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Abstract

We study optimal procurement in the presence of default risk. Contractors di¤er in the

penalty they su¤er in case of default, which is private information. If the loss to the procurer

from non-completion is high relative to the cost of completion, the optimal mechanism is to

pay the winner enough so that the project is always completed and to assign the project by a

fair lottery. The procurer can extract all contractors�surplus by charging them participation

fees. Competition helps, because it allows the procurer to charge lower participation fees, an

important advantage if contractors are liquidity constrained. When the loss to the procurer

from non-completion is low relative to the cost of completion, the optimal probability of

default is ine¢ ciently low: projects that would be �rst-best e¢ cient not to complete are

completed. The project is assigned to the contractor with the highest probability of default;

that is, the one with the lowest defaulting penalty.
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1 Introduction

Public and private procurement is an important component of economic activity in

most countries. According to the World Trade Organization, government procure-

ment alone typically accounts for 10-15 percent of GDP.1 An important feature of

procurement is the specialized nature of the relationship between procurer and con-

tractor. Once a contractor has been selected and execution of the project has begun,

often the procurer has sunk specialized resources in the project and is not in a pos-

ition to easily and costlessly replace the contractor. In such a situation, contractor

default is a serious potential concern. The issue of bidder default has become widely

known in the last 10-15 years, after several high-stake, high-pro�le, occurrences (e.g.,

the sale of the C-block spectrum licences by the FCC in 1996; see Zheng, 2001, Engel

et al. 2006, and Board, 2007).

Bidder default is also a serious concern in low-stake procurement. In fact, as

argued by Calveras et al. (2004), contractor default is possibly a more serious problem

for small size projects. The construction industry is a particularly good example.

Because most of the work is subcontracted, it is relatively easy to shut down and then

open a new business under a di¤erent name. According to construction management

professionals, a large number of USA construction �rms stay in business for a short

time. For example, Ganaway (2006) claims that only 43 per cent of U.S. construction

�rms remain in business after four years. The situation is not much di¤erent in other

countries.

Procurers are aware of the risks of contractor default, and have put in place several

contractual arrangements to ameliorate the problem. It is indeed likely that without

such contractual arrangements we would observe a much larger number of defaults.

A commonly used arrangement is penalties contingent on damages and, in the case

of reverse auctions, performance bonds. Penalties and performance bonds, however,

are not appropriate when the contractor�s performance or cost are hard to measure

by the procurer, when the contractor is a small �rm with little to lose from default,

1See http://www.wto.org/english/tratop_e/gproc_e/gproc_e.htm
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or when the legal costs of enforcing the contract are high relative to the stakes. This

is often the case, for example, for small public procurement projects and in countries

(e.g., Italy) in which the contracts are often administered by small municipalities

that do not have the technical and �nancial resources to perform thorough ex-post

monitoring. Another useful contractual arrangement is the use of third party guar-

antees, like letters of credit and surety bonds (in the USA, the Miller Act mandates

100% insurance cover on Federal contracts above $100,000). Such arrangements re-

quire well functioning banking and insurance markets, and are much less common

outside of the USA, especially when the procurer and contractor are relatively small

entities (e.g., a small municipality and a small �rm) and the scale of the project is

also limited. In Italy, for example, the portion of a contract guaranteed by insurance

is only around 10% (see Decarolis, 2009).

Procurement contracts, especially public procurement, are often awarded via com-

petitive bidding. Indeed, in many countries the law dictates the bidding procedure

under which public procurement must take place. Limiting corruption of public o¢ -

cials and fostering e¢ cient contract allocation are some of the well known advantages

of competitive bidding. However, when default risk is an issue, competitive bidding

has the drawback of encouraging the bidder most likely to default to bid low and

hence win (e.g., see Spulber, 1990, and Zheng, 2001). Another approach that is used

to address the contract default problem is to adopt bidding formats speci�cally de-

signed to minimize default. One common feature of these bidding formats is to rule

out bids that are perceived as excessively low. Winners that bid low, it is argued, have

a bigger incentive not to perform the contractual task. For instance, the directory

2004/18/EC of the European Union for public works de�nes the notion of abnormally

low tenders (hereafter ALT) and prescribes that an ALT can win the auction only

if reliability is assessed in an audit conducted by the procurer. In Belgium, Greece,

Italy, Portugal, Romania, Spain and Switzerland, among other countries, a tender

is de�ned an ALT if it falls below the mean of the distribution of tenders by more

than a certain percentage value, which is endogenously determined in some cases and

exogenously given in others. In Belgium, Italy, Switzerland and Taiwan, ALT are
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automatically excluded from the set of valid bids. However, procedures that exclude

bids automatically have been recently opposed by the EU Commission, because of

their anticompetitive �avor, and now they can be used in the EU only for awarding

contracts of limited amount (e.g., up to 1 million euros in the case of Italy) �this

exemption is explicitly justi�ed by the high costs of testing bidder reliability in the

case of small projects.

The properties of bidding procedures that exclude ALT have not been much

studied in the economics literature. Exceptions are the informal discussion in Engel

et al. (2006, p.339), according to whom cutting ALT �will lead to lower (or zero)

bankruptcy rates but at a very high price�, and the empirical analysis in Decarolis

(2009). As we will argue in the discussion of the literature in Section 7, most of

the literature on auctions with the risk of default has focused on standard auctions

under di¤erent assumptions about the information structure, bidders�default risk,

and available ameliorating contractual arrangements. In this paper, we pose instead

the following natural questions. When default risk is of paramount importance and

penalties contingent on damages, performance bonds, or third party guarantees are

not feasible, what is the optimal bidding procedure? When is the elimination of ALT

bene�cial to the procurer? Are there other arrangements that are useful in minimizing

default risk? Some of the answers we provide may at �rst appear surprising, but are

easily explained once the fundamental trade-o¤ facing the procurer is understood.

To answer our questions, we model procurement as a mechanism design problem,

assuming that payments or penalties to bidders cannot depend either on successful

project completion or on the realized cost of completing the project, which is only

observed by the winning bidder after bidding has taken place.2 In order to focus

on default risk, we postulate that bidders di¤er from one another depending on the

penalty that they will pay in case of default. We think of the defaulting penalty as

2See Ramchurn et al. (2009), for a model in which project failure does not imply default. They

show that by rewarding all bidders in case of success and penalizing them in case of failure, e¢ cient

task allocation can be achieved even in the case of multidimensional private information. In their

model it is important that no �rm ever goes out of business.
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the loss of tangible and intangible assets, including reputation, the cost of closing and

reopening business, etc., that follows from a default, and view it as private information

of the contractor. If the contractor discovers that the cost of completing the project

exceeds the penalty from non-completion, he will default. It may seem natural to

think that the contractor will attempt to renegotiate the terms of the contract and

only if renegotiation fails, he will default. However, when the procurer cannot observe

the size of any claimed cost overruns, the contractor will have an incentive to always

claim that they have been substantial. In such a situation, there is no scope for

meaningful renegotiation; either the procurer is prepared to pay enough so as to

cover any possible cost overrun, or she sets a limit over which she will not go and let

the contractor default if the cost overruns are indeed very high. In this paper we will

focus on such a situation, which we view as common in small size projects involving

small �rms and small procurers.

We distinguish two cases. In the �rst case, the loss to the procurer from non-

completion is high relative to the cost of completion. This seems especially appro-

priate for contracts of limited amount, when the value of smooth project completion

and avoiding delays can be expected to be higher than the cost of the project. In

this case, we �nd that the optimal procedure is to pay the winner enough so that

the project is always completed and, quite surprisingly, to assign the project by a

fair lottery. The procurer can extract all contractors�surplus by charging them well

designed participation fees, or, equivalently, by asking them to submit a participation

deposit that will be refunded to the losers. Thus, contrary to common belief (e.g., En-

gel et al., 2006), the price of guaranteeing project completion is not necessarily high.

We also show that, in spite of the optimal mechanism being a lottery, competition

helps, because it makes it optimal for the procurer to charge low participation fees,

a potentially important advantage if contractors are liquidity constrained.3 These

3Participation fees and deposits are common in procurement. For example, in Italy the parti-

cipation fees are between 20 and 100 euros, and the deposit is typically 2% of the bid and is to be

refunded 30 days after the adjudication of the winner (no interest is applied). As we pointed out,

small participation fees are optimal when there are many bidders, a common occurence. In Decarolis�

(2009) sample of 929 auctions for construction projects held by italian municipalities, there are on
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�ndings shed some light on the rules designed to prevent contractor default. Indeed,

as is immediately seen, all the procedures which cut ALT have Nash equilibria in

which all the bids are equal, just as it occurs in the optimal procedure, and hence

they may be justi�ed when the procurer overriding objective is project completion.4

All contractors submitting the same bid is not just a theoretical possibility. Con-

sider the auction to build a new police station in the Sicilian municipality of Palma

di Montechiaro, held in February 2008. The project was worth a base price of

2,332,539.62 euros and 82 contractors submitted legally valid bids (28 other bids

were declared invalid). Bids consisted of percentage reductions over the base price.

The auction rules required �rst to eliminate the 10% biggest price reductions (or

ALT) and the 40% lowest price reductions, and then to pick as winner the bid closest

to the average of the remaining bids. In this auction there were exactly 24 bids closest

to the average, all submitting a percentage reduction of 7.3151%! The actual winner

was determined by a lottery draw.5

The second case is when the loss to the procurer from non-completion is low

relative to the cost of completion. In this case, �rst-best e¢ ciency requires that the

winner defaults if the cost of completion turns out to be too high. We show that the

optimal probability of default is ine¢ ciently low: projects that would be �rst-best

e¢ cient not to complete are completed. This distortion is larger the larger the cost

average 56 bidders for an average contract value of 373,187 euros.
4We should stress that we do not advocate the generalized use of lotteries as allocation mechan-

isms. Our paper uncovers settings were they make sense and may be optimal, but it is well known

that they are highly ine¢ cient in other settings. For example, Milgrom (2004) notes several draw-

backs of the practice of assigning radio spectrum rights by lottery that prevailed in the USA between

1982 and 1993. In particular, since lottery winners could resell their licenses, speculators participated

(and won) in large numbers. Milgrom argues that substantial economic costs were incurred because

of the genuine wireless operators having to negotiate with the speculators. He also claims that the

small size of the licenses contributed to the geographic fragmentation of the cellular industry in the

USA.
5Data for this auction is available from the authors upon request. Far from being atypical, the

outcome of this auction seems to be the norm in Sicily (Decarolis, 2009). While equal bids in standard

auctions evoke the possibily of collusion, we should again stress that they are a Nash equilibrium in

an average bid auction in which ALT are cut.
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of default for the bidder. Interestingly, the project is assigned to the bidder with the

highest default probability, who is also the bidder paying the lowest penalty in case of

default. While standard auctions would generate the same project allocation than an

optimal mechanism, the optimal mechanism is not a standard auction; generalized

participation fees or loser-refundable deposits, that depend on the bidder�s type,

must be paid by all bidders taking part in the optimal mechanism. Thus, standard

auctions perform poorly not because they tend to award the contract to the least

reliable supplier but because they allow bidders to appropriate larger than necessary

information rents.

The paper proceeds as follows. Section 2 presents the model, while Section 3

introduces the procurer�s problem. Section 4 studies the optimal procurement mech-

anism. The equilibrium of a second-price auction in our set up is studied in Section 5.

Section 6 discusses the role of competition when contractors are liquidity constrained.

Section 7 discusses related literature and concludes.

2 The Model

The following is common knowledge. A procuring principal needs a task to be

performed, at a cost, by one agent. There are N risk-neutral agents, indexed by

i 2 I = f1; :::; Ng : Agent i learns the cost of performing the task only when he is

about to start, or during completion of, the task, after he has won the project. (We

may think of there being cost overruns, or cost savings over the expected cost.) The

cost of performing the task for agent i is drawn from a distribution F (ci) ; which

is absolutely continuous with support [c�; c+] and density f (ci) = F 0 (ci).6 The as-

sumption that the cost of performing the task is only discovered when the winner

is about to start the task allows us to focus on the properties of di¤erent allocation

mechanisms, when the risk of non performance is the main concern of the procuring

6Since the cost is only observed after the project has been assigned, it does not matter whether

all agents face the same cost, or each agent�s cost is drawn independently from the same distribution

F:
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principal, and the driving force of agents�behavior. Each agent i loses value (incurs

a penalty) equal to ki if he wins the project and defaults not performing the task.

We can think of ki as the value of tangible and intangible (e.g., reputation,) assets

that are lost by defaulting. The value ki is private information of agent i and hence

represents his type; for the other agents ki is the realization of an absolutely con-

tinuous distribution G with support K = [k�; k+] and density g = G0. Let pi � ti be

the transfer to agent i when he is assigned the project and �ti the transfer when he

is not assigned the project. We can think of pi as the price paid by the procurer to

the winner and ti as a �generalized�participation fee. While in a standard auction

participation fees are independent of the bidders�types, in a general mechanism both

pi and ti are allowed to depend on the type pro�le (ki; k�i): Note that ti could be

negative, in which case agent i is paid to participate in the procurement mechanism.

Thus, agent i�s payo¤ is pi � ti � ci + ki if he wins at price pi and completes the

contract, it is �ti if he wins and defaults, and it is �ti + ki if he does not win. We

will impose a participation, or individual rationality, constraint: an agent will accept

to participate in the procurement mechanism only if his total expected payo¤ is not

below his asset value ki: In our model default is an option; if he wins, agent i discov-

ers the cost and completes the contract if and only if pi + ki � ci. The generalized

participation fee ti is paid before observing the completion cost and it is sunk at

that point. As we shall see, we can always replace the participation fee ti with a

participation deposit � i that is refunded to the losers; if �i is the probability of i

winning, it su¢ ces to set � i�i = ti.

It remains to specify the procurer�s objective function. If the project is completed

without default, we assume that the procurer obtains a bene�t V which is higher than

the expected completion cost, V > E [c]. Hence, the procurer�s payo¤ is V � pi + ti
from the winning agent i and tj from each losing agent j. If winner i defaults, it is

convenient to write the procurer�s payo¤ from the winner as V �d(ci; ki)+ ti; d(ci; ki)

is the loss of non-completion, which may depend on the cost of completing the project

ci and the asset value ki of the defaulting agent. The procurer�s payo¤ from a losing

agent j is still tj . Our formulation does not rule out, but does not require, that the
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project is completed when the winner defaults and that some assets are appropriated

from the defaulting agent. For example, if the project is not completed, the procurer

cannot size any assets from the defaulting agent, and she incurs a �xed loss L; then

d = V +L: On the other hand, if by defaulting the agent loses assets that can be fully

appropriated by the procurer, who may complete the project at a cost ci + L, then

d(ci; ki) = L+ ci � ki.7 Our results hold for the general formulation, which includes

cases in which the project may only be partially completed and the procurer may

only appropriate some assets of the defaulting agent.

As we shall see, the size of the loss function d will play an important role in our

results. We make the following assumption.

Assumption A.1. For all c and ki it is:

@d(c; ki)

@c
� 1:

It seems reasonable that the loss of non-completion to the procurer be less sensitive

to the completion cost than the completion cost itself. A.1 is satis�ed in the special

cases d(ci; ki) = V + L and d(ci; ki) = L+ ci � ki:

In a standard auction the participation fee ti is a constant that does not depend

on the type pro�le, while the price pi and probability of winning the project �i are

non-constant functions of the type pro�le. In a lottery, on the other hand, both pi

and �i are constants. We are interested in the following questions. What is the

optimal procurement mechanism? Do standard auctions perform well in our setting?

Do lotteries perform well?

3 The Procurement Problem

In this section we state formally the procurer�s problem and derive some implications

of incentive compatibility. The main departure from standard techniques is that

revenue equivalence does not hold in our setting. In our model, the payment to the
7We only allow the procurer possibly to obtain some information about the cost ci if the winning

bidder i defaults. This is consistent with our assumption that the procurer cannot use contracts that

are contingent on the realized cost.
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winning agent determines whether the winner defaults, and thus payments are not

fully determined by the allocation rule and the payo¤ of the worst-o¤ agent.

By the revelation principle, there is no loss of generality in considering only direct

mechanisms. Denote with K�i = [k�; k+]N�1 the set of types of agent i�s opponents

with generic element k�i and let g�i(k�i) = �j2I;j 6=ig(kj) be the associated density

function. The probability that the project is assigned to agent i is �i(ki; k�i), the

payment he gets when he wins the contract and completes the project is pi(ki; k�i),

and �nally ti(ki; k�i) denotes the generalized participation fee, all as functions of the

reported types.

Agent i�s expected payo¤ when his type is ki and he reports z, while the other

agents report their true types, is

Ui(z; ki) =

Z
K�i

nR pi(z;k�i)+ki
c� [pi(z; k�i) + ki � c] f(c)dc�i(z; k�i) (1)

+ki [1� �i(z; k�i)]� ti(z; k�i)
o
g�i(k�i)dk�i

Note that f(c) = 0 for c > c+ and that the probability of default is an endogenous

variable in the model. By raising the payment to the winner, the procurer may reduce

the probability of default; min fpi(z; k�i) + ki; c+g is the highest cost level at which

the project is completed. Note also that by setting ti(ki; k�i) = � i(ki; k�i)�i(ki; k�i)

we could think of � i as the deposit that agent i�s must post to participate and

that is refunded if he does not win the project. In what follows we will mostly use

the participation fee interpretation, but also occasionally remind the reader of the

alternative, posted deposit, interpretation.

Since ki is the outside option payo¤ if agent i does not take part in the mechanism,

de�ne UNi (z; ki) = Ui(z; ki)�ki as the net utility gain over the outside option. Given

that in equilibrium each agent must report truthfully, UNi (ki) = U
N
i (ki; ki) is type ki

of agent i�s net utility gain.

The procurer�s expected payo¤ from agent i under truthtelling is:

Wi =

Z
K

Z
K�i

("
V �

Z pi(ki;k�i)+ki

c�
pi(ki; k�i)f(c)dc�

Z c+

pi(ki;k�i)+ki

d (c; ki) f(c)dc

#
�i(ki; k�i)

+ti(ki; k�i)
o
g�i(k�i)dk�ig(ki)dki
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Using (1) and the de�nition of UNi (ki); the procurer�s payo¤ from agent i can be

rewritten as

Wi =

Z
K

Z
K�i

("
V � E [c]�

Z c+

pi(ki;k�i)+ki

[d(c; ki)� c+ ki] f(c)dc
#
�i(ki; k�i)

�UNi (ki)
o
g�i(k�i)dk�ig(ki)dki (2)

The expression in square brackets is the expected social surplus when agent i wins

and the state is ki; k�i; the expression in braces is the procurer�s surplus from agent

i in state ki; k�i.

The procurer�s program is to maximize W =
PN
i=1Wi subject to the constraints

that (1) it is an equilibrium for the agents to report their true types; (2) all agents

make more than their outside option payo¤, i.e., UNi (ki) � 0 for all types ki. It can

be safely assumed that all types participate. The procurer can always set at zero

both the probability of winning and transfers for types ki > kT . Such types are then

indi¤erent to participation: UNi (ki; ki) = 0 for ki � kT . Since �i is a probability, the

constraints (3)
PN
i=1 �i (�) � 1 and �i (�) � 0 must also hold.

The standard approach to solve for an optimal mechanism uses revenue equi-

valence; that is, it uses the fact that in the standard problem the payments to the

agents (and hence the procurer�s payo¤) are determined once one �xes the payo¤ of

the worst-o¤ agent and the probability of winning by each agent. We need to modify

this approach here, because the payment to the winner determines whether the win-

ner defaults, and also a¤ects the procurer�s payo¤ through that channel. What will

be true in our model is that the participation fees are determined, once one �xes the

payo¤ to the worst-o¤ agent, the probabilities of winning and the payment to the

winner.

Consider equation (1); the incentive compatibility constraint and an envelope

theorem argument yield:

dUNi (ki)

dki
=
@UNi (z; ki)

@ki

����
z=ki

= �
Z
K�i

[1� F (pi(ki; k�i) + ki)]�i(ki; k�i)g�i(k�i)dk�i
(3)

Equation (3) is a �rst order condition on agent i�s maximization problem. We will
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proceed by ignoring the second order condition; we will check whether it is satis�ed

once we have found a candidate solution of the procurer�s problem.

Since by (3) agent i�s equilibrium expected utility gain over the outside option

is decreasing in ki, the individual rationality constraint is satis�ed as long as it is

satis�ed for the highest type. Then, we can write the individual rationality constraint

as follows:

UNi (k
+) � 0 (4)

Using (3) and integrating
R k+
k� U

N
i (ki)g(ki)dki by parts, the procurer�s total payo¤

can be written as

W = �
NX
i=1

UNi (k
+) +

NX
i=1

Z k+

k�
� � �
Z k+

k�

nh
V � E [c] (5)

�
Z c+

pi(ki;k�i)+ki

�
d(c; ki)� c+ ki +

G(ki)

g(ki)

�
f(c)dc

i
�i(ki; k�i)

o
g(k1) � � � g(kN )dk1 � � � dkN

The procurer program is to maximizeW as de�ned in (5), subject to the constraint

that �i be a probability and UNi (k
+) � 0.

This is a calculus of variation problem, where pi(ki; k�i) and �i(ki; k�i) are the

choice variables. We can solve it point-wise. De�ne the functions

Hi (pi; �i; ki) =

"
V � E [c]�

Z c+

pi(ki;k�i)+ki

�
d(c; ki)� c+ ki +

G(ki)

g(ki)

�
f(c)dc

#
�i(ki; k�i)

and let the Hamiltonian function be H
�
fpi; �i; kigNi=1

�
=
PN
i=1Hi (pi; �i; ki) : The

solutions p�i ; �
�
i must satisfy the following conditions:

p�i ; �
�
i 2 argmaxH

�
fpi; �i; kigNi=1

�
(6)

with the transversality conditions

UNi (k
+) = 0 (7)

Hi
�
p�i ; �

�
i ; k

+
�
� 0 (8)
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These �rst order conditions will guide us in solving the problem. Note that

di¤erentiating the Hamiltonian function with respect to pi when pi + ki < c+ gives:

@H

@pi
=

�
d(pi(ki; k�i) + ki; ki)� pi(ki; k�i) +

G (ki)

g (ki)

�
f(pi(ki; k�i)+ki)�i(ki; k�i) (9)

Assumption A.1 guarantees that @2H
@2pi

� 0 when @H
@pi

= 0; and hence when H is

maximized by an interior value of pi (i.e., pi 2 (c� � ki; c+ � ki)), such a value is the

unique solution to d(pi + ki; ki)� pi + G(ki)
g(ki)

= 0.

4 The Optimal Mechanism

As a benchmark, consider the case in which ki is publicly known (i.e., there are no

incentive constraints). By (2), the sum of the procurer and winning agent�s payo¤s

is:

V � E [c]�
Z c+

pi(ki;k�i)+ki

[d(c; ki)� c+ ki] f(c)dc:

The term pi(ki; k�i) + ki is the cut-o¤ cost above which the project is not com-

pleted. First-best e¢ ciency requires that the project not be completed whenever the

expression d(c; ki) + ki � c is negative. Assumption A.1 guarantees that the expres-

sion is decreasing in c, and hence it is indeed optimal to follow a cut-o¤ policy. Let

cB(ki) be the cost below which it would be �rst-best e¢ cient to have the project

completed. There are three possible cases: 1) If for all c it is d(c; ki) + ki � c < 0;

then cB(ki) = c�: 2) If for all c it is d(c; ki) + ki � c > 0; then cB(ki) = c+: 3) In all

other cases cB(ki) is the solution to d(c; ki) + ki � c = 0:

The form of the �rst-best cut-o¤ rule suggests that it is useful to distinguish

between two cases, depending on the size of the procurer�s loss d and the highest

possible completion cost c+:

De�nition D.1. The non-completion loss is high if for all ki and all c, d(c; ki)+ki �

c:

The non-completion loss is high when, for any given value of c, the sum of the

non-completion loss of the procurer and the defaulting penalty of the winning agent is

higher than the completion cost c: Under Assumption A.1 this reduces to d(c+; ki)+
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ki � c+: In this case, it would be socially optimal for the winner to always complete

the project, rather than default. The non-completion loss is always high in the special

case d(c; ki) = L+ c� ki (provided L � 0). In the special case d = V + L; the non

completion loss is high if V + L+ k� > c+.

De�nition D.2. There is a low non-completion loss if for some positive measure set

of types ki; it is d(c+; ki) + ki < c+:

When the non-completion loss is low, it is not socially optimal to complete the

project in the worst-case scenario of a cost c+:

4.1 High Non-Completion Loss

As the next proposition shows, in the case of high non-completion loss it is optimal for

the procurer to pay the winner enough so that default never takes place. Interestingly,

a simple way to do so is by assigning the project using a fair lottery. Constant

participation fees are collected from each agent in a way that reduces every agent�s

information rent to zero. Thus, the procurer is able to obtain the �rst best outcome

and extract all surplus by randomly assigning the project.

Proposition 1 Suppose A.1 and D.1 hold (there is high non-completion loss to the

procurer). Then it is an optimal policy to assign the project using a fair lottery. More

precisely, an optimal procurement mechanism satis�es the following conditions:

�i(ki; k�i) =
1

N
(10)

pi(ki; k�i) = c
+ � k� (11)

ti(ki; k�i) =
c+ � E[c]� k�

N
(12)

UNi (ki) = 0 for all ki (13)

Proof By assumption, when pi + ki < c+ it is @H@pi > 0: On the other hand, if (11)

holds, then @H
@pi

= 0 and, by Assumption A.1, H is maximized. Furthermore, (12)

and (10) together imply that no type of agents obtains any information rent: (13)

holds. The procurer�s expected payo¤ Wi is the same from each agent, and hence
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(10) is also optimal. Finally, since pi and �i are constants the second order condition

of the agent�s reporting problem holds, by Lemma 1 in the Appendix. �

When the loss from non-completion is high, the procurer �nds it pro�table to

have the project completed with probability one; that is, irrespective of the agent�s

defaulting penalty ki: To accomplish this, the procurer chooses a su¢ ciently high

payment to the winner, which does not depend on the winner�s type, pi(ki; k�i)+ki �

c+ for all ki. The procurer can extract all the surplus from each agent by charging a

participation fee equal to the ex-ante expected payo¤ from the mechanism.8 In order

to maintain symmetry among agents and charge them the same participation fee, a

fair lottery is used to assign the project. The total outlays of the procurer are E [c]

and the expected utility gain from participation is zero for all agents; the procurer is

able to guarantee that the contract is performed and just pays the expected cost of

the task. Thus, an increase in the number N of agents bidding for the project does

not help the procurer; he is able to implement the �rst-best outcome and to keep the

agent�s informational rent to zero irrespective of N . While it may seem surprising at

�rst, it is quite natural that the optimal mechanism be a fair lottery in the case of high

loss of non-completion, because the procurer�s optimal outcome is that the project

be completed, irrespective of the size of the agent�s defaulting penalty. Instead of

charging all participating agents a fee ti =
c+�E[c]�k�

N ; the procurer could equivalently

ask each agent to post a participation deposit c+ �E[c]� k� which will be refunded

to all losers of the lottery.

A fair lottery is the simplest, but not the only optimal mechanism; the procurer

could obtain the same payo¤ by assigning the project to the agent with the lowest

asset value ki: This could be accomplished by setting a price pi = c+ � ki and the

following generalized participation fee

ti(ki; k�i) =
�
c+ � E[c]� ki

�
[1�G(ki)]N�1 : (14)

It is simple to see that (13) and the second order condition for truthful revelation

hold in this alternative mechanism (the net expected payment is E[c] [1�G(ki)]N�1).
8 In fact, any pi > c+ � k� and ti = p1�E[c]

N
is also optimal.
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Note that this alternative mechanism is not a standard auction, since the participation

fee depends on agent i�s type ki; low asset value agents pay a higher generalized

participation fee. In the optimal, fair, lottery, on the other hand, ti is independent

of the agents� types; all agents pay the same participation fee. Thus, a standard

auction may only be optimal if it generates an outcome that is equivalent to the fair

lottery (e.g., all agents submit the same bid). In Section 5 we shall show that this

may happen, provided we allow the procurer to set a lower bound on the bids that

agents are able to submit.

Note also that in the alternative mechanism the participation fee of type k� is

independent of the number of agents, while, on the contrary, in the fair lottery it

depends on N: As we shall see in Section 6, if there is an upper bound on the size

of the participation fees that agents are able to pay, then the fair lottery performs

better than the alternative mechanism. Furthermore, competition helps in that case,

by reducing the fee that the procurer needs to charge each bidder to extract all the

surplus.

It is interesting to observe that in the case of high loss of non-completion an

optimal procurement mechanism (the fair lottery) may be implemented by an equi-

librium of an auction in which ALT (abnormally low tenders) are ruled out and

agents must pay the participation fee speci�ed in (12). Consider a second price (or

�rst price) auction in which the m lowest bids are ruled out, with a reserve (or max-

imum) price equal to c+ � k�, and in which the winner is the lowest bidder among

those that are not ruled out (with a random draw deciding the winner in case of a

tie). It�s an equilibrium of this auction for all bidders to bid the reserve price.

Hence, it is possible that the practice of ruling out ALT is justi�ed when the

procurer�s overriding concern is to guarantee that the project is completed. This

would be true for projects of limited worst-case cost c+, and where the value of

completion and the loss of non performance are high for the public authority. When

the worst-case cost is small, the cost variance among bidders and the gain of trying

to select the lowest cost bidder are also likely to be small. Thus, the EU policy of

allowing ALT to be ruled out for contracts of limited amount, may be justi�ed.
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4.2 Low Non-Completion Loss

A fair lottery and completion of the project irrespective of cost are not optimal when

the procurer�s non-completion loss is small. Instead, like in the alternative mechanism

discussed in the last sub-section, the optimal solution is to assign the project to the

agent with the lowest defaulting penalty. Furthermore, it is optimal to allow the

winning agent to default if the completion cost turns out to be above a threshold

level. As we will show below, the procurer will choose a di¤erent threshold cost than

the �rst-best cut-o¤ cost cB(ki).

To avoid bunching and to guarantee that the optimal (incentive e¢ cient) policy

is indeed a cut-o¤ rule, we will make the following regularity assumption.

Assumption A.2. For all c and ki it is:

@ (G (ki) =g(ki))

@ki
� max

�
�1;�@d (c; ki)

@c
� @d (c; ki)

@ki

�
:

Note that the familiar condition of log-concavity of the type distribution would

require that G=g be increasing in ki. This is exactly what A.2 says in the special cases

d (c; ki) = V +L and d (c; ki) = L+c�ki: (Note, however, that if d (c; ki) = L+c�ki
then we are in the case of a high non-completion loss, since d+ ki > c:)

We may now de�ne the cut-o¤ function c�(ki) that we will show to be optimal in

the next proposition. 1) If for all c it is d(c; ki)+ ki� c+ G(ki)
g(ki)

< 0; then c�(ki) = c�:

2) If for all c it is d(c; ki) + ki � c+ G(ki)
g(ki)

> 0; then c�(ki) = c+: 3) In all other cases

c�(ki) is the solution to d(c; ki) + ki � c+ G(ki)
g(ki)

= 0:

De�ne the interim expected probability of winning for type ki of agent i as ��i(ki) =R
K�i

�i(ki; k�i)g�i(k�i)dk�i.

Proposition 2 Suppose A.1, A.2 and D.2 hold (there is low non-completion loss

to the procurer). Then it is an optimal policy to assign the project to the agent with

the lowest asset value. An optimal procurement mechanism satis�es the following

conditions:

pi(ki; k�i) = pi(ki) = c
�(ki)� ki (15)
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�i(ki; k�i) =

8<: 1 if ki < minj 6=i kj and ki � kT

0 if ki > minj 6=i kj or ki > kT
(16)

kT = max

(
ki : V � E [c]�

Z c+

pi(ki)+ki

[d(c; ki)� c+ ki] f(c)dc � 0
)

(17)

ti(ki; k�i) =

"Z c�(ki)

c�
(c�(ki)� c) f(c)dc� ki

#
��i(ki) (18)

�
Z k+

ki

[1� F (c�(k))] ��i(k)dk

UNi (ki) =

Z k+

ki

[1� F (c�(k))] ��i(k)dk (19)

Proof Condition (15) follows from @H
@pi

= 0; recall that H is locally concave in pi

by A.1. Note that pi does not depend on k�i. To show that it is optimal � i.e., it

maximizes H
�
fpi; �i; kigNi=1

�
� to assign the project to the agent with the lowest

asset value, and hence that (16) holds, we need to show that the following expression

is increasing in ki :Z c+

pi(ki;k�i)+ki

�
d(c; ki)� c+ ki +

G(ki)

g(ki)

�
f(c)dc

Di¤erentiating with respect to ki and evaluating at the solution we obtain,Z c+

c�(ki)

�
@d(c; ki)

@ki
+ 1 +

d (G (ki) =g(ki))

dki

�
f(c)dc�i > 0;

where the inequality follows from Assumptions A.1 and A.2. Condition (17) excludes

any agent that would generate a negative payo¤ to the procurer from winning the

contest. Bidders obtain an information rent given by (19), which is derived by integ-

rating (3) with types ki � kT receiving zero rent. Condition (18) follows from (19)

and the de�nition of UNi : Finally, by Assumption A.2, pi(ki) is an increasing function

of ki. Since �i is decreasing, by Lemma 1 in the Appendix the second order condition

of the agent�s reporting problem holds. �
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If the loss from non-completion is low, then c�(ki) < c+ for some ki and it is

optimal for the procurer to let the winner default if the cost turns out to be high.

Furthermore, the cut-o¤ cost c�(ki) above which the project is not completed is an

increasing function of the defaulting penalty ki. This implies that agents with a lower

defaulting penalty are more likely to default. In spite of this, the project is assigned

to the agent with the lowest defaulting penalty.9 To understand why it is the agent

with the lowest defaulting penalty that wins, observe that a default by an agent with

a higher defaulting penalty entails a higher potential social loss. In the absence of

incentive reasons (i.e., with no private information), it would be socially e¢ cient to

assign the project to the agent with the lowest defaulting penalty.

Recall that c�(ki) is the highest cost at which type ki completes the project. By

(15) and A.1, the agent with the lowest defaulting penalty only completes the project

when completion is socially e¢ cient, c�(k�) = cB(k�). On the other hand, agents

with higher defaulting penalties complete the project even for some cost realization

under which it would be socially e¢ cient to default; more precisely, if c� < cB(ki) <

c+ then c�(ki) > cB(ki). This distortion from e¢ ciency is due to the usual reason: to

reduce the information rent of the agents. If the procurer�s loss of non-completion is

low, then every type ki < kTi earns a positive information rent. In our model, it is the

agent with the lowest defaulting penalty that receives the highest information rent.

What is di¤erent from the usual mechanism design or principal-agent problem is that

the distortion from e¢ ciency is an upward as opposed to a downward distortion. The

project is completed more often than what �rst-best e¢ ciency would dictate. To

see why this is optimal, observe from (3) that the slope of agent i�s net utility gain

from the mechanism is increasing (i.e., smaller in absolute value) in the cut-o¤ cost

c�(ki) = pi(ki)+ ki. Since the agent with the highest possible defaulting penalty gets

zero net utility gain, it follows that the utility gain, or information rent, of agent i is

decreasing in the cut-o¤ cost c�(ki). By increasing the cut-o¤ cost above the �rst-best

9Note that Proposition 2 applies irrespectively of the value of the non-completion loss. In the

case of high non-completion loss, it describes the alternative mechanism discussed in the second part

of Section 4.1.
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level, the procurer is able to decrease agent i�s information rent.

When his loss from non-completion is low, the procurer bene�ts from an increase

in the number of competing bidders N: As N grows large, the expected default-

ing penalty of the winning agent decreases and the information rents of agents also

decrease.

Note that the generalized participation fee ti varies with agent i�s defaulting

penalty ki. Hence, no standard auction with constant participation fees is optimal

in the case of low loss of non-completion; that is, when c�(ki) < c+ for some positive

mass set of types. To see this point more clearly, we now study the simplest of

standard auctions, the second-price auction.

5 The Second-Price Auction

In the second-price procurement auction the contract is awarded to the bidder who

has submitted the lowest price and the price the winner is paid equals the second

lowest bid. We assume that a bidder that defaults is not replaced by any other bidder.

We will allow the procurer to set a participation fee (that does not depend on ki).

Such a fee does not a¤ect bidding of the participating bidders; its size only determines

which bidder types decide to participate. More importantly, the analysis so far as

shown that the procurer may want to impose a bound on how low bids can be, in

order to reduce the probability of default by the winning bidder. This minimum bid

acts as a reverse reserve price; in a standard procurement auction a reserve price

would be an upper (as opposed to lower) bound on bids. We allow the procurer to

set a minimum bid, or reverse reserve price, and denote it with r. Bids below r are

interpreted as the bidder declining to participate in the auction. A minimum bid r

plays a role analogous to the practice of eliminating ALT, abnormally low tenders,

which, as we explained in the introduction, is often used in public procurement.

We restrict attention to symmetric Bayesian equilibria and look for an equilibrium

bidding function B : ki ! B(ki): Standard derivations allows us to prove the following

proposition.
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Proposition 3 The equilibrium bidding function of a participating bidder in the

second-price auction with reverse reserve price r is

B(ki) = max fr; �(ki)g

where �(ki) is the solution to

�(ki) = E [cjc < �(ki) + ki] + ki
1� F (�(ki) + ki)
F (�(ki) + ki)

Proof See the Appendix. �

Note that, if ki � c+ � E [c] ; then �(ki) = E [c] : To understand the formula for

the bidding function, suppose for a moment that r = 0 (i.e., there is no minimum

bid). Recall that in a second price auction without risk of default, the equilibrium

bid is the expected cost of the bidder; if the price were equal to the winner�s bid (i.e.,

if the winner�s bid is in a tie with the price-setter�s bid), the winner would make zero

pro�t. Proposition 3 shows that in the presence of default risk, if the price were equal

to his bid, the winner would also make zero expected pro�t. To see this, observe that

when p = �(ki) the expected payment is �(ki)F (�(ki) + ki) ; while the expected cost

is E [cjc < �(ki) + ki]F (�(ki) + ki) + ki [1� F (�(ki) + ki)]. The �rst component of

the expected cost is the cost of completion times the probability of completion; the

second component is the cost of default times the probability of default. If �(ki) < r,

then it is optimal to bid r; otherwise the optimal bid is �(ki): (In all cases, if the

expected payo¤ from participating does not cover the participation fee, the bidder

does not participate.)

It is easily shown that equilibrium bids are strictly increasing in the value of the

defaulting penalty ki for ki such that B(ki) > r; intuitively, a bidder�s expected cost

increases with the value of his loss in case of default. Pooling instead emerges for

types ki such that B(ki) = r. By setting a (constant) participation fee, the procurer

will determine the cut-o¤asset value kT above which bidders decide not to participate

in the auction.

It is noteworthy that the equilibrium bidding function is independent of both the

number of bidders and the distributionG of the defaulting penalty. It is also clear that
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in the case of high loss of non-completion the procurer may reduce the second-price

auction to the optimal lottery by setting a minimum bid r = max fc+ � k�; E [c]g

and a participation fee ti =
r�E[c]
N :We now present a simple example, which will help

clarifying the optimality property of the second price auction.

5.1 An Example

Let ci be uniformly distributed in the unit interval. Then, �(ki) =
�(ki)+ki

2 +

ki[1��(ki)�ki]
�(ki)+ki

for ki < 1=2; which simpli�es to �(ki) = (2ki)1=2� ki; and �(ki) = 1
2 for

ki � 1
2 :

Consider the special case d(c; ki) = V + L. For concreteness take V = 5=9 and

L = 1=9. Suppose ki is also uniformly distributed in the interval [k�; k+]. It is

instructive to distinguish two di¤erent cases.

Case 1 : k� � 1=3: In this case the loss of non-completion is high, since d+ ki =

2=3 + ki � c+ = 1 for all ki: The bidding function is Bi = max
�
r; (2ki)

1=2 � ki
	
for

ki � 1=2 and Bi = max fr; 1=2g for ki > 1=2. By setting r = 1�k�; the procurer can

reduce the auction to a lottery among the participating bidders. However, if r > 1=2

(i.e., k� < 1=2) the auction is not optimal, since it leaves surplus to the winning

bidder; adding a participation fee t1 = (1=2� k�) =N to the auction would implement

the optimal mechanism. Furthermore, note that if k� � 1=2 a minimum bid is not

needed to implement the optimal lottery, r = 0 leads to all bidders participating and

bidding the expected cost 1=2:

Case 2 : k� < 1=3: In this case the loss of non-completion is low. By (15),

the optimal cut-o¤ cost above which a winning bidder of type ki must default is

2=3 + 2ki � k�; which is less than c+ = 1 for low values of ki. In the optimal

mechanism there is a positive probability that the project is not completed. No

choice of the minimum bid r can guarantee that the equilibrium outcome of the

second-price auction coincides with the outcome in the optimal mechanism. First,

if the minimum bid is not irrelevant, then an interval of low types will bid r and

hence the winner will result from a random draw and not necessarily be the type
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with the lowest ki: Second, the price paid by the winner does not depend on the

winner�s type; it only depends either on the type of the bidder with the second lowest

bid, or the minimum bid r. Third, in any standard auction the participation fee

must be independent from a bidder�s type, while we know from (18) that in the

optimal mechanism the participation fee of each bidder must depend on his type ki.

A second-price auction (more generally, a standard auction) cannot be optimal when

the procurer�s non-completion loss is low, but the policy of setting an appropriate

minimum bid r (which is similar in spirit to eliminating ALT) typically increases the

procurer�s payo¤ by reducing default.

6 Liquidity Constraints and the Value of Competition

In our analysis, we have imposed no bounds on the participation fee ti that an agent

must pay. In this section, we will relax this assumption. In some circumstances

agents may be liquidity constrained; that is, they may be unable to pay participation

fees above a given threshold. It is thus useful to consider what changes when adding

this complication to the model. Rather than a full analysis of this case, we will focus

on the new insights that emerge when agents are subject to liquidity constraints.

Two new lessons can be learned. First, competition in the form of additional bidders

helps the procurer even in the case of high non-completion loss. As we saw in Section

4, without liquidity constraints competition does not help when the procurer wants

the project to be completed for certain. If there are liquidity constraints, on the

other hand, the larger the number of competing agents, the more the procurer is able

to reduce the size of the participation fee. Hence, the easier it is to satisfy agents�

liquidity constraints; competition helps. Second, with liquidity constraints and a

high non-completion loss, the optimal lottery mechanism performs better than the

alternative optimal mechanism in which the project is assigned to the bidder with

the lowest defaulting penalty. This is because for some agent types, the participation

fees in the alternative mechanism are higher than in the lottery.

We model liquidity constraints by assuming that the participation fee that an
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agent pays must be bound above by some amount h; that is, it must be ti (ki; k�i) � h;

where h is common knowledge.

Our �rst result is that for a su¢ ciently large number of competing agents the

lottery described in Proposition 1 satis�es the liquidity constraint, and hence remains

optimal.

Proposition 4 Suppose A.1 and D.1 hold (there is high non-completion loss to

the procurer). Suppose the liquidity constraint ti(ki; k�i) � h must hold. Then the

following condition guarantees that it is an optimal policy to assign the project using

a fair lottery and that the optimal procurement mechanism is the one described in

Proposition 1:

N � c+ � E[c]� k�
h

(20)

Proof Condition (12) gives the formula for ti, from which (20) immediately follows.

�

If c+ � E[c]� k� � 0, then agents are paid to participate in the lottery and the

constraint will be slack. If c+�E[c]�k� > 0, on the other hand, the constraint may

be violated. Interestingly, the proposition shows that even in this case, if competition

is su¢ ciently intense (i.e., N is high), then the fair lottery remains an optimal mech-

anism. The intuition is simple. When c+ � E[c] � k� > 0, on average winning the

lottery and completing the project raises an agent�s payo¤. To bring the agent�s total

payo¤ in line with his outside option, the procurer charges a positive participation

fee. The larger the number of participants in the lottery, the smaller the chance of

winning, and hence the smaller the expected bene�t from participating. As a result,

the participation fee that the procurer charges will have to be reduced. Indeed, in

the limit, as N goes to in�nity, the participation fee goes to zero. For su¢ ciently

large N the constraint will be satis�ed.

Our second result is that the lottery performs better than the alternative mechan-

ism in which the project is assigned to the bidder with the lowest defaulting penalty.

Proposition 5 Suppose A.1 and D.1 hold (there is high non-completion loss to
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the procurer). Suppose the liquidity constraint ti(ki; k�i) � h must hold. Then the

following condition guarantees that the unique optimal policy is to assign the project

using a fair lottery with the procurement mechanism described in Proposition 1:

N � c+ � E[c]� k�
h

> 1 (21)

Proof By (14), the participation fee in the alternative mechanism is highest for type

k�, for whom it equals (c+ � E[c]� k�) : It follows that the alternative mechanism

does not satisfy the liquidity constraint for (c+ � E[c]� k_ ) > h. On the other hand,

by Proposition 4, the condition N � c+�E[c]�k�
h guarantees that the lottery satis�es

the liquidity constraint. �

In the mechanism in which the project is assigned to the agent with the lowest

defaulting penalty, the participation fees are more dispersed and as a result it is

harder to satisfy the liquidity constraints. Furthermore, in such a mechanism the

lowest type agent�s participation fee is independent of the number of bidders, and

hence competition does not help satisfying the liquidity constraint.

7 Conclusions

The �rst main point of departure of our paper from the literature on default risk in

auctions is that we look at optimal mechanisms, rather than speci�c auction formats.

The second point of departure is that we are interested in instances, like small scale

construction projects, in which uncertainty about the risk of default is more import-

ant than cost uncertainty, and in which contractual arrangements like penalties for

default, performance bonds, surety bonds, etc. are not feasible. We model uncer-

tainty about risk of default fairly generally; it is due to the loss of utility to the

contractor following default, which is not known by the procurer.

Spulber (1990) was the �rst to note that auctions may provide incentives for

contractors to default, when there are cost overruns. His paper focuses on the �rst-

price auction, and shows that using expectation damages as the penalty for default
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restores e¢ ciency. Other papers have looked at arrangements that insure the auc-

tioneer against the risk of default. In Waehrer (1995), the winning bidder is required

to post a deposit that is lost in case of default. He �nds that the seller�s payo¤ is de-

creasing in the level of the deposit. Calveras et al. (2004) show how the introduction

of third party guarantees may eliminate defaults in a second-price procurement auc-

tion. In their model, the contractor enters into an agreement with a surety company

which guarantees project completion to the procurer in case of contractor default.

A few papers have looked at the implication of budget constraints on the probabil-

ity of default. Zheng (2001) studies the �rst-price auction for an item whose common

value is discovered after the auction. In his model, the winning bidder may borrow in

order to pay above his budget, which is private information. Zheng shows that, when

the interest rate is low the winner is the bidder with the lowest budget (and hence

the greatest probability of default), while when the interest rate is large the highest-

budget bidder wins. Rhodes-Kropf and Viswanathan (2005) extend Zheng�s analysis;

their focus is on how di¤erent ways of �nancing bids a¤ect bidding behavior. Zheng

(2009) shows that, if implemented, the 2008 U.S. Treasury plan of auctioning toxic

assets might have induced poor bidders to outbid rich bidders, and then to default

on the government loans in case of unsalvageable assets. In Parlane (2003), bidders

have a publicly known asset value that they lose when defaulting; she shows that the

expected price is higher in the �rst-price than in the second-price auction. Board

(2007) considers a similar setting and �nds that the seller prefers the second-price

auction when the cost of bankruptcy is low and the �rst-price auction when it is high.

We are only aware of two papers that, like us, take a mechanism design approach.

Wan and Beil (2009) consider a very di¤erent setting than us. In their model pro-

duction costs are private information, while the probability of default is learned after

the contest. Furthermore, the procurer can test a bidder�s risk of default both before

and after the contest. They �nd that, if the contract is assigned, it is assigned to

the lowest cost supplier among those that pass the test. Burguet et al. (2009) are

the closest to us.10 They study procurement mechanisms with bidders that have

10We only became aware of Burguet et.al. (2009) after writing the �rst draft of this paper.
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limited liability, and assume that the procurer appropriates the winner�s budget and

completes the project at a �xed loss in case of default (this is as the special case of

our model in which d(ci; ki) = L + ci � ki). Unlike us, they impose the restriction

that only the winner receives any (positive or negative) transfers from the procurer.

They do not solve for the optimal mechanism, but instead provide some properties

that all incentive compatible mechanisms must satisfy.

While the economics literature on default risk has focused on standard auctions,

non-standard auctions like average bid auctions, or auctions that cut abnormally

low tenders, are common in practice, especially for low-stake projects.11 One of our

main insights is that they may be the �right� mechanism in settings that �t the

assumptions of our model; that is, when contractual arrangements that insure the

procurer against the risk of default are not feasible, and the procurer�s loss of non

completing the project is high. Indeed, in these settings auctions that cut ALT and

assign the project to the bid closest to the average of the remaining bids are optimal,

if complemented with the imposition of participation fees or participation deposits

that are refunded to the losers. While participation fees and deposits are common in

procurement auctions, they tend to be small. Another insight of our work is that as

long as there are many competing bidders, participation fees need not be large. Thus,

a potentially useful policy implication of our paper is that procurers charge larger

participation fees the smaller the number of competing contractors in the market.

We have also shown that, when the procurer�s non-completion loss is low, the

optimal procurement procedure should generate less defaults than it is socially e¢ -

cient, with the distortion being larger for contractors having a high defaulting penalty.

Standard auctions are not optimal in this case either, even though a standard auction

with a lower limit on bids goes in the right direction of distorting down the probab-

ility of default. Thus, another insight of our paper is that more complex negotiating

procedures may be appropriate when the procurer only incurs a moderate loss in case

of contractor default.

11Even in the USA the average bid auction with elimination of ALT is not unheard of; it is for

example used by the Florida Department of Transportation (Decarolis, 2009).
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Appendix

In this appendix, �rst we prove a lemma that deals with the second order conditions

of the agents�reporting problem. Then we provide a proof of Proposition 3.

Lemma 1 Consider the mechanism described by the functions pi(ki; k�i); ti(ki; k�i);

�i(ki; k�i) for all i: Suppose that (a) pi(ki; k�i) = pi (ki) (i.e., pi does not depend

on the types k�i); (b) pi(ki) is increasing in ki and di¤erentiable; (c) ��i(ki) =R
K�i

�i(ki; k�i)g�i(k�i)dk�i exists and is decreasing in ki: If this mechanism sat-

is�es the �rst order condition of the agent�s reporting problem, then it also satis�es

the second order condition and hence it is incentive compatible.

Proof Consider the �rst order condition of agent i reporting problem:

@Ui(z; ki)

@z

����
z=ki

= 0:

Di¤erentiating it totally yields

@2Ui(z; ki)

@z@ki

����
z=ki

+
@2Ui(z; ki)

@z2

����
z=ki

= 0:

Since

@UNi (z; ki)

@ki
= �

Z
K�i

[1� F (pi(z; k�i) + ki)]�i(z; k�i)g�i(k�i)dk�i;

under the hypotheses of the lemma, we can write the second order condition as:

� @2Ui(z; ki)

@z2

����
z=ki

=
@2Ui(z; ki)

@z@ki

����
z=ki

=
@2UNi (z; ki)

@z@ki

����
z=ki

=

� [1� F (pi(ki) + ki)]
d��i(ki)

dki

+f (pi(ki) + ki)
dpi(ki)

dki
��i(ki) � 0:

�

Proof of Proposition 3 Let �(ki) be the bidding function under the provisional

assumption that the bidding function is strictly increasing everywhere. Letting
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Q(k) = 1 � [1 � G(k)]N�1, and Q0(k) be its derivative, we can write bidder i�s

problem of determining the optimal value of his bid b as:

max
b

Z k+

��1(b)

(Z �(k)+ki

c�
[�(k)� c+ ki] f(c)dc

)
Q0(k)dk + kiQ(�

�1(b)): (22)

The FOC for problem (22) is

�d�
�1(b)

db

(Z b+��1(b)

c�
[b� c+ ki] f(c)dcQ0(��1(b))� kiQ0(��1(b))

)
= 0:

Then, using the Nash equilibrium condition b = �(ki) yieldsZ �(ki)+ki

c�
[�(ki)� c+ ki] f(c)dc� ki = 0 (23)

or

�(ki) = E [cjc < �(ki) + ki] + ki
1� F (�(ki) + ki)
F (�(ki) + ki)

: (24)

Equation (24) de�nes the equilibrium bidding function, provided �(ki) is strictly

increasing and �(ki) � r. To see that � (ki) is increasing, note that if we di¤erentiate

(23) with respect to ki we obtainZ �(ki)+ki

c�

h
�
0
(ki) + 1

i
f(c)dc� 1 = 0

and hence

�
0
(ki) =

1� F (�(ki) + ki)
F (�(ki) + ki)

> 0 for �(ki) + ki < c+

Now, observe that using (24), for types ki such that E [c] + ki � c+ it will be

�(ki) � c+�ki: These types then will bid according to B(ki) = max fr; � (ki)g : Each

bidder ki � c+ � E [c] will complete the contract with certainty and therefore must

bid no less than the expected cost; furthermore, he will certainly lose the auction if

he asks for more than the expected cost. Note that for such bidders � (ki) = E [c].

Hence, bidding according to B(ki) is also an equilibrium for these types. �
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