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Abstract

A group of appraisers face a prospect in a random order. Not all prospects

are good so, upon encountering a prospect, an appraiser may acquire costly

information before deciding to accept or reject it. As each prospect can only

be accepted by one appraiser, selectivity causes an adverse selection external-

ity. I show that if appraisers may acquire any signal of the prospect’s quality,

all appraisers, regardless of their number, have positive expected payoffs. By

contrast, when information is chunky, equilibrium adverse selection limits the

number of appraisers who can profit by participating.
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1 Introduction

Consider a venture capitalist inspecting a start-up soliciting an investment. Ideally,

she invests when the return on investment clears some benchmark; however, this is not

immediately apparent. The venture capitalist may aid her decision by acquiring costly

information about the start-up. The prior distribution of the start-up’s profitability,

naturally, informs the venture capitalist’s decision of what information — if any —

to purchase.

However, the venture capitalist must also consider that she may not be the first

potential investor solicited. Could the start-up have already been turned down by

other venture capitalists? What would those other venture capitalists have learned

about the start-up, and how would it have influenced rejections? The answers to

these questions affect the venture capitalist’s beliefs about the start-up, and there-

fore her own information acquisition decisions. If other venture capitalists are being

circumspect, perhaps this is cause to be circumspect oneself.

One may reason similarly of health insurers learning about applicants, employ-

ers inspecting job candidates, faculty taking time to learn about potential advisees,

and consumers poking their fingers into that last avocado in the grocery aisle. More

generally, information acquisition produces an interdependent adverse selection ex-

ternality in common values settings. When agents screen in sequence, this manifests

as a solicitation curse1 analogous to the winner’s curse in simultaneous setups. In

these kinds of settings, an agent’s incentives to acquire information are affected by

the strategic information acquisition of other agents. An intriguing possibility arises:

could equilibrium beliefs be so pessimistic that some agents give up on learning alto-

gether? In a stylized environment, I will show that this depends on the fine details

of information acquisition.

I develop a model with a set of appraisers that encounter a prospect in a uniform

random visit order. As the realization of the visit order is unknown to appraisers, and

bad prospects will in equilibrium be rejected more often by other appraisers, beliefs

conditioned on encountering the prospect exhibit a solicitation curse.

When faced with the prospect, an appraiser can choose what information to learn

about the prospect’s quality. This is modeled as choosing a Blackwell experiment - a

1I use the term in the sense of Kim and Pease (2017), but the analogy is imperfect. In that
paper, the solicitation curse results from worse prospects exerting more search effort, rather than
their being rejected more often.
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signal whose distribution varies with the prospect’s quality. Experiments vary in cost,

so a more informative one is not always preferable. An appraiser may, in fact, opt

to spend nothing and receive no information. Following information acquisition, the

appraiser must accept or reject the prospect. If the appraiser rejects the prospect she

reaps neither loss nor benefit, and the prospect is encountered by the next appraiser.2

If the appraiser accepts the prospect, she gains or loses utility on the basis of the

prospect’s quality, and the game ends.

I argue that this setting is ideal for studying the relationship between information

acquisition and adverse selection externality in isolation. Information acquisition

occurs at an ‘interim’ stage - the active appraiser holds full decision rights over the

prospect at that time. Thus, information acquisition decisions are not affected by a

concurrent competition for the prospect, as in the auction setting of Persico (2000) (in

which information acquisition occurs ‘ex ante’), but instead reflect current beliefs.3

Furthermore, there is no additional source of adverse selection such as mutual consent

to transactions, as in Lauermann and Wolinsky (2016).4 Compared to models such

as these, the present model considerably broadens the forms information acquisition

may take. This is at the cost of dispensing with any notion of prices or bids, like Ely

and Siegel (2013).

The model takes full advantage of recent advances in the literature on informa-

tion acquisition. Divisible information entails the freedom to collect arbitrarily small

increments of information and use them to inform further collection of information.

A result from Bloedel and Zhong (2020) (henceforth, BZ) then allows me to represent

divisible information with a Uniform Posterior-Separable (UPS) cost function over

posteriors. Such functions are rapidly becoming ubiquitous since their introduction

by Caplin and Dean (2013). When information is chunky, on the other hand, learning

can still be sequenced, but information is not available in arbitrarily small increments.

This is not to say chunky information is necessarily rigid - there may well be a rich

2Thus, as an appraiser may always opt to acquire no information and reject the prospect, 0 is a
lower bound on the equilibrium expected payoff of each appraiser.

3In models of ex-ante information acquisition, a player’s beliefs at the information acquisition
stage are not affected by others’ strategies. Thus, the costs of acquiring particular experiments are
invariant to others’ strategies. Instead, others’ strategies affect a player’s payoff from accepting a
prospect. An interesting related case is Gershkov and Szentes (2009) in which the optimal mechanism
asks players to acquire information in the interim in a uniform random visit order, but the active
player does not know how her report will affect the decision at hand.

4The latter includes a form of (Groucho) Marxist adverse selection - one should be wary of being
party to transactions that others would be party to.
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menu of chunks.

In both cases, information acquisition strategies should be thought of as reduced-

form descriptions of potentially complex dynamic plans. That is, appraisers are not

merely “setting the bar”in a test, but also deciding on how long the test goes on for,

as a function of the answers given.

Should information costs vary with beliefs? Mensch (2018) and Denti, Marinacci,

and Rustichini (2019) demonstrate how information costs that depend arbitrarily on

beliefs are inapt for strategic settings. On the other hand, BZ show that belief-

invariant costs do not allow us to represent sequential procedures. It thus seems

reasonable to at the least allow for information costs that are linear in beliefs, to

accomodate Morris and Strack (2019)’s generalized Wald model. Rather than take a

stand, I allow for generality. This requires using Geanakoplos, Pearce, and Stacchetti

(1989)’s notion of a psychological equilibrium as the solution concept. In what I

view as the canonical case of information costs linear in beliefs, however, the solution

concept reduces to Bayes-Nash Equilibrium.

I show two main results. First, when information is divisible, all appraisers ac-

quire information and each receives a positive expected payoff. This is due to the

marginality of beliefs about rejected prospects. Appraisers acquire just enough infor-

mation that their posterior beliefs about rejected prospects lie on a threshold between

a region in which only rejection is optimal and one in which only further experimenta-

tion is optimal.5 An appraiser encountering a prospect might be the first to do so, or

might be later in the order. As a consequence, an appraiser assumed for contradiction

not to acquire any information in equilibrium would hold beliefs equal to a convex

combination of the prior for fresh prospects and the posterior for rejected ones. As

the prior is above the threshold and the posterior for rejected prospects equals the

threshold, these equilibrium beliefs would be above the threshold. But at such be-

liefs, the appraiser should acquire some information, a contradiction. Therefore, no

matter how many appraisers are in the game, all acquire information in equilibrium;

earning positive expected payoffs. Divisible information attenuates the informational

externality due to each appraiser as the number of appraisers increases.6

5This follows from the fact UPS cost functions satisfy Caplin, Dean, and Leahy (2022)’s Lo-
cally Invariant Posteriors property. In particular, the distribution of posteriors following optimal
information acquisition has support on the same two points - if feasible.

6The fact the visit order is uniformly distributed plays an important role here. If, say, a particular
appraiser knew she was always last in the order, she would never acquire information, and would

4



Second, when information is chunky, the informational externality limits the num-

ber of appraisers reaping a nonzero expected payoff. There cannot be equilibria with

too many appraisers gainfully acquiring and acting on information. If there were,

either they would be spending too much on acquiring information, or the prospect

would be accepted too often. In the former case some appraiser could gain by deviat-

ing to rejecting without information; in the latter case some appraiser could gain by

screening more heavily. As information acquisition cannot be finely tuned in a chunky

information market, posteriors for the rejected are strictly below the rejection/further

experimentation threshold. Unlike in the divisible case, the externality due to this

excessive information acquisition is powerful enough to limit market participation.

It is important to recognize that the latter result is not due to ‘congestion’, as

in a model in which appraisers acquire information before encountering the prospect.

In my model, all costs are paid at the interim stage, in the sense that the appraiser

only pays for information when she has unilateral power to decide the fate of the

prospect. Unlike in Bergemann, Shi, and Välimäki (2009), an increase in the number

of appraisers does not affect the value of information via a decrease in ‘market share’.

Instead, beliefs become excessively pessimistic as the adverse selection externality

intensifies. Section 4.1 shows how this force is blunted as information becomes ‘more

divisible’. It is important, however, that appraisers can always acquire more infor-

mation; the example in Section 4.3 shows that the result is not valid when appraisers

cannot sample repeatedly. Moreover, Section 4.4 illustrates the externality caused by

over-acquiring information by way of a market with an appraiser with commitment

power; she can commit to an experiment that keeps entrants out.

I argue that the contribution of this paper is threefold. First, it develops a model

in which interdependent adverse selection can be studied in isolation. The model is

applicable to several settings and yields tractable implications despite allowing agents

wide discretion in information acquisition. Second, like Ravid, Roesler, and Szentes

(2022), it shows that the minute details of the information acquisition technology

affect macroscopic outcomes such as market structure. ‘Cheap enough’ information

is not free, and its character not separable from market entry; moreover, the quanta

of information matter. Finally, the paper illustrates the usefulness and limits of

the modern information acquisition literature, at once applying its results to a new

domain and showing that its stylization is not without loss.

receive a payoff of 0.
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2 Model

There is a single prospect, characterized by quality θ drawn from Θ = {θ, θ̄} with

the prior putting probability p0 ∈ (0, 1) on θ̄. There exist N identical appraisers,

who will act as players in this game. The quality θ is the benefit to an appraiser of

accepting the prospect. I assume θ < 0 < θ̄; appraisers want to accept some, but not

all, prospects.

2.1 Timing

Nature chooses θ according to the prior, and also a visit order π uniformly from the

set of permutations of the N appraisers. Then, the game proceeds in up to N stages,

starting with stage 1.

If and when stage n is reached, appraiser π(n) encounters the prospect. This

appraiser may then choose to acquire information about θ using the available tech-

nology. Once information is acquired, the appraiser may choose to accept or reject

the prospect. Following the appraiser’s decision, if the prospect is accepted or n = N ,

the game ends. On the other hand, if the prospect is rejected and n < N , stage n+ 1

follows.

Each appraiser becomes active at a single information set. That is to say, ap-

praisers are not aware of the prospect’s history of encountering other appraisers. As

a nonempty history has only rejections, which in equilibrium would convey bad news

about the prospect’s quality, a prospect (a startup, say) would not disclose previous

encounters even if the model were augmented with a cheap-talk stage.

To summarize, the prospect visits appraisers in a (uniform) random order, until ei-

ther an acceptance occurs, or the prospect has been rejected by every appraiser. When

an appraiser encounters the prospect, the appraiser observes only that a prospect has

arrived, not the history, the visit order, or the date.

2.2 Information Acquisition

When an appraiser encounters the prospect, that appraiser can then acquire informa-

tion about the prospect’s quality. Information acquisition is modeled as choice of a

Blackwell experiment, a collection of quality-conditional distributions {σ(·|θ)}θ∈Θ for

a signal on Polish space Sσ. The set of all Blackwell experiments is denoted B. A
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null experiment σnull carries no information, so that σnull(·|θ) does not depend on θ.7

Appraisers have access to a collection of experiments G ⊆ B, the information

menu. This menu represents the procedures available to an appraiser in order to learn

about prospects. The information menu is common to all appraisers. Experiments

will vary in cost, so a more informative experiment will not always be preferable.

Unlike much of the literature, I do not always assume that G is equal to B. This

is crucial; I am primarily interested in varying the nature of G rather than the cost

function c. I assume G contains a null experiment, so not learning is an option.

2.3 Strategies

Each appraiser n must choose two things: what (if any) information to acquire and

how to use it. Thus, each appraiser n must choose a σn ∈ G. The use of information

reduces to a function an : Sσn → {0, 1}, which denotes (as a function of the experi-

ment’s outcome) whether the appraiser accepts (1) or rejects (0) the prospect. Thus,

the strategy space of each appraiser n is ∆{(σn, an)|σn ∈ G, an : Sσn → {0, 1}}. A

typical (mixed) strategy for appraiser i is denoted ϕn.

2.4 Beliefs

To address payoffs, we first have to find the probability an appraiser encounters a

prospect of each quality. In other words, we have to account for selection due to

other appraisers’ strategies.

When a prospect of quality θ visits appraiser m, the chance she rejects given her

strategy ϕm is
(
1− Eϕm

[
Eσm(·|θ)[am]

])
. Now, notice that for a given visit order π

and profile of strategies for n’s opponents ϕ−n, the chance n encounters the prospect

is the chance that all previous (with respect to π) appraisers reject the prospect; or8

∏
m:π(m)<π(n)

(
1− Eϕm

[
Eσm(·|θ)[am]

])
. (1)

As the visit order π is random, given a prospect of quality θ, to find the probability

of a visit to appraiser n we take an expectation over the set of visit orders ΠN :

7Often, with some abuse of notation, σnull will refer to a generic null experiment.
8Here, I ignore the distinction between n’s beliefs about others’ strategies and their actual strate-

gies. As each appraiser acts at a single information set which is always on-path, this will not matter.
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∑
π∈ΠN

1

N !

∏
m:π(m)<π(n)

(
1− Eϕm

[
Eσm(·|θ)[am]

])
. (2)

Now, we wish to find appraiser n’s interim belief - her belief that the prospect is

quality θ̄ given that she encounters it. To find the interim belief, we weight by the

prior and update on a visit to n occuring at all:9

pn =

p0

∑
π∈ΠN

∏
m:π(m)<π(n)

(
1− Eϕm

[
Eσm(·|θ̄)[am]

])
Ep0

∑
π∈ΠN

∏
m:π(m)<π(n)

(
1− Eϕm

[
Eσm(·|θ)[am]

]) . (3)

The interim belief reflects the fact that other appraisers’ strategies modulate the

probability a prospect of each quality reaches n. We will show that in equilibrium, as

appraisers accept good prospects more often than bad, all interim beliefs are (weakly)

more pessimistic than the prior.

2.5 Payoffs

When appraiser n encounters a prospect of quality θ, that appraiser’s probability of

accepting given a pure strategy (σn, an) is

Eσn(·|θ) [an] . (4)

On accepting a prospect of quality θ, an appraiser gets utility θ (rejections give

zero). Thus, for any profile of strategies for other appraisers ϕ−n and pure strategy

of her own (σn, an), given a visit, appraiser n’s payoff from accepted prospects is

Epn [θEσn(·|θ) [an]] (5)

where pn is computed according to (3) using other appraisers’ strategies.

Each experiment is assigned a cost, and this cost is allowed to vary with the

experimenter’s beliefs.10 Formally, let c : G × int(∆Θ) → R+ denote the experiment

9Here, Ep0
is an abuse of notation; by this, I mean an expectation over qualities using the prior

distribution, as parametrized by p0.
10Experiments’ costs varying with beliefs is reasonable, and in fact necessary, when experiments

represent sequential procedures. For instance, when each flip of a coin has a constant cost, the
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cost function, taking an experiment and a belief to a cost. It is assumed that, for

any beliefs, experiments producing the same distribution over posterior likelihoods

are equally costly, and that c(σ, p) = 0 iff σ is a null experiment.11

Thus, if appraiser n encounters a prospect and holds beliefs pn, that appraiser

computes her payoff from (σn, an) as

Epn [θEσn(·|θ) [an]]− c(σn, pn). (6)

By computing pn according to other appraisers’ strategies ϕ−n and (3), we can

thus compute n’s payoff on being visited given any strategy profile. As an appraiser

gets 0 when she is not visited, and as being visited always has probability at least 1/N ,

for the purpose of equilibrium it suffices to work with this interim utility function.

Following BZ, given an experiment σ ∈ B and a function that maps its outcomes

into experiments, σ′ : Sσ → B, I denote by σ∗σ′ a compound experiment that performs

σ first, and then for each outcome s performs the experiment σ′(s). We say that c

exhibits indifference to sequential learning if whenever σ and σ′(s) for each s are in

G, and an experiment Blackwell-equivalent to σ ∗ σ′ (wlog σ ∗ σ′ itself) is also in G,

we have

c(σ ∗ σ′, p) = c(σ, p) + Eσ [c(σ′(s), p(s))] (7)

where p(s) is the posterior on Θ induced by experiment σ’s outcome s.

Indifference to sequential learning requires that compound experiments cost as

much as the sum of the expected costs of their constituent parts, where those costs

are computed at the induced posteriors. For instance, if our venture capitalist chooses

to conduct interviews first and then proceed with market analysis only if she likes

what she hears, the cost of this procedure is equal to the cost of only the interview,

plus the probability of ‘liking what she hears’ times the cost of only the market

analysis at the updated beliefs.

Though BZ study indifference to sequential learning as a characteristic of UPS

cost functions on B, I will also find it handy when we talk about chunky information

procedure ‘flip this coin until it lands on heads’ has a total cost that is linear in beliefs about the
coin’s bias. Linear costs correspond to the ‘Wald cost function’ of Morris and Strack (2019). To
accommodate yet more information costs, such as those based on Shannon Entropy, I go beyond
linearity.

11It is well-known that experiments produce the same distribution over posterior likelihood func-
tions iff they are Blackwell equivalent – see, for instance, Torgersen (1991).
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acquisition. Briefly, it allows me to identify what appraisers do when they reach

certain beliefs by experimenting, based on what is done by appraisers who start with

those same beliefs.

2.6 Equilibrium

I regard as a solution to the game a psychological equilibrium strategy profile ϕ∗.

That is, each ϕ∗n maximizes appraiser n’s expected payoff (6), given pn is computed

from ϕ∗−n. Note that when c is linear in beliefs, the solution concept collapses to

BNE.

2.7 Market Size

The main question I’ll be asking is, how does the information available for acquisi-

tion affects the number of appraisers who can gainfully participate in the market?

Accordingly, I should define the benchmarks for market size results.

I’ll say that information always limits entry if there exists a number of appraisers

N̄ such that, if the number of appraisers is any N > N̄ , at most N̄ of them can earn

a nonzero expected payoff. Suppose a rough model of appraisers contemplating entry.

When information always limits entry, even if entry is free, there are always equilibria

with as few as N̄ appraisers. Moreover, the number of entrants (in pure equilibria of

the entry game) will be bounded by N̄ if there is an entry cost, no matter how small.

I’ll say that information never limits entry if, for any number of appraisers N , in

every equilibrium of the game, every appraiser gets a positive expected payoff. When

information never limits entry, every appraiser that can enter the market freely will.

This requires that in all equilibria, each appraiser occasionally accepts the prospect.

These two cases, while not exhaustive, will suffice for my results.

3 Equilibria of divisible- and chunky-information markets.

First, let’s agree to say the market is trivial if a null experiment maximizes (6)

when pn is set to p0. A ‘monopsonist’ would not acquire information in a trivial

market. She might choose to accept or reject, depending on p0, but will do so without

acquiring information. In such a market, there is always an equilibrium in which all

appraisers use null experiments. Additionally, any equilibrium with experimentation
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would reflect pure coordination failure: appraisers acquiring information only because

other appraisers are. Neither chasing equilibrium refinements nor producing policy

that alleviates coordination failure is germane to the topic at hand; so we won’t dwell

on trivial markets.

Before we proceed to examine divisible and chunky information separately, we can

immediately state a rather trivial general finding.

Lemma 1. In any equilibrium of the game ϕ, for each n, pn ≤ p0.

Proof. From (3), the contrary would imply∑
π∈ΠN

∏
m:π(m)<π(n)

(
1− Eϕm

[
Eσm(·|θ̄)[am]

])
>
∑
π∈ΠN

∏
m:π(m)<π(n)

(
1− Eϕm

[
Eσm(·|θ)[am]

])
.

(8)

This would in turn require that for some appraiser m, Eσm(·|θ)[am] > Eσm(·|θ̄)[am], or,

in other words, that bad visiting prospects are accepted by m more frequently than

good ones. This is incompatible with optimization.

With this in hand, we commence our search for equilibria, beginning with the case

of divisible information.

3.1 Markets with divisible information

Divisible information, under which appraisers have the freedom to acquire any ex-

periment in B, most closely matches the models of information acquisition used in

the literature. In particular, I will exploit what is known about Uniform Posterior-

Separable (UPS) cost functions.

A cost function c : B × (0, 1) is UPS if there exists a strictly convex potential

function V such that

c(σn, pn) = Eσn,pnV (q)− V (pn) (9)

where q(s) is the posterior on Θ induced by the experimental outcome s.

The first step is to invoke BZ to establish that in the divisible information setting,

under a mild continuity condition, c is UPS.12

12The exact type of continuity required is that when a sequence of experiments’ distributions of
induced posteriors weak∗-converge, their cost converges to the cost of an experiment that produces
the limiting posterior distribution.
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Theorem (Bloedel and Zhong (2020)). Suppose G = B, and that c is continuous and

exhibits indifference to sequential learning. Then, c is Uniform Posterior-Separable.

From here, we can identify the solution to the information acquisition problem for

a single appraiser, for a given pn. Lemmata 2, 3, and 4 retread some ground from the

rational inattention literature (see, for instance, Caplin, Dean, and Leahy (2022)),

adapted to the present setting. They are presented here both for completeness, and

for utility to an application-minded audience. First, Lemma 2 shows that with a UPS

cost function, optimally acquired information results in at most as many posteriors

as there are actions - in our case, just two.

Lemma 2. Suppose G = B and that c is UPS. For a given interim belief pn, an

optimal experiment leads to at most two posteriors.

A proof of Lemma 2 appears in Appendix A.1. Briefly, if two experimental out-

comes inducing different posteriors led to the same action (acceptance or rejection),

the appraiser could merge them. This would coarsen the experiment, and thus by

the convexity of V cheapen it. This would not change the distribution of actions

conditional on the quality θ; so the same distribution of outcomes is achieved, while

spending less on information. Now, Lemma 3 can use this fact to show that the

optimal experiment is essentially unique.

Lemma 3. Suppose G = B and that c is UPS. For a given interim belief pn, the

optimal experiment is unique (up to Blackwell-equivalence).

The proof, in Appendix A.2, leverages the fact that the cost of a posterior distri-

bution is mixture-linear. Thus, if there were two distinct optima, any combination of

them would also be optimal. But such a combination must necessarily have at least

three points in its support, contradicting Lemma 2.

Now, we show behavior is uniform - in terms of the posteriors of optimal exper-

iments - even as pn is allowed to vary. Formally, Lemma 4 shows that there is an

interval of interim beliefs for which appraisers will acquire information, and that the

purpose of optimally acquired information is to push posteriors to the endpoints of

that same interval. This lemma retrieves the Locally Invariant Posteriors property

shown to be common to UPS functions in Caplin, Dean, and Leahy (2022).
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Lemma 4. Suppose G = B, that c is UPS, and that the market is non-trivial. There

exist beliefs q∗a, q
∗
r such that n’s optimal experiment is non-null iff pn ∈ (q∗a, q

∗
r); if so,

it produces only the posteriors q∗a, q
∗
r . An optimal acceptance policy is pure.

The proof, to be found in Appendix A.3, simply shows that whenever the optimal

experiment splits the interim belief into two posteriors, those two posteriors do not

vary with the interim belief. Non-triviality then ensures there is an open interval of

interim beliefs where this occurs. When the agent’s interim beliefs do not lie in the

interval, the agent will acquire no information.

Figure 1 illustrates how acceptance rates vary with interim beliefs under optimally-

acquired information, as well as beliefs about the rejected. From Lemma 4, any

information acquired by an appraiser produces a posterior q∗r on a rejection. Thus, all

rejections are marginal: an appraiser that rejects a prospect is just indifferent between

acquiring more information about them or not. Furthermore, an appraiser that had

as their interim beliefs exactly the rejection belief, pn = q∗r , would be just on the fence

between acquiring some information or not. The fact that these thresholds coincide

is crucial. It is a consequence of the fact UPS cost functions all satisfy indifference

to sequential learning: an appraiser who just encountered a prospect and holds some

interim belief q is in the same position as an appraiser who got to that belief by way

of an experiment’s realization.
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Figure 1: Optimal ‘divisible information’ acquisition. Left panel: acceptance rates for
good and bad prospects, as well as the average rate, as a function of interim beliefs.
Right panel: beliefs about rejected prospects, as a function of interim beliefs.
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Thus, if the interim belief of an appraiser were any higher than the beliefs held by

appraisers who acquired a ‘bad’ experiment realization, that appraiser would acquire

information. The work done by the next proposition is to show that the possibility

of a fresh prospect - one no other appraiser has screened yet - is always sufficient, in

equilibrium, to produce interim beliefs for all appraisers above the q∗r threshold. The

reader is reminded that information never limits entry if, for any number of appraisers

N , in every equilibrium of the game, every appraiser gets a positive expected payoff.

Proposition 1. Suppose that G = B, that c is continuous, and that the market is not

trivial. Then, information never limits entry. Moreover, in every equilibrium, every

appraiser uses a non-null experiment.

Proof. First, we call upon Bloedel and Zhong’s Theorem to establish that c is UPS so

we can use our lemmata. To begin, notice that using a null experiment and rejecting

following any outcome of the experiment yields a payoff of 0. From Lemma 3 the

optimal experiment is essentially unique. Therefore if in equilibrium an appraiser

receives an expected payoff of 0, that appraiser must be acquiring a null experiment

and always rejecting. So, the task at hand consists of finding that there are no such

‘inactive’ appraisers in equilibrium. We will proceed by contradiction.

First, suppose that there is an equilibrium ϕ of the game with some N appraisers

featuring an inactive appraiser (wlog) N . An inactive appraiser never accepts, or

in other words sets Eϕ[aN |θ] = 0. Notice that the inactive appraiser drops out of

(3). Thus, (ϕn)n≤N−1 is an equilibrium of the game with N − 1 appraisers as for

each appraiser n < N the interim belief pn computed from (3) is the same as when

appraiser N is present, and thus the best responses of n coincide in the two scenaria.

So, if the game with N appraisers features an equilirbium in which k ≥ 1 are inactive,

then the game with N−(k−1) appraisers features an equilibrium in which just one is

inactive. Therefore, for our purposes it will suffice to show that there is no equilibrium

of the game for any N in which one appraiser is inactive.

Now, suppose there is an equilibrium ϕ of the game with some N appraisers such

that appraiser (wlog) N is the sole inactive one. From non-triviality, N > 1. From

the above, ϕ−N is an equilibrium of the game with N−1 appraisers. Fix an appraiser

n 6= N and consider an auxiliary game with N appraisers in which we alter the visit

order by forcing N to always come exactly after n. The conditioned distribution is,

of course, a uniform distribution over {1, ..., n− 1, (n,N), n+ 1, ..., N − 1}.
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I claim ϕ is an equilibrium of the auxiliary game. Optimality for m 6= N comes

from the fact that N drops out of the calculation of pn and therefore incentives are as

in the N−1 appraiser game. Optimality for N being inactive flows from the fact that

N ’s interim belief is computable as pn updated for a rejection by n, which coincide

with n’s beliefs when rejecting. From Lemma 1, pn < p0; from non-triviality p0 < q∗a;

thus, n acquires a non-null experiment. Using Lemma 4, the beliefs of n on rejection

are q∗r . At these beliefs, indeed N finds it optimal to reject.

Now, notice the relation betweenN ’s beliefs in the auxiliary games and the original

N -appraiser game while holding fixed the strategy profile ϕ. We can rewrite N ’s

interim beliefs in the original game as a probability-weighted combination of her

beliefs when she knows she comes right after n, for each n, and her beliefs when she

knows she comes first. In the former cases her beliefs are q∗r ; if she knew she were

first in the order, her beliefs would be p0. As non-triviality implies that q∗r < p0, and

coming first has probability at least 1/N , we have that pN > q∗r ; but this contradicts

Lemma 2.

Proposition 1 relies crucially on the fact that the visit order is uniform.13 Thus,

an inactive appraiser can be ignored in calculations by other appraisers. The fact that

an inactive appraiser’s interim beliefs updated on the event of acting after some other

appraiser are exactly equal to that other appraiser’s beliefs on rejection is contingent

on uniformity.

This underlies the key argument in the proof: an inactive appraiser who knew she

was acting after another appraiser would have interim beliefs equal to the rejection

beliefs q∗r . An appraiser who knew she’s first in the order would have beliefs equal to

the prior. An inactive appraiser who is uncertain about which is the case, should have

beliefs equal to a convex combination of the two, and hence better than the rejection

beliefs. Figure 2 illustrates this - for any number of other appraisers who are best-

responding, the inactive appraiser has interim beliefs that make it profitable for her

to acquire a non-null experiment. Thus, our inactive appraiser should be acting after

all!

13There is a rather immediate counterexample to Proposition 1 when the visit order is not uni-
form. For any visit order distribution with a deterministic first appraiser, that appraiser acts as the
monopsonist would, and all other appraisers have beliefs equal to q∗r in equilibrium, and hence are
inactive.
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Figure 2: An inactive (N+1)st appraiser computing interim beliefs when others play
a symmetric equilibrium of the N -appraiser game. For any N , the inactive appraiser’s
beliefs indicate inactivity is not, in fact, a best-response.

3.2 Markets with chunky information

To talk sensibly about information being “chunky” but retaining the experimental

nature of the exercise, I want to ensure that appraisers are free to run experiments

repeatedly or in whatever sequence they choose. To that end, we’ll say that G is

procedurally closed if whenever non-null σ1 is in G, and for each s ∈ Sσ1 , σ2(s) is in

G, we have that σ1 ∗ σ2 ∈ G.

Intuitively, this captures the notion that appraisers may always perform more

tests, and the set of available experiments does not depend on prior experiments.14

Information is said to be chunky when inf{c(σ, pn)|non-null σ ∈ G, pn ∈ (0, 1)} >
0, that is, when the cost of non-null experiments is bounded away from zero. This

infimal non-null experimentation cost is denoted c.

As an example, we could start with finitely many ‘primitive’ experiments and then

repeatedly apply the definition of procedurally closed to obtain a procedurally closed,

chunky G. Any non-null experiment in G, in this case, can be interpreted as the

14In principle, the results of this section extend even if we allow the menu to vary with beliefs,
modifying our definition of procedural closure. Procedural closure would (only) require composition
with experiments that are available at the induced posterior beliefs. The definition of chunkiness
would also be edited to only check the cost of available experiments.
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reduced form of a procedure that at each stage, depending on the history of exper-

imental output, either orders another primitive experiment or terminates. This can

model acquiring information via a lab which prices each medical test independently.

For a different example, one can start with a cost function c over B × (0, 1)

and a constant c and produce a restricted menu Bc by choosing only those non-null

experiments that c always assigns a cost of at least c. In this case as well, arbitrarily

cheap non-null experiments are not available; but, above the cutoff, experiments may

well be designed very flexibly. An example is a consultant who can be hired to do

all sorts of market research and charges by the minute, but won’t accept tasks worth

less than c.

Unfortunately, procedural closure may only allow us to link the behavior of ap-

praisers at very few collections beliefs. For instance, the set of interim beliefs at which

an appraiser rejects outright could be disconnected. Intuitively, we’d like it to be the

case that an optimistic appraiser accepts outright, a pessimistic appraiser rejects out-

right, and one in between pays for information. To this end, we are forced to make an

assumption directly on behavior. We say that the market satisfies connected behavior

if the set of interim beliefs at which outright rejection maximizes (6) and the set of

beliefs at which outright acceptance maximizes (6) are closed intervals. In Appendix

B, I show that several standard cases, including costs linear in beliefs, and UPS costs

restricted to Bc, satisfy connected behavior.15

Lemma 5 establishes that any profiting appraiser is acquiring a non-null experi-

ment, and therefore imposes an externality on other appraisers.

Lemma 5. In every equilibrium of a non-trivial market with chunky information and

connected behavior, any appraiser making a profit acquires a non-null experiment.

Proof. From Lemma 1 we have that that for each n, pn ≤ p0 in every equilibrium.

From non-triviality and connected behavior, we have that p0 < p̄, where p̄ is the

least belief at which outright acceptance is optimal. Together, they give us pn < p̄

in every equilibrium. Thus, in equilibrium either pn ≤ p and n gets a payoff of

zero (as immediate rejection is optimal), or p < pn ≤ p0 < p̄ and acquiring a null

experiment and rejecting is not optimal. Thus, the appraiser’s payoff in this second

case must be greater than 0. So, whenever the appraiser’s expected payoff is positive

in equilibrium, a null experiment is not optimal.

15In particular, linear - or Wald - costs include what I regard as the canonical case: costs that
vary only with the actual quality of the prospect.
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Together, the assumption of connected behavior and Lemma 5 will allow us to

show that, as the number of appraisers grows, along any sequence of equilibria in

which the acceptance probability of the market as a whole goes to 1, eventually

some appraiser must be accepting when her beliefs on acceptance are below p̄. This

would imply that she has a profitable deviation due to indifference to sequential

learning and the procedural closure of the information menu. On the flip side, if the

acceptance probability of the market as a whole limits to something other than 1

along a sequence of equilibria in which all appraisers profit, Lemma 5 implies they

must be acquiring information. Then, the chunkiness of information implies the

expected market-wide total expenditure on experiments is going to infinity, so that

some appraiser is getting a negative payoff and should deviate to being inactive.

Finally, a sequential compactness argument shows one kind of subsequence or another

exists if there are equilibria in which arbitrarily large numbers of appraisers profit.

Thus, such a sequence of equilibria cannot exist, and there must be a maximal number

of profitable appraisers; in other words, information always limits entry. Proposition

2 formalizes this argument.

Proposition 2. Suppose that G is procedurally closed, that information is chunky,

and that the market is not trivial and exhibits connected behavior. Then, information

always limits entry.

Proof. To prove the proposition, I proceed by contradiction. Suppose that there is

a strictly increasing sequence of natural numbers (Ni)i∈N such that for each i, there

is an equilibrium ϕi of the game with some N ′i ≥ Ni appraisers where Ni appraisers

profit. For each such equilibrium, we consider the total rejection rate for each quality

θ. The probability that every appraiser rejects a prospect of the given quality is

Ri(θ) =

N ′i∏
n=1

(
1− Eϕi

n

[
Eσi

n(·|θ)[a
i
n]
])
. (10)

For all i, the profile of total rejection rates Ri = (Ri(θ̄), Ri(θ)) is in [0, 1]2, which

is a sequentially compact space. Hence, there is some accumulation point R∞ which

is the limit point of some subsequence (Rik)k∈N. I will show that whatever this limit

is, we can find some ϕik that is not an equilibrium.

First, suppose R∞ 6= (0, 0). Then, there is some ε > 0, some θ ∈ Θ, and some

k∗ ∈ N such that for all k ≥ k∗, Rik(θ) > ε. Thus, with enough appraisers, there is

18



some quality that is rejected by all appraisers with probability at least ε. Quality θ is

assigned probability at least min{p0, 1− p0} by the prior. Choose some k > k∗ that

satisfies

Nik >
θ̄

εmin{p0, 1− p0} · c
. (11)

Thus, there is at least a εmin{p0, 1 − p0} chance that the prospect is quality θ

and visits every appraiser in the equilibrium ϕik . From Lemma 5 every appraiser

with a positive utility must conduct a non-null experiment, so the expected cost of

all experiments in the market is at least Nik · εmin{p0, 1− p0} · c. On the other hand,

the highest expected gains from acceptances can be across the market is θ̄. Using

(11), Nik · εmin{p0, 1 − p0} · c > θ̄, and therefore the total expected payoffs in the

equilibrium are negative. Thus, at least one appraiser has negative expected utility

under ϕik ; deviating to null experimentation and rejection, she could get 0. Therefore

ϕik could not be an equilibrium, and hence we reject the hypothesis that R∞ 6= (0, 0).

Hence, suppose now that R∞ = (0, 0) - along this sequence of equilibria, even-

tually nearly every prospect is accepted by some appraiser. In the market with N ′ik
appraisers, in equilibrium ϕik , the proportion of prospects accepted by the market as

a whole that are of quality θ̄ is

pika =
p0(1−Rik(θ̄))

p0(1−Rik(θ̄)) + (1− p0)(1−Rik(θ))
. (12)

Consider the beliefs at which acceptance occurs given ϕik ; pika is their average. As k →
∞, (Rik(θ), Rik(θ̄)) → (0, 0); thus pika → p0. From non-triviality and the assumption

of connected behavior, we have p0 < p̄, where p̄ is the least belief at which outright

acceptance is optimal. Thus from pika → p0 there is a k ∈ N such that in the game with

N ′ik appraisers, there is an equilibrium in which some appraiser n accepts with positive

probability and, on average, at a belief below p̄; call this belief p∗. From Lemma 5,

an appraiser with beliefs p∗ would not find a null experiment optimal; instead, call

(σ∗, a∗) a strategy that outperforms null experiments. Now, consider a deviation for

n that compounds experiment σ∗ on any outcome of n’s original experiment that

leads to acceptance, and instead uses acceptance rule a∗ at the conclusion of this

compounded component. From the fact G is procedurally closed, this compound

experiment is available. From the indifference to sequential learning assumption, this

deviation is profitable. Thus we are again led to a contradiction.
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The proposition implies that regardless of the available information, so long as

the information menu G does not have arbitrarily cheap experiments on offer, the

solicitation bias eventually prevents the entry of additional appraisers. We may,

in some sense, regard N̄ as the natural size of the market - the largest number of

profitable appraisers.
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Figure 3: Chunky information example. Left panel: beliefs about rejected prospects,
as a function of interim beliefs. Right panel: An inactive (N + 1)st appraiser com-
puting interim beliefs when others play a symmetric equilibrium of the N -appraiser
game. Five appraisers are enough to keep the sixth inactive.

Figure 3 illustrates the ‘excessively negative’ posteriors in a chunky information

market. When appraisers reject, their beliefs at that stage are below q∗r . As the num-

ber of appraisers increases, this eventually leads to equilibria with inactive appraisers.

It is important to note that this is not a ‘congestion’ result in any way. An ap-

praiser that is not visited never pays for information; all costs are effectively marginal,

as an appraiser has exclusive transaction rights at the time of information acquisi-

tion. Therefore, the number of competitors only matters via adverse selection and

not congestion. Moreover, this result hinges crucially on the procedural closure of G;

see Section 4.3 for a counterexample to the result when procedural closure fails.
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4 Discussions and extensions

4.1 Reconciling the two Propositions

How are Proposition 1 and Proposition 2 to be reconciled? The former states that di-

visible information never limits entry: all appraisers, no matter their number, profit.

The latter states that if information is the least bit chunky, information always limits

entry: all but a small number of appraisers are excluded by the informational exter-

nality. We will see how these results are related by starting with a chunky menu, and

progressively making it more divisible. For a given number of appraisers N , eventu-

ally equilibria in which all appraisers profit appear, and equilibria in which appraisers

are excluded disappear.

Start with a market (c,B) satisfying the assumptions of Proposition 1 and also

that for all non-null σ ∈ B, infp(σ, p) > 0. Now, take a positive monotonically

decreasing sequence (ki)i∈N with limi→∞ki = 0. Let

Gi = {σ ∈ B|σ is null or inf
p
c(σ, p) ≥ ki}. (13)

Each Gi is by construction procedurally closed and therefore satisfies the assumptions

of Proposition 2. Also, whenever j > i, Gi ⊂ Gj from monotonicity. Therefore, for

any σ ∈ B, there is an i such that σ ∈ Gj for all j > i. We’ll be fixing a number of

appraisers N and inspecting equilibria in the game with (c,Gi) as i increases.

Returning to (c,B), from Proposition 1 any equilibrium of the game with N ∈ N
appraisers ϕ∗ has each appraiser using a strategy in which she undertakes non-null,

and hence costly, experimentation. Therefore, there is an i after which ϕ∗ is an

equilibrium strategy profile in (c,Gi). Therefore, for any fixed number of appraisers

N , if the information is divisible enough (even if not perfectly divisible) there is an

equilibrium in which all N appraisers profit.

Moreover, fix an i ∈ N and suppose the game with (c,Gi) and N appraisers has

an equilibrium ϕ′ in which some appraiser receives a payoff of 0. From Proposition 1,

ϕ′ is not an equilibrium in the game given by (c,B). As a consequence, there is some

appraiser m ≤ N , a σm ∈ B \ Gi and some acceptance rule am, such that (σm, am)

would be a profitable deviation for m if σm were available to m. But recall that

infp c(σm, p) > 0. Thus, there is a j so that l ≥ j =⇒ σm ∈ Gl. Hence, such an

equilibrium disappears when information becomes divisible enough.
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4.2 Generalizing Propositions 1 and 2

One may wonder in what ways we can generalize the statements of Propositions 1

and 2. The key to the answer is that each uses indifference to sequential learning in

a different way, whereas neither proposition alone needs its full strength.

Proposition 1 relies on the fact that with smooth information, if there is an active

appraiser whose rejection belief lies below another inactive interim belief, that second

appraiser will optimally acquire a non-null signal. This comes from the fact that we

can write the first appraiser’s experiment as a compound one, whose second compo-

nent demands a non-null experiment at the second appraiser’s beliefs. Indifference to

sequential learning then shows this experiment is as cheap for the second appraiser,

and therefore optimal. The implication goes through if we make this second exper-

iment cheaper to the second appraiser still, by replacing indifference to sequential

learning with BZ’s preference for sequential learning:

c(σ ∗ σ′, p) ≥ c(σ, p) + Eσ [c(σ′(s), p(s))] . (14)

In this setting, this plays a role akin to ‘decreasing returns to scale’ for information

generation.16 Under this prism, it makes sense that the market can always support

more entrants, so long as information is available in fine enough increments.

On the other hand, Proposition 2 relies on the fact that an appraiser will never

acquire an experiment that induces any posterior q∗ such that a null experiment is

not optimal for an appraiser with an interim belief of q∗. This is because indiffer-

ence to sequential learning implies that the original appraiser could then tack on an

additional experiment that is more profitable than a null one. Plainly, an appraiser

wants to continue experimenting at any belief at which it would be optimal to be-

gin experimenting. In other words, the proposition uses BZ’s preference for one-shot

learning

c(σ ∗ σ′, p) ≤ c(σ, p) + Eσ [c(σ′(s), p(s))] . (15)

rather than the full force of indifference to sequential learning. With this in place, we

might relax the definition of chunky information. Rather than non-null ‘cheap enough’

experiments not being available, it suffices that non-null cheap enough experiments are

16This is not the same notion of returns to scale as in ??.
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never optimal at any interim belief. It could be, for instance, that the informativeness

of experiments goes to zero faster than the cost.17

4.3 Chunkiness without procedural closure

This section illustrates how procedural closure is key to Proposition 2. Procedural

closure requires that if an experiment is available to an appraiser, so is running that

experiment, then conducting another experiment, or not, depending on the outcome.

To show that it’s essential, we’ll study a market in which there is only one non-null

experiment available.

Take a market in which G = {σnull, σ} where σ has two outcomes {0, 1}, with

σ(s = 1|θ = 1) = σ(s = 0|θ = 0) = k > .5. Assume c(σ, ·) is constant; the

experiment’s cost does not vary with beliefs. Then the interim beliefs at which it is

optimal to acquire σ and condition acceptance or rejection on it satisfy

max{pnθ̄ + (1− pn)θ, 0} ≤ pnkθ̄ + (1− pn)(1− k)θ − c. (16)

so that an appraiser with interim beliefs pn ∈ [−(1−k)θ+c

kθ̄−(1−k)θ
, −kθ−c

(1−k)θ̄−kθ ] will acquire in-

formation, with strict incentives in the interior. The interval has an interior iff the

market satisfies non-triviality.

Now, suppose there are N appraisers and each acquires σ and conditions accep-

tance on the outcome. By (3), the interim beliefs of each appraiser n are given by

p(N)
n =

p0

∑N−1
m=0(1− k)m

p0

∑N−1
m=0(1− k)m + (1− p0)

∑N−1
m=0 k

m
. (17)

Information never limits entry if and only if p
(N)
n ≥ −(1−k)θ+c

kθ̄−(1−k)θ
for all N . As

p(N)
n − p(N)

n+1 =

p0(1−p0)
k(1−k)

[(1− k)k(kn−1 − (1− k)n−1) + kn(1− k)n(2k − 1)](
p0

1−(1−k)n

k
+ (1− p0)1−kn

1−k

)(
p0

1−(1−k)n+1

k
+ (1− p0)1−kn+1

1−k

)
is always positive (as k > .5), p

(·)
n is monotonically decreasing. Thus, to check if

information never limits entry, it suffices to inspect limN→∞ p
(N)
n . Using (17) we have

17For a particular formalization that makes the cost function differentiable, we might state this
as the derivative of the cost function exploding around the null experiment.

23



that limN→∞ p
(N)
n =

p0
k

p0
k

+
(1−p0)
1−k

. Thus, the relevant comparison is

p0
k

p0
k

+ (1−p0)
1−k

≶
−(1− k)θ + c

kθ̄ − (1− k)θ
. (18)

Depending on the parameters, this inequality can go either way. Thus, absent

procedural closure, the general features of the information acquisition technology

alone do not determine the market structure.

4.4 Chunky commitments

Consider an appraiser with the ability to commit to acquiring particular information.

This may be the result of a permanent information acquisition unit, or a contract

with a third party. Such an appraiser may well benefit from committing to acquiring

excessive information. The reason is simple: in a symmetric equilibrium with N

appraisers, the most each appraiser can get is 1/N times the monopsonist profit. But

committing to over-acquire information can keep other appraisers out. This example

illustrates the point.

Suppose Θ = {−1, 1} with a prior p0 > .5. Take a binary experiment with

precision k: σ(s = 1|θ = 1) = σ(s = −1|θ = −1) = k, and set its cost to be

belief-independent c. Take G to contain a null experiment, σ, and its procedural

closure.

Breaking with the ‘non-triviality’ condition, here let’s assume that immediate

acceptance is preferable to acquiring σ before making a decision: p̂θ̄ + (1 − p̂)θ >

p̂kθ̄ + (1− p̂)(1− k)θ − c for each p̂ ≥ .5. As both sides are linear, this reduces to

.5 > k − c. (19)

This makes it so that acquiring σ is, in fact, never a best-response in the simultaneous

game, as it is preferable to accept with a null signal above a belief of .5 and preferable

to reject with a null signal below .5. Assuming that c = 1/8 will make it so that it

is never optimal to acquire a compound experiment, either. In equilibrium without

an appraiser who can commit, it is immediate that every appraiser acquires a null

experiment and accepts. Equilibrium beliefs are equal to the prior for each appraiser.

Each appraiser thus reaps a payoff of 1
N
· (p0 · θ̄ + (1− p0)θ) = 2p0−1

N
in equilibrium.
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By committing to acquiring σ, and then accepting following a good outcome

and rejecting otherwise, could appraiser 1 benefit? For this to be preferable to no

commitment, it has to be that

p0k − (1− p0)(1− k)− c > 2p0 − 1

N
. (20)

To see if there is an equilibrium in which appraisers {2, .., N} reject all prospects, we

first compute the induced interim belief pn of appraiser n 6= 1,

pn =
p0(1 + (1− k))

p0(1 + (1− k)) + (1− p0)(1 + k)
. (21)

For n’s immediate rejection to be a best-response, we need that pnθ̄ + (1− pn)θ ≤ 0,

or

p0(2− k)− (1− p0)(1 + k) ≤ 0 (22)

which reduces to simply

p0 ≤
1 + k

3
. (23)

Thus, to summarize, by committing to acquiring experiment σ, an appraiser can

keep other appraisers inactive if equation (23) holds. When (20) holds, it is profitable

for an appraiser with commitment power to do this.

Therefore, it is possible for an appraiser with commitment power to become a

monopsonist by acquiring too much information, enough that the informational ex-

ternality keeps other appraisers out. This is a novel form of entry deterrence, and

should give policymakers pause. In this example the market without commitments

was more efficient, but this is not necessarily the case in general, complicating the

matter.

5 Conclusion

I hope I have illustrated that the fine details of information acquisition matter. Even

though information bears only interim and not ex-ante costs, the viscosity of infor-

mation determines the emergent market structure. I show that agents constrained

to chunky information produce ‘excessive’ informational externalities, and that in

my setting this leads to informational oligopolies. This should make us think more
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broadly about informational mechanisms that stymie market entry, and the sensitivity

of our models to the details of related assumptions.

Additionally, I bring recent work on information acquisition to bear on an applied

setting and achieve some qualitative results without large compromises on abstraction.

Admittedly, the setting studied is quite stylized, lacking such ordinary things as

prices. Although this is a shortcoming, it allows for a clearer focus on interdependent

information acquisition by shutting down strategic responses in other domains.
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A Proofs Omitted from the Text

A.1 Proof of Lemma 2

Proof. Denoting by α : [0, 1]→ {0, 1} the acceptance policy as a function of induced

posteriors, and by F ∈ ∆[0, 1] the appraiser’s distribution over posteriors q induced

by information acquisition, the appraiser’s problem can be rewritten as

max
F∈∆[0,1], α:[0,1]→{0,1}

EF [α(q)(qθ̄ + (1− q)θ)− (V (q)− V (pn))] (24)

subject to EF [q] = pn. (25)
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Optimally, we have α(q) = 0 if q ≤ − θ
θ̄−θ and α(q) = 1 if q ≥ − θ

θ̄−θ . Thus we can

rewrite the problem of choosing F as

max
F∈∆[0,1]

EF [max{qθ̄ + (1− q)θ, 0} − V (q)] (26)

subject to EF [q] = pn. (27)

Suppose F ’s support contains more than a single q ≤ − θ
θ̄−θ . In this region, the

maximand is strictly concave in q, and thus reallocating all this mass to EF [q|q ≤
− θ
θ̄−θ ] is strictly preferable. The same applies for those q ≥ − θ

θ̄−θ . Thus an optimal

experiment either induces two posteriors, one leading to acceptance qa and one to

rejection qr, satisfying qa > pn > qr, or the experiment is null and produces only one

posterior, pn.

A.2 Proof of Lemma 3

Proof. Suppose F ∗, F ∗′ are optimal and not identical. Let F̂ be any mixture of F ∗

and F ∗′. By the fact the maximand (28) and constraint (25) are linear in F , the

distribution F̂ is feasible and also achieves the maximum. But such a mixture will

feature at least three points in its support, a contradiction to Lemma 2. Thus the

maximizer F must be unique. Any two experiments generating the same distribution

of posteriors are Blackwell-equivalent, so the optimal experiment is unique up to

Blackwell-equivalence.

A.3 Proof of Lemma 4

Proof. Suppose the optimal experiment is non-null. From Lemma 2 an optimal non-

null experiment splits pn into an acceptance posterior q∗a and a rejection posterior

q∗r . Let’s manipulate the constraint, EF [q] = pn. For an experiment producing only

two posteriors qa and qr with probabilities z and 1 − z respectively, the constraint

reduces to zqa + (1− z)qr = pn. Solving for z, we get that the probability of a signal

corresponding to posterior qa is z = pn−qr
qa−qr . Thus, we can rewrite the objective as

max
qa,qr

[
pn − qr
qa − qr

[qaθ̄ + (1− qa)θ]−
pn − qr
qa − qr

V (qa)−
qa − pn
qa − qr

V (qr)

]
. (28)
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Differentiating, we arrive at the first-order conditions

−q∗r θ̄ − (1− q∗r)θ + V (q∗a)− V (q∗r)− (q∗a − q∗r)V ′(q∗a) = 0 (29)

−q∗aθ̄ − (1− q∗a)θ + V (q∗a)− V (q∗r)− (q∗a − q∗r)V ′(q∗r) = 0 (30)

which are independent of pn. Furthermore, the SOSC confirms that if a solution

exists and is feasible (requiring pn ∈ (q∗r , q
∗
a)), it is a maximum. A corner solution

(with q∗r = 0, q∗a = 1, or both) may instead obtain; but from Lemma 3 the solution

is unique. If neither an interior or a corner optimum exists, a null experiment is

optimal. Notice that if a solution (q∗r , q
∗
a) does not exist, then a null experiment is

optimal for any pn ∈ [0, 1]. Thus even a monopsonist with pn = p0 would decline to

acquire information. This contradicts non-triviality, so there exists a solution q∗a, q
∗
r ,

proving the first part of the lemma.

For the second part of the lemma, it suffices to see that since from non-triviality

0 ≤ q∗r < p0 < q∗a ≤ 1, (i) if pn ≤ q∗r then a null experiment is chosen and the

acceptance policy rejects; (ii) if pn ≥ q∗a a null experiment is chosen and the prospect

is accepted; and (iii) if q∗r < pn < q∗a then a non-null experiment which only induces

the posteriors q∗r , q
∗
a is chosen with rejection at the former posterior and acceptance

at the latter.

B Connected Behavior

In this appendix, I show that two prominent cases of chunky information satisfy

connected behavior, as introduced in section 3.2.

B.1 Linear costs lead to connected behavior

Suppose that for any σ ∈ G, the cost c(σ, pn) is linear in beliefs pn. A strategy of

acquiring a null experiment and accepting is optimal when the interim belief puts

probability 1 on good quality. This yields a payoff of (near) θ̄. Conversely, at this

belief any other pure strategy can give at most 0 if it acquires a null experiment and

rejects, and θ̄ − c if it involves a non-null experiment. From this and the fact that

for any strategy ϕn, appraiser n’s payoff (6) is linear in pn, the set of beliefs where

acquiring a null experiment and accepting is optimal is some interval [p̄, 1]. Similarly,

29



acquiring no information but rejecting is optimal on some interval [0, p]. It might still

be the case that p = p̄. Non-triviality asserts that p0 is a belief in which acquiring

a null experiment is not optimal; as a consequence, p < p0 < p̄. Thus, it is strictly

better to acquire a non-null experiment for beliefs in (p, p̄).18

B.2 UPS costs with a c-restricted menu lead to connected behavior

As above, at low enough and high enough beliefs, a null experiment is optimal. Now,

to show that the set of beliefs at which a non-null experiment is acquired is convex.

First, notice that maximizing (6) under c(σ, pn) > c still results in two posteriors for

a UPS c. The reason for this is simple: if c is UPS, so is (λ + 1)c, where λ is the

Lagrange multiplier on the constraint.

Let pi < pn and suppose that non-null experiment σi is acquired at pi. Let the

induced posteriors be q∗ia , q
∗i
r .

Suppose, for contradiction, that it is optimal to acquire a null experiment and

reject at pn. Then, q∗ia > pn or else the supposed strategy at pi would give negative

payoff. We can factor σi into an experiment σi1 that splits pi into q∗ir and pn, and an

experiment σi2 that splits pn into q∗ia and q∗ir . From indifference to sequential learning,

the composition experiment is assigned a cost by c strictly more than σi1(pn) times

c(σi2, pn). Then, at pn running σi2 (or, if c(σi2 < c, an experiment that costs c that

is Blackwell-more informative) and accepting at the posterior q∗ia yields strictly more

payoff than the indicated strategy at pi, which in turn must be weakly positive. Thus,

outright rejection is not optimal at pn. A similar argument shows that if pn < pk and

it is optimal to accept outright at pn, the same is true at pk.

18However, we have not made assumptions guaranteeing the existence of optimal experiments in
this range. This is part of why Proposition 2 concerns properties of equilibria, not whether they
exist.
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