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Abstract

This article provides a practical evaluation of some leading density forecast scoring rules in the context of forecast surveys.
We analyse the density forecasts of UK inflation obtained from the Bank of England’s Survey of External Forecasters,
considering both the survey average forecasts published in the Bank’s quarterly Inflation Report, and the individual survey
responses recently made available to researchers by the Bank. The density forecasts are collected in histogram format, and
the ranked probability score (RPS) is shown to have clear advantages over other scoring rules. Missing observations are a
feature of forecast surveys, and we introduce an adjustment to the RPS, based on the Yates decomposition, to improve its
comparative measurement of forecaster performance in the face of differential non-response. The new measure, denoted RPS*,
is recommended to analysts of forecast surveys.
c⃝ 2010 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In many forecasting applications, attention is fo-
cused on the future value of a continuous random
variable, and the presentation of a density forecast or
predictive distribution — an estimate of the probabil-
ity distribution of the possible future values of the vari-
able — is becoming increasingly common. Tay and
Wallis (2000) survey early applications in macroeco-
nomics and finance, and more than half of the inflation
targeting central banks, worldwide, now present den-
sity forecasts of inflation in the form of a fan chart.
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The best-known series of density forecasts in macro-
economics dates from 1968, when the American
Statistical Association and the National Bureau of
Economic Research jointly initiated a quarterly survey
of macroeconomic forecasters in the United States,
known as the ASA-NBER survey; Zarnowitz (1969)
describes its original objectives. In 1990, the Fed-
eral Reserve Bank of Philadelphia assumed respon-
sibility for the survey and changed its name to the
Survey of Professional Forecasters (SPF). Survey re-
spondents are asked not only to report their point
forecasts for several variables, but also to attach a
probability to each of a number of pre-assigned inter-
vals, or bins, into which output growth and inflation,
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this year and next year, might fall. In this way, the
respondents provide density forecasts of these two
variables in the form of histograms. The probabili-
ties are then averaged over respondents to obtain sur-
vey average density forecasts, again in the form of
histograms, which are published. More recently, the
Bank of England (since 1996) and the European Cen-
tral Bank (since 1999) have conducted similar surveys
with similar density forecast questions, and they also
follow the practice of the SPF in making the individ-
ual responses to the survey, made suitably anonymous,
available for research purposes. This article consid-
ers methods for the comparative assessment of the
quality of such forecasts, with the Bank of England
Survey of External Forecasters (SEF) as a practical ex-
ample. Other aspects of the SEF dataset are explored
by Boero, Smith, and Wallis (2008a,b,c).

A scoring rule measures the quality of a proba-
bility forecast using a numerical score based on the
forecast and the eventual outcome, and can be used
to rank competing forecasts. The earliest example of
such a rule, introduced by Brier (1950) and subse-
quently bearing his name, involves the situation in
which an event can occur in only one of a small num-
ber of mutually exclusive and exhaustive categories,
and a forecast consists of a set of probabilities, one for
each category, that the event will occur in that cate-
gory. The Brier score is then given as the sum of the
squared differences between the forecast probabilities
and an indicator variable that takes the value 1 in the
category in which the event occurred and 0 in all other
categories. Much of the theoretical work underpinning
probability forecast construction and evaluation orig-
inally appeared in the meteorological literature. The
example in Brier’s article concerned the verification
of probability forecasts of rain or no-rain in given pe-
riods: this has only two categories and is sometimes
called an event probability forecasting problem. The
mathematical formulation adopted by Brier has also
resulted in the use of the name “quadratic probabil-
ity score” (QPS), which is used below, although it is
potentially misleading, because a family of quadratic
scoring rules exists, of which the Brier score is just one
member (Stael von Holstein & Murphy, 1978).

When evaluating survey density forecasts, the dis-
tinct classes or categories of the Brier score’s set-up
are taken to be the set of histogram bins. However,
the ranking or ordering of the bins in terms of the
values of the underlying continuous variable is ne-
glected. For a four-bin histogram where the outcome
falls in the bin that has been assigned a probability of
0.3 and the other bins have probabilities of 0.5, 0.1
and 0.1, for example, the Brier score is invariant to
the way in which these last three probabilities are as-
signed to the bins in which the outcome does not fall.
However, forecasts that have placed 0.5 in a bin ad-
jacent to the bin in which the outcome falls would
generally be regarded as better forecasts than those
that have not. The Ranked Probability Score intro-
duced by Epstein (1969), a second member of the class
of quadratic scoring rules, takes the ordering of the
categories into account. It does not appear to have pre-
viously been used in the present area of research, al-
though its extension to continuous distributions, the
continuous ranked probability score (CRPS), has re-
cently attracted attention in the meteorological litera-
ture (Gneiting & Raftery, 2007).

Gneiting and Raftery’s (2007) review of scoring
rules, their characterisations and their properties, in-
cludes the leading alternative to the quadratic scores,
namely the logarithmic score. Originally proposed by
Good (1952), this is defined as

log S ( f, xt ) = log f (xt )

for a density forecast f of the random variable X t
evaluated at the outcome xt . The logarithmic score has
many attractive features, and appears in the literature
in many guises. To a Bayesian, the logarithmic score is
the log predictive likelihood, and if two forecasts are
being compared, the log Bayes factor is the difference
between their logarithmic scores. The definition in
terms of a continuous density can readily be adapted
to discrete distributions and discretised continuous
distributions, as in the present context, although there
is then a potential difficulty: as can be seen below,
from time to time in the individual survey responses
the outcome falls in a histogram bin to which the
respondent has assigned a zero probability, which
means that the log score is undefined. To assign an
arbitrary value to the score on such occasions is not a
satisfactory solution, since the ranking of competing
forecasts will be sensitive to the value chosen. On
the other hand, zero-probability forecast outcomes are
readily accommodated by the quadratic scores.

In this article we compare and contrast the Brier
and Epstein rules, or QPS and RPS, and the logarith-
mic score, in applications to survey density forecasts
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of UK inflation. Section 2 contains the technical back-
ground to our study, comprising a formal presentation
of the rules, a consideration of the relevance of the var-
ious decompositions that have been proposed, and a
discussion of the statistical tests of predictive ability
that we employ. The empirical analysis begins in Sec-
tion 3 with a comparison of the published survey av-
erage density forecasts from the SEF and the density
forecasts of the Bank of England’s Monetary Policy
Committee (MPC). Section 4 turns to the individual
SEF respondents and uses the two quadratic scoring
rules to evaluate their forecast performances, and it
is seen that the RPS is preferred. Incomplete data are
a feature of this survey, like all forecast surveys, and
our adjusted score, RPS*, is found to provide more
reliable rankings of forecasters in the face of miss-
ing observations caused by differential non-response.
Section 5 concludes.

2. Scoring rules and their applications

2.1. The Brier, Epstein and logarithmic rules

We consider a categorical variable whose sample
space consists of a finite number K of mutually
exclusive events, and for which a probability forecast
of the outcome at time t is a vector of probabilities
(p1t , . . . , pK t ). We have in mind applications in
which the categories are the K bins of a histogram
of a continuous random variable X , and we define
indicator variables dkt , k = 1, . . . , K , which take the
value 1 if the outcome xt falls in bin k, and dkt = 0
otherwise. Also in mind are time series forecasting
applications, in which each forecast of the outcome
at times t = 1, . . . , T is formed at some previous
time. For a sample of forecasts and realisations of the
categorical variable, the sample mean Brier score is
given as

QPS =
1
T

T−
t=1

K−
k=1

(pkt − dkt )
2 . (1)

It has negative orientation — smaller scores are better.
The range is usually stated as 0 ≤ QPS ≤ 2,
although the extreme values are only obtained in
extreme circumstances in which, in every period, all
of the probability is assigned to a single bin and the
outcome either does or does not fall into it.
The Brier score is also invariant to the ordering of
the K − 1 bins which have dkt = 0 at each time t ,
as noted above. To take this into account, Epstein’s
(1969) proposal replaces the density functions implicit
in the Brier score with their corresponding distribution
functions (Murphy, 1971). Defining these as

Pkt =

k−
j=1

p j t , Dkt =

k−
j=1

d j t , k = 1, . . . , K ,

with PK t = DK t = 1, the ranked probability score is

RPS =
1
T

T−
t=1

K−
k=1

(Pkt − Dkt )
2 . (2)

The RPS penalises forecasts less severely when their
probabilities are close to the actual outcome and more
severely when their probabilities are further from the
actual outcome. Like the Brier score, its minimum
value is 0, and occurs in the same extreme circum-
stance of the outcomes falling in bins whose forecast
probability is 1. Similarly, the maximum value of the
RPS occurs when some pkt = 1 and the outcome falls
in a different bin, but the actual value depends on how
far that is from the kth bin. In extremis, with the out-
come and the unit-probability bin located at opposite
ends of the range, this value is K − 1.

Adapting the definition of the logarithmic score
given above to the histogram context gives

log S =
1
T

T−
t=1

K−
k=1

dkt log (pkt ) .

This has a positive orientation — larger scores are
better, and since log S typically takes negative values,
scores with smaller absolute values are typically
better.

2.2. Decompositions of the quadratic scores

Several decompositions or partitions of the Brier
score (and, by extension, the Epstein score) have
been proposed, with the aim of obtaining information
about different aspects of forecast performance.
Early contributions focused on the event probability
forecasting problem and used a simplified version of
the Brier score given in Eq. (1), which we denote by
QPSE, namely
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QPSE =
1
T

T−
t=1

(pt − dt )
2 . (3)

Here pt is the forecast probability, and dt = 1 if the
event occurs or zero if it does not. The QPSE is equal
to half of the value obtained from Eq. (1) with K = 2,
since it neglects the complementary non-occurrence of
the event, whose forecast probability is 1 − pt .

Sanders (1963) requires that all probabilities be
expressed in tenths, and partitions the T forecasts into
eleven subsets of size T j , say, in which the forecast
probability is p j = j/10, j = 0, . . . , 10. The QPSE
can then be calculated subset-by-subset by rearranging
the summation in Eq. (3) as

QPSE =
1
T

10−
j=0

−
t∈T j


p j − d j t

2
.

Expanding the terms in the inner summation gives−
t∈T j


p j − d j t

2
= T j


p j − d̄ j

2
+

−
t∈T j


d j t − d̄ j

2
= T j


p j − d̄ j

2
+ d̄ j


1 − d̄ j


,

where d̄ j is the relative frequency of occurrence of
the event over the T j occasions on which the forecast
probability is p j . Thus, we have a two-component
decomposition of the QPSE as

QPSE =
1
T

−
j

T j


p j − d̄ j
2

+
1
T

−
j

T j d̄ j

1 − d̄ j


.

The first component measures what is variously called
validity, reliability or calibration. A plot of d̄ j against
p j is called a reliability diagram or calibration curve:
for a “well-calibrated” forecaster it is close to a di-
agonal line. The second component involves only the
outcome indicators, but nevertheless reflects the fore-
caster’s behaviour, because the indicators are sorted
into classes according to the forecaster’s probabilities.
Sanders (1963) refers to this term as a measure of the
“sharpness” of the forecasts, using a term introduced
by Bross (1953, Chapter 3); “resolution” and “refine-
ment” are also in use. Its maximum value is obtained
when each d̄ j is 0.5; that is, the forecaster’s proba-
bilities have not succeeded in discriminating between
high-probability and low-probability occurrences of
the event, and sharpness is lacking.

The second term in Sanders’ decomposition can be
further partitioned as

1
T

10−
j=0

T j d̄ j

1 − d̄ j


= d̄


1 − d̄


−

1
T

10−
j=0

T j

d̄ j − d̄

2
,

where d̄ is the overall rate of occurrence of the event
(Murphy, 1973). This separates out the variance or un-
certainty of the indicator variable, d̄


1 − d̄


, which

depends only on nature’s determination of the occur-
rence or otherwise of the event. Murphy argues that
the remainder can then more appropriately be called
resolution, since it measures the degree to which the
relative frequencies of the 11 subcollections of fore-
casts differ from the overall relative frequency of
occurrence of the event: a high resolution improves
(lowers) the QPS.

This three-component decomposition is used in a
study of the Bank of England Monetary Policy Com-
mittee’s density forecasts of inflation and growth by
Galbraith and van Norden (2008). An event probabil-
ity forecast is derived from a published density fore-
cast by calculating the forecast probability that the
variable in question exceeds a given threshold. The
resulting probabilities take continuous values, rather
than the discrete values assumed in the preceding
derivations, but one could simply round the probabil-
ities to the nearest tenth. Instead, Galbraith and van
Norden use a kernel estimator to obtain a smoothed
calibration curve.

Calculating above-threshold and below-threshold
probabilities from a density forecast in effect reduces
the MPC’s density forecast, which has a two-piece
normal functional form, to a two-bin histogram. The
Bank’s forecast survey questionnaire most often spec-
ifies a six-bin histogram, and generalisations of these
decompositions of the QPS for K > 2 are available.
However, they depend on a similar discretisation and
grouping of the forecasts to that used in the above
derivations, although using six categories and prob-
abilities stated in tenths (or similarly rounded), the
number of possible forecasts is 3003, from Murphy’s
(1972) equation (1). Many of these possible config-
urations are of little practical relevance to the SEF
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individual dataset, where the forecast histograms are
almost invariably unimodal, although the tail probabil-
ities in the first and/or last open-ended bins are some-
times sufficiently large to give the impression of an
additional local peak. Nevertheless, the number of dis-
tinct configurations observed in the SEF histograms
analysed in Section 4 is typically close to the time se-
ries sample size, and a decomposition of the individual
scores into reasonable estimates of forecast reliability
and resolution is not practicable.

A decomposition of the QPS which does not re-
quire such a grouping of forecasts into distinct subcol-
lections is the covariance decomposition due to Yates
(1982, 1988), obtained as follows:

1
T

T−
t=1

K−
k=1

(pkt − dkt )
2

=

K−
k=1

1
T

T−
t=1

[(pkt − p̄k)

− (dkt − d̄k) + ( p̄k − d̄k)]
2

=

K−
k=1

[var(pk) + var(dk)

+ ( p̄k − d̄k)
2
− 2 cov(pk, dk)]. (4)

Yates (1988) notes that the second term in this last
expression, the sum of the outcome indicator sam-
ple variances var(dk) = d̄k(1 − d̄k), is outside the
forecaster’s influence, while the third term, the sum
of squared “biases”, indicates the miscalibration of
the forecasts. He also offers a further algebraic rear-
rangement of the first and fourth terms, as in the ini-
tial event-probability derivation with K = 2 (Yates,
1982), although their interpretations do not readily
generalise to the case K > 2.

The Yates decomposition is reported by Casillas-
Olvera and Bessler (2006) in their comparative study
of the MPC and SEF survey average density forecasts,
which we extend in the next section. The contribution
of the variance of d to the total QPS varies over sub-
periods, but is the same for the two forecasts under
consideration, as is indicated by the above derivation.
When working with the forecasts supplied by individ-
ual respondents to the survey, however, we face the
familiar problem of individual non-response, which
differs across individuals, so that the data have the
form of an unbalanced panel. Thus, the individual
scores are calculated over different subsamples of the
maximum possible T observations, and it is no longer
the case that the contribution of the variance of d is
the same for all individual forecasters. Since this term
remains outside the forecasters’ influence, in order to
focus on their forecast performance in a comparable
manner we standardise the contribution of the variance
of d to their individual scores. In order to ensure that
the score of an individual with no missing observa-
tions is unaltered, we do this by replacing the indi-
vidual subsample outcome variance component of the
QPS with the full-sample outcome variance.

We are not aware of a comparable covariance de-
composition of the RPS given in Eq. (2), although the
(mostly meteorological) literature contains a consid-
erable amount of discussion on extensions of the pre-
vious reliability-resolution-uncertainty decomposition
of the RPS and its continuous generalisation (see Can-
dille & Talagrand, 2005, for example). Nevertheless,
it is clear that an equivalent covariance decomposition
of the RPS can be obtained by replacing the lower-
case p and d with the upper-case P and D throughout
Eq. (4). As a result, a similar variance-of-D term can
be identified that is a function of the outcomes alone.
For comparing the forecast performances in the face
of differential non-response, we calculate an adjusted
score, denoted by RPS*, which is obtained by replac-
ing the individual-specific measure of the outcome
variance in the RPS with its full-sample equivalent.

2.3. Testing predictive ability

To construct a formal test of the equal predictive
ability of two competing forecasts, we follow Giaco-
mini and White (2006). Their framework encompasses
point, interval and density forecasts and a wide range
of loss functions, and can readily be adapted to the
present context, although it is an asymptotic test and
our forecast sample size is small. Their focus on what
they call the forecasting method as the object of eval-
uation, which encompasses a number of choices made
by the forecaster concerning models, data and estima-
tion procedure, is appropriate in our present context,
where little information is available about the actual
choices made by survey respondents. Adapting and
simplifying the notation of their Eqs. (4) and (6), the
Wald-type test statistic, given T out-of-sample fore-
casts, is

W = T


T −1

T−
t=1

ht1L t

′

Ω−1


T −1

T−
t=1

ht1L t


,
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where ht is a q × 1 vector of test functions, 1L t is the
difference in the losses or scores of the two forecasts
in period t , and Ω is an appropriate heteroscedasticity
and autocorrelation consistent (HAC) estimate of the
asymptotic covariance matrix. The null hypothesis is

E (ht1L t ) = 0, t = 1, . . . , T,

under which the distribution of W tends to χ2
q as

T → ∞. The simplest “unconditional” test of equal
forecast performances has q = 1 and ht = 1, t =

1, . . . , T ; in this case, when using the logarithmic
score, the test is equivalent to (the unweighted
version of) the likelihood ratio test of Amisano and
Giacomini (2007). Possible practical choices of ht for
a “conditional” test are discussed below.

3. The SEF average and MPC density forecasts of
inflation

Our empirical study of the scoring rules begins with
a comparative evaluation of the average density fore-
casts of inflation, two years ahead, from the Survey of
External Forecasters, and the Monetary Policy Com-
mittee’s fan chart forecasts of inflation for the same
horizon. Both forecasts are published in the Bank of
England’s quarterly Inflation Report, although it is
necessary to consult the Bank’s spreadsheets in order
to obtain numerical values for the parameters of the
two-piece normal distribution on which the MPC’s fan
charts are based.

The Bank of England’s quarterly Survey of Exter-
nal Forecasters began in 1996. The institutions cov-
ered in the survey include commercial banks and other
financial institutions, academic institutions, and pri-
vate consultancies, and are predominantly based in
London. The sample changes from time to time as
old respondents leave or new survey members are in-
cluded, and not every institution responds every quar-
ter, nor answers every question. Although there is no
record of the response rate, the publication of sum-
mary results in the Inflation Report always includes
the number of responses on which each reported statis-
tic is based; this is typically in the low twenties.

The SEF questionnaire initially asked for forecasts
of inflation in the last quarter of the current and
following years. Such questions eventually deliver
sequences of fixed-event forecasts, which were
analysed by Boero et al. (2008c), but not quarterly
series of fixed-horizon forecasts, which are required
for the present exercise. However, in 1998 a third
question was added, asking for forecasts two years
ahead, and this marks the start of the series analysed
here. (At this time a second variable, GDP growth,
was also added.) In May 2006 all three questions
were switched to a fixed-horizon format, focusing on
the corresponding quarter one, two and three years
ahead, and thus our series is continued via the second
question of the new format. In the UK’s inflation
targeting policy regime, the Government chooses the
targeted measure of inflation and its target value, and
the SEF has sought forecasts of the same variable,
namely the Retail Prices Index excluding mortgage
interest payments (RPIX) until the end of 2003, then
the Consumer Prices Index (CPI). Thus, the forecasts
collected in the eight quarters over 2002–3 have to
be evaluated against the outcomes in 2004–5 for the
previous target variable, rather than the then-current
target variable. At the time of writing, outcome data
are available to the end of 2008; hence, we use the
surveys from 1998Q1 to 2006Q4, a total of 36 surveys.
The histograms in the first five of these surveys have
four bins (<1.5, 1.5–2.5, 2.5–3.5, >3.5), then the two
interior bins were further divided, so that there are six
bins from 1999Q2 onward (<1.5, 1.5–2, 2–2.5, 2.5–3,
3–3.5, >3.5); finally, in 2004Q1 the whole grid was
shifted downwards by 0.5, following the change in the
target from 2.5% RPIX inflation to 2% CPI inflation.
The survey average forecast, as published in the
Inflation Report and considered in this section, is then
obtained as a simple average over all respondents of
their reported probabilities in each bin. For purposes of
comparison, we convert the MPC’s fan chart forecasts
at the two-year horizon to sets of probabilities for the
same bins, using the MPC’s parameterisation of the
two-piece normal distribution (Wallis, 2004, Box A).

The scores of the two forecasts are shown in
Table 1. It is clear that the survey average forecast has
a smaller QPS than the MPC forecast, which matches
Casillas-Olvera and Bessler’s (2006) finding based on
the first 14 of these 36 quarterly observations. The
RPS and the log score give the same ranking of the two
forecasts. The RPS values are smaller than the QPS
values, because the forecast densities are unimodal,
and most of the time the outcomes fell towards
the centre of these distributions: the positioning of
relatively high probabilities close to the bin in which
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Table 1
SEF average and MPC density forecasts of inflation: scores and test
results.

SEF MPC p-value,
ht = 1

p-value,
h′

t = (1, πt−1)

QPS 0.711 0.759 0.171 0.118
RPS 0.566 0.596 0.519 0.395
Log score −1.465 −1.535 0.451 0.336

Note: T = 36 (two-year-ahead forecasts published 1998Q1–
2006Q4).

the outcome fell is acknowledged by the RPS, but not
by the QPS.

The last two columns of Table 1 show the asymp-
totic p-values of the Giacomini-White test using two
test functions. The first is an intercept, giving the “un-
conditional” test noted above. For a “conditional” test,
Giacomini and White (2006, p. 1555) suggest that ht
might be chosen to include such variables as lagged
loss differences and business cycle indicators. The for-
mer suggestion causes degrees of freedom problems
in the present case, since we are working with what
are in effect 9-quarter-ahead forecasts and a sample
of 36 quarterly observations. As a simple example of
the latter possibility we choose the most recent in-
flation observation at the time when the forecast was
made, denoted by πt−1. We use a Newey-West esti-
mate of Ω , allowing for a moving average of order
eight in the forecast errors. The results show that, al-
though the three scores agree on the ranking of the
two forecasts, in no case is the difference in the scores
great enough to reject the hypothesis of equal forecast
performances. The p-value for each score is reduced
when lagged inflation is added to the test function,
providing weak evidence of a differential use of this
information by the two forecasts, but not sufficient to
overturn the general conclusion.

To study the comparative behaviour of the qua-
dratic scores in greater detail, we turn to Fig. 1, which
illustrates, observation-by-observation, the compo-
nents of the calculation of QPS and RPS, namely
the histogram probabilities and the location of the
inflation outcome, for the SEF average forecast and
the MPC forecast in the upper and lower panels
respectively. The segments of the vertical columns
show, with reference to the scale on the left, the al-
location of forecast percentage probabilities to the
histogram bins: each column stacks the bars of a stan-
dard histogram diagram, one on top of another. For
most of the period there are six bins, and the colours
(shown in the online version of the article) follow a
rainbow array. The key to the figure records the RPIX
inflation range for each bin; from 2004Q1 onward
all of these numbers should be reduced by 0.5, fol-
lowing the switch to CPI inflation. For the first five
observations there are four bins, with the two inte-
rior bins combining, pairwise, the four interior bins
of the six-bin grid, as described above: their colours
are intermediate, in the same spectral sense, between
the separate colours of their corresponding pairs. The
large black dots show in which bin the inflation out-
come, two years later, fell. There is no inflation scale
in Fig. 1, and the dots are simply placed in the cen-
tre of the probability range of the appropriate bin; this
is the same bin for both forecasts, since we have cal-
culated the MPC’s probabilities as if the MPC were
answering the SEF questionnaire, as noted above.
(Readers wishing to see a plot of actual inflation out-
comes should consult Fig. 2.) The QPS and RPS for
each observation are shown with reference to the scale
on the right; these points are joined by solid and
dashed lines respectively, and their mean values over
the 36 observations are reported in Table 1.

For most of the period, the inflation outcomes fell
in one of the two central bins of the histograms,
and the RPS is smaller than the QPS because it cor-
rectly acknowledges the appropriate unimodal shape
of the densities, for both forecasts. The SEF scores are
generally smaller than the MPC scores in these cir-
cumstances, because the SEF densities have smaller
dispersions. However, the last three forecasts provide
an interesting contrast. The outcomes, with CPI in-
flation in excess of 3%, fell in the upper open-ended
bin, and the MPC’s greater tail probabilities lead to
its lower scores. The difference with the SEF is more
marked in the case of the RPS, where the MPC cor-
rectly benefits from greater probabilities not only in
the upper bin, but also in the adjoining bin. However,
these three observations are not sufficient to offset the
overall lower scores of the SEF average forecasts, as
indicated by the sample means in Table 1. Neverthe-
less, these different episodes illustrate the advantage
of the RPS in better reflecting the probability fore-
cast performance in categorical problems which have
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Survey date

Survey date

Fig. 1. Forecast probabilities two years ahead, inflation indicators, and the forecast scores (QPS and RPS). Upper panel: SEF average forecast;
lower panel: MPC forecast. Note: A coloured version of this figure is available in the online version of the article.
a natural ordering, such as these density forecast his-
tograms, and its continued use is recommended.

Combining some of the bins of a six-bin histogram
to obtain a four-bin histogram generally improves
the score: the probability associated with the bin in
which the outcome falls may increase, and, for the
quadratic scores, the sum of squares of probabilities
is reduced. In principle, the first five scores in
Fig. 1 are therefore not directly comparable with the
remainder, although in practice they do not appear to
be substantially smaller than subsequent scores, for
both QPS and RPS, and both the SEF average and
MPC forecasts. Such heterogeneity could be avoided
either by working with a shorter sample period, or
by reducing the 31 six-bin histograms to four bins.
However, either course of action would result in a loss
of information which we prefer not to incur, and we
return to this issue in the context of the individual
survey responses below.

The inclusion of Fig. 2 for the benefit of readers
who are not familiar with the UK’s inflationary expe-
rience over this period also allows us to relate a further
comparison between the SEF average forecasts and the
MPC’s forecasts. Fig. 2 shows the inflation outcomes,
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Fig. 2. Inflation over the period 2000Q1–2008Q4, with the mean
forecasts made two years earlier.

2000Q1–2008Q4, together with point forecasts made
two years earlier, namely the MPC density forecast
means, as published on the Bank’s spreadsheets, and
the corresponding means calculated from the SEF av-
erage histograms. (We apply the standard formula, as-
suming that the open-ended bins have twice the width
of the interior bins; it makes no difference whether
the probabilities are assumed to be concentrated at the
mid-points of the respective bins, or spread uniformly
across each bin.) The general tendency of the exter-
nal forecasts to stay close to the inflation target, ir-
respective of the inflation experience at the time the
forecasts were made, is often taken to be an indica-
tion of the credibility of the MPC and the inflation
targeting policy regime. Viewed simply as forecasts,
however, as in the analysis of the MPC’s forecasts by
Groen, Kapetanios, and Price (2009), we find that their
respective forecast RMSEs are 0.65 (MPC) and 0.61
(SEF), which matches the ranking of these forecasts
by the scoring rules, as given in Table 1.

4. Scoring the individual SEF respondents

4.1. QPS and RPS for regular respondents

The dataset of individual SEF responses which has
been made available by the Bank of England gives
each respondent an identification number, so that their
individual responses, including non-response, can be
tracked over time, and their answers to different ques-
tions can be matched. The total number of respondents
appearing in the dataset is 48, but there has been fre-
quent entry and exit, as in other forecast surveys, and
no-one has answered every question since the begin-
ning. To avoid the complications caused by long gaps
in the data, and to maintain the degrees of freedom
at a reasonable level, we follow the practice of US
SPF researchers and conduct our analyses of individ-
ual forecasters on a subsample of regular respondents.
For the present purpose we define “regular” as “more
than two-thirds of the time”, which gives us a subsam-
ple of 16 respondents, who each provided between 25
(two respondents) and 36 (one respondent) of the 36
possible two-year-ahead density forecasts of inflation
over the 1998Q1–2006Q4 surveys.

Although the survey average forecasts always have
non-zero probabilities in every bin, as can be seen in
Fig. 1, many individual forecasters use fewer of the
available bins. Moreover, for 12 individual forecasts,
made by four respondents, inflation falls in a bin which
has a forecast probability of zero; hence, a logarithmic
score cannot be calculated for these four respondents.
It is sometimes suggested that an imputed non-zero
value be assigned in such cases, with reference to the
degree of rounding of the reported probabilities: see,
for example, the robustness check in this connection
in Engelberg, Manski, and Williams (2009) study of
US SPF forecasts. In the present exercise, the reported
probabilities in nine of the forecasts under considera-
tion are multiples of 0.10; in the remaining three fore-
casts multiples of 0.05 also appear. In addition, when
the forecaster uses only the two central bins, it is possi-
ble for the outcome to fall in a non-adjacent bin, which
is indeed observed in our data. Thus, there is consider-
able freedom available to the researcher who wishes to
second-guess the forecaster, which makes the resulting
score unreliable for ranking competing forecasts. A
possible solution is to exclude these four respondents
from further consideration; however, we prefer to set
the logarithmic score aside, and accordingly consider
only the quadratic scores in this section.

We first extend the QPS–RPS comparison of the
previous section to the individual forecasters. For each
regular respondent, both scores are calculated from
their available forecasts and outcomes; thus, T in
Eqs. (1) and (2) takes values between 25 and 36 for the
different respondents. A scatter diagram of the results
is presented in Fig. 3, which also includes the SEF
average density forecast as a point of reference, plotted
at the values given in Table 1. Bearing in mind the
difference in scales, it can be seen that all 16 points lie
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Fig. 3. QPS and RPS for the 16 regular respondents and the SEF
average (filled square).

below the “45◦” line; thus, the finding in Section 3 for
the SEF average forecast, that the RPS is less than the
QPS, extends to these individual forecasters as well,
for the same general reasons discussed above. The
scatter of points is positively sloped, although there is
less than perfect agreement between the rankings: the
rank correlation coefficient between the QPS and RPS
of the regular respondents is 0.76. There are several
ambiguous pairwise comparisons: whenever the line
joining two points has a negative slope, the QPS and
RPS disagree about the relative performances of the
corresponding forecasters.

For detailed individual scrutiny, we first pick out
individual 26, who is the only ever-present regular re-
spondent, is highly ranked (3rd) on both scores, and is
an outlier in one further respect. Whereas almost three-
quarters of the individual forecasts in the sample (357
out of 485) utilise all available histogram bins, there
are 21 forecasts which have non-zero entries in only
two bins, and 17 of these are individual 26’s forecasts.
The upper panel of Fig. 4 shows the observation-by-
observation components of the score calculations for
individual 26 as in Fig. 1; on the five occasions when
inflation fell in the outer bins with zero forecast proba-
bilities, the large black dots are placed on the boundary
of the grids. These include two quarters with inflation
below 2% (the 2000Q2, Q3 forecasts) and two with
inflation above 3% (the 2006Q2, Q4 forecasts). These
are of especial interest, because the QPS takes approx-
imately the same value for each of these four observa-
tions, in the range 1.50–1.58, suggesting that the four
forecasts are of approximately equal quality. On the
other hand, the RPS gives a well-separated ranking of
these forecasts: 2006Q2 is clearly the worst, followed
by 2006Q4, whereas 2000Q2, Q3 are rather better.
A study of the location of the various probabilities
forming the histograms shows that this alternative
view of the comparative quality of these forecasts is
correct, and the QPS’s indifference to this question
again emphasises its inadequacy as an indicator of the
quality of these density forecasts. In the following sec-
tion we in turn set the QPS aside.

4.2. Missing data

For comparison, we include in the lower panel of
Fig. 4 the corresponding data for individual 25, who
has the best RPS result, as shown in Fig. 3. Although
the first seven forecasts do not score as well as those
of individual 26, the local peaks in the latter’s RPS at
the zero-probability outcomes have much diminished
counterparts in individual 25’s scores. Also very no-
ticeable, however, is that individual 25’s last two fore-
casts are missing, whereas these observations make
relatively large contributions to individual 26’s over-
all RPS.

To place such comparisons on an equal basis, one
might consider calculating the scores over the subsam-
ple of observations common to both forecasters; thus,
in the above case one would simply use the first 34
datapoints for both respondents. However, this ne-
glects available information on the performance of the
forecaster who has responded more often. Moreover,
this is not a practical solution for making multiple
comparisons among our 16 regular respondents. Al-
though none of these respondents is missing more than
11 of the 36 possible forecasts, the incidence of miss-
ing forecasts shown in Fig. 5 is such that there are only
three occasions when all 16 individual forecasts are
available. Overall, 91 of the possible 16 × 36 = 576
forecasts are missing, comprising 77 cases of com-
plete non-response to the questionnaire and 14 cases of
an incomplete questionnaire being returned, known to
survey practitioners as item non-response. Also shown
in Fig. 5 are the latest inflation data available at the
time the forecasts were prepared (πt−1 in Section 3),
and there is no evidence of any relationship between
the process leading to missing forecasts and this vari-
able, nor any other variable we have considered. Thus,
forecasters do not appear to respond differently when
the forecasting problem might seem to be more dif-
ficult, and no systematic patterns, such as periodic-
ity, are apparent in Fig. 5. Accordingly, we treat the
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Fig. 4. Forecast probabilities two years ahead, inflation indicators, and the forecast scores (QPS and RPS). Upper panel: individual 26; lower
panel: individual 25. Note: A coloured version of this figure is available in the online version of the article.
missing data as missing at random and the observed
data as observed at random, using terms introduced by
Rubin (see Little & Rubin, 2002). Neither imputation-
based methods nor model-based methods for handling
incomplete data, as discussed by Little and Rubin, ap-
pear to be relevant to the present context of forecast
comparison, although we note an interesting applica-
tion to the construction of a combined point forecast
in the face of missing data in the US SPF by Capistran
and Timmermann (2009).

Instead, as was discussed at the end of Section 2,
we focus on the components of the score that reflect
the forecaster performance, by correcting the score for
variation in the outcome variance term identified in
the Yates decomposition (Eq. (4), generalised to the
RPS). To retain comparability with the uncorrected
score, we replace the outcome variance calculated over
an individual’s subsample by the full-sample outcome
variance. Thus, the score for individual 26, who has no
missing observations, does not change. (To calculate
the variance of d or D over the full sample, we assume
six histogram bins throughout and assign the first
five inflation outcomes accordingly, even though those
forecasts had only four bins.)

The results are shown in Fig. 6, as a scatter diagram
of RPS and adjusted RPS (denoted RPS*) values.
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Fig. 5. Incidence of missing two-year-ahead forecasts (blanks) from
16 regular respondents, together with the latest inflation data.

As in Fig. 3, the two scores give different rankings
of the forecasters, with a rank correlation coefficient
of 0.72. Points lying above the 45◦ line represent
individuals whose score has increased as a result of
the adjustment, and their previous lower score might
be considered to be the result of having missed some
hard-to-forecast occasions. This description certainly
applies to the last three inflation outcomes in our
sample, and individuals 2, 25 and 27 did not respond
on two of these occasions, while individual 8 missed
all three. The adjustment corrects for the smaller
outcome variances in their respective subsamples and
increases their scores, resulting in a more accurate
picture of their relative forecast performances. In
particular, the adjustment moves individual 25 from
the 1st to 4th position in the ranking, and individual 8
from 8th to 14th.

The potential heterogeneity due to the move from
four to six bins in the 1999Q2 survey noted above may
have a greater impact on the individual comparisons,
since Fig. 5 shows that some individuals are missing
more of the four-bin observations than others. As
a robustness check, we repeat the calculations (a)
assuming four bins throughout, or (b) deleting the first
five observations. In the first case, all of the scores are
reduced, as expected, whereas the second case gives
corresponding slight increases in all scores. Overall,
however, the results appear to be robust: the cloud of
points has the same shape in all cases, and the few
changes in rankings that are observed are confined
to the centre of the distribution, where the individual
scores are close together.

For a final illustration at the individual level, in
Fig. 7 we present the data for the two respondents
whose scores are decreased most as a result of the ad-
justment. Individual 9, in the upper panel, has the same
number of missing observations — ten — as individ-
ual 8, but these correspond to outcomes which fell in
the central bins of the histograms. Thus, the subsam-
ple outcome variance is greater than the full-sample
variance, and the adjustment reduces the score. How-
ever, individual 9 is still ranked last, as a result of the
excessive dispersion of the forecast histograms, and
in particular the high probabilities attached to fore-
cast outcomes in the lowest, open-ended bin, which
did not materialise. On the other hand, for individual
31 (in the lower panel of Fig. 7), who has eleven miss-
ing observations similarly distributed, the adjustment
changes the ranking considerably, from 6th on RPS to
the top ranked position on RPS*. The scores for the
four forecasts made between 2002Q3 and 2003Q2 are
unusually small, as a result of placing rather high prob-
abilities in the bins into which inflation duly fell, and
zeroes in the outer bins. Throughout, unlike individ-
ual 9, individual 31 placed small, or zero, probabilities
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Fig. 6. RPS and RPS* for the 16 regular respondents.
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Fig. 7. Forecast probabilities two years ahead, inflation indicators, and the forecast scores (QPS and RPS). Upper panel: individual 9; lower
panel: individual 31. Note: A coloured version of this figure is available in the online version of the article.
in the lower open-ended bin, and the latter’s relative
scores benefited from this choice, except in 2000Q2
and 2000Q3.

The overall effect of these adjustments for miss-
ing data is to reduce the dispersion of the individ-
ual scores. Part of the dispersion in the unadjusted
scores is seen to be the result of differential non-
response, over and above differences in forecasting
performances. The var(Dk) component of the individ-
ual RPS given by the Yates decomposition is outside
the forecaster’s influence, and, assuming that this is in-
dependent of the factors that result in individual non-
response from time to time, the adjusted score RPS*
that corrects for the differential impact of this com-
ponent gives a more reliable ranking of the individual
forecast performances. There remains a considerable
dispersion in the RPS* scores, however, and this het-
erogeneity in individual density forecasting perfor-
mances mirrors the finding of a considerable degree
of heterogeneity in point forecasting performances in
the SEF by Boero et al. (2008b).

5. Conclusion

This article provides a practical evaluation of some
leading density forecast scoring rules in the context of
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forecast surveys. We analyse the forecasts of UK in-
flation obtained from the Bank of England’s Survey
of External Forecasters, considering both the survey
average forecasts published in the quarterly Inflation
Report, and the individual survey responses recently
made available by the Bank. The density forecasts
are collected in histogram format, as a set of prob-
abilities that the future inflation will fall in one of a
small number of preassigned ranges, and thus are ex-
amples of categorical forecasts in which the categories
have a natural ordering. Epstein’s ranked probability
score was initially proposed as an alternative to Brier’s
quadratic probability score for precisely these circum-
stances, and our exercise makes its advantages clear.
The logarithmic score is the leading alternative to the
quadratic scoring rules, but, unlike them, is not defined
whenever inflation falls in a histogram bin to which the
forecaster has assigned a zero probability. Such situa-
tions occurred in our sample of individual forecasters,
and thus exclude the logarithmic score from consider-
ation in this context.

Missing observations are endemic in surveys, and
our answer to this problem comes in two parts. First,
in common with much other research on forecast sur-
veys, our study of individual forecast performances
is conducted on a subsample of regular respondents.
In our case these are the 16 respondents who are
each missing less than one-third of the possible two-
year-ahead forecasts collected between 1998Q1 and
2006Q4. Their forecast scores have a considerable
amount of dispersion, part of which is due to dif-
ferences in the inflation outcomes over the different
subperiods for which these respondents provided their
forecasts. Accordingly, and secondly, we introduce an
adjustment to the score, based on the Yates decom-
position, which corrects for the differential impact of
the component of the score that depends only on the
outcome, not on the forecast, and hence gives a clearer
ranking of forecaster performance. We recommend the
adjusted ranked probability score, denoted RPS*, to
other analysts of forecast surveys, in different coun-
tries and at different forecast horizons, who neverthe-
less face the familiar problem of non-response.

Attention in Section 4 of this article is restricted
to descriptive comparisons and rankings of compet-
ing forecasts, without formal testing. Extensions of
the pairwise test used in Section 3 to multiple com-
parisons, using Bonferroni intervals or other methods
(see Miller, 2006), keeping in mind the small-sample
context, await future research.

The analysis of the point forecasts of inflation and
GDP growth from the SEF in our earlier article in this
journal (Boero et al., 2008b) finds a considerable de-
gree of heterogeneity among individual respondents,
as shown by the failure of standard tests of the equal-
ity of idiosyncratic error variances and by evidence
of different degrees of asymmetry in forecasters’ loss
functions. The similar dispersion of forecast scores
from their density forecasts of inflation again indi-
cates that some respondents are better at forecasting
than others. This leads us to close this article with the
same final thought as our earlier article, that the find-
ings “prompt questions about the individual forecast-
ers’ methods and objectives, the exploration of which
would be worthwhile”.
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