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Revision concepts    
 

Univariate Time Series Models 
 

  
Assumption:   the series has been generated by a stochastic process, {Yt}, 
that is, each element in the series, Y1, Y2, ...,Yt,  is drawn randomly from a 
probability distribution. 
 
Definitions:  
 
A time series is a collection of random variables ordered in time {Y1, Y2, 
...,Yt}. The stochastic process {Yt} can be described by the joint probability 
distribution (T-dimensional), with mean, variance and covariances: 
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Mean = E(Yt)=μt ,     t=1,2,...,T 
 
V(Yt) = E(Yt-μt)2 = σ2

t,     t=1,2,...,T  
 
Cov(Yt,Ys) = E[(Yt-μt)(Ys-μs)] = γ(t,s)  

 

autocovariances between Yt and Ys, t,s=1,2,...,T and t≠s. If t=s we obtain 
the variance of Y, denoted as γ(0). 
 
The observed time series {y1, y2,...,yt}, is regarded as a particular realisation 
(sample) of the stochastic process (population).  
 
In practice we have only a single realisation of a time series, for example, 
GDP in 1997, quarter 4, to infer the unknown parameters of the stochastic 
process.  
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This procedure is valid only if the process is ergodic. Ergodicity implies 
that the sample moments of the realisation approach the population 
moments as T (the length of the realisation) becomes infinite.  
 
Strict stationarity. A time series is said to be strictly stationary if the joint 
and conditional probability distributions of the process are unchanged if 
displaced in time.  Thus the PDF of any set of T observations Yt1, Yt2, ...,YtT 
must be the same as the PDF of Yt1+k, Yt2+k,..., YtT+k, for any t, k. 
 
In practice it is more common to use a weaker definition of stationarity. 
 
 
Weak stationarity (or covariance stationarity). A time series is said to be 
weakly stationary if the mean, variance and covariances are independent of 
t.  
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Thus, for a weakly stationary time series it holds that: 
 
E(Yt)=constant=μ 
Var(Yt)= E(Yt-μ)2 =constant= σ2 

 
kth order autocovariance:    
 

Cov(Yt,Yt-k)=E[(Yt-μ)(Yt-k-μ)]= γ(k) ,  k=...,-2,-1,0,1,2,... 
 
i.e. the autocovariance between Yt and Yt-k depends on k, the time gap, and 
not on t, and they are symmetrical about lag zero, thus:   
 

Cov(Yt,Yt-k)= Cov(Yt,Yt+k)=Cov(Yt-j,Yt-j-k). 
 
 
For k=0,   γ(0)=Var(Yt). 
 
If any of these conditions are not satisfied, the time series is nonstationary. 
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For a covariance stationary series we define: 
 
Autocorrelation coefficients at lag k: 
 

   ρ(k)= t t k

t t k

Cov(YY )
Var(Y ) Var(Y )

−

−

= t t k

t

Cov(YY )
Var(Y )

− =
0

( k )
( )

γ
γ

,  -1 < ρ(k) < 1,    

 
k=...,-2,-1,0,1,2,...(time independent)           ∴ ρ(0) = 1 
 
Autocorrelation function (ACF): a formula giving the autocorrelation coefficients. 
Useful to characterise ARMA models (see later). For example:  
 
ACF for the AR(1) process:      ρk= φ ρk-1= φ k  
ACF for the AR(2) process :    ρk= φ1ρk-1+ φ2ρk-2 ,   k=2,3,… 
 
Correlogram: a graphical representation of the ACF, a plot of ρ(k) against k. 
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Stationary Time series Models 
 
(i) White-noise process (purely random process) 
the sequence {εt}is a white noise process if 20t ~ iid( , )ε σ , 
 

0tE( )ε =  
2

tV( )ε σ= < ∞ 
0t sCov( )ε ε = , ∀t≠s 

  
(ii) Autoregressive process of order p  - AR(p) 
 
 1 1 2 2t t t p t p ty y y yφ φ φ ε− − −= + + + +…  20t ~ iid( , )ε σ  (1) 
 
yt is regressed on past values. φ1, φ2,...,φp are unknown parameters. Using the lag 

operator Lkyt =yt-k the AR(p) process can be written as: 

 φ(L)yt = εt  where φ(L)=1- φ1L- φ2L2-...- φpLp 
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This process is a pth order stochastic difference equation. There is a direct link 

between the stability (convergence) condition of a difference equation and the 

stationarity of an economic variable. If all the roots of the characteristic equation of 

(1): 

 bp - φ1bp-1 - φ2bp-2-...-φp = 0        (2) 

lie within the unit circle (stability condition, |bi|<1), the AR process is stationary. 

Or, equivalently, the characteristic roots of the lag polynomial: 

1- φ1L - φ2L2 -...-φpLp= 0        (3) 

 

(called the inverse characteristic equation), must lie outside the unit circle (|Li|>1). 

The polynomial φ(L)=1- φ1L- φ2L2-...- φpLp can always be factorised as  

φ(L)=1- φ1L- φ2L2-...- φpLp= (1-b1L)(1-b2L)…(1-bpL) 

where the bi may be seen as the roots of the characteristic equation (2) above.  
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For example, in an AR(2) process  

1 1 2 2t t t ty y yφ φ ε− −= + +  

The characteristic equation is b2-φ1b-φ2=0, with roots  

b1, b2= 
2

1 1 24
2

φ φ φ± +
 

Now, the lag polynomial can be factorised as  

φ(L)=1- φ1L- φ2L2 = (1-b1L)(1-b2L) 

and the roots are Li=1/bi (i=1,2), so that if |bi|<1,  |Li|>1.  

 

The connection between the φi and the bi parameters is b1+b2=φ1, and b1b2=-φ2.  

 

In the AR(2) case complex roots will occur if φ1
2+4φ2<0.  The roots can be written  

b1, b2= h ±vi , with h and v real numbers, and i=√-1 
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The absolute value of each root is |bi|= 2 2
2h v φ+ = −  

The stationarity conditions for the AR(2) process can also be expressed in terms of 

the coefficients φi as follows: φ2+φ1<1;  φ2-φ1<1;     |φ2|<1 
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AR(1) process 

 1t t ty y ,φ ε−= +   

yt is regressed on yt-1, a first order difference equation. Using the lag operator: 

 1t t t t ty Ly ( L )yφ ε φ ε− = ⇒ − =  

Necessary condition for stationarity: 1φ < , or |L|>1.  

Solving the AR(1) process above for yt:  

 
1

t
ty

( L )
ε
φ

=
−

, 1 2 2 3 31 1( L ) L L Lφ φ φ φ−− = + + + +…, an infinite sum. 

So, 2 2 3 3

0
1 j

t t t j
j

y ( L L L )φ φ φ ε φ ε
∞

−
=

= + + + + = ∑… ,  an infinite MA process.  
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If 1φ < , the effects of εt-j will converge to zero as j → ∞, i.e. the influence of any 

shock will go to zero over time, at a rate that depends on the value of φ. So, the 

stationarity condition ensures that the MA form is not explosive. 

 

It can be shown that any AR(p) model can be similarly expressed. 
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Stationarity and unit roots 

The process is nonstationary, and said to have a unit root if L=1 solves φ(L)=0, i.e. 

if φ(1)= 1- φ= 0. This implies φ=1 in the AR(1) model. 

 

More generally, if φ(L)=1- φ1L - φ2L2 -...-φpLp, then the process will contain a unit 

root if  φ(1)= 1- φ1 - φ2 -...-φp= 0. 

 

A variable with a unit root is said to be integrated of order one, written I(1), where 

1 denotes a single unit root. A stationary process is written I(0).   

 

An I(2) process contains 2 unit roots. Example AR(2): Yt=2Yt-1-Yt-2+ut , which can 

be rewritten as (1-L)(1-L)Yt=ut. 
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 (iii) Moving Average process of order q  - MA(q) 
 
 1 1 2 2t t t q t q ty θ ε θ ε θ ε ε− − −= + + + +…  20t ~ iid( , )ε σ  
 

ty  is a weighted average of the 1t t t q, , ,ε ε ε− −…  
 
Moving Average process of order 1 MA(1):       
 

1 1t t ty θ ε ε−= +  
 
or, using the lag operator:        
 

yt  = θ(L)εt   θ(L)=1+θ1L 
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In practice we observe the yt series, and the εts can only be estimated by the 

equation: 

 [θ(L)]-1yt = εt 

 

If a non-explosive solution for εt is found, the MA model is said to be invertible, i.e. 

an infinite AR representation (AR(∞)) exists. 

 

For the MA(1) model the invertibility condition is that θ1<1, or the solution of 

θ(L)=1+θ1L=0 is >1. In general, MA(q) models are called invertible when the 

solutions to 

 θ(L)=1+θ1L+θ2L2+...+θqLq  = 0 

 

are all outside the unit circle. 
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 (iv) Autoregressive Moving Average process of order p,q  - ARMA(p,q) 
 

1 1 2 2 1 1 2 2t t t p t p t t q t q ty y y yφ φ φ θ ε θ ε θ ε ε− − − − − −= + + + + + + + +… …  
 
This process combines an AR(p) with an MA(q) model. The AR(p) component is a 
linear difference equation. If all the characteristic roots of the AR component are 
within the unit circle (stability condition), the ARMA(p,q) model is stationary. 

 

Wold decomposition theorem ensures that any stationary process can be written in MA 
form (although this might need to have an infinite order).  
 
 

ARMA(1,1)    yt = φ1yt-1 + εt + θ1εt-1 . 

 (1-φ1L)yt = (1+θ1L)εt      stationary if  ⎜φ1 ⎜ < 1;   invertible if ⎜θ1 ⎜ < 1 
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Consider now the case of common roots or redundant parameters in ARMA models 

 

ARMA(1,1)    yt = φ1yt-1 + εt + θ1εt-1 . 

  (1-φ1L)yt = (1+θ1L)εt       

If θ1 = -φ1, can devide both sides by (1+θ1L) to obtain a white noise process yt = εt       

 

ARMA (2,1)    (1-φ1L-φ2L2)yt = (1+θ1L)εt 

rewrite as          (1-b1L)(1-b2L)yt = (1+θ1L)εt 

If θ1= -b1 can devide both sides by (1+θ1L) to obtain an AR(1) process: (1-b2L)yt =εt 

 

In general, if there is one common root, an ARMA(p,q) can be written equivalently as 

an ARMA(p-1, q-1) model.  
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Properties of AR series  

 

AR(1) model  

yt = φyt-1 + εt    can be written as infinite MA: 

yt = εt + φ εt-1 + φ2 εt-2 + ...... 

    = 
0

j
t j

j
φ ε

∞

−
=
∑    called the Wold representation 

Note: This is a special case of a more general result. The Wold’s decomposition 
theorem states that any zero-mean covariance stationary process can be represented 
in the form of an infinite moving average. 
 

Mean:   E(yt)    = E(εt + φ εt-1 + φ2 εt-2 + ......)  

= E(εt ) + φE(εt-1 ) + φ2 E(εt-2 ) + ..... 

= 0   

as E(εt)=0 by assumption. The mean is finite and time independent. 
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Variance:  Var(yt)    = Var(εt + φ εt-1 + φ2 εt-2 + ......) 

 

                   = σε
2 + φ2 σε

2 +φ4 σε
2 +  ….. 

 

                  = σε
2 (1+ φ2 + φ4 +….) 

   

⇒    σy
2   = 

2

21
εσ
φ−

= γ(0)   

 

as Cov(εt , εt-j) = 0. The variance is finite and time independent. 
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(Auto) Covariances:  

 

Cov(yt, yt-1)   = Cov[φ yt-1 + εt , yt-1]   =   φ Var(yt-1) + 0   =  φ σy
2  

  

 ∴ γ(1) = φ σy
2   [ γ(0) = σy

2 ] 

 

as Var(yt) =Var(yt-1)= σy
2  and E(εt yt-1)=0   

 ∴ ρ(1) = 
(1)
(0)

γ φ
γ

=  

 

 Cov(yt , yt-2)  = Cov[φ yt-1 + εt , yt-2]   =    φ Cov(yt-1 , yt-2) + 0 
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 ∴  γ(2) = φ γ(1) = φ2 σy
2 

 

 ∴  ρ(2) = 
2
0

( )
( )

γ
γ

 = φ2                   etc............................. 

 

 γ(k)= φk σy
2 ,   and     

 

ρ(k) = φk for    k = 0, 1, 2, ...          

 

 

Note ρ(0) =1, and  ρ(k) = φk → 0   as  k → ∞  if  -1 < φ < 1 
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For an AR(1) process the coefficient on  yt-1= φ = 1st order autocorrelation coefficient 

ρ(1).  This is only true for AR(1). 

 

So, the autocorrelation function for the AR(1) model decays to zero, i.e. the 

influence of any shock goes to zero, at a rate which depends on the value of φ . 

 

Mean, variance and autocovariances are all finite and time independent: the process 

is stationary. 
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For the AR(2) process it can be shown that  

 
2

1 1 2 2
0

1
( ) σγ

φ ρ φ ρ
=

− −
  ;    1

1
21

φρ
φ

=
−

;     
2

1
2 2

21
φρ φ

φ
= +

−
 

By combining the expressions above the unconditional variance can be rewritten as  
2

2
2 2

2 2 1

10
1 1

( )( )
( )[( ) ]

φ σγ
φ φ φ

−
=

+ − −  

 

Also note that ρk=  φ1ρk-1+ φ2ρk-2 ,   k=2,3,…, a second order difference equation, with 

coefficients  φ1 and φ2.  

 

So, stationarity conditions ensure that ACF dies out as lag increases, i.e. the ρk 

sequence must be convergent. Initial values are  ρ0=1 and ρ1 above.  
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Properties of MA series  
 

MA(1)  yt = εt + θ εt-1 

 

Mean  E(yt) = 0  ;   

 

Variance Var(yt) = (1+θ2)σε
2   = γ(0)     

 

Covariances Cov(yt, yt-1) = Cov(εt + θ εt-1 , εt-1 + θ εt-2)  =   θ σε
2   =   γ(1) . 

 ∴ ρ(1) = 
2

2 2 2
(1)
(0) (1 1)

ε

ε

θσγ θ
γ θ σ θ

= =
+ +

 

 

 and    γ(2) = γ(3) = ... = 0    which implies that     ρ(2) = ρ(3) = ... = 0 
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For the MA(2) process it can be shown that  

 

 Var(yt) = 2 2 2
1 21 0( ) ( )εθ θ σ γ+ + =   

 

 1 1 2
2 2

1 2

1
1

( ) θ θ θρ
θ θ
+

=
+ +

; 2
2 2

1 2

2
1

( ) θρ
θ θ

=
+ +

; ρ(3)=ρ(4)=..= 0 

 

Thus for an MA(q),     ρk = 0        ∀         k > q. 
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Properties of ARMA series 

 

For the ARMA(1,1) process it can be shown that:  

 
2

21 1 1
2

1

1 20
1

( ) θ φ θγ σ
φ

+ −
=

−
;  

 

21 1 1 1
2

1

11
1

( )( )( ) φ θ φ θγ σ
φ

− −
=

−
 

 

1 1 1 1
2

1 1 1

11
1 2

( )( )( ) φ θ φ θρ
θ φ θ

− −
=

+ −
;   

 

ρ(k)=  φ1ρ(k-1)  for    k>1. 
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Partial autocorrelation functions (PACF) 

 

All AR processes imply ACFs that dump out. PACFs are used to help 
discriminating between AR processes of different orders. 
 

PACs are calculated to adjust for the portion of autocorrelation between yt and yt-k, 

due to the correlation that these variables have with the intermediate lags yt-1, y t-2, 

..., y t-k+1. 

 

The lag k partial autocorrelation is the partial regression coefficient φkk in the kth 

order autoregression: 

 

1 1 2 2t k t k t kk t k ty y y ... yφ φ φ ε− − −= + + + +  
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and it measures the additional correlation between yt and yt-k after adjusting for the 

intermediate variables yt-1, y t-2, ..., y t-k+1.  

 

AR(1):  φ11 = ρ1    φkk = 0 for k>1 

 

AR(2):  φ11 = ρ1, 

2
2 1

22 2
11

ρ ρφ
ρ

−
=

−
  φkk = 0 for k>2 

 

AR(p)   φ11≠0, φ22≠0,..., φpp≠0,  φkk = 0 for k>p 

 

 

PACs are zero for lags larger than the order of the process. 
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Summary Table:  theoretical values.  (The estimated sample values may or may 

not correspond to these population values) 

 

 AR(1) MA(1) 

 

Var(yt) 

2

21
εσ
φ−

 
 

2 21( ) εθ σ+  

 

ρk=corr(ytyt-k) 

 

φk 
21

θ
θ+

  k=1 

           0       k=2,3,... 

Stationarity (stability) 

condition 

−1 < φ < 1 No restriction on θ is needed 

Invertibility condition (this means 
that an MA process can be written 
as an infinite AR process) 

 −1 < θ < 1 
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Summary of correlation patterns 

 

Process ACF PACF 

AR(p) Infinite: damps out Finite: cuts off after 

lag p 

 

MA(q) Finite: cuts off after 

lag q 

 

Infinite: damps out 

ARMA Infinite: damps out 

 

Infinite: damps out 

 


