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Abstract

De Sinopoli and Turrini (1999) present an example to show that the

notion of equilibrium proposed in the Besley-Coate model of represen-

tative democracy (political equilibria (Besley-Coate, 1997)) may fail to

capture all aspects of the behaviour of rational agents. Thus, Political

Equilibria may not conform to the principle of iterated elimination

of dominated strategies. In this note, we show that requiring polit-

ical equilibria to be iteratively undominated rules out unreasonable

equilibria only for those cases where at least four candidates stand for

election.
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1 Introduction

The citizen-candidate model (Besley-Coate(1997), Osborne-Slivinski(1996))

is being increasingly used to model decision-making in environments where

Condorcet winners may not exist. The model has three stages of activity;

(i) citizens decide on whether to stand for office, and incur a small cost if

they do so; (ii) citizens vote for the candidates who stand, and the winner

is elected by plurality rule; (iii) the candidate who is elected implements her

most preferred policy from a fixed set of alternatives. Although the citizen-

candidate model is a major advance over existing models, a major problem is

that there are typically multiple equilibria at the voting stage, due to plurality

rule (Dhillon and Lockwood(2000)). These multiple equilibria at stage (ii)

generate multiple equilibria to the game as a whole, which Besley and Coate

call political equilibria (PE). Osborne-Slivinski(1996) resolve this problem by

assuming that voters vote sincerely. Sincere voting, however is an arbitrary

rule for selecting strategies. In contrast, Besley-Coate (1997) impose the

requirement that, conditional on any set of candidates, the voting equilibrium

must be weakly undominated. Not surprisingly, this weak refinement at the

voting stage still leaves many equilibria, some of them not very credible1.

In this paper, we investigate whether imposing a stronger refinement on

the (Nash) equilibrium at the voting stage, conditional on any set of can-

didates, eliminates any PE. Our refinement is that voting strategies be it-

eratively weakly undominated. We call PE with this refinement imposed at

the voting stage iteratively weakly undominated political equilibria (IWUPE).

Our justification for this refinement is twofold. First, that if it is common

knowledge than agents will not play weakly dominated strategies, then it is

”reasonable” that rational voters will not play their ”second round” weakly

dominated strategies, and so on. Some formal justification of this is in Ra-

jan(1998). Second, it has been shown by Sinopoli(2000) that more standard

refinements (perfection, properness) do not have much bite in plurality vot-

1Besley and Coate declare “for those who would like a clean empirical prediction, our
multiple equilibria will raise a sense of dissatisfaction.”
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ing games; in particular, requiring subgame-perfection only rules out Nash

equilibria where Condorcet losers are elected. [This does not eliminate any

PE, except possibly one-candidate ???]

De Sinopoli and Turrini(1999) initiated this approach to refining PE in a

paper where they present an example with four candidates and one winner

where the voting strategies are not iteratively weakly dominated, and more-

over, requiring them to be so eliminates this equilibrium. This result raises

the question of whether iterated deletion of weakly dominated strategies also

refines political equilibrium outcomes in the case of one, two, and three can-

didate equilibria. This paper answers this question, fully and negatively. We

show2 that if there exists a PE with fewer than four candidates, and a given

set of winner(s), then there also exists a IWUPE with the same candidate set

and the same winner(s). So, this paper complements De Sinopoli and Tur-

rini(1999); together, they how that iterated deletion of weakly dominated

strategies also refines political equilibrium outcomes only when the number

of candidates is at least four.

We describe the Besley-Coate model in greater detail in Section 2. Section

3 then discusses the main results. Section 4 concludes.

2 The Citizen-Candidate Model of Represen-
tative Democracy

Besley-Coate (1997) consider a community of n citizens, who may select a

representative to implement a policy alternative. Each citizen i ∈ N =

{1, ...n} has a finite action set Xi representing the policy alternatives avail-
able to him if elected. It is possible that citizens may be of different com-

petencies i.e. Xi 6= Xj. If no-one is elected, a default policy x0 ∈ ∩i∈NXi
2We do not show that every PE is also a IWUPE. This is generally not true; as shown

by Dhillon and Lockwood(2000), in any voting game, the set of iteratively weakly un-
dominated strategy profiles may be much smaller than the set of weakly undominated
ones.
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is selected. Voters have preferences over who represents them, as well the

alternatives they choose, so utility functions are defined on X × N ∪ {0},
X = ∪i∈NXi, i.e. πi(x, j) is the utility for i if j is elected and chooses action
x. If no-one is elected, utilities are πi(x0, 0).

The political process has three stages. At stage 1, citizens face a binary

decision: to stand for election (enter) or not. At stage 2, voting takes place,

and in stage 3, the elected representatives choose policy. We discuss each

stage in turn.

At the final stage, once elected, a citizen i will therefore choose their own

most preferred policy (assumed to be unique):

x∗i = argmax
x∈Xi

πi(x, i)

Since for every citizen’s most preferred point x∗i ∈ Xi is known, the induced
preferences of citizens over candidates are given by ui(j) = πi(x

∗
i , j), i, j ∈

N. We assume that these induced preferences over candidates are strict: i.e.

ui(j) 6= ui(k), all i, j, k ∈ N, j 6= k. Also, ui(0) ≡ πi(x0, 0).

At the second stage, voting is by plurality rule: each voter has one vote,

which she can cast for any one of the set C ⊂ N of candidates who stand,

and the candidate with the greatest number of votes wins. If a set of two or

more candidates have the greatest number of votes, every candidate in this

set is selected with equal probability. Let W ⊂ C be the set of candidates

with the most votes, which we call the winset. Then voter payoffs over some

W are:

ui(W ) =
1

#W

X
j∈W

ui(j), i ∈ N

Formally, let αi = j if voter i votes for candidate j ∈ C. Then α = (α1, ...,αn)
denotes a vote profile. Let W (α, C) ⊂ C denote the winset, given the vote

profile α and candidate set C. The utility to voter i from α (given C) is

then ui(α, C) ≡ ui(W (α, C)). A Nash equilibrium profile α∗ is defined in
usual way as a profile where α∗i is a best response to α∗−i, all i ∈ N.
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Let S ⊂ Cn be any set of voting profiles, with S = ×i∈NSi. Say that αi
is undominated relative to S if (i) αi ∈ Si; (ii) there does not exist α0i ∈ Si
such that ui(α0i,α−i, C) ≥ ui(αi,α−i, C), all α−i ∈ S−i, and ui(α0i,α−i, C) >
ui(αi,α−i, C), some α−i ∈ S−i. Now define the sequence of sets of vote profiles
{A0, A1, A2...} for i as follows: A0 = Cn, and An = ×i∈NAni , where Ani is the
set of voting actions for i that are undominated relative to An−1, all i ∈ N. As
the set of voting actions is finite, An converges after a finite number of steps

to some A∞, which is the set of vote profiles that are iteratively weakly
undominated. It is always non-empty. Also, the An are understood to be

conditional on C.

Besley and Coate define a voting equilibrium to be a α∗ which is (i) Nash
equilibrium; and (ii) weakly undominated i.e. α∗ ∈ A1. We will focus on

a stronger refinement of Nash equilibrium i.e. where α∗ ∈ A∞. Formally, an
iteratively weakly undominated voting equilibrium is a α∗ which is (i) Nash
equilibrium; and (ii) iteratively weakly undominated i.e. α∗ ∈ A∞.
Finally, we turn to the entry stage. Any citizen can run for office, but if

they run, they incur a small cost δ. If no-one runs for office, the default policy

x0 is implemented. In the first stage, citizens decide non-cooperatively on

their entry: γi ∈ {0, 1} denotes the entry3 decision for i. When deciding upon
candidacy, citizens all anticipate4 the same voting equilibrium α∗(C) among
the multiple equilibria at the voting stage, given any possible set of candidates

C. Denote the strategy profile at the entry stage by γ = {γ1, ..., γn}.
We can now state our equilibrium concepts. A weakly undominated politi-

cal equilibrium (WUPE) of this game is a (γ∗,α∗(.)) if (i) γ∗ is an equilibrium
of the entry stage, given α∗(.) and (ii) α(C) ∈ Cn is a weakly undominated
Nash equilibrium in the voting subgame, for every C ⊂ N . Our WUPE

is Besley and Coate’s political equilibrium: we add the qualifier to make

explicit the refinement assumed at the voting stage. An iteratively weakly

undominated political equilibrium (IWUPE) of this game is a (γ∗,α∗(.)) if (i)

3We do not allow citizens to randomise.
4This is represented as in De Sinopoli and Turrini (1999) by the function α(.) : 2N →

(N ∪ {0})N .
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γ∗ is an equilibrium of the entry stage, given α∗(.) and (ii) α(C) ∈ Cn is an
iteratively weakly undominated Nash equilibrium in the voting subgame, for

every C ⊂ N .
It is helpful for future reference to state the equilibrium entry conditions

in either case, which are first, that i ∈ C must prefer to enter, given α∗ i.e.

ui(α
∗(C∗/{i}), C∗/{i}) ≤ ui(α∗(C∗), C∗)− δ, i ∈ C∗ (1)

and second, that any j /∈ C must prefer not to enter, given α∗ i.e.

uj(α
∗(C∗ ∪ {k}), C∗ ∪ {k})− δ ≤ uj(α∗(C∗), C∗), j /∈ C∗ (2)

Finally, we state the assumptions we need (in addition to those made by

Besley and Coate(1998)) for our analysis. First, we assume a “no indifference

over lotteries” condition i.e.

NI. ui(W ) 6= ui(W 0), for all i and all W 6= W 0, W,W 0 ⊂ N.
This condition ensures that the order of deletion of weakly dominated

strategies does not matter5, and thus implies that is important to ensure

that the solution concept we use is well defined.

Our second assumption, already made above, and purely for convenience,

is that voters cannot abstain. When voting is costless and, as in our version

of the Besley-Coate model preferences over candidates are strict, abstention

is always weakly dominated so that ruling out abstention is without loss of

generality.

3 Analysis

Let (γ∗,α∗(.)) be some WUPE, and let C(γ∗) = C∗ be the equilibrium
set of candidates given entry decisions γ∗. We will show that as long as

#C∗ ≤ 3, for any WUPE with equilibrium candidate set C∗, and winset

5That is, the calculation ofA∞ does not depend on the order in which weakly dominated
strategies are deleted. See Marx and Swinkels (1997).
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W (C∗,α∗(C∗)), there is a IWUPE (γ∗∗,α∗∗(.)) with the same equilibrium
set of candidates and the same winset - and therefore the same outcome in

terms of policy chosen and political representation.

We proceed as follows. First, α∗∗(.) must generate the same winset as
α∗(.) when the candidate set is the equilibrium one:

W (C,α∗∗(C∗)) = W (C,α∗(C∗)) (3)

Second, the incentives to enter must be the same in the original WUPE and

the constructed IWUPE. That is, the entry conditions (1),(2) must continue

to hold when α∗ is replaced by α∗∗ i.e.

ui(α
∗∗(C∗/{i}), C∗/{i}) ≤ ui(α∗∗(C∗), C∗)− δ, i ∈ C∗ (4)

uk(α
∗∗(C∗ ∪ {k}), C∗ ∪ {k})− δ ≤ uk(α∗∗(C∗), C∗), j /∈ C∗ (5)

So, for any C∗ with #C∗ ≤ 3, we must show that we can construct some
α∗∗ ∈ A∞ such that (3)-(5) hold.
Now let Ψ be the set of candidate sets comprising C∗ and those sets aris-

ing from unilateral deviations from equilibrium entry decisions6. Note that

conditions (3)-(5) impose conditions on α∗∗(C) when C ∈ Ψ. For candidate

sets not in Ψ, α∗∗(.) can be defined arbitrarily, subject to the requirement
that it is an iteratively undominated profile. That is, we can set

α∗∗(C) ∈ A∞(C), all C ∈ N/Ψ∗ (6)

where N is the power set of N. Note that (6) is always possible as A∞(C) is
always non-empty for all non-empty C.

It is helpful to break our complex task into steps by classifying political

equilibria by the number of candidates. Following Besley and Coate, 1997,

6Formally,

Ψ = {C ⊂ N |C = C∗, C = C∗/{i}, i ∈ C∗, C = C∗ ∪ {j}, j /∈ C∗ }
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say that a political equilibrium is a m−candidate political equilibrium if m

candidates stand for election in the equilibrium. We first have:

Proposition 1. For any 1-candidate WUPE with equilibrium candidate set
C∗ = {i}, and winset W (C∗,α∗(C∗)) = {i}, there is a IWUPE (γ∗∗,α∗∗(.))
with the same equilibrium set of candidates and the same winset.

Proof. First, α∗∗(.) is defined7 on Ψ as follows. For C = {i}, or C =

{i, j}, j ∈ N, set α∗∗(.) = α∗(.). As we have set α∗∗(.) = α∗(.), (3)-(5) hold
from the fact that α∗(.) is part of a WUPE. To conclude, we must verify that
α∗(C) is iteratively undominated for all C ∈ Ψ. The case C = {i} is trivial,
as every voter has only one strategy, so we must have A1(i) = A∞(i) = {i}n.
In the case C = {i, j}, j ∈ N , the only undominated strategy for any voter
is to vote sincerely, so A1(C) is a singleton, so again iterated deletion does

not reduce it i.e. A1(C) = A∞(C). ¤
To deal with two-candidate equilibria, we first need the following Lem-

mas. Let Γ(C) be the voting (subgame) with candidate set C. A strict Nash

equilibrium (Harsanyi, 1973) of Γ(C) is a vector of voting decisions α∗ where
ui(α

∗
i ,α

∗
−i ) > ui(αi,α

∗
−i) all αi ∈ C, αi 6= α∗i , all i ∈ N. We then have:

Lemma 1. Any strict Nash equilibrium α∗ is iteratively undominated i.e.
α∗ ∈ A∞.
Proof. A strict Nash equilibrium is a profile of pure strategies (α∗1,α

∗
2, ...,α

∗
n),

such that each α∗i is a unique best response to the profile α∗−i. Thus, none
of these strategies can be deleted in the first round. Moreover if this profile

survives for all players at any round k of iterated deletion, they must survive

in round k + 1. This is because iterated deletion means that any player has

the same or fewer strategies at every round, so if a strategy was a unique

best response to a profile which survived round k, it will continue to be a

unique best response to this profile in round k + 1. ¤
For the proof of the next Lemma, the following notation will be useful. Let

ω−i(α−i) be a vector recording the total votes for each candidate; given a

7Obviously, C/{i} = ∅, so α(∅) is not defined.
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strategy profile α−i i.e. when individual i is not included. We suppress

the dependence of ω−i on α−i except when needed and refer to ω−i as a vote
distribution. Clearly i’s best response to ω−i depends only on the information
in ω−i.

Lemma 2. Any weakly undominated Nash equilibrium α∗(C) of a voting
game Γ(C), where #W (α∗, C) > 1 is a iteratively weakly undominated

Nash equilibrium, and remains so even in Γ(C ∪ {k}) for any k 6∈ C.
Proof. Since all candidates in W (α∗, C) are tied, i.e. ωi = ωj , ∀i, j ∈
W (α∗, C), it follows that every voter is pivotal between all elements ofW (α, C).
Clearly, voting for his best alternative in W (α∗, C) is a unique best response
for any voter8. Hence any weakly undominated Nash equilibrium α∗ with
#W (α∗, C) > 1 must be a strict Nash equilibrium. But then by Lemma 1,
α∗(C) is also an iteratively weakly undominated Nash equilibrium.
Now consider the game Γ(C ∪ {k}). Assume that j is voter i0s most

preferred candidate in W (α∗, C). The vector of votes i faces given α∗(C) is
such that (w.l.o.g.) ωj = ωl − 1, ∀l 6= j, and j, l ∈ W (C). It is sufficient to
show that voting for candidate k is not a best response for in Γ(C ∪k). Note
that n ≥ 3 since there #W (C) > 1, so #C > 1. Therefore, n ≥ 4 (otherwise
we cannot have a tie between two candidates in the two candidate game).

Thus, if voter i deviates to k, he would ensure thatW (C∪{k}) = W (C\{j}).
Thus, voting for j remains a unique best response. Thus, α∗(C) remains a
strict Nash equilibrium of the game Γ(C∪{k}). Again, by Lemma 1, α∗(C) is
also an iteratively weakly undominated Nash equilibrium in Γ(C ∪ {k}).¤
We now turn to two-candidate WUPE. Note that the entry condition (1)

requires that if there are two candidates, both must be in the winset - oth-

erwise, the one that does not win would withdraw (Besley and Coate(1998).

So, our second result is:

Proposition 2. For any 2-candidate WUPE with equilibrium candidate

set C∗ = {i, j}, and winset W (C∗,α∗(C∗)) = {i, j}, there is an IWUPE
8This also implies, given our NI condition, that all voters will vote for their best

alternative in W (C)
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(γ∗∗,α∗∗(.)) with the same equilibrium set of candidates and the same win-

set.

Proof. First, α∗∗(.) is defined9 on Ψ as follows. For C = C∗, or C = C∗/{i},
i ∈ C∗, set α∗∗(.) = α∗(.). For C = C∗ ∪ {k}, k /∈ C∗, set α∗∗(C∗ ∪ {k}) =
α∗(C∗). Note that by construction, (3),(4) are satisfied. Also, note that (5)
is satisfied. First, note that

W (C∗ ∪ {k},α∗∗(C∗ ∪ {k})) =W (C∗ ∪ {k},α∗(C∗)) = W (C∗,α∗(C∗)) (7)

i.e. given α∗∗, the winner is unchanged if k enters. So, from (7),

uk(α
∗∗(C∗ ∪ {k}), C∗ ∪ {k}) = uk(α∗(C∗), C∗)

and consequently (5) holds as δ > 0.

Again, to conclude, we must verify that α∗(C) is iteratively undominated
for all C ∈ Ψ. For C = C∗, or C = C∗/{i}, i ∈ C∗, an argument identical to
the proof of Proposition 1 shows this. For C = C∗ ∪ {k}, Lemma 2 implies
that α∗(C) is an iteratively undominated voting profile in the game Γ(C∗∪k),
as required. ¤
We now turn to the most complex case, that of 3-candidate WUPE. First,

with three candidates, there may in principle, be one, two or three winners. It

turns out that the case of two winners is impossible under our assumption of

strict preferences. The case of three winners can be dealt with using Lemma

2, following the proof of Proposition 2. However, in the case of one winner,

Lemma 2 no longer applies, and so we must find some other argument to

construct an IWUPE with one winner. To illustrate our argument, we first

present an example of a 3-candidate WUPE with one winner where we can

find an IWUPE with the same outcome.

We need the following notation and lemma before this example. Fix some

candidate set C with#C = 3. LetNi be the set of voters who rank candidate

i ∈ C as worst, with ni = #Ni. Let q = maxl∈C {nl/n}, and let wi denote
9Obviously, C/{i} = ∅, so α(∅) is not defined.
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citizen i0s worst candidate in C, all i ∈ N . Now define a critical value of q
as:

qn =

(
1− 1

n
− 1

n
dn+1

3
e, n odd

1− 1
n
dn+2

3
e, n even

(8)

where dxe denotes the smallest integer larger than x, and bxc denotes the
largest integer smaller than x. Finally, in this section, we assume w.l.o.g that

n ≥ 4. We then have the following useful result, constructed from various

results of Dhillon and Lockwood, 2000:

Lemma 3. Assume #C = 3. If q ≤ qn, then any weakly undominated

strategy profile in Γ(C) is also iteratively weakly undominated i.e. A1(C) =

A∞(C). Moreover, A1(C) is a subset of the set of iteratively undominated
strategy profiles in Γ(C ∪ l) i.e. A1(C) ⊂ A∞(C ∪ l).
Proof. Every αi ∈ C except αi = wi is weakly undominated in C, so

A1(C) = ×iC/wi (Dhillon and Lockwood, Lemma 1). Moreover, by Theorem
2 of Dhillon and Lockwood, as q ≤ qn, A

∞(C) = ×iC/wi. So,A1(C) =
A∞(C) as required. Finally, consider Γ(C ∪ l). Define the full reduction of
(C ∪ l)n, V = ×iVi, to be the set of strategy profiles where every αi ∈ Vi is
undominated relative to V (Marx and Swinkels(1997)). Then, by definition,

V = A∞(C ∪ l). We will show that A1(C) ⊂ V for all α0i ∈ C ∪ l. To do
this, it is sufficient to show that every αi ∈ C/wi is undominated relative
to (C∪l)n. In turn, it is sufficient to show that every is a unique best response
in C ∪ l to some α−i in (C ∪ l)n−1.
To prove this, let α̃i ∈ C/wi. As α̃i ∈ A∞(C), there exists α̃−i ∈ A∞−i(C)

such that α̃i is the unique best response in A∞i (C) to α̃−i. It is now suffi-
cient to show that α̃i continues to be the unique best response in A∞i (C) to
α̃−i, when voter i can also choose l. To see this, note that the vote distri-
bution ω−i(α̃−i) must have some alternative in C getting two or more votes
when n ≥ 5, as #C = 3. So, voting αi = l in response to α̃−i cannot af-
fect the outcome, and so α̃i remains a unique best response in C ∪ {l} to
α̃−i. CASE WhEN N=4?? ¤

This is a powerful result which allows treatment of the 3-candidate case.
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Example
There are eight citizens with preferences over N as follows:

1 : 1 Â 8 Â 5 Â 3 Â 2 Â 4 Â 6 Â 7
2 : 2 Â 8 Â 1 Â 3 Â 5 Â 4 Â 6 Â 7
3 : 3 Â 8 Â 5 Â 1 Â 2 Â 4 Â 6 Â 7
4 : 4 Â 8 Â 5 Â 3 Â 1 Â 2 Â 6 Â 7
5 : 5 Â 8 Â 1 Â 3 Â 2 Â 4 Â 6 Â 7
6 : 6 Â 8 Â 1 Â 3 Â 5 Â 2 Â 4 Â 7
7 : 7 Â 8 Â 1 Â 3 Â 5 Â 2 Â 4 Â 6
8 : 8 Â 5 Â 3 Â 1 Â 2 Â 4 Â 6 Â 7

Let (γ∗,α∗(.)) represent a WUPE in this game, with an equilibrium set of

3 candidates C∗ = {1, 3, 5}, and one winner, W (C∗,α∗(C∗)) = {5}. We
will first describe α∗(.) and verify that it does induce the equilibrium entry

decisions. Then, we will show that there is an IWUPE with the same set of

candidates and winset.

Description of α∗(.)
First, α(C∗) = (5, 1, 5, 5, 5, 1, 3, 5), thus candidate 5 wins. This is a Nash

equilibrium, since no voter is pivotal, and moreover, the profile is undomi-

nated (α(C∗) ∈ A1(C∗)) as no-one votes for their worst candidate.
Voting profiles and winsets in all the two candidate games generated by

withdrawal of one of the equilibrium candidates are as follows:

α(C∗/{1}) = (5, 3, 3, 5, 5, 3, 3, 5), W (C∗/{1}) = {3, 5}
α(C∗/{3}) = (1, 1, 5, 5, 5, 1, 1, 5), W (C∗/{3}) = {1, 5}
α(C∗/{5}) = (1, 1, 3, 3, 1, 1, 1, 3), W (C∗/{5}) = {1}

It is clear that withdrawal is suboptimal for all candidates. For example,

if candidate 1 withdraws, he gets a lottery over 3 and 5 which is worse for
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