offering H and δH, the latter being accepted with probability

one by the low type. This immediately yields

q1 =
v −H

v
=

1
5

Similarly, the buyer is indifferent between offering δH and δ2H when π0 = q2.

An offer of δH is accepted with probability one by the low type. Let the

probability of acceptance of δ2H be α21. So,

(v − δH)q2 + (1− q2)δ(vH) = (v − δ2H)q2α21 + (1− q2α21)δ(v −H)

Hence,

α21 =
5
8

Also, from Bayes Rule,

q2 =
q1

1− α21(1− q1)
=

2
5

When π0 = q3, the buyer is indifferent between offering δ2H and δ3H. Let

VB(δ3H) and VB(q2) denote the buyer’s expected payoff from the offer δ3H and

the equilibrium payoff when π0 = q2. Then,

VB(δ3H) = (v − δ3H)q3α32 + (1− q3α32)δVB(q2) (3)

where α32 is the probability of acceptance which along with Bayes Rule implies

that the updated probability of the seller being the low type is q2. Now,

VB(q2) = (v − δH)q2 + (1− q2)δ(v −H) =
5
4
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Substituting in equation 3, we get

VB(δ3H) =
53
16

q3α32 + (1− q3α32)
15
16

Also,

VB(δ2H) = (v − δ2H)q3α31 + (1− q3α31)δ(v −H)

=
11
4

q3α31 + (1− q3α31)
3
4

where α31 is the probabbility of acceptance by the low type which results in an

updated probability of π = q1.

Equating VB(δ2H) and VB(δ2H) yields

16a31 − 19a32 =
3
2

(4)

where aik = qiαik.

Since (1−a31) = (1−a32)(1−a21), substitution in equation 4 yields a32 = 5
14 .

Finally, since q3 = q2(1− a32) + a32, we have

q3 =
43
70

So, q1 = 1
5 , q2 = 2

5 , q3 = 43
70 .

Let B1 make the offer to S1. We first calculate the expected payoff of B1.

The offer to S1 must be δ2H = 9
4 . If a denotes the probability of acceptance

by the low type, then the updated probability, after rejection, is q1. Hence,

q1 =
π1

0 − a

1− a

This yields

a =
3
8

When the updated probability that S1 is the Low type is q1, the buyer is indif-

ferent between offering H and δH. So, the expected payoff of B1 is

E(B1) = (v − δ2H)a + (1− a)δ(v −H) =
3
2
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So, we need to check whether there is an equilibrium in the 4-player game where

E(B2) = 3
2 . First, there cannot be such an equilibrium where S2 accepts the

price offer with probability one. For suppose there is indeed such an equilibrium.

Then, since rejection would imply that the seller is of type H, the price offer p

must be at least δH = 3. But if p ≥ 3, then

E(B2) ≤ (v − 3)π2
0 + (1− π2

0)δ(v −H) =
41
28

<
3
2

Suppose that an offer of p brings forth a mixed response from the low type

of S2. Since S2 is indifferent between accepting and rejecting p, p must equal

the discounted value of the seller’s expected payoff if he rejects p. The latter is

calculated as follows. With probability a = 3
8 , the other seller has accepted the

offer, and so this is the probability with which S2 will be involved in a 2-player

game in the next period. The next period is a 4-player game with residual

probability. In this game, the equilibrium offer (to S1) is δH = 3. Letting π̂

denote the updated probability that S2 is of the low type, we get

p = δ(aVS(π̂) + (1− a)δH) (5)

where VS(π̂) is the equilibrium offer to S in the 2-player game when the initial

probability of the low type is π̂.

Case 1: π̂ > q2. Then, VS(π̂) = δ2H = 9
4 . Substituting in equation 5, we

get

p =
261
128

We now calculate the expected payoff to B2. Let â denote the probability with

which p is accepted by B2. Since â results in the updated probability of π̂ (from

π2
0),

â =
π2

0 − π̂

1− π̂
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Also, let VB(π̂) denote the expected payoff to the buyer in the 2-person game

when the initial probability that the seller is of the low type is π̂. Then,

VB(π̂) = (v − δ2H)
π̂ − 1

5

1− 1
5

+
1− π̂

1− 1
5

δ(v −H)

=
1
4
(10π̂ + 1)

So,

E(B2) = (v − p)â + (1− â)δ(aVB(π̂) + (1− a)(v −H)

=
(

5− 261
128

)
( 4
7 − π̂)

(1− π̂)
+

3
7

(1− π̂)
3
4

(
3
8

1
4
(10π̂ + 1) +

5
8

)
=

379
128

(
4− 7π̂

7(1− π̂)

)
+

9
28(1− π̂)

(
15π̂

16
+

23
32

)
=

1723− 2383π̂

896(1− π̂)

Equating this to E(B1) = 3
2 yields

π̂ =
379
1039

< 0.4 = q2

Hence, Case 1 cannot occur.

Case 2 : Suppose π̂ ∈ (q1, q2).

Then, VS(π̂) = δH = 3.

Substituting in equation 5, we get

p =
9
4

Then, the expected payoff to B2 is

E(B2) = (5− 9
4
)

4
7 − π̂

1− π̂
+

3
7

(1− π̂)
3
4

(
3
8
(
5
4
π̂ +

3
4
) +

5
8

)
=

44− 77π̂

28(1− π̂)
+

9
28(1− π̂2)

(
15
32

π̂ +
29
32

)
Equating this to E(B1) = 3

2 yields π̂ > 1, which is clearly not possible.

This shows that there cannot be an equilibrium in which both buyers get

equal expected payoffs.
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Remark 5 However, there will be an equilibrium in which B1 (the first buyer

to make an offer)and B2 both offer δ2H to S1 and S2 respectively. The seller

responses are identical to that in the equilibria of the 2-person games. In this

equilibrium, E(B2) > E(B1).

7 Conclusions

This paper attempts to model competition among small numbers of market

participants with incomplete information. The small numbers makes random

matching less desirable as a model and we consider players making targeted

offers to particular individuals on the other side. All offers are made by buyers,

so as to keep the bargaining-theoretic complexity to a minimum. We find that

there are equilibria in which buyers’ expected payoffs are equalised in equilib-

rium if only one of the sellers has private information. (Adding more buyers and

sellers with complete information does not matter.) However, if an additional

privately informed seller is present, such an equilibrium need not exist and the

second buyer to move has an advantage. Surprisingly the competition is always

driven by the incomplete information and not by the values of the complete

information sellers, in contrast to the complete information model.
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