Revision concepts

Univariate Time Series Models

Assumption: the series has been generated by a stochastic process, $\left\{\mathrm{Y}_{\mathrm{t}}\right\}$, that is, each element in the series, $\mathrm{Y}_{1}, \mathrm{Y}_{2}, \ldots, \mathrm{Y}_{\mathrm{t}}$, is drawn randomly from a probability distribution.

Definitions:

A time series is a collection of random variables ordered in time $\left\{\mathrm{Y}_{1}, \mathrm{Y}_{2}\right.$, $\left.\ldots, Y_{t}\right\}$. The stochastic process $\left\{\mathrm{Y}_{\mathrm{t}}\right\}$ can be described by the joint probability distribution (T-dimensional), with mean, variance and covariances:

$$
\begin{aligned}
& \text { Mean }=E\left(Y_{t}\right)=\mu_{t}, \\
& V\left(Y_{t}\right)=E\left(Y_{t}-\mu_{t}\right)^{2}=\sigma_{t}^{2}, \\
& \operatorname{Cov}\left(Y_{t}, Y_{s}\right)=E\left[\left(Y_{t}-\mu_{t}\right)\left(Y_{s}-\mu_{s}\right)\right]=\gamma(t, s)
\end{aligned}
$$

autocovariances between Y_{t} and $\mathrm{Y}_{\mathrm{s}}, \mathrm{t}, \mathrm{s}=1,2, \ldots, \mathrm{~T}$ and $\mathrm{t} \neq \mathrm{s}$. If $\mathrm{t}=\mathrm{s}$ we obtain the variance of Y , denoted as $\gamma(0)$.

The observed time series $\left\{\mathrm{y}_{1}, \mathrm{y}_{2}, \ldots \mathrm{y}_{\mathrm{t}}\right\}$, is regarded as a particular realisation (sample) of the stochastic process (population).

In practice we have only a single realisation of a time series, for example, GDP in 1997, quarter 4, to infer the unknown parameters of the stochastic process.

This procedure is valid only if the process is ergodic. Ergodicity implies that the sample moments of the realisation approach the population moments as T (the length of the realisation) becomes infinite.

Strict stationarity. A time series is said to be strictly stationary if the joint and conditional probability distributions of the process are unchanged if displaced in time. Thus the PDF of any set of T observations $\mathrm{Y}_{\mathrm{t} 1}, \mathrm{Y}_{\mathrm{t} 2}, \ldots, \mathrm{Y}_{\mathrm{t} T}$ must be the same as the PDF of $Y_{t 1+k}, Y_{t 2+k}, \ldots, Y_{t T+k}$, for any t, k.

In practice it is more common to use a weaker definition of stationarity.

Weak stationarity (or covariance stationarity). A time series is said to be weakly stationary if the mean, variance and covariances are independent of t.

Thus, for a weakly stationary time series it holds that:
$\mathrm{E}\left(\mathrm{Y}_{\mathrm{t}}\right)=$ constant $=\mu$
$\operatorname{Var}\left(\mathrm{Y}_{\mathrm{t}}\right)=\mathrm{E}\left(\mathrm{Y}_{\mathrm{t}}-\mu\right)^{2}=$ constant $=\sigma^{2}$
$k^{\text {th }}$ order autocovariance:

$$
\operatorname{Cov}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{Y}_{\mathrm{t}-\mathrm{k}}\right)=\mathrm{E}\left[\left(\mathrm{Y}_{\mathrm{t}}-\mu\right)\left(\mathrm{Y}_{\mathrm{t}-\mathrm{k}}-\mu\right)\right]=\gamma(\mathrm{k}), \mathrm{k}=\ldots,-2,-1,0,1,2, \ldots
$$

i.e. the autocovariance between Y_{t} and $\mathrm{Y}_{\mathrm{t}-\mathrm{k}}$ depends on k , the time gap, and not on t , and they are symmetrical about lag zero, thus:

$$
\operatorname{Cov}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{Y}_{\mathrm{t}-\mathrm{k}}\right)=\operatorname{Cov}\left(\mathrm{Y}_{\mathrm{t}}, \mathrm{Y}_{\mathrm{t}+\mathrm{k}}\right)=\operatorname{Cov}\left(\mathrm{Y}_{\mathrm{t}-\mathrm{j}}, \mathrm{Y}_{\mathrm{t}-\mathrm{j}-\mathrm{k}}\right) .
$$

For $\mathrm{k}=0, \quad \gamma(0)=\operatorname{Var}\left(\mathrm{Y}_{\mathrm{t}}\right)$.
If any of these conditions are not satisfied, the time series is nonstationary.

For a covariance stationary series we define:
Autocorrelation coefficients at lag k:

$$
\rho(\mathrm{k})=\frac{\operatorname{Cov}\left(Y_{t} Y_{t-k}\right)}{\sqrt{\operatorname{Var}\left(Y_{t}\right)} \sqrt{\operatorname{Var}\left(Y_{t-k}\right)}}=\frac{\operatorname{Cov}\left(Y_{t} Y_{t-k}\right)}{\operatorname{Var}\left(Y_{t}\right)}=\frac{\gamma(k)}{\gamma(0)}, \quad-1<\rho(\mathrm{k})<1,
$$

$\mathrm{k}=\ldots,-2,-1,0,1,2, \ldots$ (time independent) $\quad \therefore \rho(0)=1$
Autocorrelation function (ACF): a formula giving the autocorrelation coefficients. Useful to characterise ARMA models (see later). For example:

ACF for the $\operatorname{AR}(1)$ process: $\quad \rho_{k}=\phi \rho_{k-1}=\phi^{k}$
ACF for the $\operatorname{AR}(2)$ process : $\quad \rho_{\mathrm{k}}=\phi_{1} \rho_{\mathrm{k}-1}+\phi_{2} \rho_{\mathrm{k}-2}, \mathrm{k}=2,3, \ldots$
Correlogram: a graphical representation of the ACF , a plot of $\rho(\mathrm{k})$ against k .

Stationary Time series Models

(i) White-noise process (purely random process) the sequence $\left\{\varepsilon_{t}\right\}$ is a white noise process if $\varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right)$,
$E\left(\varepsilon_{t}\right)=0$
$V\left(\varepsilon_{t}\right)=\sigma^{2}<\infty$
$\operatorname{Cov}\left(\varepsilon_{t} \varepsilon_{s}\right)=0, \forall \mathrm{t} \neq \mathrm{s}$
(ii) Autoregressive process of order \mathbf{p} - AR(p)

$$
\begin{equation*}
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\varepsilon_{t} \quad \varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right) \tag{1}
\end{equation*}
$$

y_{t} is regressed on past values. $\phi_{1}, \phi_{2}, \ldots, \phi_{\mathrm{p}}$ are unknown parameters. Using the lag operator $L^{k} y_{t}=y_{t-k}$ the $A R(p)$ process can be written as:

$$
\phi(\mathrm{L}) \mathrm{y}_{\mathrm{t}}=\varepsilon_{\mathrm{t}} \quad \text { where } \phi(\mathrm{L})=1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}-\ldots-\phi_{\mathrm{p}} \mathrm{~L}^{\mathrm{p}}
$$

This process is a pth order stochastic difference equation. There is a direct link between the stability (convergence) condition of a difference equation and the stationarity of an economic variable. If all the roots of the characteristic equation of (1):

$$
\begin{equation*}
b^{\mathrm{p}}-\phi_{1} b^{\mathrm{p}-1}-\phi_{2} b^{\mathrm{p}-2}-\ldots-\phi_{\mathrm{p}}=0 \tag{2}
\end{equation*}
$$

lie within the unit circle (stability condition, $\left|\mathrm{b}_{\mathrm{i}}\right|<1$), the AR process is stationary. Or, equivalently, the characteristic roots of the lag polynomial:

$$
\begin{equation*}
1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}-\ldots-\phi_{\mathrm{p}} \mathrm{~L}^{\mathrm{p}}=0 \tag{3}
\end{equation*}
$$

(called the inverse characteristic equation), must lie outside the unit circle $\left(\left|\mathrm{L}_{\mathrm{i}}\right|>1\right)$.
The polynomial $\phi(\mathrm{L})=1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}-\ldots-\phi_{p} \mathrm{~L}^{p}$ can always be factorised as

$$
\phi(\mathrm{L})=1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}-\ldots-\phi_{\mathrm{p}} \mathrm{~L}^{\mathrm{p}}=\left(1-\mathrm{b}_{1} \mathrm{~L}\right)\left(1-\mathrm{b}_{2} \mathrm{~L}\right) \ldots\left(1-\mathrm{b}_{\mathrm{p}} \mathrm{~L}\right)
$$

where the b_{i} may be seen as the roots of the characteristic equation (2) above.

For example, in an $\operatorname{AR}(2)$ process

$$
y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\varepsilon_{t}
$$

The characteristic equation is $\mathrm{b}^{2}-\phi_{1} \mathrm{~b}-\phi_{2}=0$, with roots

$$
\mathrm{b}_{1}, \mathrm{~b}_{2}=\frac{\phi_{1} \pm \sqrt{\phi_{1}^{2}+4 \phi_{2}}}{2}
$$

Now, the lag polynomial can be factorised as

$$
\phi(\mathrm{L})=1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}=\left(1-\mathrm{b}_{1} \mathrm{~L}\right)\left(1-\mathrm{b}_{2} \mathrm{~L}\right)
$$

and the roots are $\mathrm{L}_{\mathrm{i}}=1 / \mathrm{b}_{\mathrm{i}}(\mathrm{i}=1,2)$, so that if $\left|\mathrm{b}_{\mathrm{i}}\right|<1,\left|\mathrm{~L}_{\mathrm{i}}\right|>1$.

The connection between the ϕ_{i} and the b_{i} parameters is $b_{1}+b_{2}=\phi_{1}$, and $b_{1} b_{2}=-\phi_{2}$.

In the $\operatorname{AR}(2)$ case complex roots will occur if $\phi_{1}{ }^{2}+4 \phi_{2}<0$. The roots can be written $\mathrm{b}_{1}, \mathrm{~b}_{2}=h \pm v i$, with h and v real numbers, and $i=\sqrt{ }-1$

The absolute value of each root is $\left|\mathrm{b}_{\mathrm{i}}\right|=\sqrt{h^{2}+v^{2}}=-\phi_{2}$
The stationarity conditions for the $\operatorname{AR}(2)$ process can also be expressed in terms of the coefficients ϕ_{i} as follows: $\quad \phi_{2}+\phi_{1}<1 ; \quad \phi_{2}-\phi_{1}<1 ; \quad\left|\phi_{2}\right|<1$

AR(1) process

$$
y_{t}=\phi y_{t-1}+\varepsilon_{t}
$$

y_{t} is regressed on $\mathrm{y}_{\mathrm{t}-1}$, a first order difference equation. Using the lag operator:

$$
y_{t}-\phi L y_{t}=\varepsilon_{t} \Rightarrow(1-\phi L) y_{t}=\varepsilon_{t}
$$

Necessary condition for stationarity: $|\phi|<1$, or $|\mathrm{L}|>1$.
Solving the $\mathrm{AR}(1)$ process above for y_{t} :

$$
y_{t}=\frac{\varepsilon_{t}}{(1-\phi L)}, \quad(1-\phi L)^{-1}=1+\phi L+\phi^{2} L^{2}+\phi^{3} L^{3}+\ldots, \text { an infinite sum. }
$$

So, $y_{t}=\left(1+\phi L+\phi^{2} L^{2}+\phi^{3} L^{3}+\ldots\right) \varepsilon_{t}=\sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t-j}$, an infinite MA process.

If $|\phi|<1$, the effects of $\varepsilon_{\mathrm{t}-\mathrm{j}}$ will converge to zero as $\mathrm{j} \rightarrow \infty$, i.e. the influence of any shock will go to zero over time, at a rate that depends on the value of ϕ. So, the stationarity condition ensures that the MA form is not explosive.

It can be shown that any $\operatorname{AR}(\mathrm{p})$ model can be similarly expressed.

Stationarity and unit roots

The process is nonstationary, and said to have a unit root if $\mathrm{L}=1$ solves $\phi(\mathrm{L})=0$, i.e. if $\phi(1)=1-\phi=0$. This implies $\phi=1$ in the $\operatorname{AR}(1)$ model.

More generally, if $\phi(\mathrm{L})=1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}-\ldots-\phi_{\mathrm{p}} \mathrm{L}^{\mathrm{p}}$, then the process will contain a unit root if $\phi(1)=1-\phi_{1}-\phi_{2}-\ldots-\phi_{p}=0$.

A variable with a unit root is said to be integrated of order one, written $I(1)$, where 1 denotes a single unit root. A stationary process is written $I(0)$.

An $I(2)$ process contains 2 unit roots. Example $\operatorname{AR}(2): Y_{t}=2 Y_{t-1}-Y_{t-2}+u_{t}$, which can be rewritten as $(1-\mathrm{L})(1-\mathrm{L}) \mathrm{Y}_{\mathrm{t}}=\mathrm{u}_{\mathrm{t}}$.
(iii) Moving Average process of order q-MA(q)

$$
y_{t}=\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t} \quad \varepsilon_{t} \sim \operatorname{iid}\left(0, \sigma^{2}\right)
$$

y_{t} is a weighted average of the $\varepsilon_{t}, \varepsilon_{t-1}, \ldots, \varepsilon_{t-q}$
Moving Average process of order $1 \mathrm{MA}(1)$:

$$
y_{t}=\theta_{1} \varepsilon_{t-1}+\varepsilon_{t}
$$

or, using the lag operator:

$$
\mathrm{y}_{\mathrm{t}}=\theta(\mathrm{L}) \varepsilon_{\mathrm{t}} \quad \theta(\mathrm{~L})=1+\theta_{1} \mathrm{~L}
$$

In practice we observe the y_{t} series, and the $\varepsilon_{\mathrm{t}} \mathrm{S}$ can only be estimated by the equation:

$$
[\theta(\mathrm{L})]^{-1} \mathrm{y}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}
$$

If a non-explosive solution for ε_{t} is found, the MA model is said to be invertible, i.e. an infinite AR representation $(\operatorname{AR}(\infty))$ exists.

For the $\mathrm{MA}(1)$ model the invertibility condition is that $\theta_{1}<1$, or the solution of $\theta(\mathrm{L})=1+\theta_{1} \mathrm{~L}=0$ is >1. In general, MA(q) models are called invertible when the solutions to

$$
\theta(\mathrm{L})=1+\theta_{1} \mathrm{~L}+\theta_{2} \mathrm{~L}^{2}+\ldots+\theta_{\mathrm{q}} \mathrm{~L}^{\mathrm{q}}=0
$$

are all outside the unit circle.

(iv) Autoregressive Moving Average process of order p,q - ARMA(p,q)

$y_{t}=\phi_{1} y_{t-1}+\phi_{2} y_{t-2}+\ldots+\phi_{p} y_{t-p}+\theta_{1} \varepsilon_{t-1}+\theta_{2} \varepsilon_{t-2}+\ldots+\theta_{q} \varepsilon_{t-q}+\varepsilon_{t}$
This process combines an $\operatorname{AR}(\mathrm{p})$ with an $\operatorname{MA}(\mathrm{q})$ model. The $\operatorname{AR}(\mathrm{p})$ component is a linear difference equation. If all the characteristic roots of the AR component are within the unit circle (stability condition), the $\operatorname{ARMA}(p, q)$ model is stationary.

Wold decomposition theorem ensures that any stationary process can be written in MA form (although this might need to have an infinite order).
$\operatorname{ARMA}(1,1) \quad y_{t}=\phi_{1} y_{t-1}+\varepsilon_{t}+\theta_{1} \varepsilon_{t-1}$.

$$
\left(1-\phi_{1} \mathrm{~L}\right) \mathrm{y}_{\mathrm{t}}=\left(1+\theta_{1} \mathrm{~L}\right) \varepsilon_{\mathrm{t}} \quad \text { stationary if }\left|\phi_{1}\right|<1 ; \text { invertible if }\left|\theta_{1}\right|<1
$$

Consider now the case of common roots or redundant parameters in ARMA models
$\operatorname{ARMA}(1,1) \quad \mathrm{y}_{\mathrm{t}}=\phi_{1} \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}+\theta_{1} \varepsilon_{\mathrm{t}-1}$.

$$
\left(1-\phi_{1} \mathrm{~L}\right) \mathrm{y}_{\mathrm{t}}=\left(1+\theta_{1} \mathrm{~L}\right) \varepsilon_{\mathrm{t}}
$$

If $\theta_{1}=-\phi_{1}$, can devide both sides by $\left(1+\theta_{1} L\right)$ to obtain a white noise process $y_{t}=\varepsilon_{t}$

ARMA (2,1)

$$
\left(1-\phi_{1} \mathrm{~L}-\phi_{2} \mathrm{~L}^{2}\right) \mathrm{y}_{\mathrm{t}}=\left(1+\theta_{1} \mathrm{~L}\right) \varepsilon_{\mathrm{t}}
$$

rewrite as

$$
\left(1-b_{1} \mathrm{~L}\right)\left(1-\mathrm{b}_{2} \mathrm{~L}\right) \mathrm{y}_{\mathrm{t}}=\left(1+\theta_{1} \mathrm{~L}\right) \varepsilon_{\mathrm{t}}
$$

If $\theta_{1}=-b_{1}$ can devide both sides by $\left(1+\theta_{1} \mathrm{~L}\right)$ to obtain an $\operatorname{AR}(1)$ process: $\left(1-\mathrm{b}_{2} \mathrm{~L}\right) \mathrm{y}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}$

In general, if there is one common root, an $\operatorname{ARMA}(p, q)$ can be written equivalently as an ARMA(p-1, q-1) model.

Properties of AR series

AR(1) model

$$
\begin{aligned}
\mathrm{y}_{\mathrm{t}} & =\phi \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}} \quad \text { can be written as infinite MA: } \\
\mathrm{y}_{\mathrm{t}} & =\varepsilon_{\mathrm{t}}+\phi \varepsilon_{\mathrm{t}-1}+\phi^{2} \varepsilon_{\mathrm{t}-2}+\ldots \ldots \\
& =\sum_{j=0}^{\infty} \phi^{j} \varepsilon_{t-j} \quad \text { called the Wold representation }
\end{aligned}
$$

Note: This is a special case of a more general result. The Wold's decomposition theorem states that any zero-mean covariance stationary process can be represented in the form of an infinite moving average.

Mean: $\quad \mathrm{E}\left(\mathrm{y}_{\mathrm{t}}\right)=\mathrm{E}\left(\varepsilon_{\mathrm{t}}+\phi \varepsilon_{\mathrm{t}-1}+\phi^{2} \varepsilon_{\mathrm{t}-2}+\ldots \ldots.\right)$

$$
\begin{aligned}
& =\mathrm{E}\left(\varepsilon_{\mathrm{t}}\right)+\phi \mathrm{E}\left(\varepsilon_{\mathrm{t}-1}\right)+\phi^{2} \mathrm{E}\left(\varepsilon_{\mathrm{t}-2}\right)+\ldots . . \\
& =0
\end{aligned}
$$

as $\mathrm{E}\left(\varepsilon_{\mathrm{t}}\right)=0$ by assumption. The mean is finite and time independent.

Variance: $\operatorname{Var}\left(\mathrm{y}_{\mathrm{t}}\right)=\operatorname{Var}\left(\varepsilon_{\mathrm{t}}+\phi \varepsilon_{\mathrm{t}-1}+\phi^{2} \varepsilon_{\mathrm{t}-2}+\ldots . ..\right)$

$$
\begin{aligned}
& =\sigma_{\varepsilon}^{2}+\phi^{2} \sigma_{\varepsilon}^{2}+\phi^{4} \sigma_{\varepsilon}^{2}+\ldots . . \\
& =\sigma_{\varepsilon}^{2}\left(1+\phi^{2}+\phi^{4}+\ldots .\right) \\
\Rightarrow \quad \sigma_{y}^{2} & =\frac{\sigma_{\varepsilon}^{2}}{1-\phi^{2}}=\gamma(0)
\end{aligned}
$$

as $\operatorname{Cov}\left(\varepsilon_{\mathrm{t}}, \varepsilon_{\mathrm{t}-\mathrm{j}}\right)=0$. The variance is finite and time independent.

(Auto) Covariances:

$\operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-1}\right)=\operatorname{Cov}\left[\phi \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-1}\right]=\phi \operatorname{Var}\left(\mathrm{y}_{\mathrm{t}-1}\right)+0=\phi \sigma_{\mathrm{y}}^{2}$

$$
\therefore \gamma(1)=\phi \sigma_{\mathrm{y}}^{2} \quad\left[\gamma(0)=\sigma_{\mathrm{y}}^{2}\right]
$$

as $\operatorname{Var}\left(\mathrm{y}_{\mathrm{t}}\right)=\operatorname{Var}\left(\mathrm{y}_{\mathrm{t}-1}\right)=\sigma_{\mathrm{y}}{ }^{2}$ and $\mathrm{E}\left(\varepsilon_{\mathrm{t}} \mathrm{y}_{\mathrm{t}-1}\right)=0$

$$
\therefore \rho(1)=\frac{\gamma(1)}{\gamma(0)}=\phi
$$

$$
\operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-2}\right)=\operatorname{Cov}\left[\phi \mathrm{y}_{\mathrm{t}-1}+\varepsilon_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-2}\right]=\phi \operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}-1}, \mathrm{y}_{\mathrm{t}-2}\right)+0
$$

$$
\begin{aligned}
& \therefore \gamma(2)=\phi \gamma(1)=\phi^{2} \sigma_{\mathrm{y}}^{2} \\
& \therefore \rho(2)=\frac{\gamma(2)}{\gamma(0)}=\phi^{2} \quad \text { etc.. } \\
& \gamma(\mathrm{k})=\phi^{\mathrm{k}} \sigma_{\mathrm{y}}^{2}, \text { and } \\
& \rho(\mathrm{k})=\phi^{\mathrm{k}} \quad \text { for } \quad \mathrm{k}=0,1,2, \ldots
\end{aligned}
$$

Note $\rho(0)=1$, and $\rho(\mathrm{k})=\phi^{\mathrm{k}} \rightarrow 0$ as $\mathrm{k} \rightarrow \infty$ if $-1<\phi<1$

For an $\operatorname{AR}(1)$ process the coefficient on $y_{t-1}=\phi=1$ st order autocorrelation coefficient $\rho(1)$. This is only true for $\operatorname{AR}(1)$.

So, the autocorrelation function for the $\operatorname{AR}(1)$ model decays to zero, i.e. the influence of any shock goes to zero, at a rate which depends on the value of ϕ.

Mean, variance and autocovariances are all finite and time independent: the process is stationary.

For the $\operatorname{AR}(2)$ process it can be shown that
$\gamma(0)=\frac{\sigma^{2}}{1-\phi_{1} \rho_{1}-\phi_{2} \rho_{2}} ; \quad \rho_{1}=\frac{\phi_{1}}{1-\phi_{2}} ; \quad \rho_{2}=\frac{\phi_{1}^{2}}{1-\phi_{2}}+\phi_{2}$
By combining the expressions above the unconditional variance can be rewritten as
$\gamma(0)=\frac{\left(1-\phi_{2}\right) \sigma^{2}}{\left(1+\phi_{2}\right)\left[\left(1-\phi_{2}\right)^{2}-\phi_{1}^{2}\right]}$

Also note that $\rho_{\mathrm{k}}=\phi_{1} \rho_{\mathrm{k}-1}+\phi_{2} \rho_{\mathrm{k}-2}, \quad \mathrm{k}=2,3, \ldots$, a second order difference equation, with coefficients ϕ_{1} and ϕ_{2}.

So, stationarity conditions ensure that ACF dies out as lag increases, i.e. the ρ_{k} sequence must be convergent. Initial values are $\rho_{0}=1$ and ρ_{1} above.

Properties of MA series

$$
\underline{\mathrm{MA}(1)} \quad \mathrm{y}_{\mathrm{t}}=\varepsilon_{\mathrm{t}}+\theta \varepsilon_{\mathrm{t}-1}
$$

Mean $\quad E\left(\mathrm{y}_{\mathrm{t}}\right)=0$;

Variance $\quad \operatorname{Var}\left(\mathrm{y}_{\mathrm{t}}\right)=\left(1+\theta^{2}\right) \sigma_{\varepsilon}^{2}=\gamma(0)$
$\operatorname{Covariances} \operatorname{Cov}\left(\mathrm{y}_{\mathrm{t}}, \mathrm{y}_{\mathrm{t}-1}\right)=\operatorname{Cov}\left(\varepsilon_{\mathrm{t}}+\theta \varepsilon_{\mathrm{t}-1}, \varepsilon_{\mathrm{t}-1}+\theta \varepsilon_{\mathrm{t}-2}\right)=\theta \sigma_{\varepsilon}^{2}=\gamma(1)$.
$\therefore \rho(1)=\frac{\gamma(1)}{\gamma(0)}=\frac{\theta \sigma_{\varepsilon}^{2}}{\left(1+\theta^{2}\right) \sigma_{\varepsilon}^{2}}=\frac{\theta}{1+\theta^{2}}$
and $\quad \gamma(2)=\gamma(3)=\ldots=0 \quad$ which implies that $\rho(2)=\rho(3)=\ldots=0$

For the MA(2) process it can be shown that

$$
\begin{aligned}
& \operatorname{Var}\left(\mathrm{y}_{\mathrm{t}}\right)=\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right) \sigma_{\varepsilon}^{2}=\gamma(0) \\
& \rho(1)=\frac{\theta_{1}+\theta_{1} \theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} ; \rho(2)=\frac{\theta_{2}}{1+\theta_{1}^{2}+\theta_{2}^{2}} ; \rho(3)=\rho(4)=. .=0
\end{aligned}
$$

Thus for an MA(q), $\quad \rho_{\mathrm{k}}=0 \quad \forall \quad \mathrm{k}>\mathrm{q}$.

Properties of ARMA series

For the $\operatorname{ARMA}(1,1)$ process it can be shown that:

$$
\begin{aligned}
& \gamma(0)=\frac{1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}}{1-\phi_{1}^{2}} \sigma^{2} ; \\
& \gamma(1)=\frac{\left(1-\phi_{1} \theta_{1}\right)\left(\phi_{1}-\theta_{1}\right)}{1-\phi_{1}^{2}} \sigma^{2} \\
& \rho(1)=\frac{\left(1-\phi_{1} \theta_{1}\right)\left(\phi_{1}-\theta_{1}\right)}{1+\theta_{1}^{2}-2 \phi_{1} \theta_{1}} \\
& \rho(\mathrm{k})=\phi_{1} \rho(\mathrm{k}-1) \text { for } \mathrm{k}>1 .
\end{aligned}
$$

Partial autocorrelation functions (PACF)

All AR processes imply ACFs that dump out. PACFs are used to help discriminating between AR processes of different orders.

PACs are calculated to adjust for the portion of autocorrelation between y_{t} and y_{t-k}, due to the correlation that these variables have with the intermediate lags y_{t-1}, y_{t-2},
$\ldots, \mathrm{y}_{\mathrm{t}-\mathrm{k}+1}$.

The lag k partial autocorrelation is the partial regression coefficient ϕ_{kk} in the kth order autoregression:
$y_{t}=\phi_{k 1} y_{t-1}+\phi_{k 2} y_{t-2}+\ldots+\phi_{k k} y_{t-k}+\varepsilon_{t}$
and it measures the additional correlation between y_{t} and y_{t-k} after adjusting for the intermediate variables $y_{t-1}, y_{t-2}, \ldots, y_{t-k+1}$.
$\operatorname{AR}(1): \phi_{11}=\rho_{1} \quad \phi_{\mathrm{kk}}=0$ for $\mathrm{k}>1$
$\operatorname{AR}(2): \quad \phi_{11}=\rho_{1,} \phi_{22}=\frac{\rho_{2}-\rho_{1}^{2}}{1-\rho_{1}^{2}} \quad \phi_{\mathrm{kk}}=0$ for $\mathrm{k}>2$
$\operatorname{AR}(\mathrm{p}) \quad \phi_{11} \neq 0, \phi_{22} \neq 0, \ldots, \phi_{\mathrm{pp}} \neq 0, \quad \phi_{\mathrm{kk}}=0$ for $\mathrm{k}>\mathrm{p}$

PACs are zero for lags larger than the order of the process.

Summary Table: theoretical values. (The estimated sample values may or may not correspond to these population values)
\(\left.\begin{array}{|l|c|c|}\hline \& \operatorname{AR}(1) \& \operatorname{MA}(1)

\hline \operatorname{Var}\left(\mathrm{y}_{\mathrm{t}}\right) \& \frac{\sigma_{\varepsilon}^{2}}{1-\phi^{2}} \& \left(1+\theta^{2}\right) \sigma_{\varepsilon}^{2}

\hline \rho_{\mathrm{k}}=\operatorname{corr}\left(\mathrm{y}_{\mathrm{t}} \mathrm{y}_{\mathrm{t}-\mathrm{k}}\right) \& \phi^{\mathrm{k}} \& \frac{\theta}{1+\theta^{2} \quad \mathrm{k}=1}

0 \quad \mathrm{k}=2,3, ···\end{array}\right]\)\begin{tabular}{l}
Stationarity (stability)

condition

$\quad-1<\phi<1 .$

No restriction on θ is needed

Invertibility condition (this means
that an MA process can be written
as an infinite AR process)

\hline
\end{tabular}

Summary of correlation patterns

Process	ACF	PACF
AR(p)	Infinite: damps out	Finite: cuts off after lag p
MA(q)	Finite: cuts off after lag q	Infinite: damps out
ARMA	Infinite: damps out	Infinite: damps out

