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Multivariate models and cointegration: the Johansen’s procedure

Verbeek (2004), Ch. 9, Patterson, Ch. 14, Greene (2003), Ch. 20, section 20.4.

Here we look at the case where all variables are treated the same, that is no

endogenous/exogenous differences are assumed. We need to look at the vector

generalisation of AR processes. These are called VARs (Vector Auto Regressions). Let

us consider a first order VAR where we have two variables y1 and y2. This is a reduced

form in the sense that each equation will only have lagged values of the variables on the

RHS.
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which can be written as

yt =  + 1 yt-1 + t (2)

1 is a matrix, the other terms are vectors. is the drift term. Equilibrium stability

conditions are generalisation of our earlier analysis of univariate autoregressive models.

All the eigenvalues of 1 must have modulus less than one. Stationarity of the variables

is also linked to this. Remember an eigenvalue is related to the roots of a polynomial.

[The eigenvalues of 1 are the roots of the nth order characteristic polynomial |1-Ik|

obtained by solving the characteristic equation |1-I|=0. For stability, 1 and 2 must be

less than one in modulus Alternatively, we can look at the roots of the determinant of the

autoregressive polynomial |A(L)|=|I-1L|, and for stability these must have modulus

greater than one].

Let us set  =0 for the moment and rewrite (2) in error correction form:

 yt =  yt-1 + t (3)
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Note that this expression generalises with lagged difference terms on RHS, if the starting

VAR is of order higher than one. For example, a VAR of order 2

yt = 1 yt-1 + 2 yt-2 + t (4)

can be rewritten in error correction form

 yt =  yt-1 +1 yt-1 + t (5)

where 1+2-I, and 1=-2.

The  matrix tells us how many linear combinations exist amongst the variables. This

will be related to the rank of . If there are n variables in the system, then  will be n x

n. Therefore, the rank of  will be between 0 and n. Rank of can only be 0 if  is a

null matrix. In this case we have a VAR in first differences, with no level terms. So,

variables are I(1), but not cointegrated.

If  has full rank, it implies that there are n independent linear combinations of the

variables that are stationary. This in turn implies that we can solve uniquely for each of

the n variables in terms of stationary variables. So, all the variables must be stationary in

the first place, which implies a VAR in the levels.

If there are I(1) variables, then  matrix will have a rank strictly between 0 and n.

Supposing rank(= r. This means that there are r linear combinations amongst the n

variables. These are the cointegrating linear combinations since this must be I(0) for the

equation to be balanced. Also in this case the matrix  must have r non-zero

eigenvalues. Hence a test for the number of cointegrating vectors is equivalent to a test

of how many non-zero eigenvalues are there in the  matrix.
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Cointegrating rank

(number of cointegrating vectors)

Implications

r = 0 (matrix  is a zero matrix) VAR can be written in first differences without

any level terms. I.e. there is no long-run.

0 < r < n There are r cointegrating vectors. I.e. r

stationary linear combinations.

r = n (matrix is of full rank) VAR is stationary in the levels.

Johansen (1988), Johansen and Juselius (1990) have tabulated critical values for testing

the rank of the matrix. There are two tests: the maximum eigenvalue test, and the

trace test. These tests are now provided by most of the software.

Let us denote the theoretical eigenvalues of the matrix in decreasing order as

1 2 n...     

The idea is that if there are r cointegrating vectors (rank of =r), then log(1-j)=0

for the smallest n-r eigenvalues, that is for j=r+1, r+2,…,n.

The two tests described below use the estimated eigenvalues, say 1 2 n
ˆ ˆ ˆ...      , to test

hypothesis about the rank of .

The maximum eigenvalue statistic: H0: rank r, H1: rank=r+1

 max r 1
ˆ= -T ln 1    , r=0, 1, …, n-1

tests whether the estimated (r+1)th largest eigenvalue is significantly different from zero.

The Trace statistic : H0: rank r, H1: rank r+1

 
n

trace i
i=r+1

ˆ= -T ln 1 ,   r=0, 1, …, n-1

tests whether the smallest n-r estimated eigenvalues are significantly different from zero.
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These tests are carried out as a sequence of tests starting from 0, 1, ….. n-1. A large

test statistic value implies a rejection of the null.

For the eigenvectors corresponding to the non-stationary part of the model, the

eigenvalues i=0 for i=r+1, …n. So, the null hypothesis:

H0: there are at most r cointegrating vectors, corresponds to

H0: i = 0, i=r+1,,…,n.

that is only the first r eigenvalues are non-zero (i  0, i=1,…,r)

Summary

 max Test Trace test

H0 H1 H0 H1

(i) r=0 r=1 r=0 r1

(ii) r≤1 r=2 r≤1 r2

. . . . .

. r≤n-1 r=n r≤n-1 r=n 

Steps: Start with (i). If H0 is rejected then do (ii). If this is not rejected then it must

imply that rank is either 0 or 1. But since we have already rejected the rank=0, conclude

that rank must be 1. etc…

Tabulated critical values depend on the specifications of the deterministic terms

(constants, dummies, trend etc.) in the equations.



5

Estimation of cointegration vectors

Having established the number of cointegrating vectors, say r, the next step is estimation of

the cointegrating relationships. For more than one cointegrating relationship (r>1), OLS is

inappropriate. Johansen develops maximum likelihood estimators.

We now go back to our equation (5) (from Handout 13):

yt =  yt-1 + 1yt-1 + t (5)

Let us assume that the above tests have established r cointegrating vectors. This means

that the rank of matrix  is r.

For r cointegrating vectors,  can be decomposed as ’, where  and  are both (nxr)

matrices.  will contain the cointegrating vectors and  will contain the adjustment

coefficients.

Supposing we have n=3 and r=2. We then have the following:

yt = ’yt-1 + 1yt-1 +t (6)

yt is a (3 x 1) vector.  and are (3 x 2) matrices, 1 is (3x3) matrix.
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We have three equations with two error correction terms in each. Each of the r

cointegration vectors in  is associated with a particular column in  that must have at

least one non zero element. The tests for the (reduced) rank of  (or for the number r of

CVs) are equivalent to testing which columns of  are zero. These tests therefore require the

factorization of , which cannot be done by standard regression techniques, but it is done by

a procedure based on reduced rank regressions involving canonical correlations.
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Johansen shows that the ML estimate for  is equal to the matrix V̂ containing the r

eigenvectors 1 rˆ ˆ(v ,..., v ) corresponding to the r largest eigenvalues 1 2 r
ˆ ˆ ˆ, ,...,   .

So, 1 r 1 r
ˆ ˆ ˆ ˆ( ,..., ) (v ,..., v )   . Estimates of  are then given for fixed .

More specifically, the ML estimator of  is found by solving the equation

-1
11 10 00 01| - |= 0S S S S .

for the n eigenvalues 1 1 n
ˆ ˆ ˆ...      and corresponding eigenvectors 1 2 n

ˆ ˆ ˆ ˆV (v , v ,...v ) .

All calculations are based on the sample moment matrices

T
'-1

ij it jt
t=1

= R RS T  i,j=0,1

where R t0, are the residuals from the regressions of  ty on the lagged difference terms in

(5). Note in our example we have only one lagged first difference of each of the three

variables. 1,tR are the residuals from the regressions of yt-1 on the lagged difference terms.

The n eigenvalues are a measure of correlation between the I(0) variables, yt, and specific

linear combinations of yt. As only a stationary linear combination of the variables yt will

have a high correlation with yt, large eigenvalues correspond to the existence of a

stationary linear combination of yt, that is, of a cointegrating relationship.

The eigenvectors corresponding to the large eigenvalues are then the cointegrating vectors

1 r
ˆ ˆ ˆ(v ,..., v )  .

For fixed  an estimate of  is given by

1
01 11

ˆ ( ) S ( 'S )     
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Identification

It is important to note that for r>1 these parameter vectors are not uniquely defined as

different combinations of  and  can give the same matrix ’. For any invertible rxr

matrix P,

’=PP’=’

and these yield the same  matrix.

In order to obtain unique cointegrating relationships, we will need to impose restrictions on

One obvious thing to do is to normalise so that in (7) we set 11=22=1.

The above specification (7) implies the following:

y1t = *
11 y1t + *

21 y2t+
*
31 y3t] + *

12  *
12 y1t +y2t+

*
32 y3t] + 1t

and similarly for the other two variables. Stars indicate normalised coefficients, for

example, *
11 = 1111 , *

21 21/11, 
*
31 31/11, and so on.

In addition to this, for identification we need to impose another r-1 restrictions on each of

the CV. In our example, with n=3 and r=2, one more restriction is needed in each CV.

These restrictions can be equal and opposite signs and or zero (exclusion) restrictions.

Can have more than the required restrictions and these are called over-identifying

restrictions. These over-identifying restrictions can be tested.
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Weak exogeneity

The adjustment coefficients s can be tested to see whether they are zero. If they are

zero then that particular error correction term does not enter that equation. More of this

later in the money demand example.

If in equation (7) 31=32=0
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then the cointegrating vectors in  do not enter the equation for y3t, and y3 is said to be

weakly exogenous with respect to . This means that when estimating  there is no loss

of information from not modelling y3t, and this variable can then enter at time t on the

RHS of the VECM:

1 1 1 1

1 11 21 31 111 12

2 1 1 2 1 0 3
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where 1
 is a (2x3) matrix, and 0 a (2x1) vector.

The test for weak exogeneity is conducted by placing zero restrictions to the elements of

the ith row of  and by computing a likelihood ratio test involving the restricted and

unrestricted model to test the null hypothesis that the restrictions are valid.

Notes:

(i) We need to ensure that ts are indeed iid. Will need enough lags in the VAR

to eliminate the serial correlation.

(ii) Cannot have too many lags in the VAR because of degrees of freedom

problems.

(iii) Main advantage is that we can test various hypotheses about the underlying

coefficients which we could not do in the Engle-Granger methodology.


